MIPS Instruction Set

(Chapter 3)
EE424 Spring 2003

Compiling Ci f into MIPS

« Compile by hand

if (i ==j) f=g+h; (true) false)
el se f=g-h; i==| : i1=]
v \

* Use this mapping: f =q+h f=a-h
f:$s0 g:%s1 h: $s2 - —
i:$s3 j 1 $s4 |

v
Exit
* Final compiled MIPS code:
beq $s3, $s4, True # branch i ==
sub $s0, $s1, $s2 # f=g-h(fal se)
] Fin # go to Fin

True:
Fi n:

EE424 Spring 2003

add $s0, $s1, $s2

WSsSu

f=g+h (true)

Loops

do {
g =9+ Ail;
=0+

} while (i !'=h);

Register mapping: g: $s1 h: $s2

i: $s3 j: $s4
base of A: $s5

* Final compiled MIPS code:

Loop:
muli $t1,$s3,4 #$t 1 =4*1

add $t1, $t1, $s5 #$t 1= @\ i]

lw $t1,0($t1) #$t 1=A[i]

add $s1, $s1, 5t 1 #o=g+A i]

add $s3, $s3, $s4 #i =i 4]

bne $s3, $s2, Loop # goto Loop
#if il=h

EE424 Spring 2003 WSu

Inequalities in MIPS

¢ Until now, we’ve only tested equalities
(==and ! =inC).
General programs need to test < and > as well.

* Create a MIPS Inequality Instruction:
— “Set on Less Than”

— Syntax: slt regl,reg2,reg3
— Meaning: if (reg2 < reg3)
regl = 1;

el se regl = 0O;
+ Remark: “set” means “setto 1”
“reset” means “set to 0".

EE424 Spring 2003 WSsSu

Inequalities in MIPS (cont’d)

How to use this?
Compile by hand:

if (g <h) goto Less;

Use the mapping: g: $s0 h: $s1
Final MIPS code:

slt $t0,$s0,$s1 # $t0 =1 if g<h

bne $t0, $0, Less # goto Less

#if $t0=0(if (g<h))

Branchif $t0!=0 = (g<h)
Register $0 always contains the value 0 ...
so bne and beq often use it for comparison
... after an sl t instruction!

EE424 Spring 2003 WSsSu

Inequalities in MIPS (cont’'d)

Now, we can implement <
... but how do we implement >, <=and >= ?

We could add 3 more instructions, but:
— MIPS goal: Simpler is Better

Can we implement <= in one or more instructions using
justsl t and the branches?

— What about >?
— What about >=?

There are 4 combinations of slt & beg/bneq ...

EE424 Spring 2003 WSsSu

Inequalities in MIPS: <, >, >=, <=

« Here are the 4 combinations of slt & beg/bneq:

<
slt $tO0, $s0, $s1 #
bne $tO0, $0, Less #
>
slt $tO, $s1, $s0 #
bne $t0,3$0, Gtr #
>=
slt $t0, $s0, $s1 #
beqg $t0, $0, Geq #
<=
slt $tO, $s1, $s0 #
beq $t0, $0, Lteq #

EE424 Spring 2003

$t0 =1 if g<h
i f(g<h) goto Less

$t0 =1 if g>h
if(g>h) goto Gtr

$t0 =1 if g<h
i f(g>=h)goto G eq

$t0 =1 if g>h
i f(g<=h)goto Lteq

WSsSUu

Immediate in Inequalities

* There is also an immediate version of sl t to test

against constants: sl t i
— Helpful in f or loops
if (g >= 1) goto Loop

C .o
nnp
M . L
slti $t0, $s0, 1 # $t0 =1 if
| # $s0<1 (g<1)
p beq $t0,$0,Loop # goto Loop
if $t0==0

(if (g>=1))

EE424 Spring 2003 WSsSu

Unsigned numbers

e There are unsigned inequality instructions:
sltu,sltiu

which set result to 1 or 0 depending on unsigned
comparisons

* $s0 = FFFF FFFA,, $ s1 = 0000 FFFA,,
e What is value of $t0, $t1?

