Chapter Five

The Processor: Datapath and Control

EE424 Spring 2003

The Processor: Datapath & Control

* We're ready to look at an implementation of the MIPS

» Simplified to contain only:
— memory-reference instructions: |w, sw
— arithmetic-logical instructions: add, sub, and, or, slt
— control flow instructions: beq, |j

» Generic Implementation:

use the program counter (PC) to supply instruction address
get the instruction from memory

read registers

use the instruction to decide exactly what to do

» All instructions use the ALU after reading the registers
Why? memory-reference? arithmetic? control flow?

EE424 Spring 2003

More Implementation Details

e Abstract / Simplified View:

i

| Address

Insruction
menory

Instnction

L

Ulmd

Regster #
Registers
Regster #

Regster #

i

L

Two types of functional units:
— elements that operate on data values (combinational)
— elements that contain state (sequential)

Addtess

menay

EE424 Spring 2003

An unclocked state element

* The set-reset latch
— output depends on present inputs and also on past inputs

EE424 Spring 2003

Latches and Flip-flops

e Outputis equal to the stored value inside the element
(don't need to ask for permission to look at the value)

» Change of state (value) is based on the clock
» Latches: whenever the inputs change, and the clock is asserted

» Flip-flop: state changes only on a clock edge
(edge-triggered methodology)

"logically true",
— could mean electrically low

A clocking methodology defines when signals can beread and written
— wouldn't want toread a signal at the sametimeit wasbeing written

EE424 Spring 2003

D-latch

e Two inputs:

— the data value to be stored (D)

— theclock signal (C) indicating when to read & store D
¢ Two outputs:

— thevalue of the internal state (Q) and it's complement

EE424 Spring 2003

D flip-flop

» Output changes only on the clock edge

atch latch
Q

EE424 Spring 2003

Our Implementation

* An edge triggered methodology

» Typical execution:
— read contents of some state elements,
— send values through some combinational logic
— write results to one or more state elements

State
element
2

element » \Combinational logic

Clock cycle

EE424 Spring 2003

Register File

e Built using D flip-flops

Readregster ~ |
number 1
[™ Read data 1
Readregster 1
number 2
|
drain
> |u ¥ Read data 2
=[x
g

Read register
umber 1

—PRead register

egister

—®\rite

9
EE424 Spring 2003
Register File
* Note: we still use the real clock to determine when to write
Wiite —D—
C
0 Register 0
1 » B
Register number > decocer | Register 1
n-1 *P
n '
i
Registern— 1
> B
C
Register n
Register data >
10

EE424 Spring 2003

Simple Implementation

* Include the functional units we need for each instruction

— |nstriction
jaddress
—kbc
Irstucton [*
Instruction
memay

a. Instrict o memory

< |read
egister 1 Read |—»
Register 4 “M{Read datal
numbers register 2
Registers
SHwite
register Read |
data 2
—
Data W—."(e
’nm,n ite
a. Registers

b. Program counter

Data

c. Adder

b. ALU

[Memrite

T adiress Read [
data 3
JW Sign =
dxtend
—|Write Data
ata memory

MemRead

a. Datamemory unit b. Sign-extersion unit

Why do we need this stuff?

11
EE424 Spring 2003
* Use multiplexers to stitch them together
‘
Add - U
q
>
Registers Uo ration
_ R ead L ! Me D it
c R ead re gister 1 o
> address kead Read >
data 1
egister 2
Instruction -
[Write Read » > hddress Read
register data 2 data
Instruction — »
TTETTOT » [Write — Data
data —
e memory
data
>\ MemRead
12

EE424 Spring 2003

Control

» Selecting the operations to perform (ALU, read/write, etc.)

