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1 

1. Grid synchronization instability of inverter based resources

1.1 Background 

With the proliferation of renewable resources, the number of grid integrated inverter-based 

resources increases. Studying the grid synchronization stability of IBRs is critical. In this project 

impacts of different parameters such as PLL bandwidth and strength of the system are studies. 

Especially, IBRs dominated power grids may face significant reduction in the grid strength. Some 

situations that may lead to weak power grids at IBRs sites are as follows[1]: 

• Installation of IBRs at remote wind/solar rich areas far from generation/load centers which are

connected to the rest of the power grid through long distance lines. Examples of such sites are

west Texas area wind farms [2] and several Australian power plants such as Musselroe and

Silverton wind power plants [3] and Kennedy energy-park [4]. For instance, in the case of

Kennedy energy-park in Australia in normal condition SCR is about 1.5 and during N-1

contingency SCR is about 0.7.

• Installation of IBRs at sites that despite being located at the vicinity of the generation/load

center areas, they are not well integrated into the main power grid. For instance, Tehachapi

wind site in California is located near the load center but connected to the main grid by a weak

66 kV system [5].

• Sudden reduction of the power system strength subsequent to outages of lines as the result of

a fault occurrence in the power grid. For instance, First Solar PV power plant in Arizona

experienced a significant reduction in the system strength due to line outages [6]. According

to the report case study results, at SCR of 4 the damping was insufficient and the PV power

plant was tripped.

• Installation of IBRs at islanded power system such as a Mediterranean island that is studies in

[7]. Also, system splits that may occur due to cascading outages or controlled islanding could

lead to islands with reduced system strength at IBRs sites [8].

In this project to systematically show the impacts of different parameters on grid synchronization 

stability of IBRs, bode plots and Generalized Nyquist Criterion (GNC) based on impedance-based 

stability analysis are utilized. To this end, the transfer functions of grid connected inverter is 

derived. The model includes the dynamic response of PLL which will be used by GNC and bode 

plots to show the impacts of different parameters on the grid synchronization stability of 

inverters. Then, to enhance the grid synchronization stability of inverter, a supplementary 

controller is implemented that adds damping to the main controllers of IBRs to damp out the 

oscillations on the output powers of IBRs subsequent to the occurrences of outages in the power 

system.  

1.2 Modeling of transfer function of inverters controllers 

In this section first a brief review of the structure of inverters controllers is presented. Then the 

procedure for deriving transfer functions of inverters is explained. The derived transfer functions 

will be used to study the impacts of different factors on the synchronization stability of inverters 

such as the parameters of synchronization mechanism of inverters and strength of the host power 

grid.  
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1.2.1 Brief review of the structure of controllers 

In this section the structure of controllers of inverters is briefly explained which will be used in 

later sections for study the response of inverters to the disturbances. More detailed explanations of 

the inverter controllers can be found in [9]. Figure 1.1 shows a typical grid connected three-phase 

inverter. Based on its control logic, a IBRs can be operated either as a grid following source using 

a PLL, or as a grid forming source that mimics the behavior of legacy synchronous generators. In 

this report we consider the former. As depicted in Figure 1.1, the grid model is represented as 

Thevenin equivalent, which is a three-phase source, series with a resistor and an inductor.  

Rf Lf Rg Lgvo
s vgvi

s

vdc

i s

 

Figure 1.1  Schematic of a generic grid connected inverter 

To begin with, the equations in the 𝑎𝑏𝑐 frame, between the input voltage and the output voltage 

of the inverter is written as (1.1) where 𝑣𝑖𝑎, 𝑣𝑖𝑏, and 𝑣𝑖𝑐 denote the input voltage of the inverter on 

each phase and similarly, 𝑣𝑜𝑎, 𝑣𝑜𝑏, and 𝑣𝑜𝑐 are the output voltages, and 𝑖𝑎, 𝑖𝑏, and 𝑖𝑐 are the output 

currents. Also, 𝑅𝑓 and 𝐿𝑓 are the resistance and the inductance of the series filter. For simplicity, 

since the signals are all in the same reference frame, superscript 𝑠 is not shown in the following 

equations.: 

[

𝑣𝑖𝑎
𝑣𝑖𝑏
𝑣𝑖𝑐
] − [

𝑣𝑜𝑎
𝑣𝑜𝑏
𝑣𝑜𝑐
] = 𝑅𝑓 [

𝑖𝑎
𝑖𝑏
𝑖𝑐

] + 𝐿𝑓
𝑑

𝑑𝑡
[

𝑖𝑎
𝑖𝑏
𝑖𝑐

] 

 

(1.1) 

To simplify the analysis of the equations in (1.1), the park transformation (also known as 𝑑𝑞 

transformation) is used. This transformation was first introduced in the early 1920s as a 

mathematical tool to facilitate the analysis of rotating electrical machines, in particular, the SGs, 

and offers numerous advantages. For instance, in the 𝑎𝑏𝑐 frame, the relationship between the 

phases is trigonometric, whereas in the 𝑑𝑞 frame there are two axes related in a linear fashion. 

Moreover, by using the 𝑑𝑞 frame, the control frame is aligned with the rotor frame with the 

synchronous frequency, allowing the utilization of synchronous reference frame control which is 

much more intuitive. In addition, in the 𝑑𝑞 frame control of the inverter, the design allows the 

independent control of active power and reactive power, which is extremely beneficial in 

managing the output of the inverter, facilitating its voltage and frequency alignment with the grid’s 

reference frame. Using the Park transformation matrix, any three-phase signal 𝑥 in the 𝑎𝑏𝑐 frame 

can be transformed to the 𝑑𝑞0 frame, as depicted in (1.2): 
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[

𝑥𝑑
𝑥𝑞
𝑥0
] =

2

3

[
 
 
 
 
 cos (𝜃) cos (𝜃 −

2𝜋

3
) cos (𝜃 +

2𝜋

3
)

−sin (𝜃) −sin (𝜃 −
2𝜋

3
) −sin (𝜃 +

2𝜋

3
)

1

√2

1

√2

1

√2 ]
 
 
 
 
 

⏟                              
𝐓𝑑𝑞

[

𝑥𝑎
𝑥𝑏
𝑥𝑐
] 

 

 

 

(1.2) 

The inverse of 𝐓𝑑𝑞 is represented in (1.3) and by definition, 𝐓𝑑𝑞 × 𝐓𝑑𝑞
−1 = 𝐼3×3.  

𝐓𝑑𝑞
−1 =

[
 
 
 
 

cos(𝜃) − sin(𝜃) 1

cos (𝜃 −
2𝜋

3
) sin (𝜃 −

2𝜋

3
) 1

cos (𝜃 +
2𝜋

3
) sin (𝜃 +

2𝜋

3
) 1]
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(1.3) 

 By applying this transformation to (1.1), (1.4) is derived as follows: 

𝐓𝑑𝑞
−1 × ([

𝑣𝑖𝑎
𝑣𝑖𝑏
𝑣𝑖𝑐
] − [

𝑣𝑜𝑎
𝑣𝑜𝑏
𝑣𝑜𝑐
]) = 𝑅𝑓𝐓𝑑𝑞

−1 × [

𝑖𝑎
𝑖𝑏
𝑖𝑐

] + 𝐿𝑓
𝑑

𝑑𝑡
(𝐓𝑑𝑞

−1 × [

𝑖𝑎
𝑖𝑏
𝑖𝑐

]) 

 

 

(1.4) 

The derivative of the second term on the right-hand side of (1.4) can be further simplified using 

the chain rule, as stated in (1.5): 

𝐿𝑓
𝑑

𝑑𝑡
(𝐓𝑑𝑞

−1 × [

𝑖𝑎
𝑖𝑏
𝑖𝑐

]) = 𝐿𝑓 (
𝑑

𝑑𝑡
𝐓𝑑𝑞
−1) [

𝑖𝑎
𝑖𝑏
𝑖𝑐

] + 𝐿𝑓𝐓𝑑𝑞
−1 ×

𝑑

𝑑𝑡
([

𝑖𝑎
𝑖𝑏
𝑖𝑐

]) 

 

(1.5) 

To further simplify (1.5), first the derivative of the Park transformation is calculated as shown in 

(1.6) 

