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Overview

nLogical Instructions

nShifts

nLoading/Storing Bytes

nOverflow in Arithmetic
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Bitwise Operations

nUp until now, we’ve done arithmetic (add, sub,addi ), 
memory access (lw and sw), and branches and jumps

nAll of these instructions view contents of register as a 
single quantity (such as a signed or unsigned integer)

nNew Perspective: View contents of register as 32 raw 
bits rather than as a single 32 -bit number

nSince registers are composed of 32 bits, we may want 
to access individual bits (or groups of bits) rather than 
the whole

nIntroduce two new classes of instructions:
l Logical Operators
l Shift Instructions

4

Logical Operators

nTwo basic logical operators:
l AND: outputs 1 only if both inputs are 1
l OR: outputs 1 if at least one input is 1

nIn general, can define them to accept >2 inputs, but in 
the case of MIPS assembly, both of these accept 
exactly 2 inputs and produce 1 output
l Again, rigid syntax, simpler hardware

nTruth Table: standard table listing all possible 
combinations of inputs and resultant output for each

A B  A AND B       A OR B
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 1
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Logical Operators (Cont’d)
nLogical Instruction Syntax:

1   2,3,4
1) operation name
2) register that will receive value
3) first operand (register)
4) second operand (register) or

immediate (numerical constant)

nInstruction Names:

land, or Both of these expect the third argument to be a 
register

landi, ori Both of these expect the third argument to be an 
immediate

nMIPS Logical Operators are all bitwise, meaning that 
bit 0 of the output is produced by the respective bit 0’s 
of the inputs, bit 1 by the bit 1’s, etc.
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Uses for Logical Operators

nNote that anding a bit with 0 produces a 0 at the 
output while anding a bit with 1 produces the original 
bit.

nThis can be used to create a mask.

lExample:

1011 0110 1010 0100 0011 1101 1001 1010

0000 0000 0000 0000 0000 1111 1111 1111
lThe result of anding these:

0000 0000 0000 0000 0000 1101 1001 1010

mask:

mask last 12 bits
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Uses for Logical Operators (cont’d)

nThe second bit string in the example is called 
a mask.  It is used to isolate the rightmost 12 
bits of the first bit string by masking out the 
rest of the string (e.g. setting it to all 0s).

nThus, the and operator can be used to set 
certain portions of a bitstring to 0s, while 
leaving the rest alone.
lIn particular, if the first bit string in the above 

example were in $t0, then the following instruction 
would mask it:

andi $t0,$t0,0xFFF
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Uses for Logical Operators (cont’d)

nSimilarly, note that oring a bit with 1 produces 
a 1 at the output while oring a bit with 0 
produces the original bit.

nThis can be used to force certain bits of a 
string to 1s.
lFor example, if $t0 contains 0x12345678, then after 

this instruction:

ori $t0, $t0, 0xFFFF

l… $t0 contains 0x1234FFFF (e.g. the high-order 16 
bits are untouched, while the low-order 16 bits are 
forced to 1s)
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Shift Instructions

nMove (shift) all the bits in a word to the left or 
right by a number of bits.

lExample: shift right by 8 bits
0001 0010 0011 0100 0101 0110 0111 1000

0000 0000 0001 0010 0011 0100 0101 0110

lExample: shift left by 8 bits
0001 0010 0011 0100 0101 0110 0111 1000

0011 0100 0101 0110 0111 1000 0000 0000
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Shift Instructions (cont’d)

nShift Instruction Syntax:
1   2,3,4

l where
1) operation name
2) register that will receive value
3) first operand (register)
4) shift amount (constant <= 32)

nMIPS shift instructions:
1. sll (shift left logical): shifts left and fills emptied bits with 0s
2. srl (shift right logical): shifts right and fills emptied bits with 0s
3. sra (shift right arithmetic): shifts right and fills emptied bits by sign 

extending
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Shift Instructions (cont’d)

