
1

MIPS Instruction Set

(Chapter 3)
EE424 Spring 2003

W S U 2EE424 Spring 2003

Compiling C if into MIPS

• Compile by hand
if (i == j) f=g+h;
else f=g-h;

• Use this mapping:
f: $s0 g: $s1 h: $s2
i: $s3 j: $s4

• Final compiled MIPS code:
beq $s3,$s4,True # branch i==j
sub $s0,$s1,$s2 # f=g-h(false)
j Fin # go to Fin

True: add $s0,$s1,$s2 # f=g+h (true)
Fin:

Exit

i == j?

f=g+h f=g-h

(false)
i != j

(true)
i == j

2

W S U 3EE424 Spring 2003

Loops

do {
g = g + A[i];
i = i + j;

} while (i != h);

Register mapping: g: $s1 h: $s2
i: $s3 j: $s4
base of A: $s5

• Final compiled MIPS code:
Loop: add $t1,$s3,$s3 #$t1= 2*I

add $t1,$t1,$t1 #$t1= 4*I
add $t1,$t1,$s5 #$t1= @A[i]
lw $t1,0($t1) #$t1=A[i]
add $s1,$s1,$t1 #g=g+A[i]
add $s3,$s3,$s4 #i=i+j
bne $s3,$s2,Loop # goto Loop

if i!=h

muli $t1,$s3,4 #$t1 =4*I

W S U 4EE424 Spring 2003

Inequalities in MIPS
• Until now, we’ve only tested equalities

(== and != in C).
General programs need to test < and > as well.

• Create a MIPS Inequality Instruction:
– “Set on Less Than”
– Syntax: slt reg1,reg2,reg3
– Meaning: if (reg2 < reg3)

reg1 = 1;
else reg1 = 0;

• Remark: “set” means “set to 1”
“reset” means “set to 0”.

3

W S U 5EE424 Spring 2003

Inequalities in MIPS (cont’d)

• How to use this?
Compile by hand:

if (g < h) goto Less;

• Use the mapping: g: $s0 h: $s1
• Final MIPS code:

slt $t0,$s0,$s1 # $t0 = 1 if g<h
bne $t0,$0,Less # goto Less

if $t0!=0(if (g<h))
• Branch if $t0 != 0 è (g < h)

• Register $0 always contains the value 0 …
so bne and beq often use it for comparison
… after an slt instruction!

W S U 6EE424 Spring 2003

Inequalities in MIPS (cont’d)
• Now, we can implement <

… but how do we implement >, <= and >= ?

• We could add 3 more instructions, but:
– MIPS goal: Simpler is Better

• Can we implement <= in one or more instructions using
just slt and the branches?

– What about >?
– What about >=?

• There are 4 combinations of slt & beq/bneq …

4

W S U 7EE424 Spring 2003

Inequalities in MIPS: <, >, >=, <=

• Here are the 4 combinations of slt & beq/bneq:

slt $t0,$s0,$s1 # $t0 = 1 if g<h
bne $t0,$0,Less # if(g<h) goto Less

slt $t0,$s1,$s0 # $t0 = 1 if g>h
bne $t0,$0,Grtr # if(g>h) goto Grtr

slt $t0,$s0,$s1 # $t0 = 1 if g<h
beq $t0,$0,Gteq # if(g>=h)goto Gteq

slt $t0,$s1,$s0 # $t0 = 1 if g>h
beq $t0,$0,Lteq # if(g<=h)goto Lteq

<

>

>=

<=

W S U 8EE424 Spring 2003

Immediate in Inequalities

• There is also an immediate version of slt to test
against constants: slti
– Helpful in for loops

if (g >= 1) goto Loop
Loop: . . .

slti $t0,$s0,1 # $t0 = 1 if
$s0<1 (g<1)

beq $t0,$0,Loop # goto Loop
if $t0==0
(if (g>=1))

C

M
I
P
S

5

W S U 9EE424 Spring 2003

Unsigned numbers

• There are unsigned inequality instructions :
sltu, sltiu

which set result to 1 or 0 depending on unsigned
comparisons

• $s0 = FFFF FFFAhex, $ s1 = 0000 FFFAhex

• What is value of $t0, $t1?
– slt $t0, $s0, $s1

– sltu $t1, $s0, $s1

W S U 10EE424 Spring 2003

C Switch (Case) Statement

• Choose among four alternatives depending on whether k
has the value 0, 1, 2 or 3.