𝑑

𝑑𝑡
𝐓𝑑𝑞
−1 =

[
 
 
 
 0

𝑑

𝑑𝑡
𝜃 0

−
𝑑

𝑑𝑡
𝜃 0 0

0 0 0]
 
 
 
 

𝐓𝑑𝑞
−1 

1 

(1.6) 

Then, by assuming the 𝑑𝑞 frame rotates with the synchronous speed, it results 𝜃 = 𝜔𝑠𝑡. By 

multiply 𝐓𝑑𝑞 to equation (1.4), (1.7) is derived. In (1.7), 𝑣𝑖𝑑, 𝑣𝑖𝑞, and 𝑣𝑖0 are the 𝑑𝑞0 axes signals 

of the input voltage and similarly, 𝑣𝑜𝑑, 𝑣𝑜𝑞, and 𝑣𝑜0 are the output voltages in the 𝑑𝑞0 frame. Also, 

𝑖𝑑, 𝑖𝑞, and 𝑖0 are the output currents in the 𝑑𝑞0 frame. 
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[

𝑣𝑖𝑑
𝑣𝑖𝑞
𝑣𝑖0
] − [

𝑣𝑜𝑑
𝑣𝑜𝑞
𝑣𝑜0
] = 𝑅𝑓 [

𝑖𝑑
𝑖𝑞
𝑖0

] + 𝐿𝑓
𝑑

𝑑𝑡
[

𝑖𝑑
𝑖𝑞
𝑖0

] + 𝐿𝑓
𝑑

𝑑𝑡
[
𝜔𝑠𝑖𝑞
−𝜔𝑠𝑖𝑑
0

] 

 

(1.7) 

By rearranging the right-hand side, and since the 0 axis is equal to zero, (1.8) is derived in which 

𝑠 is the Laplace operator.  

[
𝑣𝑖𝑑
𝑣𝑖𝑞
] − [

𝑣𝑜𝑑
𝑣𝑜𝑞
] = [

𝑠𝐿𝑓 + 𝑅𝑓 −𝜔0𝐿𝑓
𝜔0𝐿𝑓 𝑠𝐿𝑓 + 𝑅𝑓

] [
𝑖𝑑
𝑖𝑞
] 

 

(1.8) 

This can also be written as the two axis current equations, as written in (1.9) and (1.10). The 𝑑-

axis current in (1.10) represents a signal that is in-phase with the inverter’s output voltage, through 

which the active power output of the inverter can be controlled. On the other hand, the 𝑞-axis 

current is 90 degrees out of phase with the inverter’s output voltage, through which the reactive 

power output of the inverter is controlled.  

𝑑𝑖𝑑
𝑑𝑡

=
1

𝐿𝑓
(𝑣𝑖𝑑 − 𝑅𝑓𝑖𝑑 + 𝜔0𝐿𝑓𝑖𝑞 − 𝑉𝑜𝑑) 

 

(1.9) 

𝑑𝑖𝑞
𝑑𝑡

=
1

𝐿𝑓
(𝑣𝑖𝑞 − 𝑅𝑓𝑖𝑑 − 𝜔0𝐿𝑓𝑖𝑑 − 𝑉𝑜𝑞) 

 

(1.10) 

The inverter is equipped with a current controller, also known as the inner loop controller, as 

depicted in Figure 1.2. The objective of this controller is to set the inverter to output a specified 

amount of current, 𝑖𝑑
𝑟𝑒𝑓

 and 𝑖𝑞
𝑟𝑒𝑓

,  which can be achieved by manipulating the output voltage of the 

inverter through an PWM switching scheme. For simplicity, the PWM switching delays are 

considered negligible (fast) enough to be ignored.  

     

This current controller is implemented according to the following stages. First, the reference values 

for the controller to track are generated. In most practical cases, an outer loop is also implemented, 

and the current reference values are generated through that higher level controller. Otherwise, these 

references should be calculated separately for the inverter to meet a specific criterion. Next, output 

current of the inverter is measured to generate the error value. Once these errors are generated, 

using a PI controller, a control action and an integral action accompanied by the coupling terms 

generate input voltage values for the VSC, such that the desired reference tracking of the 𝑑𝑞 frame 

current is achieved. Finally, in a closed loop fashion, these voltage values are utilized to adjust the 

switching patterns of the inverter, such that the control objective is satisfied dynamically.   

    

Based on Figure 1.2, the equations for the inverter’s voltage on each axis is written as (1.11) and 

(1.12), respectively. These voltage equations are the fundamental characteristic of the inverter and 

could be utilized to tune the current controller bandwidth through manipulating the PI controller 

coefficients. 
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Figure 1.2  Current (inner) controller of the inverter 

𝑣𝑖𝑑 = −𝜔0𝐿𝑓𝑖𝑞 + 𝑘𝑝(𝑖𝑑
𝑟𝑒𝑓

− 𝑖𝑑) + 𝑘𝑖∫ (𝑖𝑑
𝑟𝑒𝑓

− 𝑖𝑑)𝑑𝑡 
(1.11) 

𝑣𝑖𝑞 = 𝜔0𝐿𝑓𝑖𝑑 + 𝑘𝑝(𝑖𝑞
𝑟𝑒𝑓

− 𝑖𝑞) + 𝑘𝑖∫ (𝑖𝑞
𝑟𝑒𝑓

− 𝑖𝑞)𝑑𝑡 
 

(1.12) 

1.2.2 Transfer function without the PLL 

In this section and next section, the transfer functions of inverters are derived. In deriving the 

transfer function procedures presented in [10-11] will be followed. However, compared to them 

the transfer functions derived in this project are more suitable for grid integration studies as transfer 

functions are derived such that they do not become too complex by ignoring fast dynamic 

components such as PWM and measurement filters. Equations (1.11) and (1.12) are rewritten as 

(1.13) where 𝐆𝑐𝑖 and 𝐆𝑑𝑒𝑖 are the current controller and decoupling matrices, respectively.  

[
𝑣𝑖𝑑
𝑣𝑖𝑞
] = [

𝑘𝑝 +
𝑘𝑖
𝑠

0

0 𝑘𝑝 +
𝑘𝑖
𝑠

]

⏟            
𝐆𝑐𝑖

[
𝑖𝑑
𝑟𝑒𝑓

𝑖𝑞
𝑟𝑒𝑓]

− ([
𝑘𝑝 +

𝑘𝑖
𝑠

0

0 𝑘𝑝 +
𝑘𝑖
𝑠

] + [
0 𝜔0𝐿𝑓

−𝜔0𝐿𝑓 0
]

⏟          
𝐆𝑑𝑒𝑖

)[
𝑖𝑑
𝑖𝑞
] 

 

 

 

(1.13) 

Using this representation, the block diagram of the system is formed, as shown in Figure 1.3 where 

𝑍𝑓 is the matrix representation of the VSC filter.  
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Figure 1.3 Block diagram of the transfer function of the system without considering PLL 

Looking at this block diagram, it is evident that the output current is calculated with a combination 

of the output voltage and the reference value of the current. The goal is to calculate the output 

impedance of the VSC. Given the linearity of the system, the superposition rule can be applied. 

By assuming 𝑖𝑟𝑒𝑓 = [
𝑖𝑑
𝑟𝑒𝑓

𝑖𝑞
𝑟𝑒𝑓] = 0, the impedance of the VSC is calculated as in (1.14).   

 

𝑖 = −𝑍𝑓
−1𝑣𝑜 + 𝑍𝑓

−1(𝐆𝑐𝑖(𝑖
𝑟𝑒𝑓 − 𝑖) − 𝐆𝑑𝑒𝑖𝑖) 

𝑍𝑣𝑠𝑐 =
𝑣𝑜
𝑖
= −(𝑍𝑓 + 𝐆𝑐𝑖 + 𝐆𝑑𝑒𝑖) = − [

𝑠𝐿𝑓 + 𝑅𝑓 + 𝑘𝑝 +
𝑘𝑖
𝑠

0

0 𝑠𝐿𝑓 + 𝑅𝑓 + 𝑘𝑝 +
𝑘𝑖
𝑠

]

=
1

𝑌𝑣𝑠𝑐
 

 

(1.14) 

Note that since this model is linear, the resulting impedance is valid for a wide range of 

frequencies. In practice, the PWM switching frequencies should be considered and the impedance 

values are valid up to half the switching frequencies. 

