Logical & Shift Operations

Adapted from CS 61C & 152 © UCB 2001

Overview

mLogical Instructions
mShifts
mLoading/Storing Bytes

mOverflow in Arithmetic

Bitwise Operations

mUp until now, we've done arithmetic (add, sub, addi),
memory access (Il wand sw), and branches and jumps

mAll of these instructions view contents of register as a
single quantity (such as a signed or unsigned integer)

mNew Perspective: View contents of register as 32 raw
bits rather than as a single 32-bit number

mSince registers are composed of 32 bits, we may want
to access individual bits (or groups of bits) rather than
the whole

mintroduce two new classes of instructions:
e Logical Operators
e Shift Instructions

Logical Operators

mTwo basic logical operators:
e AND: outputs 1 only if both inputs are 1
e OR: outputs 1if at least one inputis 1

min general, can define them to accept >2 inputs, but in
the case of MIPS assembly, both of these accept
exactly 2 inputs and produce 1 output

e Again, rigid syntax, simpler hardware

mTruth Table: standard table IistinP all possible
combinations of inputs and resultant output for each

A B A ANDB AORB
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 1

Logical Operators (Cont’d)

mLogical Instruction Syntax:
1 234
1) operation name
2) register that will receive value
3) first operand (register)

4) second operand (register) or
immediate (numerical constant)

minstruction Names:

eand, or Both of these expect the third argument to be a
register

eandi ,ori Both of these expect the third argument to be an
immediate

mMIPS Logical Operators are all bitwise, meaning that
bit 0 of the output is produced by the respective bit 0's
of the inputs, bit 1 by the bit 1's, etc.

Uses for Logical Operators

mNote that anding a bit with 0 produces a 0 at the
output while anding a bit with 1 produces the original
bit.

mThis can be used to create a mask.
eExample:

1011 0110 1010 0100 0011 1101 1001 1010

mask: 0000 0000 0000 0000 0000 1111 12111111
eThe result of anding these:

0000 0000 0000 0000 0000 1101 1001 1010
mask last 12 bits

Uses for Logical Operators (cont’d)

mThe second bit string in the example is called
amask. Itis used to isolate the rightmost 12
bits of the first bit string by masking out the
rest of the string (e.g. setting it to all 0s).

mThus, the and operator can be used to set
certain portions of a bitstring to 0s, while
leaving the rest alone.

eIn particular, if the first bit string in the above
example were in $t0, then the following instruction
would mask it:

andi $t 0, $t 0, OXFFF

Uses for Logical Operators (cont’d)

mSimilarly, note that or ing a bit with _1|groduces
a 1 at the output whilé or ing a bit with O
produces the original bit.

mThis can be used to force certain bits of a
string to 1s.

eFor example, if $t0 contains Ox 12345678, then after
this instruction:

ori $t0, $t0, OX FFFF

e ... $t0 contains Ox 1234FFFF (e.g. the high-order 16
bits are untouched, while the low-order 16 bits are
forced to 1s)

Shift Instructions

mMove (shift) all the bits in a word to the left or
right by a number of bits.

eExample: shift right by 8 bits
0001 0010 0011 0100 0101 0110 0111 1000

T~ T

0000 0000 0001 0010 0011 0100 0101 0110
eExample: shift left by 8 bits

Woon 0100 0101 0110 C‘)llly

0011 0100 0101 0110 0111 1000 OO0O0 0000

Shift Instructions (cont’d)

mShift Instruction Syntax:
1234
e where
1) operation name
2) register that will receive value
3) first operand (register)
4) shift amount (constant <= 32)

mMIPS shift instructions:
1.sl | (shiftleft logical): shifts left and fills emptied bits with 0s
2.srl (shiftright logical): shifts right and fills emptied bits with 0s

3. sra (shift right arithmetic): shifts right and fills emptied bits by sign
extending

