Chapter 3 Arithmetic for Computers

Arithmetic

- Where we've been:
 - Abstractions:
 - **Instruction Set Architecture**
 - Assembly Language and Machine Language
- What's up ahead:
 - Implementing the Architecture

Numbers

- Bits are just bits (no inherent meaning)
 - conventions define relationship between bits and numbers
- Binary numbers (base 2) 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001... decimal: 0...2ⁿ-1
- Of course it gets more complicated:

numbers are finite (overflow)

fractions and real numbers

negative numbers

e.g., no MIPS subi instruction; addi can add a negative number)

• How do we represent negative numbers?

i.e., which bit patterns will represent which numbers?

Possible Representations

•	Sign Magnitude	One's Complement	Two's Complement
	000 = +0	000 = +0	000 = +0
	001 = +1	001 = +1	001 = +1
	010 = +2	010 = +2	010 = +2
	011 = +3	011 = +3	011 = +3
	100 = -0	100 = -3	100 = -4
	101 = -1	101 = -2	101 = -3
	110 = -2	110 = -1	110 = -2
	111 = -3	111 = -0	111 = -1

• Issues: balance, number of zeros, ease of operations

• 32 bit signed numbers:

Two's Complement Operations

- Negating a two's complement number: invert all bits and add 1
 - remember: "negate" and "invert" are quite different!
- Converting n bit numbers into numbers with more than n bits:
 - MIPS 16 bit immediate gets converted to 32 bits for arithmetic
 - copy the most significant bit (the sign bit) into the other bits

0010 -> 0000 0010

1010 -> 1111 1010

– "sign extension" (lbu vs. lb)

Sign extension

Nur	nber	binary			2's complement			
	5	0000	0101		1111	1011		
	12	0000	1100		1111	0100)	
	16	0001	0000		1111	0000)	
	37	0010	0101		1101	1011		
28	27	26	2 ⁵	24	2 ³	2^{2}	21	20
256	128	64	32	16	8	4	2	1

• Just like in grade school (carry/borrow 1s)

0111	0111	0110
+ 0110	- 0110	- 0101

- Two's complement operations easy
 - subtraction using addition of negative numbers
 0111
 - + 1010
- Overflow (result too large for finite computer word):
 - e.g., adding two n-bit numbers does not yield an n-bit number
 0111
 - + 0001note that overflow term is somewhat misleading,1000it does not mean a carry "overflowed"

Detecting Overflow

- No overflow when adding a positive and a negative number
- No overflow when signs are the same for subtraction
- Overflow occurs when the value affects the sign:
 - overflow when adding two positives yields a negative
 - or, adding two negatives gives a positive
 - or, subtract a negative from a positive and get a negative
 - or, subtract a positive from a negative and get a positive

Overflow

Operation	Α	В	Result indicating overflow
A + B	≥ 0	≥ 0	< 0
A + B	< 0	< 0	≥ 0
A - B	≥ 0	< 0	< 0
A - B	< 0	≥ 0	≥ 0

Effects of Overflow

- An exception (interrupt) occurs
 - Control jumps to predefined address for exception
 - Interrupted address is saved for possible resumption
- Details based on software system / language
 - example: flight control vs. homework assignment
- Don't always want to detect overflow
 - new MIPS instructions: addu, addiu, subu

note: addiu still sign-extends! note: sltu, sltiu for unsigned comparisons

Review: Boolean Algebra & Gates

• Problem: Consider a logic function with three inputs: A, B, and C.

Output D is true if at least one input is true Output E is true if exactly two inputs are true Output F is true only if all three inputs are true

- Show the truth table for these three functions.
- Show the Boolean equations for these three functions.
- Show an implementation consisting of inverters, AND, and OR gates.

An ALU (arithmetic logic unit)

- Let's build an ALU to support the andi and ori instructions
 - we'll just build a 1 bit ALU, and use 32 of them

• Possible Implementation (sum-of-products):

• Selects one of the inputs to be the output, based on a control input

note: we call this a 2-input mux even though it has 3 inputs!

• Lets build our ALU using a MUX:

Different Implementations

- Not easy to decide the "best" way to build something
 - Don't want too many inputs to a single gate
 - Dont want to have to go through too many gates
 - for our purposes, ease of comprehension is important
- Let's look at a 1-bit ALU for addition:

- How could we build a 1-bit ALU for add, and, and or?
- How could we build a 32-bit ALU?

