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• We're ready to look at an implementation of the MIPS
• Simplified to contain only:

– memory-reference instructions:  lw, sw
– arithmetic-logical instructions: add, sub, and, or, slt
– control flow instructions:  beq, j

• Generic Implementation:

– use the program counter (PC) to supply instruction address
– get the instruction from memory
– read registers
– use the instruction to decide exactly what to do

• All instructions use the ALU after reading the registers
Why?  memory-reference?  arithmetic? control flow?

The Processor:  Datapath & Control
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• Abstract / Simplified View:

Two types of functional units:
– elements that operate on data values (combinational)
– elements that contain state (sequential)

More Implementation Details

Registers
Register #

Data

Register #

Data
memory

Address

Data

Register #

PC Instruction ALU

Instruction
memory

Address
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• The set-reset latch
– output depends on present inputs and also on past inputs

An unclocked state element
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• Output is equal to the stored value inside the element
(don't need to ask for permission to look at the value)

• Change of state (value) is based on the clock
• Latches:  whenever the inputs change, and the clock is asserted
• Flip-flop:  state changes only on a clock edge

(edge-triggered methodology)

"logically true", 
— could mean electrically low

A clocking methodology defines when signals can be read and written
— wouldn't want to read a signal at the same time it was being written

Latches and Flip-flops
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• Two inputs:
– the data value to be stored (D)
– the clock signal (C) indicating when to read & store D

• Two outputs:
– the value of the internal state (Q) and it's complement

D-latch
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D flip-flop

• Output changes only on the clock edge
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Our Implementation

• An edge triggered methodology
• Typical execution:

– read contents of some state elements, 
– send values through some combinational logic
– write results to one or more state elements

Clock cycle

State
element

1
Combinat ional logic

State
element

2
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• Built using D flip-flops

Register File
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Register File

• Note:  we still use the real clock to determine when to write
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Simple Implementation

• Include the functional units we need for each instruction

Why do we need this stuff?
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Building the Datapath

• Use multiplexers to stitch them together
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Control

• Selecting the operations to perform (ALU, read/write, etc.)

• Controlling the flow of data (multiplexer inputs)

• Information comes from the 32 bits of the instruction

• Example:

add $8, $17, $18 Instruction Format:

000000 10001 10010 01000 00000 100000

op rs rt rd shamt funct

• ALU's operation based on instruction type and function code
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• e.g., what should the ALU do with this instruction
• Example:  lw $1, 100($2)

35 2 1 100

op rs rt 16 bit offset

• ALU control input

000 AND
001 OR
010 add
110 subtract
111 set-on-less-than

• Why is the code for subtract 110 and not 011?

Control
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• Must describe hardware to compute 3 -bit ALU control input
– given instruction type 

00 = lw, sw
01 = beq, 
11 = arithmetic

– function code for arithmetic

• Describe it using a truth table (can turn into gates):

ALUOp 
computed from instruction type

Control

ALUOp Funct field Operation
ALUOp1 ALUOp0 F5 F4 F3 F2 F1 F0

0 0 X X X X X X 010
0 1 X X X X X X 110
1 X X X 0 0 0 0 010 add
1 X X X 0 0 1 0 110 sub
1 X X X 0 1 0 0 000 and
1 X X X 0 1 0 1 001 or
1 X X X 1 0 1 0 111 slt
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Control

Instruction RegDst ALUSrc
Memto-

Reg
Reg 

Write
Mem 
Read

Mem 
Write Branch ALUOp1 ALUp0

R-format 1 0 0 1 0 0 0 1 0
lw 0 1 1 1 1 0 0 0 0
sw X 1 X 0 0 1 0 0 0
beq X 0 X 0 0 0 1 0 1
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Control (Part 1)

• Simple combinational logic (truth tables)

Operation2

Operation1

Operation0

Oper ation

ALUOp1

F3

F2

F1

F0

F (5– 0)