10

Shift Instructions (cont’d)

mExample: shift right arith by 8 bits
‘0001 0010 0011 0100 0101 0110 0111 1000

0000 0006 0001 0010 0011 0100 0101 0110A
mExample: shift right arith by 8 bits

1001 0010 0011 0100 0101 0110 0111 1000

T~ T~

A

1111 1111 1001 0010 0011 0100 0101 0110

11

Uses for Shift Instructions

mSuppose we want to isolate byte 0
(rightmost 8 bits) of a word in $t0. Simply
use:

andi $t 0, $t 0, OxXFF

mSuppose we want to isolate byte 1 (bit 15
to bit 8) of aword in $t0. We can use:

andi $t 0, $t 0, OxFFOO

but then we still need to shift to the right by

8 bits...

12

Uses for Shift Instructions

mCould use instead:

sl $tO, $t0, 16
srl $tO, $t0, 24

0001 0010 0011 0100 0101 0110 0111 1000

//

0101 0110 0111 1000 OOO0O OOOO OOOO 0000

0000 0000 0000 0000 0000 0000 0101 0110

13

Uses for Shift Instructions

min decimal:

eMultiplying by 10 is same as shifting left by 1:
0 714,,x 10,, = 7140,,
Q 56,,x 10,, = 560,

eMultiplying by 100 is same as shifting left by 2:
Q 714,,x 100,, = 71400,
a 56,, x 100,, = 5600, ,

eMultiplying by 10" is same as shifting left by n

14

Uses for Shift Instructions

min binary:

eMultiplying by 2 is same as shifting left by 1:
o 11, x 10, = 110,
0 1010, x 10, = 10100,

eMultiplying by 4 is same as shifting left by 2:
o 11, x 100, = 1100,
o 1010, x 100, = 101000,

eMultiplying by 2"is same as shifting left by n

15

Uses for Shift Instructions

mSince shifting may be faster than _
multiplication, a good compiler usually notices
when C code multiplies by a power of 2 and
compiles it to a shift instruction:

a = a*8
would compile to:
sl | $s0, $s0, 3 (in MIPS)

mLikewise, shift right to divide by powers of 2
eremember to use sra

16

Loading, Storing bytes

mln addition to word data transfers
(I w, sw), MIPS has byte data transfers:

eload byte I b
estore byte sb

esame format as | w, sw

17

Loading, Storing bytes (cont’d)

m\What do the other 24 bits in the 32 bit
register?

el b: sign extends to fill upper 24 bits

XXXX XXX YO0 XXX XXXX k222 2222]
_ _ _ byte
...1Is copied to “sign-extend” loaded
This bit

mNormally with characters don't want to sign extend

mMIPS instruction that doesn't sign extend when
loading bytes:

load byte unsigned: | bu

18

Question

Suppose:

| b $s0, 100($zero) #byte@100= OxOF
| b $s1, 200(%$zero) #byte@200= OxFF

What are the values of $s0 and $s1?

$s0 | $s1

15 | 255

15 -1

15 | 255

-15 | 255

- 15 -1

-15 } 255
Answer
Suppose:

| b $s0, 100($zero) #byte@100= OxOF
| b $s1, 200(%$zero) #byte@200= OxFF

What are the values of $s0 and $s1?

$s0 $s
15| 255
15 -1
15| - 255
-15| 255
-15 -1
-15|-255

O

:\.) :\J

=

2777
27?77
0000

27?777
?7?7?7?
1111

27772
0000
0000

2277
1111
1111

27?77
1111
1111

?77?7?
1111
1111

sO
15

sl

20

Things to Remember

mLogical and Shift Instructions

eOperate on bits individually, unlike arithmetic,
which operate on entire word.

eUse to isolate fields, either by masking or by
shifting back and forth.

eUse shift left logical, sl |, for multiplication by
powers of 2

eUse shift right arithmetic, sr a, for division by
powers of 2.

mNew Instructions:
and, andi, or,ori, sll,srl,sra

21

Things to Remember

mMIPS Signed v. Unsigned is an "overloaded"
term

eDo/Don't sign extend
(Ib, Ibu)

eDon't overflow
(addu, addiu, subu, multu, divu)

eDo signed/unsigned compare (slt,slti/sltu,sltiu)

22

MIPS Instruction Representation

Stored-Program Concept

mComputers built on 2 key principles:

1) Instructions are represented as
numbers.

