WASHINGTON STATE
G (UNIVERSITY
h

CptS 122 - Data Structures

Polymorphism

Nirmalya Roy

School of Electrical Engineering and Computer Science
Washington State University

Topics

® Introduction
m Introduction to Polymorphism

m Relationship among Objects in Inheritance Hierarchy
m Abstract Classes & pure virtual Functions

m Polymorphic processing

m virtual Functions & Dynamic Binding

m Polymorphism & Runtime Type Information (RTTI)
o downcasting, dynamic_cast, typeid, type_info

m virtual Destructors

Introduction

= One name, multiple forms

m Have we seen polymorphism before?

O

O

Overloaded function, overloaded operators

Overloaded member functions are selected for invoking by
matching argument, both type and number

Information is known to the compiler at compile time

m Compiler is able to select the appropriate function at the compile
time

This is called early binding, or static binding, or static linking

m Anobjectis bound to its function call at compile time

This is also known as compile time polymorphism

Introduction (cont.)

m Consider the following class definition where the
function name and prototype is same in both the base
and derived classes.

class A{

int X;

public:

void show() {...} //show() in base class

¢
class B: public A{

inty;

public:

void show() {...} //show() in derived class

Introduction (cont.)

m How do we use the member function show() to print the
values of objects of both the classes A and B?

o prototype show() is same in both the places.

o The function is not overloaded and therefore static binding
does not apply.

m It would be nice if appropriate member function could be selected
while the program is running

o This is known as runtime polymorphism
o How could it happen?

m C++ supports a mechanism known as virtual function to achieve
runtime polymorphism

m Atruntime, when it is known what class objects are under
consideration, the appropriate version of the function is called.

Introduction (cont.)

m Function is linked with a particular class much later
after the compilation, this processed is termed as /ate
binding
o Itis also known as dynamic binding because the selection of

the appropriate function is done dynamically at runtime.

m Dynamic binding is one of the powerful feature in C++

o Requires the use of pointers to objects

o We will discuss in detail how the object pointers and virtual
functions are used to implement dynamic binding or runtime

polymorphism

Introduction (cont.)

[Polymorphism j

Compile time Runtime
Polymorphism Polymorphism
v
Virtual
Function Operator Functions

Overloading Overloading

Introduction (cont.)

Polymorphism enables us to “program in the general” rather than
“program in the specific.”

o Enables us to write programs that process objects of classes that are part of
trlle same class hierarchy as if they were all objects of the hierarchy’s base
class.

Polymorphism works off

o base-class pointer handles

o base-class reference handles

o but not off name handles.

Relying on each object to know how to “do the right thing” in
response to the same function call is the key concept of
polymorphism.

o The same message sent to a variety of objects has “many forms” of results

Polymorphism is the ability to create a variable, a function, or an
object that has more than one form.

Introduction (cont.)

= With polymorphism, we can design and implement
systems that are easily extensible.

o New classes can be added with little or no modification to the general
portions of the program

o New types of objects that can respond to existing messages can be
Incorporated into such a system without modifying the base system.

o Client code that instantiate new objects must be modified to
accommodate new types.
m Direct a variety of objects to behave in manners
appropriate to those objects without even knowing their
types

o Those objects belong to the same inheritance hierarchy and are being
accessed off a common base class pointer or common base class
reference.

Relationships Among Objects in an
Inheritance Hierarchy

Demonstrate how base-class and derived-class pointers can be

almed at base-class and derived-class objects

o how those pointers can be used to invoke member functions that
manipulate those objects.

A key concept

o an object of a derived class can be treated as an object of its base class.

o the compiler allows this because each derived-class object is an object of
its base class.

However, we cannot treat a base-class object as an object of any

of its derived classes.

The is-a relationship applies only from a derived class to its
direct and indirect base classes.

Invoking Base-Class Functions from
Derived-Class Objects

Example classes: CommissionEmployee and
BasePlusCommissionEmployee

Aim a base-class pointer at a base-class object

o Invoke base-class functionality.

Aim a derived-class pointer at a derived-class object

o Invoke derived-class functionality.

Relationship between derived classes and base classes (i.e., the
Is-a relationship of inheritance)

o aiming a base-class pointer at a derived-class object.

o the base-class functionality is indeed available in the derived-class
object.

I // Fig. 13.1: figl3_01l.cpp

2 // Aiming base-class and derived-class pointers at base-class
3 // and derived-class objects, respectively.

4 #include <iostream>

5 #include <iomanip>

6 #include

7 #include

8 using namespace std;

9

10 int main(Q)

11 {

12 // create base-class object

13 CommissionEmployee commissionEmployee(

14 , , , ,)

15

16 // create base-class pointer

17 CommissionEmployee *commissionEmployeePtr = (;

18

19 // create derived-class object
20 BasePTusCommissionEmployee basePlusCommissionEmployee(
21 , ; ; ’ ;)
22

Fig. 13.1 | Assigning addresses of base-class and derived-class
objects to base-class and derived-class pointers. (Part | of 5.)

23 // create derived-class pointer

24 BasePlusCommissionEmployee *basePlusCommissionEmployeePtr = (;

25

26 // set floating-point output formatting

27 cout << fixed << setprecision(7);

28

29 // output objects commissionEmployee and basePlusCommissionEmployee
30 cout << ;

31 commissionEmployee.print(); // invokes base-class print

32 cout << ;

33 basePTusCommissionEmployee.print(); // invokes derived-class print
34

35 // aim base-class pointer at base-class object and print

36 commissionEmployeePtr = &commissionEmployee; // perfectly natural
37 cout <<

38 << ;
39 commissionEmployeePtr->print(); // invokes base-class print

40

Fig. 13.1 | Assigning addresses of base-class and derived-class
objects to base-class and derived-class pointers. (Part 2 of 5.)

41 // aim derived-class pointer at derived-class object and print

42 basePlusCommissionEmployeePtr = &basePlusCommissionEmployee; // natural

43 cout <<

44 <<

45 << ;

46 basePlusCommissionEmployeePtr->print(); // invokes derived-class print

47

48 // aim base-class pointer at derived-class object and print ; ;

49 commissionEmployeePtr = &basePlusCommissionEmployee; dan ObJeCt of a derived
50 cout << class can be treated as an
:; < _ object of its base class.
53 commissionEmployeePtr->print(); // invokes base-class print) .

54 cout << endl; Upointer specific

55 } // end main

Fig. 13.1 | Assigning addresses of base-class and derived-class
objects to base-class and derived-class pointers. (Part 3 of 5.)

Invoking Base-Class Functions from
Derived-Class Objects (cont.)

m Assign the address of derived-class object to base-class pointer,
o invoke member function print from base class.

o This “crossover” is allowed because an object of a derived class is
an object of its base class.

m The output of each print member-function invocation in this
program reveals

o the invoked functionality depends on the type of the handle (i.e.,
the pointer or reference type) used to invoke the function, not the
type of the object to which the handle points.

Aiming Derived-Class Pointers at Base-Class
Objects

m We aim a derived-class pointer at a base-class object.
o Assign the address of base-class object to derived-class pointer
o C++ compiler generates an error.

o The compiler prevents this assignment, because a
commissionEmployee (base-class object) is not a
BasePlusCommissionEmployee. (derived-class object)

I // Fig. 13.2: figl3_02.cpp

2 // Aiming a derived-class pointer at a base-class object.