• Compile this C code:

switch (k) {
case 0: f=i+j; break; /* k=0*/
case 1: f=g+h; break; /* k=1*/
case 2: f=g–h; break; /* k=2*/
case 3: f=i–j; break; /* k=3*/
}

6

W S U 11EE424 Spring 2003

C Switch Statement (cont’d)

• This is complicated, so simplify!
• Rewrite it as a chain of if-else statements

(which we already know how to compile)

if(k==0) f=i+j;
else if(k==1) f=g+h;
else if(k==2) f=g–h;
else if(k==3) f=i–j;

• Use this mapping:

f: $s0 g: $s1 h: $s2
i: $s3 j: $s4 k: $s5

W S U 12EE424 Spring 2003

C Switch Statement (Cont’d)

• Final compiled MIPS code:
bne $s5,$0,L1 # branch k!=0
add $s0,$s3,$s4 #k==0 so f=i+j
j Exit # end … so Exit

L1: addi $t0,$s5,-1 # $t0=k-1
bne $t0,$0,L2 # branch k!=1
add $s0,$s1,$s2 #k==1 so f=g+h
j Exit # end … so Exit

L2: addi $t0,$s5,-2 # $t0=k-2
bne $t0,$0,L3 # branch k!=2
sub $s0,$s1,$s2 #k==2 so f=g-h
j Exit # end … so Exit

L3: addi $t0,$s5,-3 # $t0=k-3
bne $t0,$0,Exit # branch k!=3
sub $s0,$s3,$s4 #k==3 so f=i-j

Exit: …

f: $s0 g: $s1 h: $s2
i: $s3 j: $s4 k: $s5

7

W S U 13EE424 Spring 2003

C Switch Statement (cont’d)

• Sometimes the alternatives of a switch statement can be
encoded as
– A table of addresses (of alternative instruction sequences)

• The program needs only to index the “jump address table”
and then jump to the appropriate sequence

• MIPS has a “jump register” instruction jr
It does an unconditional jump to …
the address specified by the register

Write the corresponding MIPS code!

W S U 14EE424 Spring 2003

5 components of any computer

Processor

Computer

Control
(“brain”)

Datapath
Registers

Memory Devices

Input

Output
LoadLoad

StoreStore

These are “data transfer” instructions

Registers are in the datapath of the processor;
if operands are in memory, we must transfer
them to the processor to operate on them,
And then transfer back to memory when done

8

W S U 15EE424 Spring 2003

Data Transfer: Memory à Reg

• To transfer a word of data
we need to specify two things:

– Register: specify this by number (0 - 31)
– Memory address: more difficult

• Think of memory as a single one-dimensional array,
so we can address it simply by supplying a pointer
to a memory address

• Other times, we want to be able to offset from this
pointer

W S U 16EE424 Spring 2003

Data Transfer: Memory à Reg (Cont’d)

• To specify a memory address to copy from
specify two things:

– A register which contains a pointer to memory

– A numerical offset (in bytes)

• The desired memory address is …
the sum of these two values

• Example: 8($t0)

– Specifies the byte memory address pointed to by
the value in

$t0, plus 8 bytes

9

W S U 17EE424 Spring 2003

Data Transfer: Memory to Reg (3/4)

• Load Instruction Syntax:
1 2, 3(4)

– where
1) operation (instruction) name
2) register that will receive value
3) numerical offset in bytes
4) register containing pointer to memory