1.2.3 Effects of the PLL dynamics  

In the grid following architecture, the inverter is set to follow the grid’s angle and frequency. This 

is achieved by utilizing a synchronous reference frame PLL. In power systems, PLL is a control 

mechanism that helps in synchronizing a local signal, typically a voltage of frequency, with a 

reference value that is often obtained from the grid. The control block diagram of a PLL is depicted 

in Figure 1.4. where 𝑘𝑝
𝑃𝐿𝐿 and 𝑘𝑖

𝑃𝐿𝐿 denote the PLL controller coefficients. In an inverter, the 

voltage is in the 𝑎𝑏𝑐 frame. First, this signal needs to be transformed to either the 𝛼𝛽 frame using 

Clark’s transformation or the synchronous reference frame using the 𝑑𝑞 (Park’s) transformation.    

The PLL ensures the proper operation of the inverter by ensuring that the two reference frames, 

the grid, and the control, are perfectly aligned.  
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Figure 1.4  Schematic of synchronous reference frame PLL 

 

Figure 1.5  dq synchronous reference frames of the system and the controller 

Once a small disturbance in the grid’s voltage occurs, this perturbation is transferred to the inverter 

through the dynamics of the PLL. This results in two different 𝑑𝑞 axes: the grid and the PLL. The 

grid’s frame is called “system”, and denote it with the superscript 𝑠, and the PLL frame is called 

the controller frame, denoted by the superscript 𝑐. The phase difference between the two frames is 

depicted in Figure 1.5. In steady state, the two frames are aligned and there is no angle difference 

between them (Δ𝜃 = 0). The steady-state values in the controller frame and the system frame for 

the input voltage of the inverter, its output voltage, and its current are depicted with capital letters 

in (1.15). where 𝑉𝑖𝑑
𝑐 , 𝑉𝑖𝑞

𝑐 , 𝑉𝑖𝑑
𝑠 , and 𝑉𝑖𝑞

𝑠  are the input voltage steady-state values for the controller 𝑑𝑞 

frame and the system 𝑑𝑞 frame, and similarly, 𝑉𝑜𝑑
𝑐 , 𝑉𝑜𝑞

𝑐 , 𝑉𝑜𝑑
𝑠 , and 𝑉𝑜𝑞

𝑠  the steady-state output voltage 

values. Also, 𝐼𝑑
𝑐, 𝐼𝑞

𝑐, 𝐼𝑑
𝑠, and 𝐼𝑞

𝑠 are the steady-state currents in the controller 𝑑𝑞 frame and the 

system 𝑑𝑞 frame, respectively. 

[
𝑉𝑖𝑑
𝑐

𝑉𝑖𝑞
𝑐 ] = [

𝑉𝑖𝑑
𝑠

𝑉𝑖𝑞
𝑠 ] ;  [

𝑉𝑜𝑑
𝑐

𝑉𝑜𝑞
𝑠 ] = [

𝑉𝑜𝑑
𝑠

𝑉𝑜𝑞
𝑠 ] ; [

𝐼𝑑
𝑐

𝐼𝑞
𝑐] = [

𝐼𝑑
𝑠

𝐼𝑞
𝑠] 

 

 

(1.15) 

Once a disturbance occurs, the difference between the two signals in the system frame and the 

controller frame is modelled using a transformation matrix 𝑇Δ𝜃 , as shown in (1.16). In the inverter 

control, this transformation is utilized to convert the grid’s signal to a frame that is aligned with 

the inverter’s controller frame. 

𝑇Δ𝜃 = [
𝑐𝑜𝑠(Δ𝜃) 𝑠𝑖𝑛(Δ𝜃)
−𝑠𝑖𝑛(Δ𝜃) 𝑐𝑜𝑠(Δ𝜃)

] 
(1.16) 
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As is evident, this transformation is highly nonlinear and is suitable for large signal analysis. To 

conduct a small-signal analysis, first we calculate the nominal operating points that were discussed 

in (1.15). Then, assuming the angle perturbation Δ𝜃 is small, the relationship between the 

controller and system frame signals can be linearized in the presence of small perturbations, as 

shown in (1.17), (1.18), and (1.19) where Δ denotes the small-signal perturbations.: 

[
𝑉𝑖𝑑
𝑐 + Δ𝑣𝑖𝑑

𝑐

𝑉𝑖𝑞
𝑐 + Δ𝑣𝑖𝑞

𝑐 ] = [
1 Δ𝜃
−Δ𝜃 1

]
⏟      

𝑇Δ𝜃

[
𝑉𝑖𝑑
𝑠 + Δ𝑣𝑖𝑑

𝑠

𝑉𝑖𝑞
𝑠 + Δ𝑣𝑖𝑞

𝑠 ]  

 

(1.17) 

[
𝑉𝑜𝑑
𝑐 + Δ𝑣𝑜𝑑

𝑐

𝑉𝑜𝑞
𝑐 + Δ𝑣𝑜𝑞

𝑐 ] = [
1 Δ𝜃
−Δ𝜃 1

] [
𝑉𝑜𝑑
𝑠 + Δ𝑣𝑜𝑑

𝑠

𝑉𝑜𝑞
𝑠 + Δ𝑣𝑜𝑞

𝑠 ] 

 

(1.18) 

[
𝐼𝑑
𝑐 + Δ𝑖𝑑

𝑐

𝐼𝑞
𝑐 + Δ𝑖𝑞

𝑐] = [
1 Δ𝜃
−Δ𝜃 1

] [
𝐼𝑑
𝑠 + Δ𝑖𝑑

𝑠

𝐼𝑞
𝑠 + Δ𝑖𝑞

𝑠] 

 

(1.19) 

Since the steady state values of the system and controller are equal, these relations can be further 

simplified. Equation (1.20) shows an example of this simplification: 

[
𝛥𝑣𝑖𝑑

𝑐

𝛥𝑣𝑖𝑞
𝑐 ] ≈ [

𝛥𝑣𝑖𝑑
𝑠 + 𝛥𝜃𝑉𝑖𝑞

𝑠

𝛥𝑣𝑖𝑞
𝑠 − 𝛥𝜃𝑉𝑖𝑑

𝑠 ] 

 

(1.20) 

Next, PLL dynamics are added separately. The block diagram representation of the PLL is depicted 

in 1.4. Based on this diagram, grid voltage in the 𝑎𝑏𝑐 frame is first transferred to the 𝑑𝑞 frame and 

using a PI controller, the angle difference is estimated.  

Based on this representation, the output angle of the PLL is written as in (1.21). 

Δθ = (𝑘𝑝
𝑃𝐿𝐿Δ𝑣𝑜𝑞

𝑐 + 𝑘𝑖
𝑃𝐿𝐿∫ Δ𝑣𝑜𝑞

𝑐 𝑑𝑡)
1

𝑠
 

 

(1.21) 

To write this system in the state space form, an auxiliary variable Δ𝜓 is defined, and the resulting 

state space is written in (1.22) 

Δ𝜓 = ∫ Δ𝑣𝑜𝑞
𝑐 𝑑𝑡 (1.22) 

𝑑

𝑑𝑡
[
Δ𝜃
Δ𝜓
] = [0 𝑘𝑖

𝑃𝐿𝐿

0 0
] [
Δ𝜃
Δ𝜓
] − [

0 𝑘𝑝
𝑃𝐿𝐿

0 1
] [
Δ𝑣𝑜𝑑

𝑐

Δ𝑣𝑜𝑞
𝑐 ] 

 

(1.23) 

Again, to get a uniform state space, the control frame signals are moved to the system frame as 

discussed before, with the transformation in (1.24).  

[
𝛥𝑣𝑜𝑑

𝑐

𝛥𝑣𝑜𝑞
𝑐 ] ≈ [

𝛥𝑣𝑜𝑑
𝑠 + 𝛥𝜃𝑉𝑜𝑞

𝑠

𝛥𝑣𝑜𝑞
𝑠 − 𝛥𝜃𝑉𝑜𝑑

𝑠 ] 

 

(1.24) 
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The resulting state space of the PLL in the controller frame is stated in (1.25). 

𝑑

𝑑𝑡
[
𝛥𝜃
𝛥𝜓
]

⏟    
𝑋̇

= [
−𝑘𝑝

𝑃𝐿𝐿𝑉𝑜𝑑
𝑠 𝑘𝑖

𝑃𝐿𝐿

−𝑉𝑜𝑑
𝑠 0

]
⏟            

𝐴

[
𝛥𝜃
𝛥𝜓
]

⏟
𝑋

+ [
0 𝑘𝑝

𝑃𝐿𝐿

0 1
]

⏟      
𝐵

[
𝛥𝑣𝑜𝑑

𝑐

𝛥𝑣𝑜𝑞
𝑐 ]

⏟  
𝑢

 

 

(1.25) 

1.2.4 The transfer function model with PLL dynamics 

In this section the small signal representation of the system is derived in the block diagram form. 

This is buildup on the block diagram that was derived in section 1.2.21.2.2, where the PLL 

dynamics are added according to the derivation of section 1.2.3. To do so, the system frame signals, 

including the voltage and the current are transformed to the control stage. Finally, the input voltage 

of the controller which is in the control frame is transformed to the system frame.  

 

The relationship between the output level voltage of the system is transformed to the system level, 

as stated in (1.26) and (1.27).  

[
𝑉𝑜𝑑
𝑐 + Δ𝑣𝑜𝑑

𝑐

𝑉𝑜𝑞
𝑐 + Δ𝑣𝑜𝑞

𝑐 ] = [
1 Δ𝜃
−Δ𝜃 1

] [
𝑉𝑜𝑑
𝑠 + Δ𝑣𝑜𝑑

𝑠

𝑉𝑜𝑞
𝑠 + Δ𝑣𝑜𝑞

𝑠 ] 

 

(1.26) 

[
Δ𝑣𝑜𝑑

𝑐

Δ𝑣𝑜𝑞
𝑐 ] ≈ [

Δ𝑣𝑜𝑑
𝑠 + 𝑉𝑜𝑞

𝑠 Δ𝜃

Δ𝑣𝑜𝑞
𝑠 − 𝑉𝑜𝑑

𝑠 Δ𝜃
] 

 

 (1.27) 

Next, based on the block diagram of the PLL, the relationship between the voltage and the angle 

is written as in (1.28), in which an auxiliary variable 𝐓𝑃𝐿𝐿 is introduced to simplify the relations.  

Δ𝜃 = Δ𝑣𝑜𝑞
𝑐 . (𝑘𝑝

𝑃𝐿𝐿 +
𝑘𝑖
𝑃𝐿𝐿

𝑠
).
1

𝑠⏟          
𝐓𝑃𝐿𝐿

= Δ𝑣𝑜𝑞
𝑐 . 𝐓𝑃𝐿𝐿 

 

 

 (1.28) 

Δ𝑣𝑜𝑑
𝑐 = Δ𝑣𝑜𝑑

𝑠 + 𝑉𝑜𝑞
𝑠 . Δ𝑣𝑜𝑞

𝑐 . 𝐓𝑃𝐿𝐿 
 

(1.29) 

Δ𝑣𝑜𝑞
𝑐 = Δ𝑣𝑜𝑞

𝑠 − 𝑉𝑜𝑑
𝑠 . Δ𝑣𝑜𝑞

𝑐 . 𝐓𝑃𝐿𝐿 
 

(1.30) 

 By further simplifying (1.30), (1.31) is derived.  

(1 + 𝑉𝑜𝑑
𝑠 𝐓𝑃𝐿𝐿)Δ𝑣𝑜𝑞

𝑐 = Δ𝑣𝑜𝑞
𝑠  

(1.31) 

 Inserting (1.31) into (1.29), (1.32) is derived.  

Δ𝑣𝑜𝑑
𝑐 = Δ𝑣𝑜𝑑

𝑠 + 𝑉𝑜𝑞
𝑠 (

1

1 + 𝑉𝑜𝑑
𝑠 𝐓𝑃𝐿𝐿

)Δ𝑣𝑜𝑞
𝑠  

 

(1.32) 
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These relations are summarized in the transformation matrix form, depicted in (1.33)  

[
Δ𝑣𝑜𝑑

𝑐

Δ𝑣𝑜𝑞
𝑐 ] =

[
 
 
 
 1

𝑉𝑜𝑞
𝑠 𝐓𝑃𝐿𝐿

1 + 𝑉𝑜𝑑
𝑠 𝐓𝑃𝐿𝐿

0
1

1 + 𝑉𝑜𝑑
𝑠 𝐓𝑃𝐿𝐿]

 
 
 
 

[
Δ𝑣𝑜𝑑

𝑠

Δ𝑣𝑜𝑞
𝑠 ] 

 

(1.33) 

The same procedure is repeated for the output current, and the relationship is written in (1.36), in 

which the controller frame current perturbations are written as a function of grid frame voltages, 

because of PLL dynamics. The transfer function 𝐓𝑣𝑖 transforms the grid’s voltage signals to the 

current signals. 

[
𝐼𝑑
𝑐 + Δ𝑖𝑑

𝑐

𝐼𝑞
𝑐 + Δ𝑖𝑞

𝑐] = [
1 Δ𝜃
−Δ𝜃 1

] [
𝐼𝑑
𝑠 + Δ𝑖𝑑

𝑠

𝐼𝑞
𝑠 + Δ𝑖𝑞

𝑠] 

 

(1.34) 

[
Δ𝑖𝑑
𝑐

Δ𝑖𝑞
𝑐] ≈ [

Δ𝑖𝑑
𝑠 + 𝐼𝑞

𝑠Δ𝜃

Δ𝑖𝑞
𝑠 − 𝐼𝑑

𝑠Δ𝜃
] 

 

(1.35) 

[
Δ𝑖𝑑
𝑐

Δ𝑖𝑞
𝑐] = [

Δ𝑖𝑑
𝑠

Δ𝑖𝑞
𝑠] +

[
 
 
 
 0

𝐼𝑞
𝑠𝐓𝑃𝐿𝐿

1 + 𝑉𝑜𝑑
𝑠 𝐓𝑃𝐿𝐿

0 −
𝐼𝑑
𝑠𝐓𝑃𝐿𝐿

1 + 𝑉𝑜𝑑
𝑠 𝐓𝑃𝐿𝐿]

 
 
 
 

⏟            
𝐓𝑣𝑖

[
Δ𝑣𝑜𝑑

𝑠

Δ𝑣𝑜𝑞
𝑠 ] 

 

 

 

(1.36) 

Repeating a similar procedure, the input voltage of the inverter is transformed from the control 

frame to the system frame, as stated in (1.39). Similarly, the transfer function 𝑇𝑣𝑣 transforms the 

grid’s output voltage signals to the input voltages in system frame. 

[
𝑉𝑖𝑑
𝑐 + Δ𝑣𝑖𝑑

𝑐

𝑉𝑖𝑞
𝑐 + Δ𝑣𝑖𝑞

𝑐 ] = [
1 Δ𝜃
−Δ𝜃 1

] [
𝑉𝑖𝑑
𝑠 + Δ𝑣𝑖𝑑

𝑠

𝑉𝑖𝑞
𝑠 + Δ𝑣𝑖𝑞

𝑠 ] 

 

(1.37) 

[
Δ𝑣𝑖𝑑

𝑐

Δ𝑣𝑖𝑞
𝑐 ] ≈ [

Δ𝑣𝑖𝑑
𝑠 + 𝑉𝑖𝑞

𝑠Δ𝜃

Δ𝑣𝑖𝑞
𝑠 − 𝑉𝑖𝑑

𝑠 Δ𝜃
] 

 

(1.38) 
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Figure 1.6  Block diagram of the transfer function of system with PLL dynamics 

[
Δ𝑣𝑖𝑑

𝑠

Δ𝑣𝑖𝑞
𝑠 ] ≈ [

Δ𝑣𝑖𝑑
𝑐

Δ𝑣𝑖𝑞
𝑐 ] +

[
 
 
 
 0 −

𝑉𝑖𝑞
𝑠𝐓𝑃𝐿𝐿

1 + 𝑉𝑜𝑑
𝑠 𝐓𝑃𝐿𝐿

0
𝑉𝑖𝑑
𝑠 𝐓𝑃𝐿𝐿

1 + 𝑉𝑜𝑑
𝑠 𝐓𝑃𝐿𝐿 ]

 
 
 
 

⏟            
𝑇𝑣𝑣 

[
Δ𝑣𝑜𝑑

𝑠

Δ𝑣𝑜𝑞
𝑠 ] 

 

 

 

(1.39) 

 

Now that the relationships between the controller frame and the grid frame is derived, these 

transformations are put together to form the block diagram of the system, as depicted in Figure 

1.6.  

 

This is a MIMO system with inputs [Δ𝑖𝑑
𝑟𝑒𝑓
, Δ𝑖𝑞

𝑟𝑒𝑓
 , Δ𝑣𝑑

𝑠 , Δ𝑣𝑞
𝑠 ] and the output [Δ𝑖𝑑

𝑠 , Δ𝑖𝑞
𝑠]. Based on 

this block diagram and using the superposition rule, the output admittance of the system is 

calculated as presented in (1.41), where the components of this admittance are stated in (1.42), 

(1.43), (1.44), and (1.45). 

Δ𝑖𝑠

Δ𝑣𝑜
𝑠 =

−𝐈 − (𝐆𝑐𝑖 + 𝐆𝑑𝑒𝑖)𝐓𝑣𝑖 + 𝐓𝑣𝑣
𝑃𝐿𝐿

𝑍𝑓 + 𝐆𝑐𝑖 + 𝐆𝑑𝑒𝑖
 

 

(1.40) 

𝑌𝑣𝑠𝑐 = [

−
𝑠

𝜎2
−
𝜎3
𝜎1

0
𝜎4
𝜎1

] 

 

 

(1.41) 

𝜎1 = (𝑠
2 + 𝑉𝑜𝑑

𝑠 𝑘𝑝
𝑃𝐿𝐿𝑠 + 𝑉𝑜𝑑

𝑠 𝑘𝑖
𝑃𝐿𝐿)𝜎2 

 

(1.42) 

𝜎2 = 𝑘𝑖 + (𝑅𝑓 + 𝑘𝑝)𝑠 + 𝐿𝑓𝑠
2 

 

(1.43) 
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𝜎3 = 𝐼𝑞
𝑠𝑘𝑖𝑘𝑖

𝑃𝐿𝐿 + (𝑉𝑖𝑞
𝑠 𝑘𝑖

𝑃𝐿𝐿 + 𝐼𝑞
𝑠𝑘𝑖𝑘𝑝

𝑃𝐿𝐿+𝐼𝑞
𝑠𝑘𝑝𝑘𝑖

𝑃𝐿𝐿 − 𝐼𝑑
𝑠𝐿𝑓𝑘𝑖

𝑃𝐿𝐿𝜔)𝑠 + (𝑉𝑖𝑞
𝑠 𝑘𝑝

𝑃𝐿𝐿

+ 𝐼𝑞
𝑠𝑘𝑝𝑘𝑝

𝑃𝐿𝐿 − 𝐼𝑑
𝑠𝐿𝑓𝑘𝑝

𝑃𝐿𝐿𝜔)𝑠2 

 

(1.44) 

𝜎4 = 𝐼𝑑
𝑠𝑘𝑖𝑘𝑖

𝑃𝐿𝐿 + (𝑉𝑖𝑑
𝑠 𝑘𝑖

𝑃𝐿𝐿−𝑉𝑜𝑑
𝑠 𝑘𝑖

𝑃𝐿𝐿 + 𝐼𝑑
𝑠𝑘𝑖𝑘𝑖

𝑃𝐿𝐿 + 𝐼𝑑
𝑠𝑘𝑝𝑘𝑖

𝑃𝐿𝐿 + 𝐼𝑞
𝑠𝐿𝑓𝑘𝑖

𝑃𝐿𝐿𝜔)𝑠2 − 𝑠3 
     

     (1.45) 

1.3 Impedance-based stability analysis 

Once the impedance of the inverter is derived, this can be used to study the impacts of different 

parameters on the grid synchronization stability of the inverters. That is because the behavior of 

the inverter in a spectrum of frequencies can accurately be captured by its impedance. To this end, 

the impedance-based stability analysis is used. The main idea of this method is to divide a system 

into two subsystems, one being the element under study and two the rest of the power grid, as 

shown in Figure 1.7, provided that each of them is independently stable. This stability analysis is 

also known as the impedance ratio analysis. The grid and the inverter impedances are represented 

in the format of Figure 1.8, and denoted by 𝑍𝑔 for the grid and 𝑍𝑣𝑠𝑐 for the converter. Assuming 

that the system is a SISO, using the function 1 +
𝑍𝑔

𝑍𝑣𝑠𝑐
 it is possible to assess the stability. This 

criterion states that if this transfer function has no zeros in the closed right half plane, then the 

system is stable. This is based on the Nyquist theorem (which will be elaborated on in the following 

section), where the number of closed right half plane zeros is equal to the number of encirclements 

of the function 
𝑍𝑔

𝑍𝑣𝑠𝑐
  around the point (−1, 𝑗0). This condition is satisfied if for all frequencies, the 

magnitude of the grid’s impedance is smaller than the magnitude of the inverter’s impedance, as 

stated in (1.46), implying that the grid must be strong. 

‖𝑍𝑔(𝑗𝜔)‖ < ‖𝑍𝑣𝑠𝑐(𝑗𝜔)‖ 
 

(1.46) 

Consider an inverter that is simplified as a current source 𝐼𝑣𝑠𝑐 parallel with an impedance 𝑍𝑣𝑠𝑐, 
connected to a grid that is modelled by a voltage source 𝑉𝑔 series with an impedance 𝑍𝑔. The goal 

is to assess whether the flow of current 𝐼 between the two systems remains stable or not. 

Writing a KCL to find the current gives the equation  ( 1.48). 

𝐼(𝑠) =
𝐼𝑣𝑠𝑐𝑍𝑣𝑠𝑐
𝑍𝑣𝑠𝑐 + 𝑍𝑔

−
𝑉𝑔

𝑍𝑣𝑠𝑐 + 𝑍𝑔
 

 

(1.48) 

 Simplifying this results in (1.49). 

𝐼(𝑠) = [𝐼𝑣𝑠𝑐 −
𝑉𝑔
𝑍𝑣𝑠𝑐

] ×
1

1 +
𝑍𝑔
𝑍𝑣𝑠𝑐

 

 

(1.49) 

The first term of the equation can be assumed to be stable. Now, for the interconnected system to 

be stable, the stability of the second term must be investigated. 
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Figure 1.7  Schematic of the impedance based modeling of the grid connected VSC 

I

Ivsc Vg
Zvsc

Zg

VSC Grid

 

Figure 1.8  Schematic of the interconnection of the grid and VSC equivalents 

 

Figure 1.9  Representation of impedance stability analysis as a closed loop system 

This term perfectly fits the application of the classic Nyquist stability criterion because the 

impedance ratio represents the open-loop gain, with the controller block diagram depicted in 

Figure 1.9. With this structure, classical control methods, like the Nyquist and bode plots could be 

applied to comment on the stability. But, since the impedance ratio is a matrix, which is due to the  

 y  u 
  

Zg /Zvsc 



 

14 

 

 

Figure 1.10  Generic model of SISO feedback system 

MIMO structure of the system, the generalized version of the Nyquist criterion must be used. Next, 

we briefly discuss the principles of the Nyquist criterion in SISO systems and how it is extended 

to MIMO systems, which is the case of inverter stability analysis. 

1.4 The Nyquist criterion: SISO to MIMO 

In this section, we discuss the principles of using the Nyquist criterion on stability analysis of SISO 

linear time invariant systems. This criterion applies the Cauchy's principle of argument on the 

open loop transfer function of a system and from there, we can comment on the closed loop 

stability. Consider the closed loop transfer function of the feedback system in Figure 1.10, as stated 

in (1.50). 

𝑚(𝑠) =
𝑔(𝑠)

1 + 𝑔(𝑠)ℎ(𝑠)
 

 

(1.50) 

The closed loop poles of the system are achieved by finding the zeros of (1.51), which is called 

the system characteristic equation. 

𝑑(𝑠) = 1 + 𝑔(𝑠)ℎ(𝑠) 
(1.51) 

Now, to derive the Nyquist plot, one can create the closed region in the 𝑠-plane as shown in Figure 

1.11, and find the mapping of the function 𝑑(𝑠) = 1 + 𝑔(𝑠)ℎ(𝑠) whose zeros are the closed-loop 

poles of the transfer function.  

The number of unstable closed-loop poles is equal to the number of unstable open-loop poles, plus 

the number of encirclements of the origin of the Nyquist plot of the complex function 𝑑(𝑠). 

𝑁 = 𝑍 − 𝑃 
(1.52) 

where 𝑍 and 𝑃 stand for the number of zeros and poles of the function 𝑑(𝑠) inside the contour. 

The above criterion can be slightly modified if instead of plotting the function 𝑑(𝑠) = 1 +
𝑔(𝑠)ℎ(𝑠) and counting the clockwise encirclement of the origin, we consider the function 

𝑔(𝑠)ℎ(𝑠), and count the encirclements around the point (−1, 𝑗0).  
 

 y  u 
  

g(s) 

h(s) 
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Figure 1.11  𝑠-plane contour of the right half plane 

To extend this concept to MIMO systems, first consider the generic 2 × 2 system as depicted in 

Figure 1.12, where 𝐺 = [
𝐺11 𝐺12
𝐺21 𝐺22

] and 𝐻 = [
𝐻11 0
0 𝐻22

]. If there is no coupling between the 

channels (𝐺12 = 𝐺21 = 0), the system turns into two independent SISO systems. To apply the 

Nyquist criterion to this MIMO system, we need to know the definition of poles and zeros in a 

MIMO system, which is acquired with the Smith-McMillan form of a transfer function matrix 

[12]. Once the number of poles and zeros are obtained, the collective encirclements of the loop 

gain eigenvalues are utilized to check for the Nyquist stability criterion. 

 

The power system equivalent of this system is a 2 × 2 MIMO system, in which the loop gain has 

two eigenvalues 𝜆1 and 𝜆2. One important thing to consider is that the return ratio of the loop gain 

must be a rational function, meaning that the order of the numerator is less than the order of the 

denominator. If the two subsystems are modelled as Thevenin/Norton equivalents which leads to 

a 𝑍 + 𝑌 connection, the resulting return ratio will always be rational. For models which result in a 

𝑍 + 𝑍 or 𝑌 + 𝑌 representations, as depicted in Figure 1.13 for various combinations, alternative 

methods should be applied to assess the stability [13] One thing to note is that the representations 

in Figure 1.13 are equivalent, if 𝑌𝑣𝑠𝑐 = 𝑍𝑣𝑠𝑐
−1  and 𝑌𝑔 = 𝑍𝑔

−1. 

1.5 Analysis of impacts of different parameters on the stability of the inverters 

In this section, the impacts of different parameters such as the grid strength and parameters of the 

synchronization mechanism (i.e. PLL) on the stability of inverter is studies. First, bode plots for 

each element of the admittance and the impedance matrices are plotted. After that, the GNC plots 

for various grid strengths has been plotted to demonstrate how a weak grid results in an unstable 

interconnection.  The parameters for this study have been summarized in the Table 1.  
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Figure 1.12  Schematic of a 2 × 2 MIMO system 
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Figure 1.13  Different combinations of VSC and grid equivalent models 
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Table 1 Parameters of the VSC [10] 

Parameter Value 

𝒌𝒑 0.023 

𝒌𝒊 25.59 

𝒌𝒑
𝑷𝑳𝑳 4.46, 8.92, 17.84 

𝒌𝒊
𝑷𝑳𝑳 991, 3964, 15860 

𝝎 2𝜋 × 60 𝑟𝑎𝑑/𝑠 
𝑹𝒇 120 𝑚Ω 

𝑳𝒇 970 𝜇𝐻 

𝑰𝒅
𝒔  -11 𝐴𝑚𝑝 

𝑰𝒒
𝒔  0 𝐴𝑚𝑝 

𝒗𝒊𝒅
𝒔  100 𝑣 

𝒗𝒊𝒒
𝒔  0 𝑣 

𝒗𝒐𝒅
𝒔  99.9 𝑣 

𝒗𝒐𝒒
𝒔  0 𝑣 

 

1.5.1 Results without considering the PLL dynamics 

In this scenario, the impedance (admittance) matrix is purely diagonal, and the values are identical 

on each axis (𝑍𝑑𝑑 = 𝑍𝑞𝑞 and 𝑌𝑑𝑑 = 𝑌𝑞𝑞). Consequently, only the output impedance and admittance 

of the VSC on one axis is plotted in Figure 1.14 and Figure 1.15, respectively. 

 

Figure 1.14  𝑍𝑑𝑑 impedance of the VSC in the absence of PLL dynamics 
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Figure 1.15  𝑌𝑑𝑑 admittance of the VSC in the absence of PLL dynamics 

1.5.2  Impedance/admittance with the PLL dynamics  

Once the PLL is added, the impedance matrix is no longer diagonal. 𝑍𝑑𝑑 and 𝑍𝑞𝑑 will be identical 

to the no PLL case, but 𝑍𝑑𝑞 will no longer be zero. To further probe the effects of PLL, three 

different PLL coefficients are considered. The impedances and admittances of the VSC are 

depicted in Figure 1.16 to Figure 1.19.  As depicted in Figure 1.16 the 𝑑𝑞 channel gain is relatively 

small. Figure 1.18 shows that while synchronizing a VSC with the grid, the 𝑞𝑞 channel behaves 

as a negative incremental resistance. This behavior is a result of including PLL dynamics, where 

the PLL bandwidth determines the frequency range at which the impedance is negative. For 

instance, 𝑘𝑝
𝑃𝐿𝐿 = 4.46 & 𝑘𝑖

𝑃𝐿𝐿 = 991, the negative impedance starts to damp out around 50 Hz 

with a relatively steep rate, but for 𝑘𝑝
𝑃𝐿𝐿 = 17.84 & 𝑘𝑖

𝑃𝐿𝐿 = 15860 this decrease happens with a 

lower slope and in higher frequencies.   
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Figure 1.16  𝑑𝑞 channel impedance of the VSC 

 

Figure 1.17  𝑑𝑞 channel admittance of the VSC 
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Figure 1.18  𝑞𝑞 channel impedance of the VSC 

 

 

Figure 1.19  𝑞𝑞 channel admittance of the VSC 

1.5.3 Stability analysis using the GNC plots. 

Generally, a power system’s strength is related to the amount of available short circuit current in 

a certain part of the system, which affects its ability to recover from disturbances. The most 

common method to define the strength of the system at the point of injection (POI) of the inverter 

at is the short circuit ratio (SCR), which is the ratio of short circuit in a given location, to the rating 

of the source connected to that location. Accordingly, SCR is represented as follows: 
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𝑆𝐶𝑅𝑃𝑂𝐼 =
SC 𝑀𝑉𝐴𝑃𝑂𝐼
𝑀𝑊𝑃𝑂𝐼

 

(1.53) 

Consequently, a strong grid has a high SCR and can maintain its voltage during disturbances.  

To demonstrate the impact of the grid strength on inverter stability the GNC plots are used. First, 

the inverter is connected to a power grid with 𝑅𝑔 = 0.08 Ω and 𝐿𝑔 = 8 × 10
−4 H. The GNC plot 

for this case is plotted in Figure 1.20. As depicted, none of the eigen loci graphs encircle the critical 

point (−1,0𝑗), which indicates that the system is stable. Then, as the strength of the grid is reduced 

by increasing its impedance as shown in Figure 1.21 and Figure 1.22, respectively, the loci graphs 

move towards the critical point and both encircle it, indicating the instability of the system in a 

weak grid connection.  

 

Figure 1.20  GNC plots for 𝑅𝑔 = 0.08 Ω and 𝐿𝑔 = 8 × 10
−4 H 



 

22 

 

 

Figure 1.21  GNC plots for 𝑅𝑔 = 0.09 Ω and 𝐿𝑔 = 9 × 10
−4 H 

 

Figure 1.22 GNC plots for 𝑅𝑔 = 0.12 Ω and 𝐿𝑔 = 1.2 × 10
−3 H. 
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Figure 1.23  GNC plots ignoring the off-diagonals for 𝑅𝑔 = 0.08 Ω and 𝐿𝑔 = 8 × 10
−4 H. 

In some studies, the off-diagonal elements of the 2 × 2 MIMO are ignored. Therefore, the stability 

analysis is simplified as the MIMO system becomes two independent SISO systems. For strong 

power grid this simplification is acceptable, but as it is shown later this simplification fails in a 

weak grid condition. First, consider the strong grid for which the GNC was depicted in Figure 

1.20. Now, if the model is simplified by ignoring the off-diagonal elements, still the stability is 

reported correctly as shown in Figure 1.23. 

 

Now consider a different case with 𝑅𝑔 = 0.092 Ω and 𝐿𝑔 = 9.2 × 10
−4 H and 𝑘𝑝

𝑃𝐿𝐿 = 4.46 and 

𝑘𝑖
𝑃𝐿𝐿 = 991. The GNC plot of this case is depicted in Figure 1.24, and its simplified counterpart 

is depicted in Figure 1.25. The complete setup with a full matrix indicates the instability of the 

system, but the simplified setup wrongly reports that as stable.  

 

Similarly, if from the start the PLL dynamics is not considered, a diagonal impedance as discussed 

in the modelling section is derived. It was already observed that 𝑅𝑔 = 0.092 Ω and 𝐿𝑔 =

9.2 × 10−4 H represent a weak grid and the VSC interconnection with PLL dynamics is unstable. 

Figure 1.26 shows the result of applying the Nyquist criterion to the impedance model without the 

PLL dynamics, where the algorithm incorrectly indicates the stability. 
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Figure 1.24  Complete and unstable case with 𝑅𝑔 = 0.092 Ω and 𝐿𝑔 = 9.2 × 10
−4 H and 𝑘𝑝

𝑃𝐿𝐿 =

4.46 and 𝑘𝑖
𝑃𝐿𝐿 = 991. 

 

Figure 1.25  Simplified cased with 𝑅𝑔 = 0.092 Ω and 𝐿𝑔 = 9.2 × 10
−4 H and 𝑘𝑝

𝑃𝐿𝐿 = 4.46 and 

𝑘𝑖
𝑃𝐿𝐿 = 991, wrongly reported as stable. 
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Figure 1.26  GNC for a weak grid while ignoring the PLL dynamics 

1.6 Case study of impacts of line outages on grid synchronization stability of inverters 

Once faults occur in power grids, due to the subsequent line outages and/or possible power system 

splitting, the strength of the system may reduce. The sudden reduction in the strength of the system 

may cause loss of grid synchronism of inverters. A real-world example of such a scenario occurred 

in 2017 in First Solar 550 MW utility-scale PV plant. Figure 1.27 shows an inverter connected to 

the power grid simulated in Matlab/Simulink. At t=0.3, the system becomes weaker by taken the 

parallel line out of service leading to SCR≈ 1. As shown in Figures 1.28 inverter lose its 

synchronization stability. As shown in Figures 1.29  by increasing the time response of PLL, grid 

synchronism stability of the IBR can be increased in facing sudden change in the strength of the 

system. However, slow PLL does not provide desirable response in tracking the fast change in the 

system quantities such as frequency of the grid during large disturbances. Therefore, alternative 

solutions should be proposed. Specifically, in the next section a supplementary controller is 

implemented to increasing the damping of the controllers so that output oscillations are damped 

out effectively which leads to increased grid synchronization of IBRs.   
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Figure 1.27  Schematic of the simulated multi-machine power system including an IBR  

 

Figure 1.28  Output power of IBR, showing loss of grid synchronization 
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Figure 1.29  Output power of IBR, showing IBR retain its synchronization with the grid 

by slowing the PLL dynamic response. 

Figure 1.30  Inverter P_max vs SCR for different impedance angles [14] 

1.7 Supplementary controller for enhancing inverters grid synchronization stability 

According to Cigré Working Group B4.62 a connection is considered to be very weak if SCR at 

the Point of Interconnection (POI) is less than 3 in which SCR is defined as follows: 
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𝑆𝐶𝑅 =
𝑆𝑆𝐶

𝑆𝐼𝑛𝑣𝑒𝑟𝑡𝑒𝑟
=

𝑉𝑡
2

|𝑍𝑠|𝑆𝐼𝑛𝑣𝑒𝑟𝑡𝑒𝑟
 

 

(1.54) 

Figure 1.30 [14] show the static transfer capacity limit as a function of SCR in which  

𝑃𝑚𝑎𝑥(𝑃. 𝑈. ) ≈ 𝑆𝐶𝑅 ∙ (1 +
𝑅𝑠
|𝑍𝑠|

) 

 

(1.55) 

If dynamic stability limit is considered the situation is even worsened. It has been reported in [15] 

in some very weak systems SCR=1, only 40% of the maximum capacity of VSC can be used, even 

by turning the controllers parameters this limit can only reach to 60%. Therefore, proposing 

methods to enhance the grid synchronization stability of inverters is of special interest. 

Specifically, as discussed in the previous section, subsequent to the occurrence of events in power 

grids, depending on the post-event conditions of the system voltage, power and frequency 

oscillations may be experienced at the terminal of IBRs. If the strength of the system reduces, such 

oscillations are even further amplified and in extreme cases may lead to the disconnection of IBRs. 

While the existing controllers of IBRs have desirable tracking performances, their dynamic 

responses should be enhanced to overcome the above explained challenges in facing large 

disturbances in the power grid. 

     

A supplementary controller is developed to overcome the above-mentioned shortcomings of 

existing controllers without replacing them. Figure 1.31, and 1.32 show the structure of the 

supplementary controller. The controller is designed based on the perturbed model of the control 

system. Washout filters are used to extract the perturbed components of the signals. In this way, it 

is possible to focus on high frequency components of the signals to damp out the high frequency  

            

Figure 1.31  Schematic of the supplementary controller 
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Figure 1.32  Schematic of the supplementary controller input and output signals  

components. The advantage of the supplementary controller is it does not affect the tracking 

response of the main controller while it improves the transient response of the main controller. The 

perturbed model of IBRs in synchronous reference frame (SRF) should be derive as follow: 

 

According to Figure 1.31, the state space model of synchronous reference frame (SRF) PLL is as 

follows: 

ω̇ = kP−PLL(−ωvod +
ifq

Cf
−
ioq

Cf
) + ki−PLLvoq.  

(1.56) 

And also the dynamic of the output filter of the inverter is as follows: 

The state values are decomposed into the low frequency component and the high frequency 

component. Therefore, it is assumed 𝜔 = 𝜔0 + 𝛥𝜔,𝑣𝑜𝑑 = 𝑉𝑜𝑑 + 𝛥𝑣𝑜𝑑, 𝑣𝑜𝑞 = 𝑉𝑜𝑞 + 𝛥𝑣𝑜𝑞,

oq oq oqi I i= +   and 𝑖𝑓𝑞 = 𝐼𝑓𝑞 + 𝛥𝑖𝑓𝑞 where 𝜔0 is the low frequency component of the angular 

frequency and 𝛥𝜔 is the high frequency component of the angular frequency. Replacing the above 

values in (1.56)-(1.60), the dynamic of perturbed model becomes as follows 

Δω̇ = −kP−PLL
′ CfVodΔω + kP−PLL

′ Δifq + Δd1. (1.61) 

Where  

Cfv̇od = Cfωvoq + ifd − iod (1.57) 

Cfv̇oq = −Cfωvod + ifq − ioq  (1.58) 

Lfifḋ = Lfωifq − vod + vid  (1.59) 

Lfifq̇ = −Lfωifd − voq + viq (1.60) 



 

30 

 

Δd1 = kP−PLL
′ [−CfΔωΔvod − Cfω0Δv0d − Cfω0Vod + Ifd − (Ioq + Δioq)] + ki−PLL(Voq

+ Δvoq) − ω̇0 

(1.62) 

Similarly 

CfΔv̇od = CfΔωΔvoq + Δifd + Δd2 (1.63) 

CfΔv̇oq = −CfΔωΔvod + Δifq + Δd3 (1.64) 

where 
2 3,d d   are known inputs associated with the voltage dynamics and are derived as follows: 