3 #include

4 #include

5

6 int main(Q)

7 {

8 CommissionEmployee commissionEmployee(

9 , , , .);
10 BasePlusCommissionEmployee *basePlusCommissionEmployeePtr = 0;
11
12 // aim derived-class pointer at base-class object
13 // Error: a CommissionEmployee is not a BasePlusCommissionEmployee
14 basePlusCommissionEmployeePtr = &commissionEmployee;

I5 } // end main

Microsoft Visual C++ compiler error message:

C:\cpphtp8_examples\ch13\Figl3_02\figl3_02.cpp(14) : error C2440: '='
cannot convert from 'CommissionEmployee *' to 'BasePlusCommissionEmployee

* !

Cast from base to derived requires dynamic_cast or static_cast

Fig. 13.2 | Aiming a derived-class pointer at a base-class object.

Derived-Class Member-Function Calls via
Base-Class Pointers

m Off a base-class pointer, the compiler allows us to
Invoke only base-class member functions.

m If a base-class pointer is aimed at a derived-class
object, and

o an attempt is made to access a derived-class-only member
function,

o acompilation error will occur.

m Shows the consequences of attempting to invoke a
derived-class member function off a base-class
pointer.

// Fig. 13.3: figl3_03 .cpp

// Attempting to invoke derived-class-only member functions
// through a base-class pointer.

#include

#include

NN WN =

Fig. 13.3 | Attempting to invoke derived-class-only functions via a
base-class pointer. (Part | of 3.)

7 1int main(Q

8 {

9 CommissionEmployee *commissionEmployeePtr = (; // base class

10 BasePlusCommissionEmployee basePlusCommissionEmployee(

11 , , , , ,); // derived class
12

13 // aim base-class pointer at derived-class object

14 commissionEmployeePtr = &basePTusCommissionEmployee;

I5

16 // invoke base-class member functions on derived-class

17 // object through base-class pointer (allowed)

18 string firstName = commissionEmployeePtr->getFirstName();

19 string lastName = commissionEmployeePtr->getLastName();

20 string ssn = commissionEmployeePtr->getSocialSecurityNumber();

21 double grossSales = commissionEmployeePtr->getGrossSales();

22 double commissionRate = commissionEmployeePtr->getCommissionRate();
23

24 // attempt to invoke derived-class-only member functions

25 // on derived-class object through base-class pointer (disallowed)
26 double baseSalary = commissionEmployeePtr->getBaseSalary();

27 commissionEmployeePtr->setBaseSalary();

28 } // end main

Fig. 13.3 | Attempting to invoke derived-class-only functions via a
base-class pointer. (Part 2 of 3.)

Microsoft Visual C++ compiler error messages:

C:\cpphtp8_examples\chl3\Figl3_03\figl3_03.cpp(26) : error C2039:
'getBaseSalary' : is not a member of 'CommissionEmployee'
C:\cpphtp8_exampTles\chl3\Figl3_03\CommissionEmployee.h(10)
see declaration of 'CommissionEmployee'
C:\cpphtp8_examples\ch13\Figl3_03\figl3_03.cpp(27) : error C2039:
'setBaseSalary' : is not a member of 'CommissionEmployee'
C:\cpphtp8_examples\chl13\Figl3_03\CommissionEmployee.h(10)
see declaration of 'CommissionEmployee'

GNU C++ compiler error messages:

figl3_03.cpp:26: error: 'getBaseSalary' undeclared (first use this function)
figl3_03.cpp:27: error: 'setBaseSalary' undeclared (first use this function)

Fig. 13.3 | Attempting to invoke derived-class-only functions via a
base-class pointer. (Part 3 of 3.)

Derived-Class Member-Function Calls via
Base-Class Pointers (cont.)

m The compiler will allow access to derived-class-only
members from a base-class pointer that is aimed at a
derived-class object if we explicitly cast the base-
class pointer to a derived-class pointer

o known as downcasting.
m Downcasting allows a derived-class-specific

operation on a derived-class object pointed to by a
base-class pointer.

m After a downcast, the program can invoke derived-
class functions that are not in the base class.

Virtual Functions

= Why virtual functions are useful?
m Consider a base class Shape.

O

O

O

classes suchas Circle, Triangle, Rectangle and Square
are all derived from base class Shape.

Each of these classes might be endowed with the ability to draw itself
via a member function draw.

Although each class has its own draw function, the function for each
shape is quite different.

In a program that draws a set of shapes, it would be useful to be able
to treat all the shapes generically as objects of the base class Shape.

To draw any shape,
= simply use a base-class Shape pointer to invoke function draw

= |et the program determine dynamically (i.e., at runtime) which
derived-class draw function to use

O based on the type of the object to which the base-class Shape
pointer points at any given time.

Virtual Functions (cont.)

To enable this behavior, declare draw in the base class as
avirtual function

o override draw in each of the derived classes to draw the
appropriate shape.

From an implementation perspective, overriding a

function is no different than redefining one.

o Anoverridden function in a derived class has the same signature
and return type (i.e., prototype) as the function it overrides in its
base class.

If we declare the base-class function as virtual, we can

override that function to enable polymorphic behavior.

We declare a virtual function by preceding the
function’s prototype with the key-word virtual in the
base class.

Virtual Functions (cont.)

Invokes a virtual function through
o a base-class pointer to a derived-class object (e.g., shapePtr->draw())
o abase-class reference to a derived-class object (e.g., shapeRef.draw())

o the program will choose the correct derived-class function dynamically (i.e.,
at execution time) based on the object type—not the pointer or reference

type.
o Known as dynamic binding or late binding.

A virtual function is called by referencing a specific object by name and
using the dot member-selection operator (e.g., squareObject.draw()),

o the function invocation is resolved at compile time (this is called static
binding)

o the virtual function that is called is the one defined for (or inherited by)
the class of that particular object

m this is not polymorphic behavior.
Dynamic binding with vi rtual functions occurs only off pointer handles.

Observations: Virtual Functions

m With virtual functions, the type of the object determines
which version of a virtual function to invoke

o not the type of the handle (pointer or reference) used to
invoke the member functions
m When a derived class chooses not to override a virtual
function from its base class, the derived class simply
inherits its base class virtual functions implementation.

Virtual Functions (cont.)

classes CommissionEmployee and
BasePlusCommissionEmployee

The only new feature in these files 1s that we specify each class’s
earnings and print member functionsas virtual

Functions earns n?s and printare virtual in class
CommissionEmployee,

o class BasePlusCommissionEmployee’s earnings and
print functions override class CommissionEmployee’s.

Now, If we aim a base-class CommissionEmployee
pointer at a derived-class BasePlusCommissionEmployee
object

o the BasePlusCommissionEmployee object’s
corresponding function will be invoked.

I // Fig. 13.4: CommissionEmployee.h

2 // CommissionEmployee class definition represents a commission employee.
3 #ifndef

4 #define

5

6 #include <string> // C++ standard string class

7 using namespace std;

8

9 class CommissionEmployee

10 {

Il public:

12 CommissionEmployee(const string &, const string &, const string &,
13 double = , double =)

14

15 void setFirstName(const string &); // set first name

16 string getFirstName() const; // return first name

17

18 void setLastName(const string &); // set last name

19 string getLastName() const; // return last name
20

Fig. 13.4 | CommissionEmployee class header declares earnings
and print as virtual. (Part | of 2.)

