
Nirmalya Roy

School of Electrical Engineering and Computer Science
Washington State University

Cpt S 122 – Data Structures

Operator Overloading and
Class string

Topics

 Introduction

 Overloaded Operators of Standard Library class string

 Fundamentals of Operator Overloading

 Overloading Binary Operators

 Overloading Unary Operators

 Dynamic Memory Management

 Case Study: PhoneNumber, Array classes

 Implementation of operator overloading

 Converting between types

 explicit Constructors

 Enable C++’s operators to work with objects

 a process called operator overloading.

 One example of an overloaded operator built into C++ is <<

 used both as the stream insertion operator and

 as the bitwise left-shift operator.

 C++ overloads the addition operator (+) and the subtraction

operator (-) to perform differently

 depending on their context in integer, floating-point and pointer

arithmetic with data of fundamental types.

 You can overload most operators to be used with class objects

 the compiler generates the appropriate code based on the types of the

operands.

Introduction

 Demonstrate many of class string’s overloaded operators

 <, >, ==, != , =, <=, >=, etc

 Several other useful member functions

 empty, substr and at

 Function empty determines whether a string is empty,

 Function substr returns a string that represents a portion of an

existing string

 Function at returns the character at a specific index in a string
 checked that the index is in range.

Using the Overloaded Operators of
Standard Library Class string

 Class string’s overloaded equality and relational operators

 perform lexicographical comparisons using the numerical values of the
characters in each string.

 Class string provides member function empty to determine
whether a string is empty.

 Returns true if the string is empty; otherwise, it returns false.

 Demonstrates class string’s overloaded += operator for
string concatenation.

 Demonstrates that a string literal can be appended to a string
object by using operator +=

Using the Overloaded Operators of Standard
Library Class string

 Class string provides member function substr to
return a portion of a string as a string object.
 The call to substr obtains a 14-character substring (specified by

the second argument) of s1 starting at position 0 (specified by the
first argument).

 The call to substr obtains a substring starting from position 15
of s1.

 When the second argument is not specified, substr returns the
remainder of the string on which it’s called.

 class string’s overloaded [] operator can create lvalues
that enable new characters to replace existing characters in
s1.
 Class string’s overloaded [] operator does not perform any

bounds checking.

Using the Overloaded Operators of
Standard Library Class string

 Class string does provide bounds checking in its

member function at

 throws an exception if its argument is an invalid

subscript.

 By default, this causes a C++ program to terminate and

display a system-specific error message.

 If the subscript is valid, function at returns the character

at the specified location as a modifiable lvalue or

 an unmodifiable lvalue (i.e., a const reference),

depending on the context in which the call appears.

Using the Overloaded Operators of
Standard Library Class string

 Operators provide a concise notation for manipulating

string objects.

 We can use operators with user-defined types as well.

 Although C++ does not allow new operators to be

created

 it does allow most existing operators to be overloaded.

 they can be used with objects as long as they have meaning

appropriate to those objects.

Fundamentals of Operator Overloading

 Operator overloading is not automatic

 you must write operator overloading functions to perform
the desired operations.

 An operator is overloaded by writing a member
function definition or non-member function definition

 function name starts with the keyword operator followed
by the symbol for the operator being overloaded.

 For example, the function name operator+ would be used
to overload the addition operator (+) for use with objects of
a particular class.

Fundamentals of Operator Overloading

 To use an operator on class objects, that operator must be
overloaded—with three exceptions.
 The assignment operator (=) may be used with every class to perform

memberwise assignment of the class’s data members

 each data member is assigned from the assignment’s ―source‖ object (on
the right) to the ―target‖ object (on the left).

 Memberwise assignment is dangerous for classes with pointer members,
so we’ll explicitly overload the assignment operator for such classes.

 The address operator returns a pointer to the object; this operator also
can be overloaded.

 The comma operator evaluates the expression to its left then the
expression to its right, and returns the value of the latter expression.

Fundamentals of Operator Overloading

 Most of C++’s operators can be overloaded.

 Operators that cannot be overloaded.

Fundamentals of Operator Overloading (Cont.)

 You cannot change the ―arity‖ of an operator (that is, the
number of operands an operator takes)
 overloaded unary operators remain unary operators.

 overloaded binary operators remain binary operators.

 operators &, *, + and - all have both unary and binary versions.

 these unary and binary versions can be separately overloaded.

Fundamentals of Operator Overloading
(cont.)

 You cannot create new operators
 only existing operators can be overloaded.

 The meaning of how an operator works on values of
fundamental types cannot be changed by operator overloading.
 For example, you cannot make the + operator subtract two ints.

 Operator overloading works only
 with objects of user-defined types

 with a mixture of an object of a user-defined type

 an object of a fundamental type.

Fundamentals of Operator Overloading
(Cont.)

 A binary operator can be overloaded as a member

function with one parameter

 As a non-member function, binary operator < must

take two arguments

 one of which must be an object or a reference to an object

of the class.

Overloading Binary Operators

 You can input and output fundamental type data using
 the stream extraction operator >>

 the stream insertion operator <<.

 The C++ class libraries overload these binary operators
 each fundamental type, including pointers and char * strings.

 You can also overload these operators to perform input and
output for your own types.

 Next we overload these operators to input and output
PhoneNumber objects

 in the format ―(000) 000-0000.‖

Overloading the Binary Stream Insertion
and Stream Extraction Operators

 The stream extraction operator function operator>>
 takes istream reference input and

 PhoneNumber reference number as arguments and

 returns an istream reference.

 Operator function operator>> inputs phone numbers of the
form

 (800) 555-1212

 When the compiler sees the expression
 cin >> phone

 The compiler generates the non-member function call
 operator>>(cin, phone);

 When this call executes, reference parameter input becomes
an alias for cin and reference parameter number becomes an
alias for phone.

Overloading the Binary Stream
Extraction Operators (cont.)

 A unary operator for a class can be overloaded as a (non-
static) member function with no arguments

 as a non-member function with one argument that must be an
object (or a reference to an object) of the class.

 A unary operator such as ! may be overloaded as a non-
member function with one parameter in two different ways

 either with a parameter that’s an object
 this requires a copy of the object, so the side effects of the function are not

applied to the original object, or

 with a parameter that is a reference to an object
 no copy of the original object is made, so all side effects of this function are

applied to the original object.

Overloading Unary Operators

 The prefix and postfix versions of the increment and

decrement operators can all be overloaded.

 To overload the increment operator to allow both

prefix and postfix increment usage

 each overloaded operator function must have a distinct

signature.

 the compiler will be able to determine which version of ++
is intended.

 The prefix versions are overloaded exactly as any

other prefix unary operator would be.

Overloading the Unary Prefix and Postfix ++
and -- Operators

 Suppose that we want to add 1 to the day in Date object d1.

 When the compiler sees the preincrementing expression ++d1,
the compiler generates the member-function call

 d1.operator++()

 The prototype for this operator function would be
 Date &operator++();

 If the prefix increment operator is implemented as a non-
member function, then, when the compiler sees the expression
++d1, the compiler generates the function call

 operator++(d1)

 The prototype for this operator function would be declared in
the Date class as

 Date &operator++(Date &);

Overloading the Unary Prefix and Postfix ++
and -- Operators (cont.)

 Overloading the postfix increment operator presents a
challenge,
 the compiler must be able to distinguish between the signatures of the

overloaded prefix and postfix increment operator functions.

 The convention that has been adopted in C++ is that, when the
compiler sees the postincrementing expression d1++, it
generates the member-function call

 d1.operator++(0)

 The prototype for this function is
 Date operator++(int)

 The argument 0 is strictly a ―dummy value‖ that enables the
compiler to distinguish between the prefix and postfix
increment operator functions.

 The same syntax is used to differentiate between the prefix and
postfix decrement operator functions.

Overloading the Unary Prefix and Postfix
++ and -- Operators (cont.)

 If the postfix increment is implemented as a non-member
function, then, when the compiler sees the expression d1++,
the compiler generates the function call

 operator++(d1, 0)

 The prototype for this function would be
 Date operator++(Date &, int);

 Once again, the 0 argument is used by the compiler to
distinguish between the prefix and postfix increment operators
implemented as non-member functions.

 The postfix increment operator returns Date objects by value,
whereas the prefix increment operator returns Date objects by
reference
 the postfix increment operator typically returns a temporary object that

contains the original value of the object before the increment occurred.

Overloading the Unary Prefix and Postfix
++ and -- Operators (cont.)

 Determine the size of an array dynamically at execution time and then
create the array.

 Control the allocation and deallocation of memory in a program
 for objects and for arrays of any built-in or user-defined type.

 known as dynamic memory management.

 performed with new and delete.

 You can use the new operator to dynamically allocate (i.e., reserve)
the exact amount of memory required to hold an object or array at
execution time.

 The object or array is created in the free store (also called the heap)
 a region of memory assigned to each program for storing dynamically allocated

objects.

 Once memory is allocated in the free store, you can access it via the
pointer that operator new returns.

 You can return memory to the free store by using the delete
operator to deallocate it.

Dynamic Memory Management

 The new operator allocates storage of the proper size

for an object of type Time,

 calls the default constructor to initialize the object

 returns a pointer to the type specified to the right of the new
operator (i.e., a Time *).

 If new is unable to find sufficient space in memory for

the object, it indicates that an error occurred by

―throwing an exception.‖

Dynamic Memory Management

Dynamic Memory Management (cont.)

 To destroy a dynamically allocated object, use the

delete operator as follows:
 delete ptr;

 This statement first calls the destructor for the object

to which ptr points,

 then deallocates the memory associated with the object,

returning the memory to the free store.

 You can provide an initializer for a newly created

fundamental type variable, as in
 double *ptr = new double(3.14159);

 The same syntax can be used to specify a comma-

separated list of arguments to the constructor of an

object.

Dynamic Memory Management (cont.)

Dynamic Memory Management (cont.)

 You can also use the new operator to allocate arrays

dynamically.

 For example, a 10-element integer array can be allocated

and assigned to gradesArray as follows:

 int *gradesArray = new int[10];

 A dynamically allocated array’s size can be specified

using any non-negative integral expression.

 Also, when allocating an array of objects dynamically, you

cannot pass arguments to each object’s constructor

 each object is initialized by its default constructor.

Dynamic Memory Management (cont.)

 To deallocate a dynamically allocated array, use the

statement
 delete [] ptr;

 If the pointer points to an array of objects,

 the statement first calls the destructor for every object in

the array, then deallocates the memory.

 Using delete on a null pointer (i.e., a pointer with

the value 0) has no effect.

 Pointer-based arrays have many problems, including:

 A program can easily ―walk off‖ either end of an array, because
C++ does not check whether subscripts fall outside the range of
an array.

 Arrays of size n must number their elements 0, …, n – 1; alternate
subscript ranges are not allowed.

 An entire array cannot be input or output at once.

 Two arrays cannot be meaningfully compared with equality or
relational operators.

 When an array is passed to a general-purpose function designed
to handle arrays of any size, the array’s size must be passed as an
additional argument.

 One array cannot be assigned to another with the assignment
operator.

Case Study: Array Class

 With C++, you can implement more robust array capabilities
via classes and operator overloading.

 You can develop an array class that is preferable to ―raw‖
arrays.

 In this example, we create a powerful Array class:
 Performs range checking.

 Allows one array object to be assigned to another with the
assignment operator.

 Objects know their own size.

 Input or output entire arrays with the stream extraction and stream
insertion operators, respectively.

 Can compare Arrays with the equality operators == and !=.

 C++ Standard Library class template vector provides many
of these capabilities as well.

Case Study: Array Class (cont.)

 The Array copy constructor copies the elements of
one Array into another.

 The copy constructor can also be invoked by writing
as follows:

 Array integers3 = integers1;

 The equal sign in the preceding statement is not the
assignment operator.

 When an equal sign appears in the declaration of an
object, it invokes a constructor for that object.

 This form can be used to pass only a single argument to a
constructor.

Case Study: Array Class (cont.)