nExample: shift right arith by 8 bits
0001 0010 0011 0100 0101 0110 0111 1000

0000 0000 0001 0010 0011 0100 0101 0110

nExample: shift right arith by 8 bits
1001 0010 0011 0100 0101 0110 0111 1000

1111 1111 1001 0010 0011 0100 0101 0110
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Uses for Shift Instructions

nSuppose we want to isolate byte 0 
(rightmost 8 bits) of a word in $t0.  Simply 
use:

andi   $t0,$t0,0xFF

nSuppose we want to isolate byte 1   (bit 15 
to bit 8) of a word in $t0.  We can use:

andi   $t0,$t0,0xFF00

but then we still need to shift to the right by 
8 bits...
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Uses for Shift Instructions

nCould use instead:

sll $t0, $t0, 16
srl $t0, $t0, 24

0001 0010 0011 0100 0101 0110 0111 1000

0101 0110 0111 1000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0101 0110
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Uses for Shift Instructions

nIn decimal:
lMultiplying by 10 is same as shifting left by 1:

q 71410 x 1010 = 714010

q 5610 x 1010 = 56010

lMultiplying by 100 is same as shifting left by 2:

q 71410 x 10010 = 7140010

q 5610 x 10010 = 560010

lMultiplying by 10n is same as shifting left by n
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Uses for Shift Instructions

nIn binary:
lMultiplying by 2 is same as shifting left by 1:

q 112 x 102 = 1102

q 10102 x 102 = 101002

lMultiplying by 4 is same as shifting left by 2:

q 112 x 1002 = 11002

q 10102 x 1002 = 1010002

lMultiplying by 2n is same as shifting left by n

16

Uses for Shift Instructions

nSince shifting may be faster than 
multiplication, a good compiler usually notices 
when C code multiplies by a power of 2 and 
compiles it to a shift instruction:
a = a*8
would compile to:
sll   $s0,$s0,3 (in MIPS)

nLikewise, shift right to divide by powers of 2
lremember to use sra
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Loading, Storing bytes

nIn addition to word data transfers 
(lw, sw), MIPS has byte data transfers:
lload byte lb
lstore byte sb
lsame format as lw, sw
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Loading, Storing bytes (cont’d)

nWhat do the other 24 bits in the 32 bit 
register?
llb: sign extends to fill upper 24 bits

nNormally with characters don't want to sign extend

nMIPS instruction that doesn't sign extend when 
loading bytes:

load byte unsigned: lbu

x
byte
loaded…is copied to “sign-extend”

This bit

xxxx xxxx xxxx xxxx xxxx xxxx zzz zzzz
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A: A: 15 255 
B: B: 15 -1
C: C: 15 -255
D: D: -15 255
E: E: -15 -1
F: F: -15 -255

Question

Suppose:

lb $s0, 100($zero) #byte@100= 0x0F
lb $s1, 200($zero) #byte@200= 0xFF

What are the values of $s0 and $s1?

$s0 $s1
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A: A: 15 255 
B: B: 15 -1
C: C: 15 -255
D: D: -15 255
E: E: -15 -1
F: F: -15 -255

Answer

Suppose:

lb $s0, 100($zero) #byte@100= 0x0F
lb $s1, 200($zero) #byte@200= 0xFF

What are the values of $s0 and $s1?

$s0 $s1 ?.. ???? ???? ????

?.. ???? ???? ????

?.. ???? 0000 1111

?.. ???? 1111 1111

0.. 0000 0000 1111

1.. 1111 1111 1111

s0
15

s1
-1
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Things to Remember

nLogical and Shift Instructions
lOperate on bits individually, unlike arithmetic, 

which operate on entire word.

lUse to isolate fields, either by masking or by 
shifting back and forth.
lUse shift left logical, sll,for multiplication by 

powers of 2
lUse shift right arithmetic, sra,for division by 

powers of 2.

nNew Instructions:
and,andi, or,ori, sll,srl,sra
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Things to Remember

nMIPS Signed v. Unsigned is an "overloaded" 
term
lDo/Don't sign extend

(lb, lbu)

lDon't overflow 
(addu, addiu, subu, multu, divu)

lDo signed/unsigned compare (slt,slti/sltu,sltiu)