Operation Register/value Offset (Register/pointer)

• Instruction Name:

–lw $t0,8($s0)

(lw = Load Word, so load 32 bits or one word
from memory at byte address $s0 + 8)

W S U 18EE424 Spring 2003

Data Transfer: Memory à Reg (cont’d)

• Example: lw $t0,12($s0)
– This instruction will

• take the pointer in $s0
• add 12 bytes to it, and then
• load the value from the memory pointed to by this

calculated sum into register $t0
• Remarks:

– $s0 is called the base register

– 12 is called the offset

• Offset is generally used in accessing elements of array or
structure: base register points to beginning of array or
structure

10

W S U 19EE424 Spring 2003

Data Transfer: Reg à Memory

• We also want to store the value from a register into memory
• Store instruction syntax is identical to Load

Instruction Name:
sw $t0,8($s0)

(sw means Store Word)

32 bits (or one word) are stored to memory at byte address
$s0 + 8

• Example: sw $t0,12($s0)

This instruction will take the pointer in $s0, add 12
bytes to it, and then store the value from register $t0
into the memory address pointed to by the calculated
sum

$t0 à M[$s0+12]

W S U 20EE424 Spring 2003

Pointers v. Values

• Key Concept:
A register can hold any 32-bit value
That value can be:
– a (signed) int
– an unsigned int
– a pointer (memory address).

• If you write lw $t2,0($t0)
Then $t0 better contain a pointer

• What if you write add $t2,$t1,$t0
Then $t0 and $t1 must contain … valuesvaluesvaluesvaluesvaluesvaluesvalues

11

W S U 21EE424 Spring 2003

Compilation
• What offset in lw to select A[8] in C?

4x8=32 to select A[8]: byte vs. word

• Compile by hand using registers:
g = h + A[8];

g: $s1
h: $s2
$s3: base address of A
1st transfer from memory to register:

lw $t0,32($s3) # $t0 gets A[8]
• Add 32 to $s3 to select A[8], put into $t0

Next add it to h and place in g
add $s1,$s2,$t0 # $s1 = h+A[8]

W S U 22EE424 Spring 2003

Addressing: Byte vs. word

• Every word in memory has an address
(similar to an index in an array)

• Early computers numbered words like C numbers elements of an
array:
– Memory[0], Memory[1], Memory[2], …

Called the “address” of a word

• Computers needed to access 8-bit bytes
as well as words (4 bytes/word)
– For strings: byte data transfers (later)

• Today machines address memory as bytes, hence word addresses
differ by 4
– Memory[0], Memory[4], Memory[8], …

12

W S U 23EE424 Spring 2003

Memory Alignment

• MIPS requires that all words start at addresses that are multiples of 4
bytes

• Called Alignment
Must fall on address that is multiple of their size.
– See why when get to caches, pipelining

0 1 2 3
Aligned

Not
Aligned

Bytes in Word

Word Location

W S U 24EE424 Spring 2003

C functions

main() {
int i,j,k,m;
i = mult(j,k); ...
m = mult(i,i); ...

}
/* really dumb mult function */
int mult (int mcand, int mlier){
int product;
product = 0;
while (mlier > 0) {
product = product + mcand;
mlier = mlier -1; }

return product;
}

What information must
compiler/programmer
keep track of?

What instructions can
accomplish this?

13

W S U 25EE424 Spring 2003

Function Call Bookkeeping

• Registers play a major role in keeping track of
information for function calls

• Register conventions:
– Return address $ra
– Arguments $a0, $a1, $a2, $a3
– Return value $v0, $v1
– Local variables $s0, $s1, … , $s7

• The stack is also used.