Δd2 = CfVoqΔω + Cfω0Δv0q + Cfω0Voq − (Iod + Δiod) + Ifd − CfV̇od (1.65) 

Δd3 = −CfVodΔω − Cfω0Δv0d − Cfω0Vod − (Δioq + Ioq) + Ifq − CfV̇oq  (1.66) 

Similarly 

LfΔ̇ifd = LfΔωΔifq − Δvod + Δvid + Δd4  (1.67) 

LfΔ̇ifq = −LfΔωΔifd − Δvoq + Δviq + Δd5 (1.68) 

Where 4d and 5d  are expressed as follows: 

Δd4 = LfΔωIfq + Lfω0Δifq + Lfω0Ifq − Vod + vid
ref − Lfİfd  (1.69)   

Δd5 = −LfΔωIfd − Lfω0Δifd − Lfω0Ifd − Voq + viq
ref − Lfİfq  (1.70) 

Where Lf and Cf are inductance and capacitance of output filter, Δiod, Δioq are direct/quadratic 

perturbed components of output current, Ifd,Ifq,Iod,Ioq are DC components of direct/quadratic 

currents, Δifd, Δifq direct/quadratic perturbed components of current at the output filter of the 

inverter, Vod, Voq are DC components of direct/quadratic voltages, Δvod, Δvoq direct/quadratic 

perturbed components of voltage at output capacitor, KP−PLL, ki−PLL proportional and integral gains 

for PLL, ω, ωC, ωn, ω0, Δω, Angular frequency, DC components of angular frequency, angular 

frequency perturbation, the cut-off frequency of the filter and nominal angular frequency 

      

Equations (1.61), (1.63), (1.64), (1.67) and (1.68) constitute the perturbed state space model of the 

IBR. To derive the perturbed term, a set of wash-out filters are used.  According to the perturbed 

model of IBR, we are developing controllers to attenuate the disturbances (i.e. perturbed terms), 

which is the ongoing task.  

     

Once the state space model of the perturbed system is developed, a variety of controllers can be 

designed. Specifically, in [1] we developed a supplementary controller based on the 
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interconnection damping assignment passivity based (IDA-PB) control strategy. The controller is 

applied to the IBR in Figure 1.27. At t=5 the strength of the system is reduced by taking the line 

out.  Figure 1.33-(a) shows output of the inverter. As Figure 1.33-(b) shows the supplementary 

controller successfully damped out the oscillations and prevented instability. 

 
(a) 

 

(b) 

Figure 1.33  Output power of inverter (a) without the supplementary controller (b) with the 

supplementary controller 

1.8 Conclusions 

In this project the grid synchronization stability of inverter-based resources was studied. Using 

Bode plots and Generalized Nyquist Criterions (GNC) the impacts of different parameters such as 

the synchronization mechanism via PLL and grid strength were studied. The case studies results 

showed in weak power grids the bandwidth of PLL is influential on the grid synchronization 

stability.  To accurately study the impact of grid strength GNC was utilized, and off-diagonal 

elements were not ignored. This is crucial for correct assessment of the grid synchronization 

stability. The simulation results demonstrated by making the PLL slower the grid synchronization 

stability can be improved but a slow PLL can not track fast changing of the system. To address 

this problem a supplementary controller was implemented based on perturbed model of the system. 

It adds damping to the system to damp out the output power oscillations leading to enhanced 

synchronization stability. It does not change the main controllers of the inverters and only adds 

supplementary signals to the controller which becomes zero at the steady state condition. 

Therefore, the supplementary controller improves the transient response of the controller which 

does not affect its proper tracking characteristics.   



 

32 

 

References 

[1] M. Azimi, S. Lotfifard, ”Supplementary Controller for Inverter-based Resources in Weak 

Power Grids” IEEE Transactions on Smart Grid, vol.13, no.4, pp. 2886-2896, 2022. 

[2] J. Schmall, S. Huang, Y. Li, J. Billo, J. Conto, Y. Zhang, “Voltage Stability of Large-Scale 

Wind Plants Integrated in Weak Networks: An ERCOT Case Study” IEEE PES General 

Meeting, pp.1-5, 2015. 

[3] P.C. Kjaer, M. Gupta, A. Martinez, S. Saylors, “Experiences with Wind Power Plants with 

Low SCR” IEEE PES General Meeting, 2015.  

[4] L. Petersen, B. Hesselbæk, A. Martinez, R. M. Borsotti-Andruszkiewicz, G. C. Tarnowski,  

N. Steggel, D. Osmond, “Vestas Power Plant Solutions Integrating Wind, Solar PV and 

Energy Storage”. 3rd International Hybrid Power Systems Workshop, 2018. 

[5] T. Ackermann “Wind Power in Power Systems” Wiley, 2005. 

[6] M. Morjaria “Deploying Utility-Scale PV Power Plants in Weak Grids” PES general 

meeting, 2017. 

[7] R. Musca, G. Zizzo, M. Bongiorno “Grid-Forming Converters in Weak Grids – The Case of 

a Mediterranean Island” 18th International Workshop on Large-Scale Integration of Wind 

Power into Power Systems as well as on Transmission Networks for Offshore Wind Power 

Plants, pp. 1-6, 2019. 

[8] S. Liemann, T. Hennig, L. Robitzky, C. Rehtanz, and M. Finkelmann,“Analysis of the 

stability and dynamic responses of converter-based gener-ation in case of system splits,”IET 

Gener., Transmiss. Distribution, vol. 13,no. 16, pp. 3696–3703, 20 8 2019. 

[9] A. Yazdani, R. Iravani,”Voltage-Sourced Converters in Power Systems: Modeling, Control, 

and Applications” Wiley-IEEE Press, 2010. 

[10] B. wen, D. Boroyevich, R. Burgos, P. Mattavelli and Z. Shen, "Analysis of DQ small-signal 

impedance of grid-tied inverters," IEEE Transactions on Power Electronics, vol. 31, no. 1, 

pp. 675-687, 2015. 

[11] J. Yu, X. Lin, D. Song, R. Yu, Y. Li, and M. Su “Harmonic Instability and Amplification for 

Grid-Connected Inverter With Voltage Harmonics Compensation Considering Phase-

Locked Loop” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 8, 

no 4, 2020. 

[12] C. Desoer and Y. T. Wang, "On the generalized Nyquist stability criterion," IEEE 

Transactions on Automatic Control, vol. 25, no. 2, pp. 187-196, 1980.  

[13] M. Cheah-Mane, A. Egea-Alvarez, E. Prieto-Araujo, H. Mehrjerdi, O. Gomis-Bellmunt, L. 

Xu, “Modeling and analysis approaches for small-signal stability assessment of power-

electronic-dominated systems” Wiley Interdisciplinary Reviews: Energy and Environment, 

pp. 1-22, 2023. 

[14] J. Z. Zhou, and A. M. Gole VSC “Transmission limitations imposed by AC system strength 

and AC impedance characteristics” 10th IET International Conference on AC and DC Power 

Transmission, 2012. 

[15] M. Ashabani and Y. Abdel-Rady I. Mohamed, “Integrating VSCs to Weak Grids by 

Nonlinear Power Damping Controller With Self-Synchronization Capability” IEEE 

Transactions on Power Systems, vol. 29, no. 2, 805-814, 2014. 

 


	Part I: Grid Synchronization Instability of Inverter Based Resources
	Table of Contents
	List of Figures
	List of Tables
	Nomenclature

	1. Grid synchronization instability of inverter based resources
	1.1 Background
	1.2 Modeling of transfer function of inverters controllers
	1.2.1 Brief review of the structure of controllers
	1.2.2 Transfer function without the PLL
	1.2.3 Effects of the PLL dynamics
	1.2.4 The transfer function model with PLL dynamics

	1.3 Impedance-based stability analysis
	1.4 The Nyquist criterion: SISO to MIMO
	1.5 Analysis of impacts of different parameters on the stability of the inverters
	1.5.1 Results without considering the PLL dynamics
	1.5.2 Impedance/admittance with the PLL dynamics
	1.5.3 Stability analysis using the GNC plots.

	1.6 Case study of impacts of line outages on grid synchronization stability of inverters
	1.7 Supplementary controller for enhancing inverters grid synchronization stability
	1.8 Conclusions
	References