MIPS  Instruction Representation
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Stored-Program Concept

nComputers built on 2 key principles:
1) Instructions are represented as

numbers.
2) Therefore, entire programs can be

stored in memory to be read or written just
like numbers (data).

nSimplifies SW/HW of computer systems: 
lMemory technology for data also used for 

programs
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Consequence #1: Everything Addressed

nSince all instructions and data are stored in memory 
as numbers, everything has a memory address: 
instructions, data words
l both branches and jumps use these

nC pointers are just memory addresses: they can point 
to anything in memory
lUnconstrained use of addresses can lead to nasty bugs; up 

to you in C; limits in Java

nOne register keeps address of instruction being 
executed: “Program Counter” (PC)
lBasically a pointer to memory: Intel calls it Instruction 

Address Pointer, a better name
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Consequence #2: Binary Compatibility

nPrograms are distributed in binary form
lPrograms bound to specific instruction set
lDifferent version for Macintosh and IBM PC

nNew machines want to run old programs (“binaries”) 
as well as programs compiled to new instructions

nLeads to instruction set evolving over time

nSelection of Intel 8086 in 1981 for 1st IBM PC is major 
reason latest PCs still  use 80x86 instruction set 
(Pentium 4); could still run program from 1981 PC 
today
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Instructions as Numbers

nCurrently all data we work with is in words 
(32-bit blocks):
lEach register is a word.
llw and sw both access memory one word at a 

time.

nSo how do we represent instructions?
lRemember: Computer only understands 1s and 

0s, so “add $t0,$0,$0” is meaningless.

lMIPS wants simplicity: since data is in words, 
make instructions be words too
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Instructions as Numbers (cont’d)

nOne word is 32 bits, so divide instruction 
word into “fields”

nEach field tells computer something about 
instruction

nWe could define different fields for each 
instruction, but MIPS is based on simplicity, 
so define 3 basic types of instruction 
formats:
lR-format

lI-format

lJ-format
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Instruction Formats

nI-format: used for instructions with 
immediates, lw and sw (since the offset 
counts as an immediate), and the branches 
(beq and bne),
l(but not the shift instructions; later)

nJ-format: used for j and jal (see Friday)

nR-format: used for all other instructions

nIt will soon become clear why the 
instructions have been partitioned in this 
way.
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R-Format Instructions

nDefine “fields” of the following number of 
bits each: 6 + 5 + 5 + 5 + 5 + 6 = 32

6 5 5 5 65

opcode rs rt rd functshamt

nFor simplicity, each field has a name:

nImportant: On these slides and in the book, 
each field is viewed as a 5- or 6-bit unsigned 
integer, not as part of a 32-bit integer.
lConsequence: 5-bit fields can represent any 

number 0-31, while 6-bit fields can represent any 
number 0-63.
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R-Format Instructions

nWhat do these field integer values tell us?
lopcode: partly specifies what instruction it is

q Note: Equal to 0 for all R-Format instructions!

lfunct: combined with opcode, this number 
exactly specifies the instruction

lQuestion: Why aren’t opcode and funct a single 
12-bit field?

q Answer: We’ll answer this later.
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R-Format Instructions (cont’d)

nMore fields:
lrs (Source Register):

generally used to specify register 
containing first operand

lrt (Target Register):
generally used to specify register 
containing second operand
(note that name is misleading)

lrd (Destination Register):
generally used to specify register 
which will receive result of computation
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R-Format Instructions (cont’d)

nNotes about register fields:
lEach register field is exactly 5 bits, which means 

that it can specify any unsigned integer in the 
range 0-31.

lEach of these fields specifies one of the 32 
registers by number.

lThe word “generally” was used because there are 
exceptions that we’ll see later, e.g.,
q mult and div have nothing important in the 
rd field since the dest registers are hi and lo

q mfhi and mflo have nothing important in the 
rs and rt fields since the source is 
determined by the instruction
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R-Format Instructions (cont’d)

nFinal field:
lshamt: This field contains the amount a shift 

instruction will shift by.  Shifting a 32 -bit word 
by more than 31 is useless, so this field is only 
5 bits (so it can represent the numbers 0-31).