W S U 26EE424 Spring 2003

Function/Procedure Call –Steps (p.132)

1. Place parameters in a place where procedure can access
them.

2. Transfer control to procedure
3. Acquire storage resources
4. Perform task
5. Place result value(s) in a place(s) where the calling program

can access it (them)
6. Return control to the point of origin

14

W S U 27EE424 Spring 2003

Function/Procedure Call –Steps

1. Place parameters in a place where procedure can access
them.

$a0 -- $a3: argument registers

2. Transfer control to procedure
jal ProcedureAddress (jal: jump-and-link)

$raß return address (which is PC+4)
PC ß ProcedureAddress

W S U 28EE424 Spring 2003

Function/Procedure Call –Steps

3. Acquire storage resources
If more register are needed, the stack can be used.

4. Perform task

5. Place result value(s) in a place(s) where the calling program
can access it (them)
$v0, $v1: value registers that return values

6. Return control to the point of origin
jr $ra

15

W S U 29EE424 Spring 2003

Instruction Support for Functions
... sum(a,b);... /* a,b:$s0,$s1 */
}
int sum(int x, int y) {

return x+y;
}

address
1000 add $a0,$s0,$zero # x = a
1004 add $a1,$s1,$zero # y = b
1008 addi $ra,$zero,1016 #$ra=1016
1012 j sum #jump to sum
1016 ...
2000 sum: add $v0,$a0,$a1
2004 jr $ra # new instruction

C

M
I
P
S

W S U 30EE424 Spring 2003

Instruction Support for Functions

• Single instruction to jump and save return address: jump
and link (jal)

• Before:

1008 addi $ra,$zero,1016 #$ra=1016
1012 j sum #go to sum

• After:

1012 jal sum # $ra=1016,go to sum

• Why have a jal?
Make the common case fast:
functions are very common.

16

W S U 31EE424 Spring 2003

Instruction Support for Functions

• Syntax for jal (jump and link) is same as for j (jump):

jal label
•jal should really be called laj for “link and jump”:

– Step 1 (link): Save address of next instruction into $ra
(Why next instruction? Why not current one?)

– Step 2 (jump): Jump to the given label
• Syntax for jr (jump register):

jr register
• Instead of providing a label to jump to, the jr instruction provides a

register which contains an address to jump to
• Only useful if we know exact address to jump to
• Very useful for function calls:

–jal stores return address in register ($ra)
–jr jumps back to that address

W S U 32EE424 Spring 2003

Using the stack (p134)

int leaf_example (int g, int h, int i, int j)

{

int f;

f = (g+h) – (i+j)

return f;

}

17

W S U 33EE424 Spring 2003

Stack (cont’d)

Low address

High address

$sp
$sp $t1

$sp

$t1

$t0

$sp

$t1

$t0
$s0

Assume: caller has important data in $s0,$t0, and $t1; the
procedure uses these registers.

W S U 34EE424 Spring 2003

Stack (cont’d) “PUSH”

Assume: caller has important data in $s0,$t0, and $t1; the
procedure uses these registers.

sub $sp, $sp, 12 # we make room for 3 registers

sw $t1, 8($sp) # save reg $t1

sw $t0, 4($sp) # save reg $t0

sw $s0, 0($sp) # save reg $s0

18

W S U 35EE424 Spring 2003

Stack (cont’d)

add $t0, $a0, $a1 # t0 ß g+h

add $t1, $a2, $a3 # t1 ß i+j

sub $s0, $t0, $t1 # f=t0-t1

move $v0,$s0 # Return value of f ($v0)

g:$a0 h:$a1 i:$a2 j:$a3

f = (g+h)-(i+j)

W S U 36EE424 Spring 2003

Stack (cont’d) “POP”

RESTORE OLD VALUES before returning to caller

lw $s0, 0($sp) # restore reg $s0

lw $t0, 4($sp) # restore reg $t0

lw $t1, 8($sp) # restore reg $t1

add $sp, $sp, 12 # adjust stack to delete 3 items

jr $ra # jump back to caller

19

W S U 37EE424 Spring 2003

MIPS register types

$t0-$t9: temporary registers that are not preserved
when a procedure is called.

$s0-$s7: saved registers that must be preserved.