2) Therefore, entire programs can be
stored in memory to be read or written just
like numbers (data).

mSimplifies SW/HW of computer systems:

eMemory technology for data also used for
programs

24

Consequence #1:. Everything Addressed

mSince all instructions and data are stored in memory
as numbers, everything has a memory address:
instructions, data words

e both branches and jumps use these

mC pointers are just memory addresses: they can point
to anything in memory

e Unconstrained use of addresses can lead to nasty bugs; up
to you in C; limits in Java
mOne register keeps address of instruction being
executed: “Program Counter” (PC)

e Basically a pointer to memory: Intel calls it Instruction
Address Pointer, a better name

25

Consequence #2: Binary Compatibility

mPrograms are distributed in binary form
e Programs bound to specific instruction set
e Different version for Macintosh and IBM PC

mNew machines want to run old programs (“binaries”)
as well as programs compiled to new instructions

mlLeads to instruction set evolving over time

mSelection of Intel 8086 in 1981 for 1st IBM PC is major
reason latest PCs still use 80x86 instruction set
(Pgntlum 4); could still run program from 1981 PC
today

26

Instructions as Numbers

mCurrently all data we work with is in words
(32-bit blocks):

eEach register is a word.

el wand swboth access memory one word at a
time.

mSo how do we represent instructions?

eRemember: Computer only understands 1s and
Os, so “add $t 0, $0, $0” is meaningless.

e MIPS wants simplicity: since data is in words,
make instructions be words too

27

Instructions as Numbers (cont’d)

mOne word is 32 bits, so divide instruction
word into “fields”

mEach field tells computer something about
instruction

m\We could define different fields for each
instruction, but MIPS is based on simplicity,
so define 3 basic types of instruction
formats:

eR-format
el|-format
eJ-format

28

Instruction Formats

-I-form(?t: used for instructions With
Immediates, | wand sw (since the offset

ounts %s an immediate), and the branches
beq and bne),

e (but not the shift instructions; later)
mJ-format: used for j andjal (see Friday)

mR-format; used for all other instructions

mlt will sQon become clear why the . _
instructions have been partitioned in this
way.

29

R-Format Instructions

mDefine “fields” of the following number of
bits each: 6 +5+5+5+5+6 =32

6 5 5 5 5 6

mFor simplicity, each field has a name:

opeode——rs -t d—shamt—furet—

mimportant: On these slides and in the book,
each field is viewed as a 5- or 6-bit unsigned
integer, not as part of a 32-bit integer.

eConsequence: 5-bit fields can represent any
number 0-31, while 6-bit fields can represent any
number 0-63.

30

R-Format Instructions

m\What do these field integer values tell us?
eopcode: partly specifies what instruction it is

O Note: Equal to O for all R-Format instructions!

ef unct : combined with opcode, this number
exactly specifies the instruction

eQuestion: Why aren’t opcode and f unct a single
12-bit field?

a Answer: We'll answer this later.

31

R-Format Instructions (cont’d)

mMore fields:

o/ S (Source Register):
generally used to specify register
containing first operand

oI [(Target Register):
generally used to specify register
containing second operand
(note that name is misleading)

o/ d (Destination Register):
generally used to specify register
which will receive result of computation
32

R-Format Instructions (cont’d)

mNotes about register fields:

eEach register field is exactly 5 bits, which means
that it can specify any unsigned integer in the
range 0-31.

eEach of these fields specifies one of the 32
registers by number.

eThe word “generally” was used because there are
exceptions that we’ll see later, e.g.,

Q mul t and di v have nothing important in the
rd field since the dest registers arehi and | o

a nf hi and nfl o have nothing important in the
rs andrt fields since the source is
determined by the instruction

33

R-Format Instructions (cont’d)

mFinal field:

eshant : This field contains the amount a shift
instruction will shift by. Shifting a 32-bit word
by more than 31 is useless, so this field is only
5 bits (so it can represent the numbers 0-31).

o This field is set to 0 in all but the shift
instructions.

mFor a detailed description of field usage for
each instruction, see back cover of
textbook.