» Controlling the flow of data (multiplexer inputs)
* Information comes from the 32 bits of the instruction
* Example:

add $8, $17, $18 Instruction Format:

| 000000/ 10001 | 10010] 01000 | 00000 k00000 |

| op || rs |rt |rd |sham|funct|

e ALU's operation based on instruction type and function code

EE424 Spring 2003

13

Control

* e.g., what should the ALU do with this instruction
« Example: lw $1, 100($2)

| 35 | 2 | 1 | 100

| | | 4 |

40 bt o£c 4
UpP S LY TO UTUUTTSTU

e ALU control input

000 AND
001 OR
010 add

110 subt ract
111 set-on-1| ess-t han

* Why isthe code for subtract 110 and not 0117

EE424 Spring 2003

14

Control

* Must describe hardware to compute 3 -bit ALU control input
— given instruction type
00 = |W, SW ALUOp

\
01 = beq, / computed from instruction type

11 =arithmetic
— function code for arithmetic

» Describe it using atruth table (can turn into gates):

ALUOp Funct field Operation
ALUOp1 [ALUOpO[F5|F4|F3|F2|F1{FO0

0 0 XIX[X[X[X]X 010

0 1 XX X[X[X]X 110

1 X X|X|0]OfO]O 010 add
1 X X|X|0fJOof1l]O0 110 sub
1 X X|X|0]1[0]O 000 and
1 X X|X|0[1[0]1 001 or
1 X X|X[1]0f1]O0 111 slt

EE424 Spring 2003

15

Control

Instruction | RegDst { ALUSIC Rea | Write |Read | Write | Branch | ALUOp1|ALUpQO

R-format 1 0 0 1 0 0 0 1 0
lw 0 1 1 1 1 0 0 0 0
sw X 1 X (0] 0] 1 (0] o] o]
beg X Q X (0] 0 0 1 Q 1

EE424 Spring 2003

16

Control (Part 1)

« Simple combinational logic (truth tables)

oantrol block

Fi5—0)

ALUOp Funct field Operation
ALUOpP1 [ALUOpPO |F5|F4|F3|F2|F1|FO
0 0 XXX X]|X]|X 010 Iw/sw
0 1 XXX [X]X]X 110 branch
1 X X|X]ojo]o]o 010 add
1 X X|Xjojoj1]o0 110 sub
1 X X|X]o]1]0]0 000 and
1 X X XJofi1jo0f2a 001 or
1 X X|X]1]0]1]0 111 slt

EE424 Spring 2003

17

Memto- | Reg |Mem [Mem
Contr0| Instruction [RegDst|ALUSrc| Reg |Write|Read|Write|Branch [ALUOp1|ALUpO
R-format 1 0 0 1 0 0 0 1 0
lw 0 1 1 1 1 0 0 0 0
sw X 1 X 0 0 1 0 0 0
beq X 0 X 0 0 0 1 0 1
« Simple combinational logic (truth tables) From Figure A.19
Opcode [31:26]
Op5 Qa) .
opa o |- 4] A 0 000000 R-format inst
R 1 - ' i 4 000100 branch inst.
op2 0 b 3 A
oot o [TH, THE, T 35 100011 Iwinst.
Op0 o o [»] Dl"T
L _J C‘ o o -
Outputs
R-format, lw swl| beq| RegDst
) ALUSrc
] MemtoReg
RegWrite
. MemRead
MemWrite
. Branch
ALUOp1
ALUOpO
18

EE424 Spring 2003

Our Simple Control Structure

» All of the logic is combinational
We wait for everything to settle down, and the right thing to be done
— ALU might not produce “right answer” right away

— we use write signals along with clock to determine when to write
» Cycle time determined by length of the longest path

State State
element [\Comhbinational logic element
1 2

Clock cycle J

We areignoring some details like setup and hold times

19
EE424 Spring 2003
Single Cycle Implementation
» Calculate cycle time assuming negligible delays except:
— memory (2ns), ALU and adders (2ns), register file access (1ns)
)
o
]
Instruction [25-21) » Read 1
g ¥ e o SO
nsvuction |1 * fegister2 Ve
! "[3?-0] | HANTS d:t:ag aress Read | »
Wnswuction rsroton me- 1 & J [legser dta
memoy A e e ! [
Instricion [15-0] 1 6* \ Sign daa
Me
Instiuction [5-0]
20

EE424 Spring 2003

Where we are headed

e Single Cycle Problems:
— what if we had a more complicated instruction like floating
point?
— wasteful of area
e One Solution:
— usea“smaller” cycletime
— have different instructions take different numbers of cycles
— a“multicycle” datapath:

- E; “* |address
ructan

Inst
[Memory or data

pata
_E.D—'T
Register #

Registers
Register #

r

Data

Register #

EE424 Spring 2003

21

Multicycle Approach

* We will be reusing functional units
— ALU used to compute address and to increment PC
— Memory used for instruction and data

e Our control signals will not be determined solely by instruction
— e.g., what should the ALU do for a “subtract” instruction?