21 void setSocialSecurityNumber(const string &); // set SSN

22 string getSocialSecurityNumber() const; // return SSN

23

24 void setGrossSales(double); // set gross sales amount

25 double getGrossSales() const; // return gross sales amount
26

27 void setCommissionRate(double); // set commission rate

28 double getCommissionRate() const; // return commission rate
29

30 virtual double earnings() const; // calculate earnings

31 virtual void print() const; // print CommissionEmployee object
32 private:

33 string firstName;

34 string lastName;

35 string socialSecurityNumber;

36 double grossSales; // gross weekly sales

37 double commissionRate; // commission percentage

38 }; // end class CommissionEmployee

39

40 #endif

Fig. 13.4 | CommissionEmployee class header declares earnings
and print as virtual. (Part 2 of 2.)

// Fig. 13.5: BasePlusCommissionEmployee.h

// BasePlusCommissionEmployee class derived from class
// CommissionEmployee.

#ifndef

#define

#include <string> // C++ standard string class

#include // CommissionEmployee class declaration
using namespace std;

ovVwvwoHO~NOTWBMLWN=

Fig. 13.5 | BasePTusCommissionEmployee class header declares
earnings and print functions as virtual. (Part | of 2.)

Il class BasePlusCommissionEmployee : public CommissionEmployee
12 {

13 public:

14 BasePlusCommissionEmployee(const string &, const string &,

I5 const string &, double = , double = , double =);
16

17 void setBaseSalary(double); // set base salary

18 double getBaseSalary() const; // return base salary

19

20 virtual double earnings() const; // calculate earnings

21 virtual void print() const; // print BasePlusCommissionEmployee object
22 private:

23 double baseSalary; // base salary

24 }; // end class BasePlusCommissionEmployee

25

26 #endif

Fig. 13.5 | BasePTusCommissionEmployee class header declares
earnings and print functions as virtual. (Part 2 of 2.)

Virtual Functions (cont.)

= Declaring a member function virtual causes the
program to dynamically determine which function to
Invoke

o based on the type of object to which the handle points,
rather than on the type of the handle.

Virtual Functions (cont.)

I // Fig. 13.6: figl3_06.cpp

2 // Introducing polymorphism, virtual functions and dynamic binding.
3 #include <iostream>

4 #include <iomanip>

5 #include

6 #include

7 using namespace std;

8

9 int main(Q)

10 {

11 // create base-class object

12 CommissionEmployee commissionEmployee(

13 ’ ’ L H);

14

I5 // create base-class pointer

16 CommissionEmployee *commissionEmployeePtr = 0;

17

18 // create derived-class object

19 BasePlusCommissionEmployee basePlusCommissionEmployee(
20 ’ H ’ ’ ’);
21

Fig. 13.6 | Demonstrating polymorphism by invoking a derived-class
virtual function via a base-class pointer to a derived-class object.
(Part 1 of 6.)

Static Binding

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

// create derived-class pointer
BasePlusCommissionEmployee *basePlusCommissionEmployeePtr = (;

// set floating-point output formatting
cout << fixed << setprecision(7);

Static binding

// output objects using static binding
cout <<

<< T
commissionEmployee.print(); // static binding
cout << ;

basePlusCommissionEmployee.print(); // static binding

// output objects using dynamic binding
cout <<
<<

Fig.

13.6 | Demonstrating polymorphism by invoking a derived-class

virtual function via a base-class pointer to a derived-class object.
(Part 2 of 6.)

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

// aim base-class pointer at base-class object and print
commissionEmployeePtr = &commissionEmployee;

cout <<
<<
<<

commissionEmployeePtr->print(); // invokes base-class print

// aim derived-class pointer at derived-class object and print
basePlusCommissionEmployeePtr = &basePlusCommissionEmployee;

cout <<
<<
<<

basePlusCommissionEmployeePtr->print(); // invokes derived-class print

// aim base-class pointer at derived-class object and print
commissionEmployeePtr = &basePlusCommissionEmployee;

cout <<
<<
<<

FEE T

Base-class pointer to
derived-class object

Fig. 13.6 | Demonstrating polymorphism by invoking a derived-class
virtual function via a base-class pointer to a derived-class object.
(Part 3 of 6.)

59 // polymorphism; invokes BasePlusCommissionEmployee's print;
60 // base-class pointer to derived-class object
61 commissionEmployeePtr->print();

62 cout << gnd1;

63 3 // end main \ QVirtual declaration
Fig. 13.6 | Demonstrating polymorphism by invoking a M makes it object
virtual function via a base-class pointer to a derived-class object. specific, not pointer

(Part 4 of 6.) specific.

UNow print() from
derived-class is called
Instead of base-class

Abstract Classes and pure virtual Functions

m There are cases in which it’s useful to define classes from
which you never intend to instantiate any objects.
o Such classes are called abstract classes.
o These classes normally are used as base classes in inheritance hierarchies

m These classes cannot be used to instantiate objects, because,
abstract classes are incomplete
o derived classes must define the “missing pieces.”

= An abstract class provides a base class from which other classes
can inherit.

m Classes that can be used to instantiate objects are called
concrete classes.

o Such classes define every member function they declare.

Abstract Classes and pure virtual Functions
(cont.)

Abstract base classes are too generic to define real objects;

o we need to be more specific before we can think of instantiating
objects.

For example, if someone tells you to “draw the two-

dimensional shape,” what shape would you draw?

Concrete classes provide the specifics that make it reasonable
to Instantiate objects.

An inheritance hierarchy does not need to contain any abstract
classes, but many object-oriented systems have class
hierarchies headed by abstract base classes.

o In some cases, abstract classes constitute the top few levels of the
hierarchy.

Abstract Classes and pure virtual Functions
(cont.)

A good example of this is the shape hierarchy, which
begins with abstract base class Shape.

A class Is made abstract by declaring one or more of its
virtual functions to be “pure.”

o Anpure virtual function is specified by placing “= 0” in its
declaration, as in

virtual void draw() const = 0; // pure virtual
function

The “= 0” is a pure specifier.
Pure virtual functions do not provide implementations.

Abstract Classes and pure virtual Functions
(cont.)

= Every concrete derived class must override all base-class pure
virtual functions with concrete implementations of those
functions.

m The difference between a virtual function and a pure
virtual function is that

o avirtual function has an implementation and gives the derived class the
option of overriding the function.

o By contrast, a pure virtual function does not provide an implementation
and requires the derived class to override the function for that derived class
to be concrete; otherwise the derived class remains abstract.

= Pure virtual functions are used when it does not make sense
for the base class to have an implementation of a function,

o you want all concrete derived classes to implement the function.

Abstract Classes and Pure virtual Functions (cont.)

m Although we cannot instantiate objects of an abstract
base class

o Wwe can use the abstract base class to declare pointers and

references that can refer to objects of any concrete classes
derived from the abstract class.

m Programs typically use such pointers and references to
manipulate derived-class objects polymorphically.

Observations

An abstract class defines a common public interface for
the various classes in a class hierarchy

o An abstract class contains one or more pure virtual functions
that concrete derived classes must override.