— slt $t0, $s0, $s1

— sltu $t1, $s0, $s1

EE424 Spring 2003 WSsSu 9

C Switch (Case) Statement

» Choose among four alternatives depending on whether k
has the value 0, 1, 2 or 3.

» Compile this C code:

switch (k) {
case 0: f=i+j; break; /* k=0*/
case 1: f=g+h; break; /* k=1*/
case 2: f=g-h; break; /* k=2*/
case 3: f=i—j; break; /* k=3*/

}

EE424 Spring 2003 WSsSu 0

C Switch Statement (cont’'d)

« This is complicated, so SImplify!
* Rewrite it as a chain of if-else statements
(which we already know how to compile)

| f(k==0) f=i+j;
el se if(k==1) f=g+h;
el se if(k==2) f=g-h;
el se i f(k==3) f=i—;

e Use this mapping:
f: $s0 g: $s1 h: $s2
i: $s3 j: $s4 k: $s5

EE424 Spring 2003 WSsSu u

C Switch Statement (Cont’d)
f: $sO0 g: $s1 h: $s2

« Final compiled MIPS code: It $s3 | $s4 k' $sB
bne $s5, $0, L1 # branch k!=0
add $s0, $s3, $s4 #k==0 so f=i +
i Exit # end ...so Exit
L1: addi $tO, $s5,-1 # $t0=k-1
bne $tO0, $0, L2 # branch k!=1
add $s0, $s1, $s2 #k==1 so f=g+h
i Exi t # end ...so Exit
L2: addi $tO, $s5,-2 # $t0=k-2
bne $t0, $0, L3 # branch k!=2
sub $s0, $s1, $s2 #k==2 so f=g-h
i Exit # end ...so Exit
L3: addi $tO, $s5,-3 # $t0=k- 3
bne $tO0, $0, Exi t # branch k!=3
sub $s0, $s3, $s4 #k==3 so f=i-j

Exit:

EE424 Spring 2003 WSsSu 2

C Switch Statement (cont’'d)

* Sometimes the alternatives of a switch statement can be
encoded as

— A table of addresses (of alternative instruction sequences)

» The program needs only to index the “jump address table”
and then jump to the appropriate sequence

« MIPS has a “jump register” instruction | r

It does an unconditional jump to ...
the address specified by the register

Write the corresponding MIPS code!

EE424 Spring 2003 WSsSu B

5 components of any computer

Registers are in the datapath of the processor;
if operands are in memory, we must transfer
them to the processor to operate on them,
And then transfer back to memory when done

Processor Memory Dovice

These are “data transfer” instructions

EE424 Spring 2003 WSsSu 1

Data Transfer: Memory - Reg

» To transfer a word of data
we need to specify two things:

— Register: specify this by number (0 - 31)
— Memory address: more difficult

» Think of memory as a single one-dimensional array,
so we can address it simply by supplying a pointer
to a memory address

» Other times, we want to be able to offset from this
pointer

EE424 Spring 2003 WSsSu 5

Data Transfer: Memory - Reg (Cont’d)

» To specify a memory address to copy from
specify two things:

— A register which contains a pointer to memory
— A numerical offset (in bytes)

e The desired memory address is ...
the sum of these two values

e Example: 8($t0)
— Specifies the byte memory address pointed to by
the value in

$t 0, plus 8 bytes

EE424 Spring 2003 WSsSu 16

Data Transfer: Memory to Reg (3/4)

* Load Instruction Syntax:
1 2,3
—where
1) operation (instruction) name
2) register that will receive value

3) numerical offset in bytes
4) register containing pointer to memory
Operation Register/value Offset (Register/pointer)

* Instruction Name:

—I'w $t0, 8($s0)

(I w= Load Word, so load 32 bits or one word
from memory at byte address $s0 + 8)

