
1EE334 Spring 2008

Chapter 3

Arithmetic for Computers

2EE334 Spring 2008

Arithmetic

• Where we've been:

– Abstractions:

Instruction Set Architecture

Assembly Language and Machine Language

• What's up ahead:

– Implementing the Architecture

32

32

32

operation

result

a

b

ALU

3EE334 Spring 2008

• Bits are just bits (no inherent meaning)

— conventions define relationship between bits and numbers

• Binary numbers (base 2)

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001...

decimal: 0...2n-1

• Of course it gets more complicated:

numbers are finite (overflow)

fractions and real numbers

negative numbers

e.g., no MIPS subi instruction; addi can add a negative number)

• How do we represent negative numbers?

i.e., which bit patterns will represent which numbers?

Numbers

4EE334 Spring 2008

• Sign Magnitude One's Complement Two's Complement

000 = +0 000 = +0 000 = +0

001 = +1 001 = +1 001 = +1

010 = +2 010 = +2 010 = +2

011 = +3 011 = +3 011 = +3

100 = -0 100 = -3 100 = -4

101 = -1 101 = -2 101 = -3

110 = -2 110 = -1 110 = -2

111 = -3 111 = -0 111 = -1

• Issues: balance, number of zeros, ease of operations

Possible Representations

5EE334 Spring 2008

• 32 bit signed numbers:

0000 0000 0000 0000 0000 0000 0000 0000two = 0ten
0000 0000 0000 0000 0000 0000 0000 0001two = + 1ten
0000 0000 0000 0000 0000 0000 0000 0010two = + 2ten
...

0111 1111 1111 1111 1111 1111 1111 1110two = + 2,147,483,646ten
0111 1111 1111 1111 1111 1111 1111 1111two = + 2,147,483,647ten
1000 0000 0000 0000 0000 0000 0000 0000two = – 2,147,483,648ten
1000 0000 0000 0000 0000 0000 0000 0001two = – 2,147,483,647ten
1000 0000 0000 0000 0000 0000 0000 0010two = – 2,147,483,646ten
...

1111 1111 1111 1111 1111 1111 1111 1101two = – 3ten
1111 1111 1111 1111 1111 1111 1111 1110two = – 2ten
1111 1111 1111 1111 1111 1111 1111 1111two = – 1ten

maxint

minint

MIPS

6EE334 Spring 2008

• Negating a two's complement number: invert all bits and add 1

– remember: ―negate‖ and ―invert‖ are quite different!

• Converting n bit numbers into numbers with more than n bits:

– MIPS 16 bit immediate gets converted to 32 bits for arithmetic

– copy the most significant bit (the sign bit) into the other bits

0010 -> 0000 0010

1010 -> 1111 1010

– "sign extension" (lbu vs. lb)

Two's Complement Operations

7EE334 Spring 2008

2’s complement

0000 0000 0000 0010two16-bit binary

Negate number

(invert & add 1)

1111 1111 1111 1101two

1two

1111 1111 1111 1110two

8EE334 Spring 2008

2’s complement

0000 0000 0000 0000 0000 0000 0000 0010two

1111 1111 1111 1111 1111 1111 1111 1101two

1two

1111 1111 1111 1111 1111 1111 1111 1110two

9EE334 Spring 2008

Sign extension

0000 0000 0000 0010two16-bit

32-bit 0000 0000 0000 0000 0000 0000 0000 0010two

1111 1111 1111 1110two16-bit

32-bit 1111 1111 1111 1111 1111 1111 1111 1110two

10EE334 Spring 2008

Two’s complement

5 0000 0101 1111 1011

12 0000 1100 1111 0100

16 0001 0000 1111 0000

37 0010 0101 1101 1011

Number binary 2’s complement

28 27 26 25 24 23 22 21 20

256 128 64 32 16 8 4 2 1

11EE334 Spring 2008

• Just like in grade school (carry/borrow 1s)

0111 0111 0110

+ 0110 - 0110 - 0101

• Two's complement operations easy

– subtraction using addition of negative numbers

0111

+ 1010

• Overflow (result too large for finite computer word):

– e.g., adding two n-bit numbers does not yield an n-bit number

0111

+ 0001 note that overflow term is somewhat misleading,

1000 it does not mean a carry “overflowed”

Addition & Subtraction

12EE334 Spring 2008

• No overflow when adding a positive and a negative number

• No overflow when signs are the same for subtraction

• Overflow occurs when the value affects the sign:

– overflow when adding two positives yields a negative

– or, adding two negatives gives a positive

– or, subtract a negative from a positive and get a negative

– or, subtract a positive from a negative and get a positive

Detecting Overflow

13EE334 Spring 2008

Overflow

Operation A B
Result indicating

overflow

A + B 0 0 < 0

A + B < 0 < 0 0

A - B 0 < 0 < 0

A - B < 0 0 0

14EE334 Spring 2008

• An exception (interrupt) occurs

– Control jumps to predefined address for exception

– Interrupted address is saved for possible resumption

• Details based on software system / language

– example: flight control vs. homework assignment

• Don't always want to detect overflow
— new MIPS instructions: addu, addiu, subu

note: addiu still sign-extends!

note: sltu, sltiu for unsigned comparisons

Effects of Overflow

15EE334 Spring 2008

• Problem: Consider a logic function with three inputs: A, B, and C.

Output D is true if at least one input is true

Output E is true if exactly two inputs are true

Output F is true only if all three inputs are true

• Show the truth table for these three functions.

• Show the Boolean equations for these three functions.

• Show an implementation consisting of inverters, AND, and OR

gates.

Review: Boolean Algebra & Gates

16EE334 Spring 2008

• Let's build an ALU to support the andi and ori instructions

– we'll just build a 1 bit ALU, and use 32 of them

• Possible Implementation (sum-of-products):

b

a

operation

result

op a b res

An ALU (arithmetic logic unit)

17EE334 Spring 2008

• Selects one of the inputs to be the output, based on a control input

• Lets build our ALU using a MUX:

S

C
A

B

0

1

Review: The Multiplexor

note: we call this a 2-input mux

even though it has 3 inputs!

18EE334 Spring 2008

• Not easy to decide the ―best‖ way to build something

– Don't want too many inputs to a single gate

– Dont want to have to go through too many gates

– for our purposes, ease of comprehension is important

• Let's look at a 1-bit ALU for addition:

• How could we build a 1-bit ALU for add, and, and or?

• How could we build a 32-bit ALU?

Different Implementations

cout = a b + a cin + b cin
sum = a xor b xor cin

a

b

Carryin (Cin)

Carryout (Cout)

Sum

19EE334 Spring 2008

Building a 32 bit ALU

b

0

2

Result

Operation

a

1

CarryIn

CarryOut Result31

a31

b31

Result0

CarryIn

a0

b0

Result1

a1

b1

Result2

a2

b2

Operation

ALU0

CarryIn

CarryOut

ALU1

CarryIn

CarryOut

ALU2

CarryIn

CarryOut

ALU31

CarryIn

20EE334 Spring 2008

• Two's complement approach: just negate b and add.

• How do we negate?

• A very clever solution:

What about subtraction (a – b) ?

0

2

Result

Operation

a

1

CarryIn

CarryOut

0

1

Binvert

b

21EE334 Spring 2008

• Need to support the set-on-less-than instruction (slt)

– remember: slt is an arithmetic instruction

– produces a 1 if rs < rt and 0 otherwise

– use subtraction: (a-b) < 0 implies a < b

• Need to support test for equality (beq $t5, $t6, $t7)

– use subtraction: (a-b) = 0 implies a = b

Tailoring the ALU to the MIPS

Supporting slt

• Can we figure out the idea?
0

3

Result

Operation

a

1

CarryIn

CarryOut

0

1

Binvert

b 2

Less

0

3

Result

Operation

a

1

CarryIn

0

1

Binvert

b 2

Less

Set

Overflow

detection
Overflow

a.

b.

23EE334 Spring 2008

Set

a31

0

ALU0 Result0

CarryIn

a0

Result1

a1

0

Result2

a2

0

Operation

b31

b0

b1

b2

Result31

Overflow

Binvert

CarryIn

Less

CarryIn

CarryOut

ALU1

Less

CarryIn

CarryOut

ALU2

Less

CarryIn

CarryOut

ALU31

Less

CarryIn

24EE334 Spring 2008

Test for equality

• Notice control lines:

000 = and

001 = or

010 = add

110 = subtract

111 = slt

•Note: zero is a 1 when the result is zero!

Set

a31

0

Result0
a0

Result1
a1

0

Result2
a2

0

Operation

b31

b0

b1

b2

Result31

Overflow

Bnegate

Zero

ALU0

Less

CarryIn

CarryOut

ALU1

Less

CarryIn

CarryOut

ALU2

Less

CarryIn

CarryOut

ALU31

Less

CarryIn

25EE334 Spring 2008

Conclusion

• We can build an ALU to support the MIPS instruction set

– key idea: use multiplexor to select the output we want

– we can efficiently perform subtraction using two’s complement

– we can replicate a 1-bit ALU to produce a 32-bit ALU

• Important points about hardware

– all of the gates are always working

– the speed of a gate is affected by the number of inputs to the gate

– the speed of a circuit is affected by the number of gates in series

(on the ―critical path‖ or the ―deepest level of logic‖)

• Our primary focus: comprehension, however,

– Clever changes to organization can improve performance

(similar to using better algorithms in software)

– we’ll look at two examples for addition and multiplication

26EE334 Spring 2008

• 1-bit Adder

• How could we build a 32-bit adder?

• Assume following delays:

NAND, NOR, INV = 1 Δ

• XOR = 2 Δ (two input XOR)

• Implement ripple carry for 32-bit adder (what is the time?)

Basic adder

cout = a b + a cin + b cin
sum = a xor b xor cin

a

b

Carryin (Cin)

Carryout (Cout)

Sum

27EE334 Spring 2008

• Is a 32-bit ALU as fast as a 1-bit ALU?

• Is there more than one way to do addition?

– two extremes: ripple carry and sum-of-products

Can you see the ripple? How could you get rid of it?

c1 = b0c0 + a0c0 + a0b0

c2 = b1c1 + a1c1 + a1b1 c2 =

c3 = b2c2 + a2c2 + a2b2 c3 =

c4 = b3c3 + a3c3 + a3b3 c4 =

Not feasible! Why?

Problem: ripple carry adder is slow

c2 = b1(b0c0+a0c0+a0b0) + a1(b0c0+a0c0+a0b0) + a1b1

28EE334 Spring 2008

• An approach in-between our two extremes

• Motivation:

– If we didn't know the value of carry-in, what could we do?

– When would we always generate a carry? gi = ai bi

– When would we propagate the carry? pi = ai + bi

• Did we get rid of the ripple?

c1 = g0 + p0c0

c2 = g1 + p1c1 c2 = g1 + p1g0 + p1p0c0

c3 = g2 + p2c2 c3 = g2 + p2g1 + p2p1g0 + p2p1p0c0

c4 = g3 + p3c3 c4 = g3 + p3g2 + p3p2g1 + p3p2p1g0 + p3p2p1p0c0

Feasible! Why?

Carry-lookahead adder

29EE334 Spring 2008

4-bit CLA

p3 g3 p2 g2 p1 g1 p0 g0

c0

c4 c3 c2 c1

30EE334 Spring 2008

• P0=p3p2p1p0

• G0= g3 + p3g2 + p3p2g1 + p3p2p1g0

31EE334 Spring 2008

• Can’t build a 16 bit adder this way... (too big)

• Could use ripple carry of 4-bit CLA adders

• Better: use the CLA principle again!

Use principle to build bigger adders

CarryIn

Result0--3

ALU0

CarryIn

Result4--7

ALU1

CarryIn

Result8--11

ALU2

CarryIn

CarryOut

Result12--15

ALU3

CarryIn

C1

C2

C3

C4

P0
G0

P1
G1

P2
G2

P3
G3

pi
gi

pi + 1
gi + 1

ci + 1

ci + 2

ci + 3

ci + 4

pi + 2
gi + 2

pi + 3
gi + 3

a0
b0
a1
b1
a2
b2
a3
b3

a4
b4
a5
b5
a6
b6
a7
b7

a8
b8
a9
b9

a10
b10
a11
b11

a12
b12
a13
b13
a14
b14
a15
b15

Carry-lookahead unit

32EE334 Spring 2008

• gi = ai • bi

• pi = ai + bi

• Si = ai + bi + ci

• Si = pi + ci

33EE334 Spring 2008

• Can’t build a 16 bit adder this way... (too big)

• Could use ripple carry of 4-bit CLA adders

• Better: use the CLA principle again!

Use principle to build bigger adders

CarryIn

Result0--3

ALU0

CarryIn

Result4--7

ALU1

CarryIn

Result8--11

ALU2

CarryIn

CarryOut

Result12--15

ALU3

CarryIn

C1

C2

C3

C4

P0
G0

P1
G1

P2
G2

P3
G3

pi
gi

pi + 1
gi + 1

ci + 1

ci + 2

ci + 3

ci + 4

pi + 2
gi + 2

pi + 3
gi + 3

a0
b0
a1
b1
a2
b2
a3
b3

a4
b4
a5
b5
a6
b6
a7
b7

a8
b8
a9
b9

a10
b10
a11
b11

a12
b12
a13
b13
a14
b14
a15
b15

Carry-lookahead unit

34EE334 Spring 2008

• More complicated than addition

– accomplished via shifting and addition

• More time and more area

• Let's look at 3 versions based on grade school algorithm

0010 (multiplicand)

__x_1011 (multiplier)

• Negative numbers: convert and multiply

– there are better techniques, we won’t look at them

Multiplication

35EE334 Spring 2008

Multiplication: Implementation

Done

1. Test

Multiplier0

1a. Add multiplicand to product and
place the result in Product register

2. Shift the Multiplicand register left 1 bit

3. Shift the Multiplier register right 1 bit

32nd repetition?

Start

Multiplier0 = 0Multiplier0 = 1

No: < 32 repetitions

Yes: 32 repetitions

64-bit ALU

Control test

Multiplier

Shift right

Product

Write

Multiplicand

Shift left

64 bits

64 bits

32 bits

36EE334 Spring 2008

Second Version

Multiplier

Shift right

Write

32 bits

64 bits

32 bits

Shift right

Multiplicand

32-bit ALU

Product Control test

Done

1. Test

Multiplier0

1a. Add multiplicand to the left half of
the product and place the result in

the left half of the Product register

2. Shift the Product register right 1 bit

3. Shift the Multiplier register right 1 bit

32nd repetition?

Start

Multiplier0 = 0Multiplier0 = 1

No: < 32 repetitions

Yes: 32 repetitions

37EE334 Spring 2008

Final Version

Control

testWrite

32 bits

64 bits

Shift right
Product

Multiplicand

32-bit ALU

Done

1. Test

Product0

1a. Add multiplicand to the left half of
the product and place the result in

the left half of the Product register

2. Shift the Product register right 1 bit

32nd repetition?

Start

Product0 = 0Product0 = 1

No: < 32 repetitions

Yes: 32 repetitions

38EE334 Spring 2008

Floating Point Numbers

39EE334 Spring 2008

Review of Numbers

• Computers are made to deal with numbers

• What can we represent in N bits?

– Unsigned integers:

0 to 2N - 1

– Signed Integers (Two’s Complement)

-2(N-1) to 2(N-1) - 1

• What about other numbers?

– Very large numbers? (seconds/century)

3,155,760,00010 (3.1557610 x 109)

– Very small numbers? (atomic diameter)

0.0000000110 (1.010 x 10-8)

– Rational (repeating pattern) 2/3 (0.666666666. . .)

– Irrational 21/2 (1.414213562373. . .)

– Transcendental e (2.718...), (3.141...)