* We'll use afinite state machine for control

EE424 Spring 2003

22

Review: finite state machines

* Finite state machines:
— aset of states and
— next state function (determined by current state and the input)
— output function (determined by current state and possibly input)

Next
> lcurent state i > V‘:eﬂrsuave
0 7] e
Clogk
= Output
~ utpu -
'mc‘\‘)’m Ouputs

— We'll use a Moore machine (output based only on current state)

Inputs

EE424 Spring 2003

23

Multicycle Approach

« Break up theinstructions into steps, each step takes a cycle
— balance the amount of work to be done
— restrict each cycle to use only one major functional unit
« Attheendofacycle
— store values for use in later cycles (easiest thing to do)
— introduce additional “internal” registers

!D.%L}

» Yite

hctiress

Merory
MenDeta

EE424 Spring 2003

24

Five Execution Steps

* Instruction Fetch

» Instruction Decode and Register Fetch

» Execution, Memory Address Computation, or Branch Completion
* Memory Access or R-type instruction completion

* Write-back step

INSTRUCTIONS TAKE FROM 3 -5 CYCLES!

25
EE424 Spring 2003

Step 1. Instruction Fetch

* Use PCto getinstruction and put it in the Instruction Register .
* Increment the PC by 4 and put the result back in the PC.
» Can be described succinctly using RTL "Register -Transfer Language"

IR
PC

Menor y[PC ;
PC + 4;

Can we figure out the values of the control signals?

What isthe advantage of updating the PC now?

26
EE424 Spring 2003

Step 2: Instruction Decode and Register Fetch

* Read registers rs and rt in case we need them
» Compute the branch address in case the instruction is a branch
e RTL:

A = Reg[I R 25-21]];
B = Reg[| R 20-16]];
ALUQut = PC + (sign-extend(I R 15-0]) << 2);

» We aren't setting any control lines based on the instruction type
(we are busy "decoding" it in our control logic)

27
EE424 Spring 2003

Step 3 (instruction dependent)

* ALUis performing one of three functions, based on instruction type
* Memory Reference:

ALUCut = A + sign-extend(I R 15-0]);
e R-type:

ALUCut A op B;

e Branch:

if (A==B) PC = ALUQut;

28
EE424 Spring 2003

Step 4 (R-type or memory -access)

» Loads and stores access memory

MDR = Menory[ALUCut] ;
or
Menory[ALUQUt] = B;
* R-typeinstructions finish

Reg[| R{ 15-11]] = ALUQut;

The write actually takes place at the end of the cycle on the edge

EE424 Spring 2003

29

Write-back step

* Reg[| R 20-16]]= MR

What about all the other instructions?

EE424 Spring 2003

Summary:

Action for R-type | Action for memory-reference| Action for Action for
Step name instructions instructions branches jumps
Instruction fetch IR = Memory[PC]
PC=PC+4
Instruction A=Req [IR[25-21]]
decode/register fetch B =Req [IR[20-16]]

ALUOut = PC + (sign-extend (IR[15-0]) << 2)

Execution, address
computation, branch/
liump completion

ALUOut=AopB

ALUOut = A + sign-extend
(IR[15-0])

if (A ==B) then
PC = ALUOut

PC=PC [31-28] I
(IR[25-0<2)

completion

Memory access or R-type

Reg [IR[15-11]] =
ALUOut

Load: MDR = Memory[ALUOUL]
or
Store: Memory [ALUOut] = B

Memory read completion

Load: Reg][IR[20-16]] = MDR

) 31
EE424 Spring 2003
Simple Questions
* How many cycles will it take to execute this code?
lw $t2, O($t3)
lw $t3, 4(%$t3)
beq $t2, $t3, Label—" #assune not
add $t5, $t2, $t34
sw $t5, 8($t3)
Label : .
* What is going on during the 8th cycle of execution?
* Inwhat cycle does the actual addition of $t 2 and $t 3 takes place?
MuUUdruuerruuoooyy oo
32

EE424 Spring 2003

Implementing the Control

» Value of control signals is dependent upon:
— what instruction is being executed
— which step is being performed

* Usetheinformation we've accumulated to specify a finite state machine
— specify the finite state machine graphically, or
— usemicroprogramming

» Implementation can be derived from specification

EE424 Spring 2003

Graphical Specification of FSM

v sty

? MemRead
ALUSIA =0
loD =0
IRWite
ALUSIcB = 01
ALUOp= @@
PCWiite

Start

How many state bits will we need?

ALUSIcA =1
ALUSIOB = 00

PCWrite
pCSource =10

We completion

MemWrite
laD=1

Finite State Machine for Control

e Implementation:

Controllogic

Qutpus LS

e Q e Q
Irstruction register
opcods field

EE424 Spring 2003

PLA Implementation

» If I picked a horizontal or vertical line could you explain it?

ops
Opa LD
|

op3
—

op2

Op1

0po

S3

s2

s1

S0

Ooooo L O

EE424 Spring 2003

ROM Implementation

* ROM ="Read Only Memory"
— values of memory locations are fixed ahead of time

« A ROM can be used to implement a truth table
— ifthe address is m -bits, we can address 2™ entries in the ROM.
— our outputs are the bits of data that the address points to.

oo0o0fpo11
0oo01ft100

m n 0101100
—F s —— 0111000
1000000

1010001

1100110

11110111

m is the "height", and n is the "width"

EE424 Spring 2003

37

ROM Implementation

e How many inputs are there?
6 bits for opcode, 4 bits for state = 10 address lines
(i.e., 210 = 1024 different addresses)

e How many outputs are there?
16 datapath-control outputs, 4 state bits =20 outputs

e ROMis 210x 20 =20K bits (and arather unusual size)

» Rather wasteful, since for lots of the entries, the outputs are the
same
—i.e.,opcode is often ignored

EE424 Spring 2003

ROM vs PLA

» Break up the table into two parts
— 4 state bits tell you the 16 outputs, 24x 16 bits of ROM
— 10 bits tell you the 4 next state bits, 210x 4 bits of ROM
— Total: 4.3K bits of ROM

e PLAis much smaller
— can share product terms
— only need entries that produce an active output
— can take into account don't cares
e Sizeis (#inputs” #product-terms) + (#outputs ~ #product-terms)
For this example = (10x17)+(20x17) = 460 PLA cells

* PLA cells usually about the size of a ROM cell (slightly bigger)

EE424 Spring 2003

39

Another Implementation Style

 Complexinstructions: the "next state" is often current state + 1

Control unit

PLA or ROM

Outputs

ookt Addral
1

Adipss sectiogic

EE424 Spring 2003

Details

Dispatch ROM 1

Dispatch BOM D

Op Opcode name Value

Op

Opcode name

Value

000000 R-format 0110

100011

Lw

0011

000010 Lmp 1001

101011

sw

0101

000100 beq 1000

100011 lw 0010

101011 SW 0010

PLA or ROM

State number Address-control action

Value of AddrCtl

0 Use incremented state

3

Use dispatch ROM 1

Use dispatch ROM 2

Use incremented state

Replace state number by 0

Replace state number by 0

Use incremented state

Replace state number by 0

Replace state number by 0

© | [~ [o for | Jw | [

Replace state number by 0

olo o |wlo|o |w|n -

EE424 Spring 2003

ddrct

41

Microprogramming

Contrd uni

ouputs

Datapath

Instruction re;lster

coc feld

* What are the “microinstructions” ?