Failure to override a pure virtual function in a derived
class makes that class abstract

o Attempting to instantiate an object of an abstract class causes
a compilation error

An abstract class has at least one pure virtual function

O An abstract class also can have data members and concrete
functions (including constructors and destructors) which are
subject to the normal rules of inheritance by derived classes

Case Study: Payroll System Using Polymorphism
(cont.)

Problem: A company pays its employees weekly. The
employees are of three types:

O

O

O

O

O

salaried employees are paid a fixed weekly salary regardless
of the number of hours worked,

commission employees are paid a percentage of their sales
and

base-salary-plus-commission employees receive a base
salary plus a percentage of their sales.

The company has decided to reward base-salary-plus-
commission employees by adding 10 percent to their base
salaries.

The company wants to implement a C++ program that
performs its payroll calculations polymorphically.

We use abstract class EmpToyee to represent the general
concept of an employee.

------- Employee class is abstract;
displayed in italics

Fig. 13.7 | Employee hierarchy UML class diagram.

Employee

Salaried-
Employee

Commission-
Employee

BasePlus-
Commission-
Employee

earnings

weeklySalary

commissionRate * grossSales

(commissionRate *
grossSales) + baseSalary

print

firstName lastName
social security number: SSN

salaried employee: firstName lastName
social security number: SSN
weekly salary: weeklySalary

commission employee: firstName lastName
social security number: SSN

gross sales: grossSales;

commission rate: commissionRate

base-salaried commission employee:
firstName lastName

social security number: SSN

gross sales: grossSales;

commission rate: commissionRate;

base salary: baseSalary

Fig. 13.8 | Polymorphic interface for the Employee hierarchy

classes.

Abstract Base Class: Employee

I // Fig. 13.9: Employee.h
2 // Employee abstract base class.
3 #ifndef
4 #define
5
6 #include <string> // C++ standard string class
7 using namespace std;
8
Fig. 13.9 | Employee class header. (Part | of 2.)

Abstract Base Class: Employee

9 «class Employee

10 {

Il public:

12 Employee(const string &, const string &, const string &);
13

14 void setFirstName(const string &); // set first name

15 string getFirstName() const; // return first name

16

17 void setLastName(const string &); // set last name

18 string getLastName() const; // return last name

19

20 void setSocialSecurityNumber(const string &); // set SSN
21 string getSocialSecurityNumber() const; // return SSN

22

23 // pure virtual function makes Employee an abstract base class
24 virtual double earnings() const = 0; // pure virtual

25 virtual void print() const; // virtual

26 private:

27 string firstName;

28 string lastName;

29 string socialSecurityNumber;

30 }; // end class Employee

31

32 #endif // EMPLOYEE_H

Fig. 13.9 | Employee class header. (Part 2 of 2.)

Abstract Base Class: Employee

I // Fig. 13.10: Employee.cpp

2 // Abstract-base-class Employee member-function definitions.
3 // Note: No definitions are given for pure virtual functions.
4 #include <iostream>

5 #include // Employee class definition

6 using namespace std;

7

8 // constructor

9 Employee::Employee(const string &first, const string &last,
10 const string &ssn)
11 : firstName(first), lastName(last), socialSecurityNumber(ssn)
12 {
13 // empty body
14 } // end Employee constructor
15

16 // set first name
17 void Employee: :setFirstName(const string &first)

18 {

19 firstName = first;

20 1} // end function setFirstName
21

Fig. 13.10 | Employee class implementation file. (Part | of 3.)

Abstract Base Class: Employee

22 // return first name
23 string Employee::getFirstName() const

24 {

25 return firstName;

26 } // end function getFirstName
27

28 // set last name
29 void Employee::setlLastName(const string &last)

30 {

31 TastName = last;

32 } // end function setlLastName
33

34 // return last name
35 string Employee::getLastName() const

36 {

37 return lastName;

38 } // end function getlLastName
39

Fig. 13.10 | Employee class implementation file. (Part 2 of 3.)

Abstract Base Class: Employee

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

// set social security number
void Employee::setSocialSecurityNumber(const string &ssn)
{
socialSecurityNumber = ssn; // should validate
} // end function setSocialSecurityNumber

// return social security number
string Employee: :getSocialSecurityNumber() const
{

return socialSecurityNumber;
} // end function getSocialSecurityNumber

// print Employee's information (y4
void Employee::print() const
{

cout << getFirstName() << << getLastName()

tual, but not pure virtual

UAbstract Base Class
Employee’s print () is a
virtual member function but
not pure virtual function
it has an implementation
Upure virtual function
earnings() has no
definition/implementation

<< << getSocialSecurityNumber();

} // end function print

Fig. 13.10 | Employee class implementation file. (Part 3 of 3.)

Concrete Derived Class SalariedEmployee

I // Fig. 13.11: SalariedEmployee.h .

2 // SalariedEmployee class derived from Employee. CIaSS Sa-l ari edEmp-I Oyee

3 #ifndef .

4 #define derives from class Emp 1oyee.

5

6 #include // Employee class definition

7

8 «class SalariedEmployee : public Employee

9 {

10 public:

11 SalariedEmployee(const string &, const string &,

12 const string &, double =);

:: id setWeeklySal (double); // set k1 1 Override Abstract
void setWeeklySalary(double); set weekly salary .

15 double getWeeklySalary() const; // return weekly salary Base-Class’s p”nt() &

16 _ _ _ _ earnings() function

17 // keyword virtual signals intent to override

18 virtual double earnings() const; // calculate earnings

19 virtual void print() const; // print SalariedEmployee object

20 private:

21 double weeklySalary; // salary per week

22 }; // end class SalariedEmployee

23

24 #endif // SALARIED_H

Fig. 13.11 | SalariedEmployee class header.

Concrete Derived Class SalariedEmployee (cont.)

= Function earnings overrides pure virtual function _
earnings in Employee to provide a concrete implementation
that returns the SalariedEmployee’s weekly salary.

= If we did not implement earnings, class
SalariedEmployee would be an abstract class.

= Inclass SalariedEmployee’s header, we declared member
functions earnings and printasvirtual

o This i1s redundant.

o We defined them as virtual in base class Emp1oyee, so they remain
virtual functions throughout the class hierarchy.

Concrete Derived Class SalariedEmployee (cont.)

// Fig. 13.12: SalariedEmployee.cpp

|

2 // SalariedEmployee class member-function definitions.

3 #include <iostream>

4 #include // SalariedEmployee class definition
5 using namespace std;

6

7 // constructor

8 SalariedEmployee::SalariedEmployee(const string &first,
9 const string &last, const string &ssn, double salary)
10 : Employee(first, last, ssn)

11 {

12 setWeeklySalary(salary);

13 } // end SalariedEmployee constructor

14

I5 // set salary
16 void SalariedEmployee::setWeeklySalary(double salary)

17 {

18 if (salary >=)

19 weeklySalary = salary;

20 else

21 throw invalid_argument()
22 1} // end function setWeeklySalary

23

Fig. 13.12 | SalariedEmployee class implementation file. (Part | of

Concrete Derived Class SalariedEmployee (cont.)

24 // return salary

25 double SalariedEmployee: :getWeeklySalary() const : :

26 { L Override pure virtual
27 return weeklySalary; f - -

28 } // end function getWeeklySalary unction eammgs()

29

30 // calculate earnings;
31 // override pure virtual function earnings in Employee
32 double SalariedEmployee::earnings() const

33 { .l .

