Assistive Mobility Devices: Smart Walkers

Ehsan Nazerfard
nazerfard@eecs.wsu.edu
12/7/10
Outline

- Introduction
- Standard Walkers
- Smart Walkers
- Literature Review
- Summary
- Comparison
- Analysis
- Discussion Topics
- Questions
Introduction

- One of the problems that affect the most of the elderly population is the reduction of mobility.

- Mobility affects
 - Person’s locomotion capacity
 - Ability to realize personal tasks
 - …
 - Interaction of a person with his surroundings
Introduction (cont.)

- Assistive devices for people with mobility problems
 - Alternative devices
 - Augmentative devices
- Depending on the degree of disability of user
Alternative Devices

- In the case of total incapacity of mobility
- These devices mainly include:
 - Wheelchairs
 - Solutions based on autonomous especial vehicles
Alternative Devices (−)

- The continuous and sometimes unnecessary use of wheelchairs cause problems:
 - Loss of bone mass
 - Degradation of blood circulation
 - Degradation of physiological functions
 - Skin sores
 - Osteoporosis
 - ...

- Psychology problems
Augmentative Devices

- In the case of reduced mobility capacity
- Augmentative devices
 - Canes
 - Walkers
Augmentative Devices

- In the case of reduced mobility capacity
- Augmentative devices
 - Canes
 - Walkers
- Walkers are the focus of this talk.

- Maintaining the standing position has both physical and psychological benefits.
 - Self-esteem
 - Relationship issues
Walkers

- The walkers play an important role among augmentative devices
 - Large number of users
 - Simplicity and rehabilitation potential

Augmentative devices can use person’s remaining locomotion capability, avoiding the early and deteriorative use of wheelchairs
Different Types

- Classification based on ground contact configuration
 a. Only with legs
 b. With legs and wheels
 c. Three to four-wheeled walkers
Problems

- Problem with standard walking aids:
 - The pushing energy required to move
 - The lack of stability, especially in braking
 - The possibility of collision with obstacles
 - The difficulty with orientation

- In case of walkers with legs
 - Unnatural and discontinuous gait pattern
 - Strength needed to lift the walker
Solutions

- Robotic walkers and guiding devices, using a great variety of sensors and actuators
- Techniques used to solve problems mentioned
 - Navigation strategies
 - Mapping
 - Control
 - Auto-localization
 - Other concepts mostly used in the field of mobile robotics
Smart Walkers

- Smart walker = Robotic versions of walkers

- Functions realized by the smart walkers in the literature:
 - Physical assistance
 - Sensorial assistance
 - Cognitive assistance
 - Health monitoring
Functions (1/4): Physical Assistance

- All smart walkers, has some kind of physical support functions
- Two types of physical assistance:
 - Passive
 - Active
Passive Physical Assistance

- Goal: Improve stability during gait by introducing structural enhancements
 - Enlargement of base of the device
 - Placement of heavy elements at lower planes

- Replacement of the conventional handles by forearm support platforms
 - Degree of freedom of elbow is eliminated
 - Higher fraction of user’s weight can be supported
 - Risk of glide will be reduced
Active Physical Assistance

- Common problems with walkers with three to four wheels
 - Braking requires muscular strength, motor coordination and good reaction time.
 - Strength necessary to push the walker can be high

- Active assistance: Installing motors on wheels
 - Control the brakes
 - Provide pushing energy
 - The motors are controlled by advance user interface
Functions (2/4): Sensorial Assistance

- These devices are equipped with ultrasonic, vision or infrared sensors
 - Detect static and dynamic obstacles
- The control system assists users to avoid them
 - Sound or vibration alerts
 - Operating directly on the device actuators
- Helpful especially for users with visual problems and environments with multiple obstacles
Functions (3/4): Cognitive Assistance

- Assisting user navigation and localization
 - Structured environment
 - Outsides
- Some programmed to follow pre-defined paths
 - Clinics
 - Certain location in a house
 - Auto-localization in a map using markers

- Helpful especially for people with cognitive issues (memory, orientation, …)
Functions (4/4): Health Monitoring

- Monitor health parameters of the user in a smart map
 - keep a medical history of the user
 - Inform the medical staff or caregiver in the emergency situations

- What does a smart map look like?
 http://www.youtube.com/watch?v=eZlrrA9bsvg&feature=related
Literature Review

- Many elderly people that are destined to use a walker, can suffer from multiple health issues

Most of the walkers on literature are multifunctional
PAM–AID

- The Personal Adaptive Mobility Aid (PAM–AID)
- Designed for people with mobility problem and visual impairments, focus is:
 - The user has to have the max control of the device
 - It doesn’t have motorized locomotion
 - The electronic system only controls the orientation of the front wheels
PAM–AID (cont.)

- Info about the environment is provided in the form of two types of voice message to the user
 - Description of the environment
 - Presence of obstacles
VA–PAMAID

- First commercialized version of PAM–AID
- The Department of Veterans Affairs (USA) customized and renamed it to Veterans Affairs Personal Adaptive Mobility Aid (VA–PAMAID).
GUIDO

- Second commercialized version of PAM-AID
- Map navigation
- The third mode of operation is introduced
 - Parked mode
 - Assist the transfer of the user from a chair
PAMM

- PAMM = Personal Aid Mobility and Monitoring
- Offers extra support with
 - Health monitoring
 - Scheduling (reminding time of medicines)
PAMM (cont.)

- Using various health monitoring sensors, it is able to monitor the user’s activity level
 - Speed
 - Applied forces
 - Pulse rate
More Smart Walkers

- Mobil Smart Walker
- The Medical Automation Research Center (MARC)
Summary

- Assistive Mobility Devices → Augmentative Devices → Standard Walkers → Problems/Solutions → Smart Walkers → Literature Review → Limitations.

- Walkers (even better if smart !) can use person’s remaining locomotion capability, avoiding the early and deteriorative use of wheelchairs.
Reference

Comparison

<table>
<thead>
<tr>
<th>Feature</th>
<th>Mobil</th>
<th>PAM–AID</th>
<th>VA–PAMAID</th>
<th>GUIDO</th>
<th>PAMM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground contact configuration</td>
<td>3–4 wheeled</td>
<td>3–4 wheeled</td>
<td>3–4 wheeled</td>
<td>3–4 wheeled</td>
<td>3–4 wheeled</td>
</tr>
<tr>
<td>Support for users with visual impairments</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Parked mode</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Health monitoring</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Forearm support</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

Legend: Y = Yes, N = No
Analysis

- Human–machine interface (–)
 - How practical are advanced interfaces?
 - Training
 - False positive/negative
- How costly are these devices(?)
Next Steps

- The focus needs to be changed on human machine interface, rather than ...
- SIMBIOSIS walker
 - The main focus is on interface (++)
 - Forearm support platform (+)
 - ...

Discussion Topics

- Of the functions discussed for smart walkers, which are the most practical?

- What are the potential limitations?

- Could (robotic) smart walkers be accepted as companions for older adults? What would need to be added/changed for acceptance?

Thank You!

Questions?