ALUOp0

ALUOp

ALU control b lock

ALUOp Funct field Operation
ALUOp1 ALUOp0 F5 F4 F3 F2 F1 F0

0 0 X X X X X X 010 lw/sw
0 1 X X X X X X 110 branch
1 X X X 0 0 0 0 010 add
1 X X X 0 0 1 0 110 sub
1 X X X 0 1 0 0 000 and
1 X X X 0 1 0 1 001 or
1 X X X 1 0 1 0 111 slt
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Control (Part 2)

• Simple combinational logic (truth tables)

R-form at Iw sw beq

Op0

Op1

Op2

Op3

Op4

Op5

Inputs

Outputs

RegDst
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From Figure A.19

Opcode [31:26]

0 000000 R-format inst

4 000100 branch inst.

35 100011 lw inst.

43 101011 sw inst.

Instruction RegDst ALUSrc
Memto-

Reg
Reg 

Write
Mem 
Read

Mem 
Write Branch ALUOp1 ALUp0

R-format 1 0 0 1 0 0 0 1 0
lw 0 1 1 1 1 0 0 0 0
sw X 1 X 0 0 1 0 0 0
beq X 0 X 0 0 0 1 0 1

0

0

0

0

0

0
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• All of the logic is combinational

• We wait for everything to settle down, and the right thing to be done

– ALU might not produce “right answer” right away

– we use write signals along with clock to determine when to write

• Cycle time determined by length of the longest path

Our Simple Control Structure

We are ignoring some details like setup and hold times

Clock cycle

State
element

1
Combinational logic

State
element

2
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Single Cycle Implementation

• Calculate cycle time assuming negligible delays except:
– memory (2ns), ALU and adders (2ns), register file access (1ns)

MemtoReg

Mem Read

Mem Write

ALUOp

ALUSrc

RegDst

PC

Instruct ion
m emory

Read
address

Instruct ion
[31– 0]

Inst ruction [20– 16]

Inst ruction [25– 21]

Add

Inst ruction [5– 0]

RegWri te

4

16 32Inst ruction [15– 0]

0
Registers

Write
register
Write
data

Write
data

Read
data 1

Read
data 2

Read
register 1
Read
register 2

S ign
extend

ALU
result

Zero

Data
memory

Address Read
data Mu

x

1

0

Mu
x

1

0

Mu
x

1

0

M
u
x

1

Inst ruction [15– 11]

ALU
cont rol

Shift
l ef t 2

PCSrc

ALU

Add ALU
result



21
EE424  Spring 2003

Where we are headed

• Single Cycle Problems:
– what if we had a more complicated instruction like floating 

point?
– wasteful of area

• One Solution:
– use a “smaller” cycle time
– have different instructions take different numbers of cycles
– a “multicycle” datapath:

PC

Memory

Address

Inst ructi on
or data

Data

Instruction
regi ster

Registers
Register #

Data

Register #

Register #

ALU

Mem ory
data

register

A

B

ALUOut
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• We will be reusing functional units
– ALU used to compute address and to increment PC
– Memory used for instruction and data

• Our control signals will not be determined solely by instruction
– e.g., what should the ALU do for a “subtract” instruction?

• We’ll use a finite state machine for control

Multicycle Approach
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• Finite state machines:
– a set of states and 
– next state function (determined by current state and the input)
– output function (determined by current state and possibly input)

– We’ll use a Moore machine (output based only on current state)

Review:  finite state machines

Next-state
functi onCurrent state

Clock

Output
functi on

Next
state

Outputs

Inputs
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• Break up the instructions into steps, each step takes a cycle
– balance the amount of work to be done
– restrict each cycle to use only one major functional unit

• At the end of a cycle
– store values for use in later cycles (easiest thing to do)
– introduce additional “internal” registers

Multicycle Approach
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• Instruction Fetch

• Instruction Decode and Register Fetch

• Execution, Memory Address Computation, or Branch Completion

• Memory Access or R-type instruction completion

• Write-back step

INSTRUCTIONS TAKE FROM 3 - 5 CYCLES!