Building a 32 bit ALU

What about subtraction (a – b) ?

- Two's complement approach: just negate b and add.
- How do we negate?

Tailoring the ALU to the MIPS

- Need to support the set-on-less-than instruction (slt)
 - remember: slt is an arithmetic instruction
 - produces a 1 if rs < rt and 0 otherwise</p>
 - use subtraction: (a-b) < 0 implies a < b</p>
- Need to support test for equality (beq \$t5, \$t6, \$t7)
 - use subtraction: (a-b) = 0 implies a = b

Supporting slt

• Can we figure out the idea?

Test for equality

Notice control lines:

000 = and 001 = or 010 = add 110 = subtract111 = slt

Conclusion

- We can build an ALU to support the MIPS instruction set
 - key idea: use multiplexor to select the output we want
 - we can efficiently perform subtraction using two's complement
 - we can replicate a 1-bit ALU to produce a 32-bit ALU
- Important points about hardware
 - all of the gates are always working
 - the speed of a gate is affected by the number of inputs to the gate
 - the speed of a circuit is affected by the number of gates in series (on the "critical path" or the "deepest level of logic")
- Our primary focus: comprehension, however,
 - Clever changes to organization can improve performance (similar to using better algorithms in software)
 - we'll look at two examples for addition and multiplication

• 1-bit Adder

- How could we build a 32-bit adder?
- Assume following delays: NAND, NOR, INV = 1 Δ
- XOR = 2Δ (two input XOR)
- Implement ripple carry for 32-bit adder (what is the time?)

Problem: ripple carry adder is slow

- Is a 32-bit ALU as fast as a 1-bit ALU?
- Is there more than one way to do addition?
 - two extremes: ripple carry and sum-of-products

Can you see the ripple? How could you get rid of it?

$$c_{1} = b_{0}c_{0} + a_{0}c_{0} + a_{0}b_{0}$$

$$c_{2} = b_{1}c_{1} + a_{1}c_{1} + a_{1}b_{1}$$

$$c_{2} = c_{3} = b_{2}c_{2} + a_{2}c_{2} + a_{2}b_{2}$$

$$c_{3} = c_{4} = b_{3}c_{3} + a_{3}c_{3} + a_{3}b_{3}$$

$$c_{4} = c_{4} = c_{4} = c_{4} = c_{4} = c_{4} = c_{4}$$

Not feasible! Why?

 $c_2 = b_1 (b_0 c_0 + a_0 c_0 + a_0 b_0) + a_1 (b_0 c_0 + a_0 c_0 + a_0 b_0) + a_1 b_1$

Carry-lookahead adder

- An approach in-between our two extremes
- Motivation:
 - If we didn't know the value of carry-in, what could we do?
 - When would we always generate a carry? $g_i = a_i b_i$
 - When would we propagate the carry? $p_i = a_i + b_i$

 $g_{i} = a_{i} b_{i}$ $p_{i} = a_{i} + b_{i}$

• Did we get rid of the ripple?

```
c_{1} = g_{0} + p_{0}c_{0}
c_{2} = g_{1} + p_{1}c_{1} \qquad c_{2} = g_{1} + p_{1}g_{0} + p_{1}p_{0}c_{0}
c_{3} = g_{2} + p_{2}c_{2} \qquad c_{3} = g_{2} + p_{2}g_{1} + p_{2}p_{1}g_{0} + p_{2}p_{1}p_{0}c_{0}
c_{4} = g_{3} + p_{3}c_{3} \qquad c_{4} = g_{3} + p_{3}g_{2} + p_{3}p_{2}g_{1} + p_{3}p_{2}p_{1}g_{0} + p_{3}p_{2}p_{1}p_{0}c_{0}
```

Feasible! Why?

4-bit CLA

29

- $P_0 = p_3 p_2 p_1 p_0$
- $G_0 = g_3 + p_3 g_2 + p_3 p_2 g_1 + p_3 p_2 p_1 g_0$

Use principle to build bigger adders

•

- Can't build a 16 bit adder this way... (too big)
- Could use ripple carry of 4-bit CLA adders
- Better: use the CLA principle again!