34 return getWeeklySalary(); U Definition of print()
35 } // end function earnings in derived-class

36

37 // print SalariedEmployee's informatio
38 void SalariedEmployee::print() const

39 {

40 cout << ;

41 Employee::print(); // reuse abstract base-class print function
42 cout << << getWeeklySalary(Q);

43 } // end function print

Fig. 13.12 | SalariedEmployee class implementation file. (Part 2 of
2))

Concrete Derived Class SalariedEmployee
(cont.)

m Function print of class SalariedeEmployee
overrides Emp loyee function print.

m Ifclass SalariedEmployee did not override
print, SalariedEmployee would inherit the
Employee version of print.

Another Concrete Derived Class
CommissionEmployee

m Class CommissionEmployee derives from
Employee.

m The constructor passes the first name, last name and
social security number to the Employee
constructor to initialize Employee’s private
data members.

m Function print calls base-class function print to
display the Emp-l Oyee'speCifiC Employee & ------ Employee class is abstract;

displayed in italics
Information.

SalariedEmployee l CommissionEmployee |

|

Another Derived Class CommissionEmployee

I // Fig. 13.13: CommissionEmployee.h

2 // CommissionEmployee class derived from Employee.
3 #ifndef

4 #define

5

6 #include // Employee class definition
7

Fig. 13.13 | CommissionEmployee class header. (Part | of 2.)

Another Derived Class CommissionEmployee

8 class CommissionEmployee : public Employee

9 {

10 public:

11 CommissionEmployee(const string &, const string &,

12 const string &, double = , double =)

13

14 void setCommissionRate(double); // set commission rate

15 double getCommissionRate() const; // return commission rate
16

17 void setGrossSales(double); // set gross sales amount

18 double getGrossSales() const; // return gross sales amount
19

20 // keyword virtual signals intent to override

21 virtual double earnings() const; // calculate earnings

22 virtual void print() const; // print CommissionEmployee object
23 private:

24 double grossSales; // gross weekly sales

25 double commissionRate; // commission percentage

26 }; // end class CommissionEmployee

27

28 #endif // COMMISSION_H

Fig. 13.13 | CommissionEmployee class header. (Part 2 of 2.)

Another Derived Class CommissionEmployee

I // Fig. 13.14: CommissionEmployee.cpp

2 // CommissionEmployee class member-function definitions.

3 #include <iostream>

4 #include // CommissionEmployee class definition
5 using namespace std;

6

7 // constructor

8 CommissionEmployee::CommissionEmployee(const string &first,

9 const string &last, const string &ssn, double sales, double rate)
10 : Employee(first, last, ssn)
11 {
12 setGrossSales(sales);
13 setCommissionRate(rate);
14 } // end CommissionEmployee constructor
15

Fig. 13.14 | CommissionEmployee class implementation file. (Part I
of 4.)

Another Derived Class CommissionEmployee

16 // set gross sales amount
17 void CommissionEmployee::setGrossSales(double sales)

18 {

19 if (sales >=)

20 grossSales = sales;

21 else

22 throw invalid_argument()
23 } // end function setGrossSales

24

25 // return gross sales amount
26 double CommissionEmployee::getGrossSales() const

27 {

28 return grossSales;

29 1} // end function getGrossSales
30

Fig. 13.14 | CommissionEmployee class implementation file. (Part 2
of 4.)

Another Derived Class CommissionEmployee

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

// set commission rate
void CommissionEmployee::setCommissionRate(double rate)

{

if (rate > && rate <)
commissionRate = rate;
else

throw invalid_argument(
} // end function setCommissionRate

// return commission rate

double CommissionEmployee::getCommissionRate() const

{

LOverride the pure virtual
function earnings()

return commissionRate;
} // end function getCommissionRate

// calculate earnings; override pure virtual function earnings in Employee

double CommissionEmployee::earnings() const

{
return getCommissionRate() * getGrossSales();
} // end function earnings

Fig. 13.14 | CommissionEmployee class implementation file. (Part 3

of 4.)

Another Derived Class CommissionEmployee

52 // print CommissionEmployee's information

53 void CommissionEmployee::print() const
54 {
55 cout << ;

W Definition of print() in
derived-class

56 Employee::print(); // code reuse
57 cout << << getGrossSales()
58 << << getCommissionRate();

59 } // end function print

Fig. 13.14 | CommissionEmpTloyee class implementation file. (Part 4
of 4.)

Indirect Concrete Derived Class
BasePlusCommissionEmployee

Class BasePlusCommissionEmployee directly
inherits from class CommissionEmployee

o itisan indirect derived class of class Emp loyee.

BasePlusCommissionEmployee’s print function
outputs
o "base-salaried", followed by the output of base-class

CommissionEmployee’s print function (another example
of code reuse), then the base salary.

Employee & ------ Employee class is abstract;
displayed in italics

SalariedEmployee l CommissionEmployee |

BasePlusCommissionEmployee I

Indirect Concrete Derived Class
BasePlusCommissionEmployee

VoO~NOTNDE WN =—

// Fig. 13.15: BasePlusCommissionEmployee.h

// BasePlusCommissionEmployee class derived from CommissionEmployee.
#ifndef

#define

#include // CommissionEmployee class definition

class BasePlusCommissionEmployee : public CommissionEmployee
{
public:
BasePTusCommissionEmployee(const string &, const string &,
const string &, double = , double = , double =);

void setBaseSalary(double); // set base salary
double getBaseSalary() const; // return base salary

// keyword virtual signals intent to override

virtual double earnings() const; // calculate earnings

virtual void print() const; // print BasePlusCommissionEmployee object
private:

double baseSalary; // base salary per week
}; // end class BasePlusCommissionEmployee

#endif // BASEPLUS_H

. 13.15 | BasePlusCommissionEmployee class header.

Indirect Concrete Derived Class
BasePlusCommissionEmployee

I // Fig. 13.16: BasePlusCommissionEmployee.cpp
2 // BasePlusCommissionEmployee member-function definitions.
3 #include <iostream>
4 #include
5 using namespace std;
6
7 // constructor
8 BasePlusCommissionEmployee::BasePlusCommissionEmployee(
9 const string &first, const string &last, const string &ssn,
10 double sales, double rate, double salary)
11 : CommissionEmployee(first, last, ssn, sales, rate)
12 {
13 setBaseSalary(salary); // validate and store base salary
14 } // end BasePlusCommissionEmployee constructor
15
Fig. 13.16 | BasePlusCommissionEmployee class implementation

file. (Part I of 3.)

Indirect Concrete Derived Class
BasePlusCommissionEmployee

16 // set base salary
17 void BasePlusCommissionEmployee: :setBaseSalary(double salary)

18 {

19 if (salary >=)

20 baseSalary = salary;

21 else

22 throw invalid_argument();
23 } // end function setBaseSalary

24

25 // return base salary
26 double BasePlusCommissionEmployee::getBaseSalary() const

21 o QDefinition of virtual
28 return baseSalary; . .

29 } // end function getBaseSalary function earnlngs()
30 - . _

31 // calculate earnings; / in derived-class

32 // override virtual function earnings in CommissionEmployee
33 double BasePlusCommissionEmployee::earnings() const

34 {

35 return getBaseSalary() + CommissionEmployee::earnings();

36 1} // end function earnings 46 // calculate earnings; override pure virtual function earnings in Enployee
37 47 double CommissionEmployee: :earnings() const

8 {

Fig. 13.16 | BasePlusCommissionEmployee class impler4 return getComnissionfate() * getGrossSales();

. 50 [end function earnings
file. (Part 2 of 3.) , Hi :

Fig. 13.14 | CommissionEmployee class implementation file. (Part 3

Indirect Concrete Derived Class
BasePlusCommissionEmployee

38 // print BasePlusCommissionEmployee's information S : .
39 void BasePlusCommissionEmployee::print() const EID_eflnltlon of prmt() In
40 { derived-class

41 cout << ;

42 CommissionEmployee::print(); // code reuse

43 cout << << getBaseSalary();

44 } // end function print

Fig. 13.16 | BasePlusCommissionEmployee class implementation
file. (Part 3 of 3.)

Demonstrating Polymorphic Processing

= Create an object of each of the three concrete classes
SalariedEmployee, CommissionEmployee and
BaseP1usComm1ss1onEmp1oyee

= Manipulates these objects

O
O

static binding,
polymorphically, using a vector of Emp loyee pointers.

m Each member-function invocation is an example of static
binding

O

O

at compile time, because we are using name handles (not
pointers or references that could be set at execution time)

the compiler can identify each object’s type to determine
which print and earnings functions are called.

Example: Polymorphic Processing

// Fig. 13.17: figl3_17.cpp

// Processing Employee derived-class objects individually
// and polymorphically using dynamic binding.
#include <iostream>

#include <iomanip>

#include <vector>

#include

#include

9 #include

10 #include

Il using namespace std;

O~NONUND WN -

o
w

13 void virtualViaPointer(const Employee const); // prototype
14 void virtualViaReference(const Employee &); // prototype

Fig. 13.17 | Employee class hierarchy driver program. (Part | of 7.)

const Employee * :pointer to an object and the object cannot be modified.
Employee * const :you cannot change what the pointer points to.

const Employee * const :a pointer which cannot be changed to point to something
else, nor can it be used to change the object it points to.

Example: Polymorphic Processing

I6 1int main(Q)

17 {

18 // set floating-point output formatting

19 cout << fixed << setprecision();

20

21 // create derived-class objects

22 SalariedEmployee salariedEmployee(

23 H L L);

24 CommissionEmployee commissionEmployee(

25 ’ ’ ’ H);

26 BasePTusCommissionEmployee basePlusCommissionEmployee(
27 H) L] L) ;

28

29 cout << ;
30

Fig. 13.17 | Employee class hierarchy driver program. (Part 2 of 7.)

Example: Polymorphic Processing

31 // output each Employee’s information and earnings using static binding
32 salariedEmployee.print();

33 cout << << salariedEmployee.earnings() << ;

34 commissionEmployee.print();

35 cout << << commissionEmployee.earnings() << ;

36 basePlusCommissionEmployee.print();

37 cout << << basePlusCommissionEmployee.earnings()

38 << ;

39

40 // create vector of three base-class pointers

41 vector < Employee * > employees()

42

43 // initialize vector with Employees

44 employees['] = &salariedEmployee;

45 employees|[] = &commissionEmployee;

46 employees|[] = &basePlusCommissionEmployee;

47

48 cout << ;
49

Fig. 13.17 | Employee class hierarchy driver program. (Part 3 of 7.)

Example: Polymorphic Processing

50 // call virtualViaPointer to print each Employee's information

51 // and earnings using dynamic binding

52 cout << ;
53

54 for (size t i = U; 1 < employees.size(); ++i)

55 virtualViaPointer(employees[1]);

56

57 // call virtualViaReference to print each Employee's information
58 // and earnings using dynamic binding

59 cout << ;
60

61 for (size t i = U; i < employees.size(); ++1)

62 virtualViaReference(*employees[i]); // note dereferencing
63 1} // end main

64

65 // call Employee virtual functions print and earnings off a
66 // base-class pointer using dynamic binding
67 void virtualViaPointer(const Employee * const baseClassPtr)

68 {

69 baseClassPtr->print();

70 cout << << baseClassPtr->earnings() << ;
71 } // end function virtualViaPointer

72

Fig. 13.17 | Employee class hierarchy driver program. (Part 4 of 7.)

Example: Polymorphic Processing

73 // call Employee virtual functions print and earnings off a
74 // base-class reference using dynamic binding
75 void virtualViaReference(const Employee &baseClassRef)

76 {
77 baseClassRef.print(); ¢
78 cout << << baseClassRef.earnings() << ;

79 } // end function virtualViaReference

Employees processed individually using static binding:

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: 800.00

earned $800.00

commission employee: Sue Jones

social security number: 333-33-3333

gross sales: 10000.00; commission rate: 0.06
earned $600.00

base-salaried commission employee: Bob Lewis

social security number: 444-44-4444

gross sales: 5000.00; commission rate: 0.04; base salary: 300.00
earned $500.00

Fig. 13.17 | EmpTloyee class hierarchy driver program. (Part 5 of 7.)

Example: Polymorphic Processing

Employees processed polymorphically using dynamic binding:
Virtual function calls made off base-class pointers:

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: 800.00

earned $800.00

commission employee: Sue Jones

social security number: 333-33-3333

gross sales: 10000.00; commission rate: 0.06
earned $600.00

base-salaried commission employee: Bob Lewis

social security number: 444-44-4444

gross sales: 5000.00; commission rate: 0.04; base salary: 300.00
earned $500.00

Fig. 13.17 | Employee class hierarchy driver program. (Part 6 of 7.)

Example: Polymorphic Processing

Virtual function calls made off base-class references:

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: 800.00

earned $800.00

commission employee: Sue Jones

social security number: 333-33-3333

gross sales: 10000.00; commission rate: 0.06
earned $600.00

base-salaried commission employee: Bob Lewis

social security number: 444-44-4444

gross sales: 5000.00; commission rate: 0.04; base salary: 300.00
earned $500.00

Fig. 13.17 | Employee class hierarchy driver program. (Part 7 of 7.)

Polymorphic Processing (cont.)

vector employees, which contains three Emp 1oyee pointers.
employees[O] atobject salariedEmployee.
employees[1] at object commissionEmployee.
employees[2] at object basePlusCommissionEmployee.

The compiler allows these assignments, because a
SalariedEmpl o%/ee isan Emp 1 o¥ee, a
CommissionEmployeeisan Employee and a
BasePlusCommissionEmployeeisan Employee.

Polymorphic Processing (cont.)

Function virtualVviaPointer receives in parameter
baseClassPtr (of type const Employee * const)
the address stored in an emp loyees element.

Each call to virtualviaPointeruses _
baseClassPtr toinvoke virtual functions print and
earnings

Note that function virtualviaPointer does not contain
any SalariedeEmployee, CommissionEmployee or
BasePlusCommissionEmployee type information.

The function knows only about base-class type Emp l1oyee.

The output illustrates that the appropriate functions for each
class are indeed invoked and that each object’s proper
Information is displayed.

Polymorphic Processing (cont.)

Function virtualVviaReference receives in its parameter
baseClassRef (of type const Employee &) a reference
to the object obtained by dereferencing the pointer stored in
each employees element.

Each call to virtualviaReference invokes virtual
functions print and earnings via reference
baseClassRef to demonstrate that polymorphic processing
occurs with base-class references as well.

Each vi rtual-function invocation calls the function on the
object to which baseClassRef refers at runtime.

This Is another example of dynamic binding.

The output produced using base-class references Is identical to
the output produced using base-class pointers.

Polymorphism, Virtual Functions and Dynamic
Binding “Under the Hood”

Internal implementation of polymorphism, virtual
functions and dynamic binding.

More importantly, it will help you appreciate the overhead of

polymorphism

o Interms of additional memory consumption and processor
time.

Polymorphism is accomplished through three levels of

pointers (1.e., “triple indirection”).

How an executing program uses these data structures to

execute virtual functions and achieve the dynamic binding
associated with polymorphism.

Polymorphism, Virtual Functions and Dynamic
Binding “Under the Hood” (cont.)

C++ compiles a class that has one or more virtual functions
o builds a virtual function table (vtable) for that class.

= An executing program uses the vtable to select the proper function
implementation each time a vi rtual function of that class is
called.
o the vtables for classes Employee, SalariedEmployee,
CommissionEmployee and BasePlusCommissionEmployee.
= Inthe vtable for class Emp 1oyee, the first function pointer is set to
0 (i.e., the null pointer).

o This is done because function earnings is a pure virtual function and
therefore lacks an implementation.

Polymorphism, Virtual Functions and Dynamic
Binding “Under the Hood” (cont.)

The second function pointer points to function print, which
displays the employee’s full name and social security number.

Any class that has one or more null pointers in its vtable is an
abstract class.

Classes without any null vtable pointers are concrete classes.

Class SalariedeEmployee overrides function earnings to

return the employee’s weekly salary,

o the function pointer points to the earnings function of class
SalariedEmployee.

SalariedEmployee also overrides print, so the

corresponding function pointer points to the

SalariedEmployee member function that prints

"salaried employee: " followed by the employee’s name,

social security number and weekly salary.

Virtual function working mechanism

{abstract <lass)
Employee wable

earnings ° (0 ndScates pure vetual lunction)
print
first last
ssn: L.,
SalariedEsployee salariedEnployes
uadle §
earnings 3
klySal -
kSt 4 John Seith vector < Employee * >
int i11-1-111
salarfed .¢—. $800.00 | esployees(4);
enployee i
0 &salarfed-
(03 Employes
ComnissionEmployee commissionfaployee (1] scomeission:
wtable A Employwe SO
earnings : _ i AbasePlus-
grossSales : e
* commissionRate R Sue Jones Comaission-
print 33333035 [mploywe
Commianlon ——— $120,000,00

employee: ... ’ o8

basePlusComm) ssionteployee

BasePlusCommissionfmployee
wable .

Inu-Sa).u‘y . earnings k.
(grossSales Lowi
* commissionRate) .:‘_'“_“:‘
base. «—OFICESS $5.000.00 .
salaried o
commission $300.00
employee: ...

Flow of Virtual Function Call baseClassPtr->print() baseClassper

When baseClassPtr Points to Object hourlyEnployee
pass &commissionEmployee getto commissionEmployee execute prine o
w baseClassPtr viabie commissionEmployee

g2t to commissionEnployee 28t 10 print poirter
oyect n vtable

Fig. 13.18 | How virtual function calls work.

Polymorphism, Virtual Functions and Dynamic
Binding “Under the Hood” (cont.)

The earnings function pointer in the vtable for class
commissionEmployee

o pointsto CommissionEmployee’s earnings function

o returns the employee’s gross sales multiplied by the
commission rate.

The print function pointer points to the

CommissionEmployee version of the function,

o prints the employee’s type, name, social security number,
commission rate and gross sales.

As in class SalariedEmployee, both functions
override the functions in class Emp loyee.

Polymorphism, Virtual Functions and Dynamic
Binding “Under the Hood” (cont.)

The earnings function pointer in the vtable for class
BasePlusCommissionEmployee

o pointsto the BasePlusCommissionEmployee’s earnings
function

o returns the employee’s base salary plus gross sales multiplied by
commission rate.

The print function pointer points to the
BasePlusCommissionEmployee version of the function,

o prints the employee’s base salary plus the type, name, social security
number, commission rate and gross sales.

Both functions override the functions in class
CommissionEmployee.

Polymorphism, Virtual Functions and Dynamic
Binding “Under the Hood” (cont.)

= Polymorphism is accomplished through an
elegant data structure involving three levels .. -
of pointers.

= One level—the function pointers in the | \
vtable. e
o These point to the actual functions that ol R
execute when a virtual function is ==y ’ =
iInvoked. i b :
m Second level of pointers.
o Whenever an object of a class withone ..
or more v7rtual functions is
Instantiated, the compiler attaches to the — wumsmei
object a pointer to the vtable for that i Lt il
class. oo e

o Display each of the object’s data member values. Fig, 1318 | How virtual fonctioncalls work,

Polymorphism, Virtual Functions and Dynamic
Binding “Under the Hood” (cont.)

m The third level of pointers

simply contains the
handles to the objects that
receive the virtual
function calls.

The handles in this level
may also be references.

11111111111
.00

BasePlusCommiss

aseSalary » earnings

o .:“\.-\l‘v-.v ’4'—‘ Bob

< 1 Rate orint o8 Sasam
2= F - $5.00
salaried

e fana $300
eplo

Flow of Virtual Function Call baseClassPtr->print()
When baseClassPtr Points to Object hourlyEnployee

1 pass &cocamissionEmployee 3 petto commissionEmploye
10 baseClassPer viabie
2> get 1o commissionEnployee g , ¢t 10 print ponte

e 3 °~ e prine |
commissionEmployee

Fig. 13.18 | How virtual function calls work.

Polymorphism, Virtual Functions and Dynamic
Binding “Under the Hood” (cont.)

Let’s see how a typical virtual function call executes.
vector employees contains Emp 1oyee pointers.

Consider the call baseClassPtr->print() in function
virtualviaPointer.

m Assume that baseClassPtr contains employees[1] (ie.,
the address of object commissionEmployeein employees).

= When the compiler compiles this statement, it determines that the
call Is indeed being made via a base-class pointer and that print
isa v7rtual function.

o The compiler determines that print is the second entry in each of the
vtables.

o To locate this entry, the compiler notes that it will need to skip the first entry.

Polymorphism, Virtual Functions and Dynamic
Binding “Under the Hood” (cont.)

m The compiler compiles an offset or displacement of
four bytes (four bytes for each pointer on today’s
popular 32-bit machines, and only one pointer needs to
be skipped) into the table of machine-language object-
code pointers to find the code

o that will execute the virtual function call.

Polymorphism, Virtual Functions and Dynamic
Binding “Under the Hood” (cont.)

The compiler generates code that performs the following
operations.

O

Select the it entry of employees, and pass it as an argument to
function virtualviaPointer. This sets parameter
baseClassPtr to pointto commissionEmployee.

Dereference that pointer to get to the commissionEmployee
object.

Dereference commissionEmployee’s vtable pointer to get to
the CommissionEmployee vtable.

Skip the offset of four bytes to select the print function pointer.

Dereference the print function pointer to form the “name” of
the actual function to execute, and use the function call operator
() to execute the appropriate print function.

Observations

m Polymorphism is typically implemented with virtual
functions and dynamic binding in C++, is efficient.

O

We can use those capabilities with nominal impact on
performance.

Polymorphism’s overhead is acceptable for most applications.

Polymorphism’s overhead may be too high for real time
applications with stringent performance.

Polymorphism and Runtime Type Information with
Downcasting, dynamic_cast, typeid and type_info

= Consider the company has decided to reward
BasePlusCommissionEmployees by adding 10 percent
to their base salaries.

s When processing Emp 1oyee objects polymorphically, we did
not need to worry about the “specifics.”

m To adjust the base salaries of
BasePlusCommissionEmployees, we have to determine
the specific type of each Emp /oyee object at execution time,
then act appropriately.

= Demonstrate the powerful capabilities of runtime type
Information (RTTI) and dynamic casting,

o enable a program to determine the type of an object at execution time
and act on that object accordingly.

Polymorphism and Runtime Type Information with
Downcasting, dynamic_cast, typeid and type_info (cont.)

m Some compilers require that RTTI be enabled before it
can be used in a program.

o InVisual C++ 2010, this option is enabled by default.

m Exercise: Increase by 10 percent the base salary of each
BasePlusCommissionEmployee.

Example: Downcasting

// NOTE:

#include
#include
#include
#include
#include
10 #include
I1 #include
12 #include

VoO~NOTNDE WN =—

// Fig. 13.19: figl3_19.cpp
// Demonstrating downcasting and runtime type information.

You may need to enable RTTI on your compiler

// before you can execute this application.

<iostream>
<iomanip>
<vector>
<typeinfo>

I3 using namespace std;

Fig. 13.19 | Demonstrating downcasting and runtime type
information. (Part | of 5.)

Example: Downcasting

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

int main()

{

// set floating-point output formatting
cout << fixed << setprecision();

// create vector of three base-class pointers
vector < Employee * > employees()

// initialize vector with various kinds of Employees
employees[] = new SalariedEmployee(

) H]);
employees[] = new CommissionEmployee(

’) H L);
employees[©] = new BasePlusCommissionEmployee(

’ ’] ’]) ;

Fig. 13.19 | Demonstrating downcasting and runtime type
information. (Part 2 of 5.)

Example: Downcasting

31 // polymorphically process each element in vector employees
32 for (size t i = 0; 1 < employees.size(); ++i)

33 {

34 employees[i]->print(); // output employee information
35 cout << endl;

36

37 // downcast pointer

38 BasePlusCommissionEmployee *derivedPtr =

39 dynamic_cast < BasePlusCommissionEmployee * >

40 (employees[1]);

41

42 // determine whether element points to base-salaried

43 // commission employee

44 if (derivedPtr !=) // 0 if not a BasePlusCommissionEmpTloyee
45 {

46 double oldBaseSalary = derivedPtr->getBaseSalary();
47 cout << << oldBaseSalary << endl;
48 derivedPtr->setBaseSalary(* oldBaseSalary);

49 cout <<

50 << derivedPtr->getBaseSalary() << endl;

51 } // end if

52

53 cout << << employees[i]->earnings() << ;
54 } // end for

Fig. 13.19 | Demonstrating downcasting and runtime type

infAarmatinn Dart 2 Af K)

Example: Downcasting

55

56 // release objects pointed to by vector’s elements
57 for (size t j = 0; j < employees.size(); ++J)

58 {

59 // output class name

60 cout <<

61 << typeid(*employees[j]).name() << endl;
62

63 delete employees[j 1;

64 } // end for

65 1} // end main

Fig. 13.19 | Demonstrating downcasting and runtime type
information. (Part 4 of 5.)

Example: Downcasting

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: 800.00

earned $800.00

commission employee: Sue Jones

social security number: 333-33-3333

gross sales: 10000.00; commission rate: 0.06
earned $600.00

base-salaried commission employee: Bob Lewis

social security number: 444-44-4444

gross sales: 5000.00; commission rate: 0.04; base salary: 300.00
old base salary: $300.00

new base salary with 10% increase is: $330.00

earned $530.00

deleting object of class SalariedEmployee
deleting object of class CommissionEmployee
deleting object of class BasePlusCommissionEmployee

Fig. 13.19 | Demonstrating downcasting and runtime type
information. (Part 5 of 5.)

Polymorphism and Runtime Type Information with
Downcasting, dynamic_cast, typeid and type_info (cont.)

Since we process the employees polymorphically, we cannot be
certain as to which type of Emp loyee is being manipulated at any
given time.

BasePlusCommissionEmployee employees must be identified
when we encounter them so they can receive the 10 percent salary
Increase.

To accomplish this, we use operator dynamic cast to determine
whether the type of each object is
BasePlusCommissionEmployee.

o This is the downcast operation.

o Dynamically downcast employees[1] from type Employee * to type
BasePlusCommissionEmployee *.

Using Polymorphism and Runtime Type Information with
Downcasting, dynamic_cast, typeid and type_info (cont.)

m |f the vector element points to an object that Is a
BasePlusCommissionEmployee object,
o then that object’s address is assigned to derivedPtr
o otherwise, 0 is assigned to derived-class pointer

derivedpPtr.

m If the value returned by the dynami c_cast operator
Is not 0
o the object is the correct type, and

o the 1T statement performs the special processing required for
the BasePlusCommissionEmployee object.

Polymorphism and Runtime Type Information with
Downcasting, dynamic_cast, typeid and type_info (cont.)

m Operator typeid returns a reference to an object of
class type info

o contains the information about the type of its operand,
Including the name of that type.

s When invoked, type_1nfo member function name
returns a pointer-based string that contains the type name
(e.9., 'class BasePlusCommissionEmployee')
of the argument passed to typeid.

m Touse typeid, the program must include header

' 55

<type lnfo> 56 // release objects pointed to by vector’s elements
57 for (size t j = 0; j < employees.size(); ++J)
58 {
59 // output class name
60 cout <<
61 << typeid(*employees[j]).name() << endl;
62
63 delete employees[j 1;
64 } // end for
65 } // end main

Fig. 13.19 | Demonstrating downcasting and runtime type
information. (Part 4 of 5.)

Virtual Destructors

A problem can occur when using polymorphism to process
dynamically allocated objects of a class hierarchy.

So far we have seen non virtual destructors
o destructors that are not declared with keyword virtual.

If a derived-class object with a nonvirtual destructor iIs

destroyed explicitly by applying the deTete operator to a
base-class pointer to the object,

o the C++ standard specifies that the behavior is undefined.

The simple solution to this problem is to create a
virtual destructor in the base class.

o This makes all derived-class destructors virtual even though
they do not have the same name as the base-class destructor.

Now, if an object in the hierarchy is destroyed explicitly by
applying the de 1 ete operator to a base-class pointer,

o the destructor for the appropriate class is called based on the
object to which the base-class pointer points.

Observations

If a class has a virtual function; provide a virtual
destructor, even if one is not required for the class.

o ensure that a custom derived-class destructor will be
invoked (if there is one) when a derived-class object is
deleted via a base class pointer

Constructor cannot be virtual
o Declaring a constructor virtual is a compilation error.