Five Execution Steps
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• Use PC to get instruction and put it in the Instruction Register .
• Increment the PC by 4 and put the result back in the PC.
• Can be described succinctly using RTL "Register -Transfer Language"

IR = Memory[PC];
PC = PC + 4;

Can we figure out the values of the control signals?

What is the advantage of updating the PC now?

Step 1:  Instruction Fetch
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• Read registers rs and rt in case we need them
• Compute the branch address in case the instruction is a branch
• RTL:

A = Reg[IR[25-21]];
B = Reg[IR[20-16]];
ALUOut = PC + (sign-extend(IR[15-0]) << 2);

• We aren't setting any control lines based on the instruction type 
(we are busy "decoding" it in our control logic)

Step 2:  Instruction Decode and Register Fetch
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• ALU is performing one of three functions, based on instruction type

• Memory Reference:

ALUOut = A + sign-extend(IR[15-0]);

• R-type:

ALUOut = A op B;

• Branch:

if (A==B) PC = ALUOut;

Step 3 (instruction dependent)
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• Loads and stores access memory

MDR = Memory[ALUOut];
or

Memory[ALUOut] = B;

• R-type instructions finish

Reg[IR[15-11]] = ALUOut;

The write actually takes place at the end of the cycle on the edge

Step 4 (R-type or memory-access)
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• Reg[IR[20-16]]= MDR;

What about all the other instructions?

Write-back step
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Summary:

Step name
Action for R-type 

instructions
Action for memory-reference 

instructions
Action for 
branches

Action for       
jumps

Instruction fetch IR = Memory[PC]
PC = PC + 4

Instruction A = Reg [IR[25-21]]
decode/register fetch B = Reg [IR[20-16]]

ALUOut = PC + (sign-extend (IR[15-0]) << 2)
Execution, address ALUOut = A op B ALUOut = A + sign-extend if (A ==B) then PC = PC [31-28] II
computation, branch/ (IR[15-0]) PC = ALUOut (IR[25-0]<<2)
jump completion
Memory access or R-type Reg [IR[15-11]] = Load: MDR = Memory[ALUOut]
completion ALUOut or

Store: Memory [ALUOut] = B

Memory read completion Load: Reg[IR[20-16]] = MDR
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• How many cycles will it take to execute this code? 

lw $t2, 0($t3)
lw $t3, 4($t3)
beq $t2, $t3, Label #assume not
add $t5, $t2, $t3
sw $t5, 8($t3)

Label: ...

• What is going on during the 8th cycle of execution?
• In what cycle does the actual addition of $t2 and $t3 takes place?

Simple Questions
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• Value of control signals is dependent upon:
– what instruction is being executed
– which step is being performed

• Use the information we’ve accumulated to specify a finite state machine
– specify the finite state machine graphically, or
– use microprogramming

• Implementation can be derived from specification

Implementing the Control

How many state bits will we need?

Graphical Specification of FSM

PCWrite
PCSource = 10

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 01
PCWriteCond

PCSource = 01

ALUSrcA =1
ALUSrcB = 00
ALUOp = 10

RegDst = 1
RegWrite

M emtoReg = 0

MemWrite
IorD = 1

Mem Read
IorD = 1

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

RegDst=0
RegWrite

Mem toReg =1

ALUSrcA = 0
ALUSrcB= 11
ALUOp = 00

MemRead
ALUSrcA = 0

IorD = 0
IRWrite

ALUSrcB = 01
ALUOp = 00

PCWri te
PCSource = 00

Instruct ion fetch
Inst ructi on decode/

register fetch

Jum p
com pletion

Branch
completi onExecuti on

M emory address
computati on

M em ory
access

M em ory
access R-type complet ion

Write-back step

(Op = 'LW') or (Op = 'SW') (Op = R-t ype)

(O
p
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'BE

Q'
)
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p

=
'J'

)

(Op =
' SW
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')

4
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1
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• Implementation:

Finite State Machine for Control

PCWrite

PCWriteCond
IorD

MemtoReg

PCSource

ALUOp

ALUSrcB

ALUSrcA

RegWrite

RegDst

NS3
NS2
NS1
NS0

O
p 5

Op
4

O
p 3 O
p 2

Op
1

O
p 0

S3 S2 S1 S0

State register

IRWrite

MemRead

MemWrite

Instruct ion register
opcode field

Outputs

Control l ogic

Inputs
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PLA Implementation

• If I picked a horizontal or vertical line could you explain it?
Op5

Op4

Op3

Op2

Op1

Op0

S3

S2

S1

S0

IorD

IRWrite

M emRead
M emWrite

P CWrite
P CWriteCond

M emtoReg
P CS ource1

A LUOp1

A LUSrcB 0
A LUSrcA
RegWrite
RegDst
NS3
NS2
NS1
NS0

A LUSrcB 1
A LUOp0

P CS ource0
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• ROM = "Read Only Memory"
– values of memory locations are fixed ahead of time

• A ROM can be used to implement a truth table
– if the address is m -bits, we can address 2m entries in the ROM.
– our outputs are the bits of data that the address points to.

m is the "height", and n is the "width"

ROM Implementation

m n

0 0 0 0 0 1 1
0 0 1 1 1 0 0
0 1 0 1 1 0 0
0 1 1 1 0 0 0 
1 0 0 0 0 0 0 
1 0 1 0 0 0 1
1 1 0 0 1 1 0
1 1 1 0 1 1 1
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• How many inputs are there?
6 bits for opcode, 4 bits for state = 10 address lines
(i.e., 210 = 1024 different addresses)

• How many outputs are there?
16 datapath-control outputs, 4 state bits = 20 outputs

• ROM is 210 x 20 = 20K bits    (and a rather unusual size)

• Rather wasteful, since for lots of the entries, the outputs are the 
same

— i.e., opcode is often ignored

ROM Implementation
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• Break up the table into two parts
— 4 state bits tell you the 16 outputs,    2 4 x 16 bits of ROM
— 10 bits tell you the 4 next state bits,  2 10 x 4 bits of ROM
— Total:  4.3K bits of ROM

• PLA is much smaller
— can share product terms
— only need entries that produce an active output
— can take into account don't cares

• Size is (#inputs × #product-terms) + (#outputs × #product-terms)
For this example  =  (10x17)+(20x17) = 460 PLA cells

• PLA cells usually about the size of a ROM cell (slightly bigger)

ROM vs PLA
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• Complex instructions:  the "next state" is often current state + 1

Another Implementation Style

AddrCt l

Outputs

PLA or ROM

State

Address select l ogic

Op
[5

–0
]

Adder

Inst ruct ion register
opcode f ield

1

Cont rol unit

Input

PCWrite
PCWriteCond
IorD

Mem toReg
PCSource
ALUOp
ALUSrcB
ALUSrcA
RegWrite
RegDst

IRWrite

Mem Read
Mem Write

BWrite
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Details
Dispatch ROM 1 Dispatch ROM 2

Op Opcode name Value Op Opcode name Value
000000 R-format 0110 100011 lw 0011
000010 jmp 1001 101011 sw 0101
000100 beq 1000
100011 lw 0010
101011 sw 0010

State number Address-control action Value of AddrCtl
0 Use incremented state 3
1 Use dispatch ROM 1 1
2 Use dispatch ROM 2 2
3 Use incremented state 3
4 Replace state number by 0 0
5 Replace state number by 0 0
6 Use incremented state 3
7 Replace state number by 0 0
8 Replace state number by 0 0
9 Replace state number by 0 0

State

O
p

Adder

1

PLA or ROM

M ux
3 2 1 0

Dispatch ROM 1Dispatch ROM 2

0

AddrCt l

Address select  logic

Instruct ion register
opcode field
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Microprogramming

• What are the “microinstructions” ?