 The array subscript operator [] is not restricted for

use only with arrays;

 it also can be used to select elements from other kinds of

container classes, such as linked lists, strings and

dictionaries.

 Also, when operator[] functions are defined,

subscripts no longer have to be integers

 characters, strings, floats or even objects of user-defined

classes also could be used.

 STL map class allows noninteger subscripts.

Case Study: Array Class (cont.)

 When the compiler sees an expression like cout <<
arrayObject, it invokes non-member function operator<<
with the call

 operator<<(cout, arrayObject)
 When the compiler sees an expression like cin >>

arrayObject, it invokes non-member function operator>>
with the call

 operator>>(cin, arrayObject)

Case Study: Array Class (cont.)

 Declares the default constructor for the class and

specifies a default size of 10 elements.

 The default constructor validates and assigns the

argument to data member size,

 uses new to obtain the memory for the internal pointer-

based representation of this array

 assigns the pointer returned by new to data member ptr.

 Then the constructor uses a for statement to set all

the elements of the array to zero.

Case Study: Array Class (cont.)

Copy Constructor for class Array

 Declares a copy constructor that initializes an Array by
making a copy of an existing Array object.

 Such copying must be done carefully to avoid the pitfall of
leaving both Array objects pointing to the same dynamically
allocated memory.

 This is exactly the problem that would occur with default
memberwise copying,
 if the compiler is allowed to define a default copy constructor for this

class.

 Copy constructors are invoked whenever a copy of an object
is needed,
 such as in passing an object by value to a function,

 returning an object by value from a function or

 initializing an object with a copy of another object of the same class.

Case Study: Array Class (cont.)

 The copy constructor for Array uses a member initializer
to copy the size of the initializer Array into data
member size,

 uses new to obtain the memory for the internal pointer-based
representation of this Array

 assigns the pointer returned by new to data member ptr.

 Then the copy constructor uses a for statement to copy
all the elements of the initializer Array into the new
Array object.

 An object of a class can look at the private data of any
other object of that class (using a handle that indicates
which object to access).

Case Study: Array Class (cont.)

Note on Copy Constructor Behavior

 A copy constructor must receive its argument by
reference, not by value.

 Otherwise the copy constructor call results in
infinite recursion

 Receiving an object by value requires a copy constructor
to make a copy of the argument object.

 Recall that any time a copy of an object is required, the
class’s copy constructor is called.

 If the copy constructor received its argument by value,
the copy constructor would call itself recursively to make
a copy of its argument!

Destructor for class Array

 Declare the class’s destructor.

 The destructor is invoked when an object of class

Array goes out of scope.

 The destructor uses delete [] to release the

memory allocated dynamically by new in the

constructor.

Destructor for class Array (cont.)

Equality Operator for class Array

 Declare the overloaded equality operator (==) for the class.

 When the compiler sees the expression integers1 ==
integers2, the compiler invokes member function
operator== with the call

 integers1.operator==(integers2)

 Member function operator== immediately returns
false if the size members of the arrays are not equal.

 Otherwise, operator== compares each pair of elements.
 If they’re all equal, the function returns true.

 The first pair of elements to differ causes the function to return
false immediately.

Equality Operator for class Array (cont.)

Subscript Operator

Stream Extraction Operator

Stream Insertion Operator

Overloaded Assignment Operator

 Overloaded assignment operator function for the Array class.

 When the compiler sees the expression integers1 =
integers2, the compiler invokes member function
operator= with the call

 integers1.operator=(integers2)

 Member function operator=’s implementation tests for
self-assignment in which an Array object is being assigned
to itself.
 if this is equal to the right operand’s address, a self-assignment is

being attempted, so the assignment is skipped.

Overloaded Assignment Operator (cont.)

 operator= determines whether the sizes of the two arrays are
identical
 the original array of integers in the left-side Array object is not

reallocated.

 Otherwise, operator= uses delete
 to release the memory,

 copies the size of the source array to the size of the target array,

 uses new to allocate memory for the target array and

 places the pointer returned by new into the array’s ptr member.