- $g_i = a_i \cdot b_i$
- $p_i = a_i \oplus b_i$
- $S_i = a_i \oplus b_i \oplus c_i$
- $S_i = p_i \oplus c_i$

Use principle to build bigger adders

•

- Can't build a 16 bit adder this way... (too big)
- Could use ripple carry of 4-bit CLA adders
- Better: use the CLA principle again!

Multiplication

- More complicated than addition
 - accomplished via shifting and addition
- More time and more area
- Let's look at 3 versions based on grade school algorithm

0010 (multiplicand) x 1011 (multiplier)

- Negative numbers: convert and multiply
 - there are better techniques, we won't look at them

Multiplication: Implementation

Second Version

Final Version

Floating Point Numbers

Review of Numbers

- Computers are made to deal with numbers
- What can we represent in N bits?
 - Unsigned integers:

0to2N - 1- Signed Integers (Two's Complement)

-2^(N-1) to 2^(N-1) - 1

- What about other numbers?
 - Very large numbers? (seconds/century) 3,155,760,000₁₀ (3.15576₁₀ x 10⁹)
 - Very small numbers? (atomic diameter) 0.0000001₁₀ (1.0₁₀ x 10⁻⁸)
 - Rational (repeating pattern)
 2/3 (0.6666666666...)
 - Irrational 2^{1/2} (1.414213562373...)
 - Transcendental e (2.718...), π (3.141...)
- All represented in scientific notation

Scientific Notation: Review

- Normalized form: no leadings 0s (exactly one digit to left of decimal point)
- Alternatives to representing 1/1,000,000,000
 - Normalized: 1.0 x 10⁻⁹
 - Not normalized: 0.1 x 10⁻⁸, 10.0 x 10⁻¹⁰

Scientific Notation: Binary Numbers

- Computer arithmetic that supports it called <u>floating point</u>, because it represents numbers where binary point is not fixed, as it is for integers
 - Declare such variable in C as float

Floating Point (FP) Representation (1/2)

- Multiple of Word Size (32 bits)

31 30 23 22 0 S Exponent Significand 0 1 bit 8 bits 23 bits

- **S** represents Sign
 - **Exponent represents y's**
 - Significand represents x's
- Represent numbers as small as 2.0 x 10⁻³⁸ to as large as 2.0 x 10³⁸

FP Representation (2/2)

- What if result too large? (> 2.0x10³⁸)
 - <u>Overflow</u>!
 - Overflow => Exponent larger than represented in 8-bit Exponent field
- What if result too small? (>0, < 2.0x10⁻³⁸)
 - <u>Underflow!</u>
 - Underflow => Negative exponent larger than represented in 8-bit Exponent field
- How to reduce chances of overflow or underflow?

Double Precision FP Representation

Next Multiple of Word Size (64 bits)

3 <u>1 30</u>	2	0 19	0
S	Exponent	Significand	
1 bit	11 bits	20 bits	
		Significand (cont'd)	

32 bits

Double Precision (vs. Single Precision)

- •C variable declared as double
- Represent numbers almost as small as 2.0 x 10⁻³⁰⁸ to almost as large as 2.0 x 10³⁰⁸
- •But primary advantage is greater accuracy due to larger significand

IEEE 754 FP Standard (1/4)

- Single Precision, DP similar
- Sign bit: 1 means negative 0 means positive
- Significand:
 - To pack more bits, leading 1 implicit for normalized numbers
 - 1 + 23 bits single, 1 + 52 bits double
 - always true: Significand < 1 (for normalized numbers)
- Note: 0 has no leading 1, so reserve exponent value 0 just for number 0

- Kahan wanted FP numbers to be used even if no FP hardware; e.g., sort records with FP numbers using integer compares
- Could break FP number into 3 parts: compare signs, then compare exponents, then compare significands
- Wanted it to be faster, single compare if possible, especially if positive numbers
- Then want order:
 - Highest order bit is sign (negative < positive)
 Exponent next, so big exponent => bigger #
 Significand last: exponents same => bigger #

IEEE 754 FP Standard (3/4)

Negative Exponent?