PCWrite
PCWriteCond
IorD

M em toReg
PCSource
ALUOp
ALUSrcB
ALUSrcA
RegWri te

AddrCtl

Outputs

Mi crocode memory

IRWrite

M em Read
M em Wri te

RegDst

Control unit

Input

Microprogram counter

Address select logic

O
p[

5–
0]

A dder

1

Datapath

Instruction register
opcode field

BWrite
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• A specification methodology
– appropriate if hundreds of opcodes, modes, cycles, etc.
– signals specified symbolically using microinstructions

• Will two implementations of the same architecture have the same microcode?
• What would a microassembler do?

Microprogramming

Label
ALU 

control SRC1 SRC2
Register 
control Memory

PCWrite 
control Sequencing

Fetch Add PC 4 Read PC ALU Seq
Add PC Extshft Read Dispatch 1

Mem1 Add A Extend Dispatch 2
LW2 Read ALU Seq

Write MDR Fetch
SW2 Write ALU Fetch
Rformat1 Func code A B Seq

Write ALU Fetch
BEQ1 Subt A B ALUOut-cond Fetch
JUMP1 Jump address Fetch

Microinstruction format
Field name Value Signals active Comment

Add ALUOp = 00 Cause the ALU to add.
ALU control Subt ALUOp = 01 Cause the ALU to subtract; this implements the compare for

branches.
Func code ALUOp = 10 Use the instruction's function code to determine ALU control.

SRC1 PC ALUSrcA = 0 Use the PC as the first ALU input.
A ALUSrcA = 1 Register A is the first ALU input.
B ALUSrcB = 00 Register B is the second ALU input.

SRC2 4 ALUSrcB = 01 Use 4 as the second ALU input.
Extend ALUSrcB = 10 Use output of the sign extension unit as the second ALU input.
Extshft ALUSrcB = 11 Use the output of the shift-by-two unit as the second ALU input.
Read Read two registers using the rs and rt fields of the IR as the register

numbers and putting the data into registers A and B.
Write ALU RegWrite, Write a register using the rd field of the IR as the register number and

Register RegDst = 1, the contents of the ALUOut as the data.
control MemtoReg = 0

Write MDR RegWrite, Write a register using the rt field of the IR as the register number and
RegDst = 0, the contents of the MDR as the data.
MemtoReg = 1

Read PC MemRead, Read memory using the PC as address; write result into IR (and 
lorD = 0 the MDR).

Memory Read ALU MemRead, Read memory using the ALUOut as address; write result into MDR.
lorD = 1

Write ALU MemWrite, Write memory using the ALUOut as address, contents of B as the
lorD = 1 data.

ALU PCSource = 00 Write the output of the ALU into the PC.
PCWrite

PC write control ALUOut-cond PCSource = 01, If the Zero output of the ALU is active, write the PC with the contents
PCWriteCond of the register ALUOut.

jump address PCSource = 10, Write the PC with the jump address from the instruction.
PCWrite

Seq AddrCtl = 11 Choose the next microinstruction sequentially.
Sequencing Fetch AddrCtl = 00 Go to the first microinstruction to begin a new instruction.

Dispatch 1 AddrCtl = 01 Dispatch using the ROM 1.
Dispatch 2 AddrCtl = 10 Dispatch using the ROM 2.
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• No encoding:

– 1 bit for each datapath operation
– faster, requires more memory (logic)
– used for Vax 780 — an astonishing 400K of memory!

• Lots of encoding:
– send the microinstructions through logic to get control signals
– uses less memory, slower

• Historical context of CISC:
– Too much logic to put on a single chip with everything else
– Use a ROM (or even RAM) to hold the microcode
– It’s easy to add new instructions

Maximally vs. Minimally Encoded
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Microcode:  Trade -offs

• Distinction between specification and implementation is sometime s blurred

• Specification Advantages:

– Easy to design and write

– Design architecture and microcode in parallel

• Implementation (off-chip ROM) Advantages

– Easy to change since values are in memory

– Can emulate other architectures

– Can make use of internal registers

• Implementation Disadvantages,  SLOWER now  that:

– Control is implemented on same chip as processor

– ROM is no longer faster than RAM

– No need to go back and make changes
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The Big Picture
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