• All represented in scientific notation

40EE334 Spring 2008

Scientific Notation: Review

6.02 x 1023

radix (base)decimal point

mantissa exponent

• Normalized form: no leadings 0s
(exactly one digit to left of decimal point)

• Alternatives to representing 1/1,000,000,000

– Normalized: 1.0 x 10-9

– Not normalized: 0.1 x 10-8, 10.0 x 10-10

41EE334 Spring 2008

Scientific Notation: Binary Numbers

1.0two x 2-1

radix (base)“binary point”

Mantissa exponent

• Computer arithmetic that supports it called
floating point, because it represents
numbers where binary point is not fixed, as it
is for integers

– Declare such variable in C as float

42EE334 Spring 2008

Floating Point (FP) Representation (1/2)

• Normal format: +1.xxxxxxxxxxtwo*2yyyytwo

• Multiple of Word Size (32 bits)

031
S Exponent
30 23 22

Significand

1 bit 8 bits 23 bits

S represents Sign

Exponent represents y’s

Significand represents x’s

Represent numbers as small as
2.0 x 10-38 to as large as 2.0 x 1038

43EE334 Spring 2008

FP Representation (2/2)

• What if result too large? (> 2.0x1038)

– Overflow!

– Overflow => Exponent larger than represented

in 8-bit Exponent field

• What if result too small? (>0, < 2.0x10-38)

– Underflow!

– Underflow => Negative exponent larger than

represented in 8-bit Exponent field

• How to reduce chances of overflow or

underflow?

44EE334 Spring 2008

Double Precision FP Representation

• Next Multiple of Word Size (64 bits)

Double Precision (vs. Single Precision)

C variable declared as double

Represent numbers almost as small as
2.0 x 10-308 to almost as large as 2.0 x 10308

But primary advantage is greater accuracy
due to larger significand

031
S Exponent

30 20 19
Significand

1 bit 11 bits 20 bits
Significand (cont’d)

32 bits

45EE334 Spring 2008

IEEE 754 FP Standard (1/4)

• Single Precision, DP similar

• Sign bit: 1 means negative

0 means positive

• Significand:

– To pack more bits, leading 1 implicit for

normalized numbers

– 1 + 23 bits single, 1 + 52 bits double

– always true: Significand < 1 (for normalized

numbers)

• Note: 0 has no leading 1, so reserve

exponent value 0 just for number 0

46EE334 Spring 2008

IEEE 754 FP Standard (2/4)

• Kahan wanted FP numbers to be used

even if no FP hardware; e.g., sort records

with FP numbers using integer compares

• Could break FP number into 3 parts:

compare signs, then compare exponents,

then compare significands

• Wanted it to be faster, single compare if

possible, especially if positive numbers

• Then want order:
– Highest order bit is sign (negative < positive)
– Exponent next, so big exponent => bigger #
– Significand last: exponents same => bigger #

47EE334 Spring 2008

IEEE 754 FP Standard (3/4)

• Negative Exponent?

– 2’s comp? 1.0 x 2-1 v. 1.0 x2+1 (1/2 v. 2)

0 1111 1111 000 0000 0000 0000 0000 00001/2
0 0000 0001 000 0000 0000 0000 0000 00002
 This notation using integer compare of

1/2 v. 2 makes 1/2 > 2!

Instead, pick notation 0000 0001 is most negative, and 1111
1111 is most positive

 1.0 x 2-1 v. 1.0 x2+1 (1/2 v. 2)

1/2 0 0111 1110 000 0000 0000 0000 0000 0000

0 1000 0000 000 0000 0000 0000 0000 00002

48EE334 Spring 2008

IEEE 754 FP Standard (4/4)

Called Biased Notation, where bias is number
subtract to get real number

IEEE 754 uses bias of 127 for single prec.

Subtract 127 from Exponent field to get actual value for
exponent

1023 is bias for double precision

• Summary (single precision):
031

S Exponent
30 23 22

Significand

1 bit 8 bits 23 bits
(-1)S x (1 + Significand) x 2(Exponent-127)

Double precision identical, except with exponent bias
of 1023

49EE334 Spring 2008

Example: Converting FP to Decimal

• Sign: 0 => positive

• Exponent:

– 0110 1000two = 104ten

– Bias adjustment: 104 - 127 = -23

• Significand:

– 1 + 1x2-1+ 0x2-2 + 1x2-3 + 0x2-4 + 1x2-5 +...

=1+2-1+2-3 +2-5 +2-7 +2-9 +2-14 +2-15 +2-17 +2-

22

= 1.0 + 0.666115

0 0110 1000 101 0101 0100 0011 0100 0010

Represents: 1.666115ten*2-23 ~ 1.986*10-7

50EE334 Spring 2008

Converting Decimal to FP

• Simple Case: If denominator is an

exponent of 2 (2, 4, 8, 16, etc.), then it’s

easy.

• Show MIPS representation of -0.75

– -0.75 = -3/4

– -11two/100two = -0.11two

– Normalized to -1.1two x 2-1

– (-1)S x (1 + Significand) x 2(Exponent-127)

– (-1)1 x (1 + .100 0000 ... 0000) x 2(126-127)

1 0111 1110 100 0000 0000 0000 0000 0000

51EE334 Spring 2008

Another Example

• 1/3

= 0.33333…10

= 0.25 + 0.0625 + 0.015625 + 0.00390625

+ 0.0009765625 + …

= 1/4 + 1/16 + 1/64 + 1/256 + 1/1024 + …

= 2-2 + 2-4 + 2-6 + 2-8 + 2-10 + …

= 0.0101010101… 2 * 2
0

= 1.0101010101… 2 * 2-2

0 0111 1101 0101 0101 0101 0101 0101 010

52EE334 Spring 2008

Representation for +/- Infinity

• In FP, divide by zero should produce +/-

infinity, not overflow.

• Why?

– OK to do further computations with

infinity e.g., X/0 > Y may be a valid

comparison

– Ask math majors

• IEEE 754 represents +/- infinity

– Most positive exponent reserved for

infinity

– Significand all zeroes

53EE334 Spring 2008

Representation for 0

• Represent 0?

– exponent all zeroes

– significand all zeroes too

– What about sign?

– +0: 0 00000000 00000000000000000000000

– -0: 1 00000000 00000000000000000000000

• Why two zeroes?

– Helps in some limit comparisons

54EE334 Spring 2008

Special Numbers

• What have we defined so far?

(Single Precision)

Exponent Significand Object

0 0 0

0 nonzero ???

1-254 anything +/- fl. pt. #

255 0 +/- infinity

255 nonzero ???

55EE334 Spring 2008

Representation for Not a Number

• What do I get if I calculate

sqrt(-4.0)or 0/0?

– If infinity is not an error, these shouldn’t be

either.

– Called Not a Number (NaN)

– Exponent = 255, Significand nonzero

• Why is this useful?

– Hope NaNs help with debugging?

– They contaminate: op(NaN,X) = NaN

56EE334 Spring 2008

Special Numbers (cont’d)

• What have we defined so far?

(Single Precision)?

Exponent Significand Object

0 0 0

0 nonzero ???

1-254 anything +/- fl. pt.

#

255 0 +/-

infinity

255 nonzero NaN

57EE334 Spring 2008

Representation for Denorms (1/2)

• Problem: There’s a gap among

representable FP numbers around 0

– Smallest representable pos num:

a = 1.0… 2 * 2-126 = 2-126

– Second smallest representable pos num:

b = 1.000……1 2 * 2-126 = 2-126 + 2-149

a - 0 = 2-126

b - a = 2-149

b

a0
+-

Gaps!

Normalization

and implicit 1

is to blame!

58EE334 Spring 2008

Representation for Denorms (2/2)

Solution:

We still haven’t used Exponent = 0, Significand
nonzero

Denormalized number: no leading 1, implicit
exponent = -126.

Smallest representable pos num:

a = 2-149

Second smallest representable pos num:

b = 2-148

0
+-

59EE334 Spring 2008

A: A: -3.5

B: B: -3.75

C: C: -7

D: D: -7.5

E: E: -15

F: F: -7 * 2^129

Question

What is the decimal equivalent of:

1 1000 0001 111 0000 0000 0000 0000 0000

60EE334 Spring 2008

A: A: -3.5

B: B: -3.75

C: C: -7

D: D: -7.5

E: E: -15

F: F: -7 * 2^129

Answer

What is the decimal equivalent of:

1 1000 0001 111 0000 0000 0000 0000 0000
S Exponent Significand

(-1)S x (1 + Significand) x 2(Exponent-127)

(-1)1 x (1 + .111) x 2(129-127)

-1 x (1.111) x 2(2) = -111.1 = -7.5