W S U 38EE424 Spring 2003

Nested Procedures

int sumSquare(int x, int y) {
return mult(x,x)+ y;

}

• Something called sumSquare, now sumSquare is calling
mult.

• So there’s a value in $ra that sumSquare wants to jump
back to, but this will be overwritten by the call to mult.

• Need to save sumSquare return address before call to
mult.

20

W S U 39EE424 Spring 2003

Nested Procedures

• In general, may need to save some other info in addition to
$ra.

• When a C program is run, there are 3 important memory
areas allocated:
– Static: Variables declared once per program,

cease to exist only after execution completes.
E.g., C globals

– Heap: Variables declared dynamically

– Stack: Space to be used by procedure during
execution; this is where we can save register values

W S U 40EE424 Spring 2003

C memory Allocation

0

∞
Address

Code Program

Static Variables declared
once per program

Heap
Explicitly created space,
e.g., malloc(); C pointers

Stack
Space for saved
procedure information$sp

stack
pointer

21

W S U 41EE424 Spring 2003

Using the Stack

• So we have a register $sp which always points to the last
used space in the stack

• To use stack, we decrement this pointer by the amount of
space we need and then fill it with info

• So, how do we compile this?

int sumSquare(int x, int y) {
return mult(x,x)+ y;
}

W S U 42EE424 Spring 2003

Using the Stack (cont’d)
•Hand-compile
sumSquare:

addi $sp,$sp,-8 # space on stack
sw $ra, 4($sp) # save ret addr
sw $a1, 0($sp) # save y

add $a1,$a0,$zero # mult(x,x)
jal mult # call mult

lw $a1, 0($sp) # restore y
add $v0,$v0,$a1 # mult()+y
lw $ra, 4($sp) # get ret addr
addi $sp,$sp,8 # restore stack
jr $ra

mult: ...

int sumSquare(int x, int y) {
return mult(x,x)+ y; }

“push”

“pop”

22

W S U 43EE424 Spring 2003

Steps for Making a Procedure Call

1) Save necessary values onto stack.

2) Assign argument(s), if any.
3) jal call

4) Restore values from stack.

W S U 44EE424 Spring 2003

Rules for Procedures
• Called with a jal instruction
• Returns with a jr $ra

• Accepts up to 4 arguments in
$a0, $a1, $a2 and $a3

• Return value is always in $v0
(and if necessary in $v1)

• Must follow register conventions
(even in functions that only you will call)!
So what are they?

23

W S U 45EE424 Spring 2003

MIPS Registers

The constant 0 $0 $zero
Reserved for Assembler $1 $at
Return Values $2-$3 $v0-$v1
Arguments $4-$7 $a0-$a3
Temporary $8-$15 $t0-$t7
Saved $16-$23 $s0-$s7
More Temporary $24-$25 $t8-$t9
Used by Kernel $26-27 $k0-$k1
Global Pointer $28 $gp
Stack Pointer $29 $sp
Frame Pointer $30 $fp
Return Address $31 $ra

(From COD 2nd Ed. p. A-23)

W S U 46EE424 Spring 2003

Register Conventions

• Caller: the calling function
• Callee: the function being called

• When callee returns from executing, the caller needs to
know which registers may have changed and which are
guaranteed to be unchanged

• Register Conventions:
A set of generally accepted rules as to
– which registers will be unchanged after a

procedure call (jal)
– and which may be changed

24

W S U 47EE424 Spring 2003

Register Conventions (cont’d)

• $0: No Change. Always 0.
• $s0-$s7: No Change.

Very important!
That’s why they’re called saved registers.
If the callee changes these in any way,
it must restore the original values before
returning.

• $sp: No Change.
The stack pointer must point to the same place
before and after the jal call

… or else the caller won’t be able to restore values from
the stack!

W S U 48EE424 Spring 2003

Register Conventions (cont’d)

• $ra: Change.
The jal call itself will change this register.
Caller needs to save on stack if nested call.