- 2's comp? 1.0 x 2⁻¹ v. 1.0 x2⁺¹ (1/2 v. 2)

- This notation using integer compare of 1/2 v. 2 makes 1/2 > 2!
- Instead, pick notation 0000 0001 is most negative, and 1111 1111 is most positive
 - 1.0 x 2⁻¹ v. 1.0 x2⁺¹ (1/2 v. 2)

IEEE 754 FP Standard (4/4)

Called <u>Biased Notation</u>, where bias is number subtract to get real number

- •IEEE 754 uses bias of 127 for single prec.
- •Subtract 127 from Exponent field to get actual value for exponent
- •1023 is bias for double precision
- Summary (single precision): 31 30 23 22 0
 S Exponent Significand
 - 1 bit8 bits23 bits $\blacksquare(-1)^S \ge (1 + \text{Significand}) \ge 2^{(\text{Exponent-127})}$
 - Double precision identical, except with exponent bias of 1023

Example: Converting FP to Decimal

= 1.0 + 0.666115 Represents: 1.666115_{ten}*2⁻²³ ~ 1.986*10⁻⁷

Converting Decimal to FP

- Simple Case: If denominator is an exponent of 2 (2, 4, 8, 16, etc.), then it's easy.
- Show MIPS representation of -0.75

$$--0.75 = -3/4$$

$$--11_{two}/100_{two} = -0.11_{two}$$

- -(-1)^S x (1 + Significand) x 2^(Exponent-127)
- $(-1)^{1} \times (1 + .100\ 0000\ ...\ 0000) \times 2^{(126-127)}$

1 0111 1110 100 0000 0000 0000 0000 0000

Another Example

• 1/3

- = **0**.33333...₁₀
- = 0.25 + 0.0625 + 0.015625 + 0.00390625 + 0.0009765625 + ...
- = 1/4 + 1/16 + 1/64 + 1/256 + 1/1024 + ...
- $= 2^{-2} + 2^{-4} + 2^{-6} + 2^{-8} + 2^{-10} + \dots$
- = 0.0101010101... ₂ * 2⁰
- = 1.0101010101...₂ * 2⁻²

0 0111 1101 0101 0101 0101 0101 0101 0101 010

- In FP, divide by zero should produce +/infinity, not overflow.
- Why?
 - OK to do further computations with infinity e.g., X/0 > Y may be a valid comparison
 - Ask math majors
- IEEE 754 represents +/- infinity
 - Most positive exponent reserved for infinity
 - Significand all zeroes

Representation for 0

- Represent 0?
 - exponent all zeroes
 - significand all zeroes too
 - What about sign?

 - -0: 1 0000000 00000000000000000000000
- Why two zeroes?
 - Helps in some limit comparisons

• What have we defined so far? (Single Precision)

Exponent	Significand	Object
0	0	0
0	nonzero	???
1-254	anything	+/- fl. pt. #
255	0	+/- infinity
255	nonzero	???

Representation for Not a Number

What do I get if I calculate

sqrt(-4.0) or 0/0?

- If infinity is not an error, these shouldn't be either.
- Called <u>Not a Number (NaN)</u>
- Exponent = 255, Significand nonzero
- Why is this useful?
 - Hope NaNs help with debugging?
 - They contaminate: op(NaN,X) = NaN

Special Numbers (cont'd)

 What h (Single) 	What have we defined so far? (Single Precision)?				
Expon	ent	Significar	nd	Object	
0	0		0		
0	nor	zero	???		
1-254 #		anything		+/- fl. pt.	
255 infini	ity	0		+/-	
255		nonzero		NaN	

Representation for Denorms (1/2)

- Problem: There's a gap among representable FP numbers around 0
 - Smallest representable pos num:

$$a = 1.0..._{2} * 2^{-126} = 2^{-126}$$

- Second smallest representable pos num:

$$b = 1.000....1_{2} * 2^{-126} = 2^{-126} + 2^{-149}$$

$$a - 0 = 2^{-126}$$

$$b - a = 2^{-149}$$

$$Gaps!$$

$$- \infty \leftarrow \bigcup_{a} b$$

$$+ \infty$$

Representation for Denorms (2/2)

Solution:

- •We still haven't used Exponent = 0, Significand nonzero
- •Denormalized number: no leading 1, implicit exponent = -126.
- •Smallest representable pos num:

$$a = 2^{-149}$$

•Second smallest representable pos num:

$$b = 2^{-148}$$

$$- \infty + \cdots + \infty$$

What is the decimal equivalent of:

1 1000 0001 111 0000 0000 0000 0000 0000

What is the decimal equivalent of:

