Name:___

Problem 1.

A program is run on a load and store processor that has a clock cycle time of 0.2nsec. The instruction mix is given below.

Instruction	Executed	Multi-cycle	Pipeline
type	instructions	CPIi	CPIi
ALU	9.3X10 ⁸	4	1
Load	8.1X10 ⁸	5	1
Store	4.3 X10 ⁸	4	1
FP inst.	1.2 X10 ⁸	6.8	4.8
Branch	3.4 X10 ⁸	3	2

Please determine:

a) The CPI for each implementation.

b) What implementation is faster and by how much.

Problem 2.

A benchmark in a five-stage pipelined processor has the following characteristics:

- 26% ALU instructions,
- 23% load instructions
 - 14% of the loads are followed by instructions that use the data being loaded.

25% of these loads are followed by stores. Let us assume that the destination register for load instruction is Ry, The store instructions that have dependencies on the loads:

- $\circ~~40\%$ of the stores have the form: ~~ SW $\, {\rm Ry}\,,~~$ O (${\rm Rx}\,)$
- \circ 60% of the stores have the form: SW Rx, O(Ry)
- 14% store instructions
- 19% floating point instructions, and

18% branch instructions (54% of these branches are taken).

This processor's CPI_{int} and CPI_{FP} are equal to 1 and 3.1, respectively (when there are no hazards). Please answer the following questions:

a) Assuming that all the branch instructions cause hazards (the penalty is 1 clock cycle), please compute the overall CPI.

b) If the branch delay slot is scheduled using the three strategies and NO-OP as follows:

Delay Slot	NO-OP	Fall through	Target	Before			
%	44%	11%	23%	22%			

Please determine the new CPI

Exam 2

[25 points]

[40 points]

[35 points]

Problem 3.

foo:

The code below was complied for a traditional 5-stage RISC pipeline.

R10,0(R1) LW MULT R4,R3,R10 LW R6,0(R2) ADD R6,R4,R6 SW R6,0(R2) SUBI R3,R1,#512 ADDI R1,R1,#8 ADDI R2,R2,#8 BNZ R3,foo

a) Please determine how many cycles it would take to execute a single iteration; i.e. determine when IF of the loop's first instruction can be performed after one iteration (use the chart provided). If 1000 iterations are executed, please determine the number of cycles.

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
LW	R10,0(R1)																		
MULT	R4,R3,R10																		
LW	R6,0(R2)																		
ADD	R6,R4,R6																		
SW	R6,0(R2)																		
SUBI	R3,R1,#512																		
ADDI	R1,R1,#8																		
ADDI	R2,R2,#8																		
BNZ	R3,foo																		

b) Without changing the outcome/results of the program, please rearrange the code in order to avoid/eliminate as many stalls as possible. Please determine the number of cycles that would be needed to execute 1000 iterations.