 Regardless of whether this is a self-assignment, the member
function returns the current object (i.e., *this) as a constant
reference;
 this enables cascaded Array assignments such as x = y = z,

 prevents ones like (x = y) = z because z cannot be assigned to the
const Array- reference that is returned by (x = y).

Overloaded Assignment Operator (cont.)

The Big Three

 A copy constructor, a destructor, and an overloaded
assignment operator are usually provided as a group
for any class that uses dynamically allocated memory.

 Not providing a copy constructor, and an overloaded
assignment operator for a class when objects of that
class contain pointers to dynamically allocated
memory is a logic error.

 Overloaded inequality operator (!=).

 Member function operator!= uses the overloaded

operator== function to determine whether one Array
is equal to another, then returns the opposite of that result.

 Writing operator!= in this manner enables you to

reuse operator==, which reduces the amount of code

that must be written in the class.

 Full function definition for operator!= allows the

compiler to inline the definition.

Overloaded Inequality Operator (cont.)

 Sometimes all the operations ―stay within a type.‖

 For example, adding an int to an int produces an int.

 It’s often necessary, however, to convert data of one type to

data of another type.

 The compiler knows how to perform certain conversions

among fundamental types.

 You can use cast operators to force conversions among

fundamental types.

 The compiler cannot know in advance how to convert among

user-defined types, or

 between user-defined types and fundamental types, so you must

specify how to do this.

Cast Operator: Converting between Types

 Such conversions can be performed with conversion constructors

 single-argument constructors that turn objects of other types
(including fundamental types) into objects of a particular class.

 A conversion operator (also called a cast operator) can be used

 to convert an object of one class into an object of another class
or into an object of a fundamental type.

 The function prototype
 A::operator char *() const;

 declares an overloaded cast operator function for converting an
object of user-defined type A into a temporary char * object.

 The operator function is declared const because it does not
modify the original object.

Converting between Types (cont.)

 An overloaded cast operator function does not specify a return
type
 the return type is the type to which the object is being converted.

 If s is a class object, when the compiler sees the expression
static_cast< char * >(s), the compiler generates the
call

 s.operator char *()

 Example:
 A::operator int() const; Convert an object of user defined

type A into an integer

 A::operator OtherClass() const; Convert an object of user
defined type A into an object of user defined type Otherclass

 Nice features of cast operators and conversion constructors
 the compiler can call these functions implicitly to create temporary

objects.

 cout << s; (object s of user-defined string class to char *, stream insertion
operator doest not have to be overloaded)

Converting between Types (cont.)

 Any single-argument constructor can be used by the compiler to
perform an implicit conversion.

 The constructor’s argument is converted to an object of the
class in which the constructor is defined.

 The conversion is automatic and you need not use a
cast operator.

 In some situations, implicit conversions are undesirable or
error-prone.

 For example, our Array class defines a constructor that
takes a single int argument.

 The intent of this constructor is to create an Array object
containing the number of elements specified by the int
argument.

 However, this constructor can be misused by the compiler
to perform an implicit conversion.

explicit Constructors

 The program uses the Array class to demonstrate an improper
implicit conversion.
 Calls function outputArray with the int value 3 as an argument.

 This program does not contain a function called outputArray
that takes an int argument.

 The compiler determines whether class Array provides a
conversion constructor that can convert an int into an Array.

 The compiler assumes the Array constructor that receives a
single int is a conversion constructor and

 uses it to convert the argument 3 into a temporary Array
object that contains three elements.

 Then, the compiler passes the temporary Array object to
function outputArray to output the Array’s contents.

explicit Constructors (cont.)

 C++ provides the keyword explicit to suppress implicit
conversions via conversion constructors when such
conversions should not be allowed.

 A constructor that is declared explicit cannot be used in an
implicit conversion.
 explicit Array(int = 10) //default constructor

 No modifications are required to the source-code file containing class
Array’s member-function definitions.

explicit Constructors (cont.)

With an explicit Constructor (cont.)

 Demonstrate how the explicit constructor can be used
to create a temporary Array of 3 elements and pass it
to function outputArray.

 When this program is compiled, the compiler produces
an error message indicating that the integer value
passed to outputArray cannot be converted to a
const Array &.

explicit Constructors (cont.)