34

R-Format Example (1/2)

mMIPS Instruction:

add $8, $9, $10

opcode 0 (look up in table)
funct 32 (look up in table)
rs 9 (first operand)

rt 10 (second operand)
rd 8 (destination)
shant 0 (not a shift)

35

R-Format Example (2/2)

mMIPS Instruction:
add $8, $9, $10

Decimal/field representation:

0 Q 10 8 0 32

Binary/field representation;

000090101901 161010101003 100090 1100000
hex representation: 012A 4020,
decimal representation: 19,546,144,

eCalled a Machine Langquage Instruction

36

I-Format Instructions (1/5)

m\What about instructions with immediates?

e5-bit field only represents numbers up to the value
31: immediates may be much larger than this

eldeally, MIPS would have only one instruction
format (for simplicity): unfortunately, we need to
compromise

mDefine new instruction format that is partially
consistent with R-format:

eFirst notice that, if instruction has immediate, then
it uses at most 2 registers.

37

I-Format Instructions (2/5)

mDefine “fields” of the following number of bits each:
6+5+5+ 16 =32 bits

6 = = 16

mAgain, each field has a name:

oncoda re rt Lonodi at o
= —Hea—at—e

ToUTr e L~y T C

mKey Concept: Only one field is inconsistent with R-
Iformat. Most importantly, opcode is still in same
ocation.

38

I-Format Instructions (3/5)

m\What do these fields mean?

eopcode

Same as before except that, since there is
no f unct field, opcode uniquely specifies

an instruction in I-format
eThis also answers the previous question

Q: Why R-format has two 6-bit fields to identify
instruction instead of a single 12-bit field?

A: In order to be consistent with other formats.

39

I-Format Instructions (4/5)

mMore fields:

ors: specifies the only register operand
(if there is one)

ort: specifies register which will receive
result of computation (this is why it’s
called the target register “ rt”)

40

I-Format Instructions (5/5)

mThe Immediate Field:

eaddi ,slti,sltiu,theimmediateis
sign-extended to 32 bits
Thus, it's treated as a signed integer

16 bits =» can be used to represent immediate up
to 26 different values

eThis is large enough to handle the offsetin a
typical | wor sw, plus a vast majority of values
that will be used in the sl ti instruction.

41

I-Format Example (1/2)

mMIPS Instruction:
addi $21, $22, -50

opcode 8 (look up in table)
rs 22 (register containing operand)
rt 21 (target register)

i mredi at e - 50 (by default, this is decimal)

42

I-Format Example (2/2)

mMIPS Instruction:
addi $21, $22, -50

Decimal/field representation:

8 22 21 - 50

Binary/field representation:

001000110110{10101} 1111111111001110

hexadecimal representation: 22D5 FFCE,,

decimal representation: 584,449,998,

43

I-Format Problems (1/2)

mProblem:

e Chances are that addi , | w, swand sl ti will use immediates
small enough to fit in the immediate field

e What if too big?

0 We need away to deal with a 32-bit immediate
in any I-format instruction

mSolution:
e Handle it in software + new instruction
e Don’t change the current instructions; instead, add a ...

E... new instruction:
| ui register, imedi ate
e stands for Load Upper Immediate

e takes 16-bit immediate and puts these bits in the upper half
(high order half) of the specified register

e sets lower half to Os

44

I-Format Problems (2/2)

mSo how does | ui help us?

eExample:
addi $t 0, $t 0, OxABABCDCD
becomes:
| ui $at, OxABAB
ori $at, $at, OxCDCD

add $t0, $t0, $at

eNow each I-format instruction has only a 16-bit
immediate.

e\Wouldn't it be nice if the assembler would this for
us automatically?

Q Pseudoinstructions ...