lThis field is set to 0 in all but the shift 
instructions.

nFor a detailed description of field usage for 
each instruction, see back cover of 
textbook.
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R-Format Example (1/2)

nMIPS Instruction:

add   $8,$9,$10

opcode 0 (look up in table)

funct 32 (look up in table)

rs 9 (first operand)

rt 10 (second operand)

rd 8 (destination)

shamt 0 (not a shift)
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R-Format Example (2/2)

nMIPS Instruction:

add   $8,$9,$10

0 9 10 8 320
Binary/field representation:

lCalled a Machine Language Instruction

Decimal/field representation:

hex representation: 012A 4020hex

decimal representation:        19,546,144 ten

000000 01001 01010 01000 10000000000
hex
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I-Format Instructions (1/5)

nWhat about instructions with immediates?
l5-bit field only represents numbers up to the value 

31: immediates may be much larger than this

lIdeally, MIPS would have only one instruction 
format (for simplicity): unfortunately, we need to 
compromise

nDefine new instruction format that is partially 
consistent with R-format:
lFirst notice that, if instruction has immediate, then 

it uses at most 2 registers.
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I-Format Instructions (2/5)

nDefine “fields” of the following number of bits each: 
6 + 5 + 5 + 16 = 32 bits

6 5 5 16

opcode rs rt immediate

nAgain, each field has a name:

nKey Concept: Only one field is inconsistent with R-
format.  Most importantly, opcode is still in same 
location.
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I-Format Instructions (3/5)

nWhat do these fields mean?
lopcode

Same as before except that, since there is 
no funct field, opcode uniquely specifies 
an instruction in I-format

lThis also answers the previous question 

Q: Why R-format has two 6-bit fields to identify
instruction instead of a single 12 -bit field?

A: In order to be consistent with other formats.

40

I-Format Instructions (4/5)

nMore fields:
lrs: specifies the only register operand 

(if there is one)

lrt: specifies register which will receive 
result of computation (this is why it’s 
called the target register “rt”)
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I-Format Instructions (5/5)

nThe Immediate Field:

laddi, slti, sltiu, the immediate is 
sign-extended to 32 bits
Thus, it’s treated as a signed integer

l16 bits è can be used to represent immediate up 
to 216 different values

lThis is large enough to handle the offset in a 
typical lw or sw, plus a vast majority of values 
that will be used in the slti instruction.
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I-Format Example (1/2)

nMIPS Instruction:
addi   $21,$22,-50

opcode 8 (look up in table)

rs 22 (register containing operand)

rt 21 (target register)

immediate - 50 (by default, this is decimal)
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I-Format Example (2/2)

nMIPS Instruction:
addi   $21,$22,-50

8 22 21 -50

001000 10110 10101 1111111111001110

Decimal/field representation:

Binary/field representation:

hexadecimal representation: 22D5 FFCEhex

decimal representation: 584,449,998ten
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I-Format Problems (1/2)

nProblem:
lChances are that addi, lw, sw and slti will use immediates

small enough to fit in the immediate field
lWhat if too big?

q We need a way to deal with a 32-bit immediate 
in any I-format instruction

nSolution:
lHandle it in software + new instruction
lDon’t change the current instructions; instead, add a …

n… new instruction:
lui   register, immediate

l stands for Load Upper Immediate
l takes 16-bit immediate and puts these bits in the upper half 

(high order half) of the specified register
l sets lower half to 0s
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I-Format Problems (2/2)

nSo how does lui help us?

lExample:
addi   $t0,$t0, 0xABABCDCD

becomes:

lui    $at, 0xABAB
ori    $at, $at, 0xCDCD
add    $t0, $t0, $at

lNow each I-format instruction has only a 16-bit 
immediate.

lWouldn’t it be nice if the assembler would this for 
us automatically?

q Pseudoinstructions …
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Which instruction has same representation as 35 ten?