EE424 Spring 2003 WSsSu

17

Data Transfer: Memory - Reg (cont’d)

 Example: |w $t0, 12($s0)
— This instruction will
« take the pointer in $s0
» add 12 bytes to it, and then

* load the value from the memory pointed to by this
calculated sum into register $t 0

* Remarks:
— $s0 is called the base register
— 12 is called the offset

» Offset is generally used in accessing elements of array or
structure: base register points to beginning of array or
structure

EE424 Spring 2003 WSsSu

18

Data Transfer: Reg - Memory

* We also want to store the value from a register into memory

« Store instruction syntax is identical to Load
Instruction Name:
sw $t 0, 8($s0)

(Swmeans Store Word)

32 bits (or one word) are stored to memory at byte address
$s0 + 8

« Example: sw $t0, 12($s0) |$t0 > M[$s0+12]
This instruction will take the pointer in $s0, add 12
bytes to it, and then store the value from register $t 0

into the memory address pointed to by the calculated
sum

EE424 Spring 2003 WSsSu

19

Pointers v. Values

» Key Concept:
A register can hold any 32-bit value
That value can be:

— a (signed) i nt
—an unsi gned i nt
— a pointer (memory address).

 If you write lw $t 2, O($t0)
Then $t 0 better contain a pointer

e What if you write add $t2,$t1,%t0
Then $t 0 and $t 1 must contain ... values

EE424 Spring 2003 WSsSu

20

10

Compilation

e What offsetin | w to select A[8] inC?
4x8=32 to select Al 8] : byte vs. word

» Compile by hand using registers:
g =h+ A8];
g: $si
h: $s2
$s3: base address of A
1st transfer from memory to register:
lw $t0, 32(%$s3) # $t0 gets A[8]
» Add 32 to $s3 to select A[8] , put into $t 0
Next add it to h and place in g
add $s1, $s2, $t0 # $s1 = h+A[8]

EE424 Spring 2003 WSsSu a

Addressing: Byte vs. word

* Every word in memory has an address
(similar to an index in an array)

e Early computers numbered words like C numbers elements of an
array:

- I\/Ermry[O]v\Wy[l;], Memoryg2] , ..

Called the ‘address” of a word

« Computers needed to access 8-bit bytes
as well as words (4 bytes/word)

— For strings: byte data transfers (later)

» Today machines address memory as bytes, hence word addresses
differ by 4

— Menory[0], Menory[4]

1

Menor y[8] ,

EE424 Spring 2003 WSsSu =

11

Memory Alignment

* MIPS requires that all words start at addresses that are multiples of 4

bytes Bytes in Word
O 1 2 3
Aligned
Not Word Location
Aligned

e Called Alignment
Must fall on address that is multiple of their size.

— See why when get to caches, pipelining

EE424 Spring 2003 WSsSu &

C functions

main() { What ?nformation must
int’i,j,k,m compiler/programmer
'mz%HE{,kg s keep track of?

/* really dunmb rmult function */
int mult (int ncand, int mier){
i nt product;
product = 0;
wh n

ile (mMier > 0) {
product = product + ntand;
mMier = mier -1; }
ieturn product ;
What instructions can
accomplish this?
EE424 Spring 2003 WSsSu 2

12

Function Call Bookkeeping

» Registers play a major role in keeping track of
information for function calls

* Register conventions:

— Return address $ra

— Arguments $a0, $al, $a2, $a3
— Return value $v0, $vi

— Local variables $s0, $s1, ..., $s7

* The stack is also used.

EE424 Spring 2003 WSsSu =

Function/Procedure Call —Steps (p.132)

1. Place parameters in a place where procedure can access
them.

Transfer control to procedure
Acquire storage resources
Perform task

Place result value(s) in a place(s) where the calling program
can access it (them)

6. Return control to the point of origin

a s~ wDN

EE424 Spring 2003 WSsSu %

13

Function/Procedure Call —Steps

1. Place parameters in a place where procedure can access
them.

$a0 -- $a3: argument registers

2. Transfer control to procedure
jal ProcedureAddress (al: jump-and-Ilink)

$ra < return address (which is PC+4)
PC < ProcedureAddress

EE424 Spring 2003 WSsSu

27

Function/Procedure Call —Steps

3. Acquire storage resources
If more register are needed, the stack can be used.

4. Perform task

5. Place result value(s) in a place(s) where the calling program
can access it (them)

$v0, $v1: value registers that return values

6. Return control to the point of origin
jir $ra

EE424 Spring 2003 WSsSu

28

14

Instruction Support for Functions

sum(a,b);... /* a,b:$s0, $s1 */
}
int sum(int x, int y) {

return x+y;

}

dress
M 1 dd $a0, $s0, $zero
1004 a al, $s1, $zero
1008 addi $ra
1012 | sum # unmp to sum
1016 ...

w 7o —

dd $vO0, $a0, $al
$ra # new i nst

EE424 Spring 2003 WSsSu 2

Instruction Support for Functions

» Single instruction to jump and save return address: jump

and link (j al)
o Before:
1008 addi $ra, $zero, 1016 #$ra=1016
1012 j sum #go to sum
o After:
1012 jal sum # $ra=1016,go to sum

* Why haveaj al ?
Make the common case fast:
functions are very common.

EE424 Spring 2003 WSsSu %

15

Instruction Support for Functions

e Syntax for j al (jump and link) is same as for j (jump):
jal | abel
« j al should really be called | aj for “link and jump”:

— Step 1 (link): Save address of next instruction into $ra
(Why next instruction? Why not current one?)

— Step 2 (jump): Jump to the given label
e Syntax for j r (jump register):
jr register
« Instead of providing a label to jump to, the j r instruction provides a
register which contains an address to jump to
« Only useful if we know exact address to jump to
 Very useful for function calls:

—j al stores return address in register ($ra)
—jr jumps back to that address
EE424 Spring 2003 WSsSu s
Using the stack (p134)
int |leaf _exanple (int g, int h, int i, int j)
{
int f;
f = (gth) - (i+j)
return f;
}
EE424 Spring 2003 WSsSu %2

16

Stack (cont’d)

Assume: caller has important data in $s0,$t0, and $t1; the
procedure uses these registers.

High address

EE424 Spring 2003

[e
Low address

$sp —»
$sp —»
$sp —»
$sp —»

Stack (cont’'d) “PUSH”

Assume: caller has important data in $s0,$t0, and $t1; the
procedure uses these registers.

sub $sp, $sp, 12 # we make room for 3 registers
sw $t1, 8($sp) # save reg $t1
sw $t0, 4($sp) # save reg $t0

sw $s0, 0($sp) # save reg $s0

EE424 Spring 2003

Wsu 34

17

Stack (cont’d)

g:$a0 h:$al
f = (g+h)-(i+))

add $t0, $a0, $al
add $t1, $a2, $a3
sub $s0, $t0, $t1

move $v0,$s0

EE424 Spring 2003

i:$a2 j:$a3

#10 € g+h
#1l € i+
f=t0-11

Return value of f ($v0)

WSsSUu 35

Stack (cont’d)

“POP”

RESTORE OLD VALUES before returning to caller

lw $s0, 0($sp)
lw $t0, 4($sp)
lw $t1, 8($sp)
add $sp, $sp, 12

restore reg $s0
restore reg $t0
restore reg $tl

adjust stack to delete 3 items

jr $ra # jump back to caller

EE424 Spring 2003

WSsSu 36

18

MIPS register types

$t0-$t9: temporary registers that are not preserved
when a procedure is called.

$s0-$s7: saved registers that must be preserved.

EE424 Spring 2003 WSsSu s

Nested Procedures

int sunBquare(int x, int y) {
return nult(x, x)+ vy;

}

» Something called sunSquar e, now sunsquar e is calling
mul t .

* So there’s a value in $ra that sunSquar e wants to jump
back to, but this will be overwritten by the call to mul t.

* Need to save sunsquar e return address before call to
mul t .

EE424 Spring 2003 WSsSu %

19

Nested Procedures

* In general, may need to save some other info in addition to

$ra.

 When a C program is run, there are 3 important memory
areas allocated:
— Static: Variables declared once per program,
cease to exist only after execution completes.
E.g., C globals

— Heap: Variables declared dynamically

— Stack: Space to be used by procedure during
execution; this is where we can save register values

EE424 Spring 2003 WSsSu

39

C memory Allocation

Addre}? - :
Space for save
__| Stack procedure information

$sp »
stack
pointer A
Explicitly created space,
Heap e.g., malloc(); C pointers
Static Variables declared
once per program
5 Code | Program

EE424 Spring 2003 WSsSu

20

Using the Stack

* So we have a register $sp which always points to the last
used space in the stack

» To use stack, we decrement this pointer by the amount of
space we need and then fill it with info

* So, how do we compile this?
I nt sunBquare(int x, int y) {
return mul t(x, x)+ vy;

}

EE424 Spring 2003 WSsSu a

Using the Stack (cont’'d)

*Hand-compile Nt sunbquarernt X, 1nt.yy 1

sunBquar e: return nult(x,x)+vy; }

“push” addi $sp, $sp, -8 # space on stack
sw $ra, 4($sp) # save ret addr
sw $al, 0O($sp) # save y
add $al, $a0, $zero # mul t (x, x)
jal nmult # call mult
lw $al, 0(S$sp) # restore y
add $v0, $v0, $al # mult()+y

“pop” lw $ra, 4(3$sp) # get ret addr
addi $sp, $sp, 8 # restore stack

jr $ra
mul t:

EE424 Spring 2003 WSsSu

21

Steps for Making a Procedure Call

1) Save necessary values onto stack.

2) Assign argument(s), if any.
3)j al call
4) Restore values from stack.

EE424 Spring 2003 WSsSu

Rules for Procedures

Called with a j al instruction
Returnswitha jr $ra

Accepts up to 4 arguments in
$a0, $al, $a2 and $a3

Return value is always in $v0
(and if necessary in $v1)

Must follow register conventions
(even in functions that only you will call)!
So what are they?

EE424 Spring 2003 WSsSu

22

MIPS Registers

The constant 0 $0 $zero
Reserved for Assembler $1 $at
Return Values $2-$3 $v0-$v1
Arguments $4-$7 $a0-$a3
Temporary $8-$15 $tO-$t7
Saved $16-$23 $s0-$s7
More Temporary $24-$25 $t8-$t9
Used by Kernel $26-27 $kO-$k1
Global Pointer $28 $gp
Stack Pointer $29 $sp
Frame Pointer $30 $fp
Return Address $31 $ra

(From COD 2nd Ed. p. A-23)

EE424 Spring 2003 WSsSu

Register Conventions

» Caller: the calling function
e Callee: the function being called

* When callee returns from executing, the caller needs to
know which registers may have changed and which are
guaranteed to be unchanged

* Register Conventions:
A set of generally accepted rules as to

— which registers will be unchanged after a
procedure call (j al)

—and which may be changed

EE424 Spring 2003 WSsSu

Register Conventions (cont’'d)

$0: No Change. Always 0.

e $s0-$s7: No Change.

Very important!

That's why they're called saved registers.
If the callee changes these in any way,

it must restore the original values before
returning.

$sp: No Change.
The stack pointer must point to the same place
before and after the j al call

... or else the caller won't be able to restore values from
the stack!

EE424 Spring 2003 WSsSu

47

Register Conventions (cont’'d)

o $ra: Change.

The j al call itself will change this register.

Caller needs to save on stack if nested call.
$v0-$v1: Change.

These are expected to contain

the new returned values.

$a0-$a3: Change.