45

Question
Which instruction has same r i 2
A. add $0, $0, $0 m
subu $s0,$s0,$s0 Be-OEhe——f-5 = —t |,:.n..*.

uuuuuu
D. addi $0, $0, 35

H P i
A A vy

a3

|
lw $0, 0($0) ool s

|

|

|»+ | affcaot
™t Orrott

E. subu $0, $0, $0

1 e
Salmt urict

+
[« B

. Hmmm ... Instructions re

Registers numbers and names:
0: $0, .. 8: $t0, 9:$t1, ..15: $t7, 16: $s0, 17: $s1, .. 23: $s7

Opcodes and function fields (if necessary)
Add: opcode =0, funct =32
Subu: opcode =0, funct =35
Addi: opcode =8
Lw: opcode =35

46

Answer

Which instruction has same representation as 35, ?
A. add $0, $0, $0 Lo lo o | ol o |20
subu$s0$s0$s0 | o0 [16 |16 | 16| 0 | 35
lw $0, 0($0) I [0 To 1 0

D. addi $0, $0, 35

Registers numbers and names:
0: $0, .. 8: $t0, 9:$t1, ..15: $t7, 16: $s0, 17: $s1, .. 23: $s7

Opcodes and function fields (if necessary)
Add: opcode =0, funct =32
Subu: opcode =0, funct =35
Addi: opcode =8
Lw: opcode =

a7

In conclusion, ...

mSimplifying MIPS: Define instructions to be same size
as data word (one word) so that they can use the same
memory (compiler can use | wand sw).

mMachine Language Instruction: 32 bits representing a
single instruction

R lepeodet—-s -t H- BT E SIS .

cada rc .t Lhmadl at o
SacAt s f —t —HHE-CH——E

mComputer actually stores programs as a series of
these 32-bit numbers.

48

Branches: PC-Relative Addressing (1/5)

mUse |-Format

opcode rs rt I nmedi at e

mopcode specifies beq V. bne
mr s and rt specify registers to compare
m\What can i medi at e specify?

el medi at eis only 16 bits

ePC is 32-bit pointer to memory

eSo i medi at e cannot specify entire address to
branch to

49

Branches: PC-Relative Addressing (2/5)

mHow do we usually use branches?
eAnswer: i f-else,while,for
elLoops are generally small: typically up to 50
instructions

eFunction calls and unconditional jumps are done
using jump instructions (j and j al), not the

branches.

mConclusion
Though we may want to branch to anywhere in
memory, a single branch will generally change
the PC by a very small amount.

50

Branches: PC-Relative Addressing (3/5)

mSolution: PC-Relative Addressing

mLet the 16-biti mredi at e field be a signed
two’s complement integer to be added to the
PC if we take the branch.

mNow we can branch +/- 215 bytes from the PC,
which should be enough to cover any loop.

mAny ideas to further optimize this?

51

Branches: PC-Relative Addressing (4/5)

mNote: Instructions are words, so they’re word
aligned (byte address is always a multiple of 4,
which means it ends with 00 in binary).

¢S50 the number of bytes to add to the PC will always
be a multiple of 4.

e So specify thei nmedi at e in words.

mNow, we can branch +/- 215words from the PC
(or +/- 217 bytes), so we can handle loops 4
times as large.

52

Branches: PC-Relative Addressing (5/5)

mBranch Calculation:
elf we don’t take the branch:
PC=PC+14
PC+4 = byte address of next instruction
olf we do take the branch:
PC=(PC+4)+ (i medi ate *4)
eObservations

o | nmedi at e field specifies the number of words to

jump, which is simply the number of instructions to
jump.

o | nredi at e field can be positive or negative.

0 Due to hardware, add i nmredi at e to (PC+4), not to PC;
will be clearer why later ...

53

Branch Example (1/3)

aMIPS Code:

Loop: beq $9, $0, End
add $8, $8, $10
addi $9, %9, -1
j Loop

End:

mBranch is I-Format:

opcode =4 (look up in table)
rs =9 (first operand)
rt =0 (second operand)

i medi at e =?7?7?