A. add $0, $0, $0
B. subu $s0,$s0,$s0
C. lw $0, 0($0)

D. addi $0, $0, 35
E. subu $0, $0, $0
F. Hmmm … Instructions  are not numbers

Registers numbers and names: 
0: $0, .. 8: $t0, 9:$t1, ..15: $t7, 16: $s0, 17: $s1, .. 23: $s7

Opcodes and function fields (if necessary)
Add: opcode = 0, funct = 32
Subu: opcode = 0, funct = 35
Addi: opcode = 8
Lw: opcode = 35

Question

opcode rs rt offset

rd functshamtopcode rs rt

opcode rs rt immediate

rd functshamtopcode rs rt

rd functshamtopcode rs rt
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Answer

0 3200 0 0

8 0 0 35

16 3500 16 16

0 3500 0 0

Which instruction has same representation as 35 ten?

A. add $0, $0, $0
B. subu $s0,$s0,$s0
C. lw $0, 0($0)

D. addi $0, $0, 35
E. subu $0, $0, $0
F. Hmmm … Instructions  are not numbers

Registers numbers and names: 
0: $0, .. 8: $t0, 9:$t1, ..15: $t7, 16: $s0, 17: $s1, .. 23: $s7

Opcodes and function fields (if necessary)
Add: opcode = 0, funct = 32
Subu: opcode = 0, funct = 35
Addi: opcode = 8
Lw: opcode = 35

35 0 0 0
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In conclusion, …

nSimplifying MIPS: Define instructions to be same size 
as data word (one word) so that they can use the same 
memory (compiler can use lw and sw).

nMachine Language Instruction: 32 bits representing a 
single instruction

opcode rs rt immediate
opcode rs rt rd functshamtR

I

nComputer actually stores programs as a series of 
these 32-bit numbers.
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Branches: PC-Relative Addressing (1/5)

nUse I-Format

opcode rs rt immediate

nopcode specifies beq v. bne

nrs and rt specify registers to compare

nWhat can immediate specify?
lImmediate is only 16 bits

lPC is 32-bit pointer to memory
lSo immediate cannot specify entire address to 

branch to
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Branches: PC-Relative Addressing (2/5)

nHow do we usually use branches?
lAnswer: if-else, while, for
lLoops are generally small: typically up to 50 

instructions

lFunction calls and unconditional jumps are done 
using jump instructions (j and jal), not the 
branches.

nConclusion
Though we may want to branch to anywhere in 
memory, a single branch will generally change 
the PC by a very small amount.
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Branches: PC-Relative Addressing (3/5)

nSolution: PC-Relative Addressing

nLet the 16-bit immediate field be a signed 
two’s complement integer to be added to the 
PC if we take the branch.

nNow we can branch +/- 215 bytes from the PC, 
which should be enough to cover any loop.

nAny ideas to further optimize this?
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Branches: PC-Relative Addressing (4/5)

nNote: Instructions are words, so they’re word 
aligned (byte address is always a multiple of 4, 
which means it ends with 00 in binary).
lSo the number of bytes to add to the PC will always 

be a multiple of 4.

lSo specify the immediate in words.

nNow, we can branch +/- 215 words from the PC 
(or +/- 217 bytes), so we can handle loops 4 
times as large.
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Branches: PC-Relative Addressing (5/5)

nBranch Calculation:
lIf we don’t take the branch:

PC = PC + 4 

PC+4 =  byte address of next instruction

lIf we do take the branch:
PC = (PC + 4) + (immediate * 4)

lObservations
q Immediate field specifies the number of words to 

jump, which is simply the number of instructions to 
jump.

q Immediate field can be positive or negative.