• $v0-$v1: Change.
These are expected to contain
the new returned values.

• $a0-$a3: Change.
These are volatile argument registers.
Caller needs to save if they’ll need them after the call.

• $t0-$t9: Change.
That’s why they’re called temporary:
any procedure may change them at any time.
Caller needs to save if they’ll need them afterwards.

25

W S U 49EE424 Spring 2003

Register Conventions (cont’d)

• What do these conventions mean?

– If function R calls function E, then function R must save any
temporary registers that it may be using onto the stack before
making a jal call.

– Function E must save any S (saved) registers it intends to use
before garbling up their values

– Remember: Caller/callee need to save only temporary/saved
registers they are using, not all registers.

• Note that, if the callee is going to use some s registers, it must:
– save those s registers on the stack
– use the registers
– restore s registers from the stack
– jr $ra

• With the temp registers, the callee doesn’t need to save onto the stack.
• Therefore the caller must save those temp registers that it would like to

preserve though the call.

W S U 50EE424 Spring 2003

Other Registers

• $at: may be used by the assembler at any time;
unsafe to use

• $k0-$k1: may be used by the kernel at any time;
unsafe to use

• $gp: don’t worry about it
• $fp: don’t worry about it

• Note: Feel free to read up on $gp and $fp in
Appendix A, but you can write perfectly
good MIPS code without them.

26

W S U 51EE424 Spring 2003

Remember …

• Functions are called with jal, and
return with jr $ra.

• The stack is your friend:
Use it to save anything you need.
Just be sure to leave it the way you found it.

• Register Conventions:
Each register has a purpose and limits to its usage.
Learn these and follow them, even if you’re writing all the
code yourself.

W S U 52EE424 Spring 2003

Remember …

• Instructions we know so far
Arithmetic: add, addi, sub, addu,

addiu, subu
Memory: lw, sw
Decision: beq, bne, slt, slti,

sltu, sltiu
Unconditional Branches (Jumps):

j, jal, jr

• Registers we know so far
– All of them!

27

W S U 53EE424 Spring 2003

Example

main() {
int i,j,k,m; /* i-m:$s0-$s3 */

i = mult(j,k); ...
m = mult(i,i); ...

}
int mult (int mcand, int mlier){
int product;
product = 0;
while (mlier > 0) {
product += mcand;
mlier -= 1; }

return product;
}

W S U 54EE424 Spring 2003

Example (cont’d)

__start:
add $a0,$s1,$0 # arg0 = j (a0ßj)
add $a1,$s2,$0 # arg1 = k (a0ßj)
jal mult # call mult
add $s0,$v0,$0 # i = mult()
...add $a0,$s0,$0 # arg0 = i
add $a1,$s0,$0 # arg1 = i
jal mult # call mult
add $s3,$v0,$0 # m = mult()
...

done

28

W S U 55EE424 Spring 2003

Example (cont’d)
• Notes:

–main function ends with done, not
jr $ra, so
there’s no need to save $ra onto stack

–all variables used in main function are
saved registers, so there’s no need to
save these onto stack

W S U 56EE424 Spring 2003

Example (cont’d)

mult:
add $t0,$0,$0 # prod=0

Loop:
slt $t1,$0,$a1 # mlr > 0?
beq $t1,$0,Fin # no=>Fin
add $t0,$t0,$a0 # prod+=mc
addi $a1,$a1,-1 # mlr-=1
j Loop # goto Loop

Fin:
add $v0,$t0,$0 # $v0=prod
jr $ra # return

29

W S U 57EE424 Spring 2003

Example (cont’d)

• Notes:

– no jal calls are made from mult and we
don’t use any saved registers, so we don’t
need to save anything onto stack

– temp registers are used for intermediate
calculations (could have used s registers, but
would have to save the caller’s on the stack.)

– $a1 is modified directly (instead of copying into
a temp register) since we are free to change it

– result is put into $v0 before returning