54

Branch Example (2/3)

sMIPS Code:
Loop: beq
addi
_addi
J
End:

$9, $0, End
$8, $8, $10
$9, $9, - 1
Loop

ml nmedi at e Field:

eNumber of instructions to add to (or subtract
from) the PC, starting at the instruction following
the branch.

eln beq case,i Mmedi ate =3

55

Branch Example (3/3)

sMIPS Code:
Loop: beq
addi
addi
J
End:

$9, $0, End
$8, $8, $10
$9, %9, -1
Loop

decimal representation:

4

9

o

(']

binary representation:

L8100

01001

oo A“AA-A-A-A-A-aA-A- A~ A ey

56

Questions on PC-addressing

mDoes the value in branch field change if we
move the code?

mWhat do we do if its > 27215 instructions?

mSince its limited to +- 2*15 instructions,
doesn’t_thlsgenerate lots of extra MIPS
instructions®

m\Why do we need all these addressing modes?
Why not just one?

57

J-Format Instructions (1/5)

mFor branches, we assumed that we won’t want
to branch too far, so we can specify only the
change in PC.

mFor general jumps (j andj al), we may jump
to anywhere in memory.

mldeally, we could specify a 32-bit memory
address to jump to.

mUnfortunately, we can’t fit both a 6-bit opcode
and a 32-bit address into a single 32-bit word,
SO we compromise.

58

J-Format Instructions (2/5)

mDefine “fields” of the following number of bits
each:

6 bits 26 bits

mAs usual, each field has a name:

opcode t ar get addr ess

mKey Concepts

eKeep opcode field identical to R-format and I-
format for consistency.

eCombine all other fields to make room for large
target address.

59

J-Format Instructions (3/5)

mFor now, we can specify 26 bits of the 32-bit
bit address.

mOptimization:

eNote that, just like with branches, jumps will only
jump to word aligned addresses, so last two bits
are always 00 (in binary).

e S0 let’s just take this for granted and not even
specify them.

mS0, we can specify 28 bits of the 32-bit
address.

60

J-Format Instructions (4/5)

mWhere do we get the other 4 bits?

eBy definition, take the 4 highest order bits from the
PC.

eTechnically, this means that we cannot jump to
anywherein memory, but it's adequate 99.9999...%
of the time, since programs aren’t that long.

elf we absolutely need to specify a 32-bit address,
we can always put it in aregister and use thejr
instruction.

61

J-Format Instructions (5/5)

mSummary:

eNew PC = PC[31..28]
|| target address (26 bits)
|| 00

eNote: Il means concatenation
4 bits || 26 bits || 2 bits = 32-bit address

mUnderstand where each part came from!

62

Outline

mBranch instruction encoding
mJump instructions
mDisassembly
mPseudoinstructions and

“True” Assembly Language (TAL) v. “MIPS”
Assembly Language (MAL)

63

Decoding Machine Language

mHow do we convert 1s and 0Os to C code?
Machine language => C

mFor each 32 bits:

elLook at opcode: 0 means R-Format

2 or 3mean J-Format
otherwise I|-Format

eUse instruction type to determine which fields
exist.

e\Write out MIPS assembly code, converting each
field to name, register number/name, or
decimal/hex number.

elLogically convert this MIPS code into valid C
code. Always possible? Unique?

64

Decoding Example

-Eere are six machine language instructions in
ex:

00001025
0005402A
11000003
00441020
20A5FFFF
08100001

mLet the first instruction be at address
4,194,304, , (0x00400000).

mNext step: convert to binary

65

Decoding Example (cont’d)

mThe six machine language instructions in
binary:

00000000000000000001000000100101
00000000000001010100000000101010
00010001000000000000000000000011
00000000010001000001000000100000
00100000101001011111111111111111
00001000000100000000000000000001

mNext step: identify opcode and format

66

Decoding Example (cont’d)

mSelect the opcode (first 6 bits)
to determine the format:

Format:

R 100000090000000000001000000100101
R 100000000000001010100000000101010
| |00010001000000000000000000000011
R [00000090010001000001000000100000
| 100100000101001011111111111111111
J [00001000000100000000000000000001

mLook at opcode:
0 means R-Format,
2 or 3 mean J-Format,
otherwise I-Format.

m Next step: separation of fields

67

Decoding Example (cont’d)

Format:

R 0 Q Q 2 Q 27
R o o = S o L2
! 4 8 s +3

R 0 2 4 2 0 22
l 8 S S 1

J 2 1048574+

mFields separated based on format/opcode:

mNext step: translate (“disassemble”) to MIPS
assembly instructions

68

Decoding Example (cont’d)

maMIPS Assembly (Part 1):

0x00400000 or $2, $0, $0
0x00400004 slt $8, $0, $5
0x00400008 be $8, $0, 3
0x0040000c add $2, $2, $4
0x00400010 addi $5, $5, -1
0x00400014 | 0x100001

mBetter solution: translate to more
meaningful instructions (fix the
branch/jJump and add labels)

69

Decoding Example (cont’d)

maMIPS Assembly (Part 2):

or $v0, $0, $0
Loop: slt $t 0, $0, $al
beq $tO0, $0, Exi t
add $v0, $v0, $a0
addi $ail, $al, -1
] Loop
Exit:

mNext step: translate to C code (be creative!)

70

Decoding Example (cont’d)

mC code:

eMapping: $vO: product
$a0: multiplicand
$al: multiplier

product = O;

while (rmultiplier > 0)
product += nultiplicand;
mul tiplier -= 1;

71

Outline

mPseudoinstructions and

“True” Assembly Language (TAL) v. “MIPS”

Assembly Language (MAL)

72

True Assembly Language

mPseudoinstruction: _
AMIPSinstruction that doesn’t turn directly
into a machine language instruction.

m\What happens with pseudoinstructions?

eThey're broken up by the assembler into several
“real” MIPS instructions.

eBut what is a “real” MIPS instruction? Answer in a
few slides

mFirst some examples

73

Example Pseudoinstructions

mRegister Move
nmove reg2,regl
Expands to:
add reg2, $zero, regl

mLoad Immediate
[i reg, val ue
If value fits in 16 bits:
addi reg, $zero, val ue
else:
[ui reg, upper 16 bits of val ue
ori reg, $zero,l ower 16 bits

74

True Assembly Language

mProblem:

eWhen breaking up a pseudoinstruction, the
assembler may need to use an extra register.

elf it uses any regular register, it'll overwrite
whatever the program has put into it.
mSolution:

eReserve aregister ($1, called $at for _
“assembler temporary”) that the assembler will
use when breaking up pseudo-instructions.

eSince the assembler may use this at any time, it's
not safe to code with it.

75

Example Pseudoinstructions

mRotate Right Instruction []
ror reg, val ue NWJ

Expands to:
srl $at, reg, value Lo N
sl | reg, reg, 32-value

orreg, reg, $at % N
LN

mNo operation instruction

nop
Expands to instruction = O,
sl | $0, $0, O

76

Example Pseudoinstructions

m\Wrong operation for operand
addu reg, reg,value # should be addiu

If value fits in 16 bits:
addiu reg,reg, val ue

else:
| ui $at, upper 16 bits of val ue
ori $at, $zero, l ower 16 bits

addu reg, reg, $at

7

True Assembly Language

sMAL (MIPS Assembly Language): the set of
instructions that a programmer may use to
code in MIPS; this includes
pseudoinstructions

mTAL (True Assembly Language): the set of
instructions that can actually get translated
into a single machine language instruction
(32-bit binary string)

mA program must be converted from MAL
into TAL before it can be translated into 1s
and Os.

78

Question

m\Which of the codes below are pseudo-
instructions (MIPS Assembly Language);
that is, they are not TAL?

i. addi $t0, $t1, 40000
ii. beq $s0, 10, Exit
iii.sub $tO0, $t1, 1

A.i.only

ii. only
C.iii. only
D. i.and ii.
E. ii.and iii.