q Due to hardware, add immediate to (PC+4), not to PC; 
will be clearer why later …
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Branch Example (1/3)

nMIPS Code:
Loop: beq   $9,$0,End

add   $8,$8,$10
addi  $9,$9,-1
j     Loop

End:

nBranch is I-Format:
opcode = 4 (look up in table)

rs = 9 (first operand)

rt = 0 (second operand)

immediate = ???
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Branch Example (2/3)

nMIPS Code:
Loop: beq   $9,$0,End

addi  $8,$8,$10
addi  $9,$9,-1
j     Loop

End:

nImmediate Field:
lNumber of instructions to add to (or subtract 

from) the PC, starting at the instruction following
the branch.

lIn beq case, immediate = 3
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Branch Example (3/3)

nMIPS Code:
Loop: beq   $9,$0,End

addi  $8,$8,$10
addi  $9,$9,-1
j     Loop

End:

4 9 0 3

decimal representation:

binary representation:

000100 01001 00000 0000000000000011
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Questions on PC-addressing

nDoes the value in branch field change if we 
move the code?

nWhat do we do if its > 2^15 instructions?

nSince its limited to +- 2^15 instructions, 
doesn’t this generate lots of extra MIPS 
instructions?

nWhy do we need all these addressing modes? 
Why not just one?
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J-Format Instructions (1/5)

nFor branches, we assumed that we won’t want 
to branch too far, so we can specify only the 
change in PC.

nFor general jumps (j and jal), we may jump 
to anywhere in memory.

nIdeally, we could specify a 32-bit memory 
address to jump to.

nUnfortunately, we can’t fit both a 6-bit opcode
and a 32-bit address into a single 32-bit word, 
so we compromise.
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J-Format Instructions (2/5)

nDefine “fields” of the following number of bits 
each:

6 bits 26 bits

opcode target address

nAs usual, each field has a name:

nKey Concepts
lKeep opcode field identical to R-format and I-

format for consistency.

lCombine all other fields to make room for large 
target address.
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J-Format Instructions (3/5)

nFor now, we can specify 26 bits of the 32-bit 
bit address.

nOptimization:
lNote that, just like with branches, jumps will only 

jump to word aligned addresses, so last two bits 
are always 00 (in binary).

lSo let’s just take this for granted and not even 
specify them.

nSo, we can specify 28 bits of the 32-bit 
address.
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J-Format Instructions (4/5)

nWhere do we get the other 4 bits?
lBy definition, take the 4 highest order bits from the 

PC.

lTechnically, this means that we cannot jump to 
anywhere in memory, but it’s adequate 99.9999…% 
of the time, since programs aren’t that long.

lIf we absolutely need to specify a 32-bit address, 
we can always put it in a register and use the jr
instruction.
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J-Format Instructions (5/5)

nSummary:
lNew PC = PC[31..28]

|| target address (26 bits)
|| 00

lNote: II means concatenation
4 bits || 26 bits || 2 bits = 32-bit address

nUnderstand where each part came from!
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Outline

nBranch instruction encoding

nJump instructions

nDisassembly

nPseudoinstructions and 
“True” Assembly Language (TAL) v. “MIPS” 
Assembly Language (MAL)
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Decoding Machine Language

nHow do we convert 1s and 0s to C code?
Machine language => C

nFor each 32 bits:
lLook at opcode: 0 means R-Format

2 or 3 mean J-Format
otherwise I-Format

lUse instruction type to determine which fields 
exist. 

lWrite out MIPS assembly code, converting each 
field to name, register number/name, or 
decimal/hex number.

lLogically convert this MIPS code into valid C 
code.  Always possible? Unique?
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Decoding Example

nHere are six machine language instructions in 
hex:

00001025
0005402A
11000003
00441020
20A5FFFF
08100001

nLet the first instruction be at address 
4,194,30410 (0x00400000).

nNext step: convert to binary
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Decoding Example (cont’d)

nThe six machine language instructions in 
binary:
00000000000000000001000000100101
00000000000001010100000000101010
00010001000000000000000000000011
00000000010001000001000000100000
00100000101001011111111111111111 
00001000000100000000000000000001

nNext step: identify opcode and format
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Decoding Example (cont’d)

nSelect the opcode (first 6 bits) 
to determine the format:

00000000000000000001000000100101
00000000000001010100000000101010
00010001000000000000000000000011
00000000010001000001000000100000
00100000101001011111111111111111 
00001000000100000000000000000001

nLook at opcode: 
0 means R-Format,
2 or 3 mean J-Format, 
otherwise I-Format.

n Next step: separation of fields

R
R
I
R
I
J

Format:
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Decoding Example (cont’d)

nFields separated based on format/opcode:

0 0 0 2 370
0 0 5 8 420
4 8 0 +3
0 2 4 2 320
8 5 5 -1
2 1,048,577

nNext step: translate (“disassemble”) to MIPS 
assembly instructions

R

R

I

R

I

J

Format:
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Decoding Example (cont’d)

nMIPS Assembly (Part 1):

0x00400000  or    $2,$0,$0
0x00400004  slt   $8,$0,$5
0x00400008  beq   $8,$0,3
0x0040000c  add   $2,$2,$4
0x00400010  addi  $5,$5,-1
0x00400014  j     0x100001

nBetter solution: translate to more 
meaningful instructions (fix the 
branch/jump and add labels)
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Decoding Example (cont’d)

nMIPS Assembly (Part 2):

or    $v0,$0,$0
Loop: slt   $t0,$0,$a1

beq   $t0,$0,Exit
add   $v0,$v0,$a0
addi  $a1,$a1,-1
j     Loop

Exit:

nNext step: translate to C code (be creative!)
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Decoding Example (cont’d)

nC code:
lMapping: $v0: product

$a0: multiplicand
$a1: multiplier

product = 0;
while (multiplier > 0) {

product += multiplicand;
multiplier -= 1; 

}
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Outline

nBranch instruction encoding

nJump instructions

nDisassembly

nPseudoinstructions and 
“True” Assembly Language (TAL) v. “MIPS” 
Assembly Language (MAL)
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True Assembly Language

nPseudoinstruction:
A MIPS instruction that doesn’t turn directly 
into a machine language instruction.

nWhat happens with pseudoinstructions?
lThey’re broken up by the assembler into several 

“real” MIPS instructions.

lBut what is a “real” MIPS instruction? Answer in a 
few slides

nFirst some examples
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Example Pseudoinstructions

nRegister Move
move reg2,reg1
Expands to:
add reg2,$zero,reg1

nLoad Immediate
li reg,value
If value fits in 16 bits:
addi reg,$zero,value
else:
lui reg,upper 16 bits of value
ori reg,$zero,lower 16 bits
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True Assembly Language

nProblem:
lWhen breaking up a pseudoinstruction, the 

assembler may need to use an extra register.
lIf it uses any regular register, it’ll overwrite 

whatever the program has put into it.

nSolution:
lReserve a register ($1, called $at for 

“assembler temporary”) that the assembler will 
use when breaking up pseudo-instructions.
lSince the assembler may use this at any time, it’s 

not safe to code with it.
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Example Pseudoinstructions 

nRotate Right Instruction
ror reg, value
Expands to:
srl $at, reg, value
sll reg, reg, 32-value
or reg, reg, $at

0

0

nNo operation instruction
nop
Expands to instruction = 0ten,
sll $0, $0, 0
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Example Pseudoinstructions

nWrong operation for operand
addu reg,reg,value # should be addiu

If value fits in 16 bits:
addiu reg,reg,value
else:
lui $at,upper 16 bits of value
ori $at,$zero,lower 16 bits
addu reg,reg,$at
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True Assembly Language

nMAL (MIPS Assembly Language): the set of 
instructions that a programmer may use to 
code in MIPS; this includes
pseudoinstructions

nTAL (True Assembly Language): the set of 
instructions that can actually get translated 
into a single machine language instruction 
(32-bit binary string)

nA program must be converted from MAL 
into TAL before it can be translated into 1s 
and 0s.
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Question

nWhich of the codes below are pseudo-
instructions (MIPS Assembly Language); 
that is, they are not TAL?