These are volatile argument registers.

Caller needs to save if they’ll need them after the call.
$t0-$t9: Change.

That's why they're called temporary:

any procedure may change them at any time.

Caller needs to save if they’ll need them afterwards.

EE424 Spring 2003 WSsSu

24

Register Conventions (cont’'d)

* What do these conventions mean?

— If function R calls function E, then function R must save any
temporary registers that it may be using onto the stack before
making a j al call.

— Function E must save any S (saved) registers it intends to use
before garbling up their values

— Remember: Caller/calleg need to save only temporary/saved
registers they are using, not all registers.

» Note that, if the callee is going to use some s registers, it must:

— save those s registers on the stack

— use the registers

— restore s registers from the stack

—jr $ra

« With the temp registers, the callee doesn’t need to save onto the stack.
» Therefore the caller must save those temp registers that it would like to
preserve though the call.

EE424 Spring 2003 WSsSu

Other Registers

+ $at: may be used by the assembler at any time;
unsafe to use

e 3$k0-$k1: may be used by the kernel at any time;
unsafe to use

* $gp: don’t worry about it
« $fp: don’t worry about it
* Note: Feel free to read up on $gp and $fp in

Appendix A, but you can write perfectly
good MIPS code without them.

EE424 Spring 2003 WSsSu

50

25

Remember ...

* Functions are called with j al , and
return with j r $ra.

» The stack is your friend:
Use it to save anything you need.
Just be sure to leave it the way you found it.

* Register Conventions:
Each register has a purpose and limits to its usage.
Learn these and follow them, even if you're writing all the
code yourself.

EE424 Spring 2003 WSsSu

51

Remember ...

e |nstructions we know so far

Arithmetic: add, addi, sub, addu,
addi u, subu

Memory: |w, sw

Decision: beq, bne, slt, slti,
sltu, sltiu

Unconditional Branches (Jumps):
j, jal, jr

* Registers we know so far
— All of them!

EE424 Spring 2003 WSsSu

52

26

Example

mai n() {
int i,j,k,m /* i-m$s0-
o= mlt(j,k);
m=nmult(i,i);
}

$s3 */

int mult (int ncand, int mier){

i nt product;

product = O;

while (mMier > 0) {
product += ntand;
mier -=1; }
return product;

}

EE424 Spring 2003 WSsSu

53

Example (cont’d)

__start:
add $ao0, $s1, $0 # arg0
add $al, $s2, $0 # argl
jal mult # call
add $s0, $v0, $0 #i =

add $a0, $s0, $0 # arg0

add $al, $s0, $0 # argl
jal mult # call

j (a0<j)
k (a0<j)
mul t

mul t ()

= j
= j
nmul t

add $s3, $vO0, $0 # m= nult()

done

EE424 Spring 2003 WSsSu

27

Example (cont’d)

* Notes:
—nai n function ends with done, not
jr $ra,so
there’'s no need to save $ra onto stack

—all variables used in nai n function are

saved registers, so there’s no need to
save these onto stack

EE424 Spring 2003 WSsSu

55

Example (cont’'d)

mul t :

add $tO, $0, $0 # prod=0
Loop:

slt $t1,%0,%al # nmr > 07

beq $t1,%0,Fin # no=>Fin

add $tO0, $t0, $a0 # prod+=nc

addi $al, $al,-1 # mr-=1

| Loop # goto Loop
Fi n:

add $vO0, $t0,$0 # $vO=prod

jr $ra # return

EE424 Spring 2003 WSsSu

56

28

Example (cont'd)

* Notes:

—noj al calls are made from nul t and we
don’t use any saved registers, so we don’t
need to save anything onto stack

—temp registers are used for intermediate
calculations (could have used s registers, but
would have to save the caller’s on the stack.)

—$al is modified directly (instead of copying into
a temp register) since we are free to change it

—result is put into $v0 before returning

EE424 Spring 2003 WSsSu

57

29

