
CACHE MEMORY

Program locality

• Temporal locality (Data)

– Recently referenced information

• Spatial locality

– Same address space will be referenced

• Sequential locality (instructions)

– (spatial locality) next address will be used

Caches

• Unified cache

• Split cache

– Instruction cache

– Data cache

Tradeoffs

• Usually cache (L1 and L2) is within CPU

chip.

• Thus, area is a concern

• Design alternatives:
– Large I-cache

– Equal area: I- and D-cache

– Large unified cache

– Multi-level split

Some terms

• Read: Any read access (by the processor)

to cache –instruction (inst. fetch) or data

• Write: Any write access (by the processor)

into cache

• Fetch: read to main mem. to load a block

• Access: any reference to memory

Miss Ratio

Number of references to cache not found in

cache/total references to cache

Number of I-cache references not found in

cache/ instructions executed

total
refAny

miss
refAny

MissRatio
_

_

number
Inst

miss
refInst

MissRatio CacheI

_

Placement Problem

Main Memory

Cache

Memory

Placement Policies

• WHERE to put a block in cache

• Mapping between main and cache memories.

• Main memory has a much larger capacity

than cache memory.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Memory

B
lo

c
k
 n

u
m

b
e

r

0

1

2

3

4

5

6

7

Fully Associative Cache

Block can be placed in

any location in cache.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Memory

B
lo

c
k
 n

u
m

b
e

r

0

1

2

3

4

5

6

7

Direct Mapped Cache

(Block address) MOD (Number of blocks in cache)

12 MOD 8 = 4

Block can be placed ONLY

in a single location in cache.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Memory

B
lo

c
k
 n

u
m

b
e

r

0

1

2

3

4

5

6

7

Set Associative Cache

(Block address) MOD (Number of sets in cache)

12 MOD 4 = 0

0

1

2

3

Set no.

B
lo

c
k
 n

u
m

b
e

r

Block can be placed in one

of n locations in n-way set

associative cache.

Cache organization

Tag Index blk

<21> <8> <5>

:
.

<1> <21> <256>
Valid Tag Data

CPU
address

Data

=

TAG

• Contains the “sector name” of block

Datatag

=

Block

Main mem addr

Valid bit(s)

• Indicates if block contains valid data

– initial program load into main memory.

• No valid data

– Cache coherency in multiprocessors

• Data in main memory could have been chanced by

other processor (or process).

Dirty bit(s)

• Indicates if the block has been written to.

– No need in I-caches.

– No need in write through D-cache.

– Write back D-cache needs it.

Write back

C P U

Main memory

cacheD

Write through

C P U

Main memory

cache

Cache Performance

Access time

tea=Hit time + Miss rate * Miss penalty

Associativity
(D-cache misses per 1000 instructions)

2-way 4-way 8-way

Size

(KB) LRU Rdm FIFO LRU Rdm FIFO LRU Rdm FIFO

16 114.1 117.3 115.5 111.7 115.1 113.3 109.0 111.8 110.4

64 103.4 104.9 103.9 102.4 102.3 103.1 99.7 100.5 100.3

256 92.2 92.1 92.5 92.1 92.1 92.5 92.1 92.1 92.5

Reducing Cache Miss Penalties

• Multilevel cache

• Critical word first

• Priority to Read over Write

• Victim cache

Multilevel caches

CPU L1 L2 L3
Main

Multilevel caches

• Average access time

=Hit timeL1 + Miss rateL1 * Miss penaltyL1

Hit timeL2 + Miss rateL2 * Miss penaltyL2

Critical word first

• The missed word is requested to be sent

first from next level.

Priority to Read over Write

misses

• Writes are not as critical as reads.

• CPU cannot continue if data or instruction

is not read.

Victim cache

• Small fully associative cache.

• Contains blocks that have been discarded

(“victims”)

• Four entry cache removed 20-90% of

conflict misses (4KB direct-mapped).

Pseudo Associative Cache

• Direct-mapped cache hit time

• If miss

– Check other entry in cache

– (change the most significant bit)

• If found no long wait

Reducing Cache Miss Rate

• Larger block size

• Larger caches

• Higher Associativity

• Pseudo-associative cache

• Prefetching

Larger Block Size

• Large block take advantage of spatial

locality.

• On the other hand, less blocks in cache

0

5

10

15

20

25

16 32 64 128 256

M
is

s
 r

a
te

 (
%

)

Block size

1K

2K

16K

64K

256K

Miss rate versus block size

Block

size

Cache size

4K 16K 64K 256K

16 8.57% 3.94% 2.04% 1.09%

32 7.24% 2.87% 1.35% 0.70%

64 7.00% 2.64% 1.06% 0.51%

128 7.78% 2.77% 1.02% 0.49%

256 9.51% 3.29% 1.15% 0.49%

Example

• Memory takes 80 clock cycles of overhead

• Delivers 16 bytes every 2 clock cycles (cc)

Mem. System supplies 16 bytes in 82 cc

32 bytes in 84 cc

Example (cont’d)

Average access time

=Hit timeL1 + Miss rateL1 * Miss penaltyL1

For a 16-byte block in a 4 KB cache

Ave. access time = 1 + (8.57% * 82)=8.0274

Ave. mem. access time versus block size

Block

size

Miss

penalty

Cache size

4K 16K 64K 256K

16 82 8.027 4.231 2.673 1.894

32 84 7.082 3.411 2.134 1.588

64 88 7.160 3.323 1.933 1.449

128 96 8.469 3.659 1.979 1.470

256 112 11.651 4.685 2.288 1.549

Two-way cache (Alpha)

Higher Associativity

• Having higher associativity is NOT for free

• Slower clock may be required

• Thus, there is a trade-off between

associativity (with higher hit rate) and faster

clocks (direct-mapped).

Associativity example

• If clock cycle time (cct) increases as

follows:

– cct2-way = 1.1cct1-way

– cct4-way = 1.12cct1-way

– cct8-way = 1.14cct1-way

• Miss penalty is 50 cycles

• Hit time is 1 cycle

Pseudo Associative Cache

• Direct-mapped cache hit time

• If miss

– Check other entry in cache

– (change the most significant bit)

• If found no long wait

Pseudo Associative

time

Hit time

Pseudo hit time Miss penalty

Hardware prefetching

• What about fetching two blocks in a miss.

– Alpha AXP 21064

• Problem: real misses may be delayed due to

prefetching

Fetch Policies

• Memory references:

– 90% reads

– 10% writes

• Thus, read has higher priority

Fetch

• Fetch on miss

– Demand fetching

• Prefetching

– Instructions (I-Cache)

Hardware prefetching

• What about fetching two blocks in a miss.

– Alpha AXP 21064

• Problem: real misses may be delayed due to

prefetching

Compiler Controlled Prefetching

• Register prefetching

– Load values in regs before they are needed

• Cache prefetching

– Loads data in cache only

This is only possible if we have nonblocking

or lockup-free caches.

Order Main Memory to Cache

• Needed AU is in the middle of the block

• Block load

– The complete block is loaded

• Load forward

– The needed AU is forwarded

– AUs behind the miss are not loaded

• Fetch bypass

– Start with needed AU and AUs behind are loaded later

Access time

Mem_ access_timeL1 = Hit_rateL1 + Miss_rateL1 X Miss_penaltyL1

Mem_ access_time = Hit_rate + Miss_rate X Miss_penalty

Miss_penaltyL1 = Hit_rateL2 + Miss_rateL2 X Miss_penaltyL2

Reducing Hit Time

• Critical in increasing the processor clock

frequency.

Small & simple caches
• “smaller” hardware is faster

– Less sequential operations

• Direct mapping is simpler

Avoid address translation

• Virtual address Physical address.