EE424 Spring 2003

42

Microprogramming

» A specification methodology
— appropriate if hundreds of opcodes, modes, cycles, etc.
— signals specified symbolically using microinstructions

ALU Register PCWrite
abe control |SRC1|[SRC2| control Memory control Sequencing
Eetch Add PC 4 Read PC |ALU Seq
Add pPC Extshft [Read Dispatch 1
Mem1 Add A Extend Dispatch 2
LW2 Read ALU Seq
Write MDR Eetch
SW2 Write ALU Fetch
|IRformatl |Func code |A B Seq
Write ALU Eetch
BEQ1 Subt A B ALUOut-cond |Fetch
JUMP1 Jump address |Fetch

* Will two implementations of the same architecture have the same microcode?
* What would a microassembler do?

EE424 Spring 2003

Microinstruction format

Eieldname Value Signals active Comment
Add ALUQOD =00 Caysethe Al U0 add
ALU control Subt [ALUOp = 01 Cause the ALU to subtract; this implements the compare for
branche:
Func code ALUOD = 10 Use the instruction's function code to determine ALU control.
SRC1 BC ALUSICA = 0 Lse the PC asthe first Al L input
A ALUSICA =] Register A is the first Al L input
B ALUSIcB = 00 Register B is the second ALU input.
SRC2 4 ALUSICB = 01 Use 4 as the second ALU input,
Extend ALUSIcB = 10 Use output of the sign extension unit as the second ALU input. |
Extshit LUSIcB =11 Use the output of the shift-by-two unit as the second ALU input,
Read Read two registers using the rs and rt fields of the IR as the register
numbers and putting the data intg register: and B
Write ALU RegWrite, Write a register using the rd field of the IR as the register number and
Register RegDst = 1, the contents of the ALUOut as the data.
control MemtoReg =0
Write MDR RegWrite, \Write a register using the rt field of the IR as the register number and
RegDst = 0, the contents of the MDR as the data.
MemtoReg =1
Read PC MemRead, Read memory using the PC as address; write result into IR (and
loD=0 the MDR)
Memory Read ALU MemRead, Read memory using the ALUOut as address; write result into MDR.
lorD =1
\Write ALU MemWrite, Write memory using the ALUOut as address, contents of B as the
oD =1 data
ALU PCSource =00 Write the output of the ALU into the PC.
PCWrite
PC write control ALUOut-cond PCSource =01, If the Zero output of the ALU is active, write the PC with the contents
PCWriteCond of the register ALUOUL.
jump address PCSource =10, \Write the PC with the jump address from the instruction.
PCWrite
Seg darCtl =11 Choose the next microinstruction sequentiall
Sequencing Fetch [AddrCtl = 00 Go to the first microinstruction to begin a new instruction.
Dispatch 1 AddrCtl = 01 Dispatch using the ROM 1.
Dispaich AddrCil = 10 Dispatch using the ROM

Maximally vs. Minimally Encoded

* No encoding:
— 1 bit for each datapath operation
— faster, requires more memory (logic)
— used for Vax 780 — an astonishing 400K of memory!
» Lots of encoding:
— send the microinstructions through logic to get control signals
— uses less memory, slower
» Historical context of CISC:
— Too much logic to put on a single chip with everything else
— Use a ROM (or even RAM) to hold the microcode
— It's easy to add new instructions

EE424 Spring 2003

Microcode: Trade-offs

» Digtinction between specification and implementation issometimesblurred

» Specification Advantages:
— Easy to design and write
— Design architecture and microcode in parallel
« Implementation (off-chip ROM) Advantages
— Easy to change since values are in memory
— Can emulate other architectures
— Can make use of internal registers
* Implementation Disadvantages, SLOWER now that:
— Control is implemented on same chip as processor
— ROMi s no longer faster than RAM
— No need to go back and make changes

EE424 Spring 2003

The Big Picture

Sequencing

Initial) Fln.lle state Microprogram
representation diagram
] 1
A\ Y

Explicit next

Microprogram counter

control state function + dispatch ROMS
va oy
Logic Logic Truth
representation equations tables
v 3
Im plementation Programmable Read only
technique logic array mem ory

47
EE424 Spring 2003