i.   addi $t0, $t1, 40000
ii.  beq  $s0, 10,  Exit
iii. sub  $t0, $t1, 1

A. i. only 

B. ii. only 

C. iii. only 

D. i. and ii. 

E. ii. and iii. 

F. All of the above
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Answer

nWhich of the codes below are pseudo-
instructions (MIPS Assembly Language); 
that is, they are not TAL?

i.   addi $t0, $t1, 40000

ii.  beq $s0, 10, Exit
iii. sub $t0, $t1, 1
A. i. only 

B. ii. only 

C. iii. only 

D. i. and ii. 

E. ii. and iii. 

F. All of the above

40,000 > +32,767 =>lui,ori

beq: both must be registers

Sub: both must be registers;
even if it was subi, 
there is no subi in TAL; 
generates addi $t0,$t1, -1
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Summary
nMachine Language Instruction: 

32 bits representing a single instruction

opcode rs rt immediate
opcode rs rt rd functshamtR

I
J target addressopcode

nBranches use PC-relative addressing, Jumps use 
absolute addressing.

nDisassembly is simple and starts by decoding opcode
field. 

nAssembler expands real instruction set  (TAL) with 
pseudoinstructions (=>MAL) 
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Bonus slides

nThe following slides are more practice on the 
differences between a pointer and a value, and 
showing how to use pointers
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Assembly Code to Implement Pointers

ndereferencing ⇒ data transfer in asm.

... = ... *p ...; ⇒ load 
(get value from location pointed to by p)
load word (lw) if int pointer, 
load byte unsigned (lbu) if char pointer

*p = ...; ⇒ store 
(put value into location pointed to by p)
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Assembly Code to Implement Pointers

c is int, has value 100, in memory at address 
0x10000000, p in $a0, x in $s0

p = &c;  /* p gets 0x10000000 */
x = *p;  /* x gets 100 */

*p = 200; /* c gets 200 */ 

# p = &c;  /* p gets 0x10000000 */
lui $a0,0x1000 # p = 0x10000000

# x = *p;  /* x gets 100 */
lw  $s0, 0($a0) # dereferencing p

# *p = 200; /* c gets 200 */
addi $t0,$0,200
sw   $t0, 0($a0)# dereferencing p
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Pointers to structures

struct node {
struct node *next;
int value;

};

If p is a pointer to a node, declared
with struct node *p, then:

(*p).value or p->value for “value” field,
(*p).next or p->next for pointer to next 

node

value

value
0

value

value

nC Example - linked list:
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Linked-list in C
main (void) {

struct node *head, *temp, *ptr;
int sum;

/* create the nodes*/
head = (struct node *) 

malloc(sizeof(struct node));
head->value = 23;
head->next = 0;

temp = (struct node *) 
malloc(sizeof(struct node));

temp->next = head;
temp->value = 42;

head = temp;

/* add up the values */
ptr = head;   sum = 0;
while (ptr != 0) {
sum += ptr->value;
ptr = ptr->next;

}
}
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Linked-list in MIPS Assember (1/2)

# head:s0, temp:s1, ptr:s2, sum:s3
# create the nodes

li   $a0,8# sizeof(node)
jal  malloc # the call
move $s0,$v0 # head gets result
li   $t0,23
sw   $t0,4($s0)  # head->value = 23
sw   $zero,0($s0)# head->next = NULL

li   $a0,8
jal  malloc
move $s1,$v0 # temp = malloc
sw   $s0,0($s1) # temp->next = head
li   $t0,42
sw   $t0,4($s1) # temp->value = 42

move $s0,$s1 # head = temp
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Linked-list in MIPS Assember (2/2)

# head:s0, temp:s1, ptr:s2, sum:s3

# add up the values
move $s2,$s0 # ptr = head
move $s3,$zero   # sum = 0

loop: beq  $s2,$zero,exit # exit if done
lw   $t0,4($s2)  # get value
addu $s3,$s3,$t0 # compute new sum
lw   $s3,0($s2)  # ptr = ptr->next
j    loop        # repeat

exit: done