AII of the above

79

Answer

m\Which of the codes below are pseudo-
instructions (MIPS Assembly Language);
that is, they are not TAL?

i. addi $t0, $t1, 40000J40,000 > +32,767 =>| ui ,ori

ii. beq $s0,10 EXit beq: both must be registers

iii. sub $t0O, $t1, I Sub: both must be registers;
A.i. only even if it was subi,
there is no subi in TAL;

ii. only generates addi $t0,$t1, -1
C. iii. only
D. i.and ii.

E__ii andjii

80

Summary

R

I
J

mMachine Language Instruction: _
32 bits representing a single instruction

opcode rs rt rd |[shant |funct
opcode rs rt i nmedi at e
opcode t arget addr ess

mBranches use PC-relative addressing, Jumps use
absolute addressing.

mDisassembly is simple and starts by decoding opcode

field.

mAssembler expands real instruction set (TAL) with

pseudoinstructions (=>MAL)

81

Bonus slides

mThe following slides are more practice on the

differences between a pointer and a value, and

showing how to use pointers

82

Assembly Code to Implement Pointers

mdereferencing b data transfer in asm.

= .. *p . p load
(get value from location pointed to by p)
load word (lw) if int pointer,

load byte unsigned (lbu) if char pointer

= .. p store
Fput value into location pointed to by p)

83

Assembly Code to Implement Pointers

c isi nt, has value 100, in memory at address
0x10000000, p in $a0, x in $s0

p =4&c;, [/* p gets 0x10000000 */

X = *p; [* x gets 100 */
p = 200; / c gets 200 */
p=4&c; [/* p gets 0x10000000 */
|

#
| ur $a0, 0x1000 p = 0x10000000

= *p; [* x gets 100 */
$s0, 0(%$a0) # dereferencing p

p = 200; / c gets 200 */
addi $tO, $O 200
sw $t0, 0($a0)# dereferencing p

I#X

84

Pointers to structures

mC Example - linked list: — 10 o0
struct node { ’_’ value value
struct node *next;
I nt val ue; —T| —
}i value | [value

If p is a pointer to a node, declared
with struct node *p, then:

(*p).val ue orp->val ue for “value” field,

(*p).next orp->next for pointerto nexOle

85

Linked-list in C

mai oid) {
t node *head, *tenp, *ptr;
m

s
i
/* create the nodes*/
head = (struct node *)

mal | oc(si zeof (struct node));
head->val ue = 23;
head->next = 0;

n (v
truc
nt su

tenp = (struct node *)

mal | oc(si zeof (struct node));
t enp->next = head;
t enp- >va|ue 42;

head = tenp;

/* add up the val ues */
ptr = head; sum = 0;
while (ptr '=0) {
sum += ptr - >val ue;
ptr = ptr->next;

86

Linked-list in MIPS Assember (1/2)

head:sO, tenp:sl, ptr:s2, sums3
create the nodes
li $a0, 8# si zeof (node)

jal malloc # the cal
nove $s0, $vO0 # head gets result
i $t 0, 23

sw $t0,4($s0) # head->value = 23
sw $zero, 0($s0)# head- >next = NULL

i $ao, 8

jal malloc

nove $s1, $vO0 # tenmp = mall oc
sw $s0,0($sl) # tenp->next = head
i $t 0, 42

sw $t0,4(%sl) # tenp->value = 42

nove $s0, $s1 # head = tenp

87

Linked-list in MIPS Assember (2/2)

head: s0O, tenp:sl, ptr:s2, sums3

add up the val ues
nove $s2,$s0 # ptr = head
nmove $s3, $zero # sum=0

| oop: beq $s2,$zero,exit # exit if done
lw $t0, 4($s2) # get value
addu $s3, $s3, $t0 # conmpute new sum
lw $s3,0(%$s2) # ptr = ptr->next
i | oop # repeat

exit: done

88

