
Nirmalya Roy

School of Electrical Engineering and Computer Science
Washington State University

Cpt S 122 – Data Structures

Polymorphism

Topics

 Introduction

 Introduction to Polymorphism

 Relationship among Objects in Inheritance Hierarchy

 Abstract Classes & pure virtual Functions

 Polymorphic processing

 virtual Functions & Dynamic Binding

 Polymorphism & Runtime Type Information (RTTI)

 downcasting, dynamic_cast, typeid, type_info

 virtual Destructors

Introduction

 One name, multiple forms

 Have we seen polymorphism before?

 Overloaded function, overloaded operators

 Overloaded member functions are selected for invoking by
matching argument, both type and number

 Information is known to the compiler at compile time
 Compiler is able to select the appropriate function at the compile

time

 This is called early binding, or static binding, or static linking
 An object is bound to its function call at compile time

 This is also known as compile time polymorphism

Introduction (cont.)

 Consider the following class definition where the
function name and prototype is same in both the base
and derived classes.

class A{

int x;

public:

void show() {…} //show() in base class

};

class B: public A{

int y;

public:

void show() {…} //show() in derived class

};

Introduction (cont.)

 How do we use the member function show() to print the
values of objects of both the classes A and B?

 prototype show() is same in both the places.

 The function is not overloaded and therefore static binding
does not apply.

 It would be nice if appropriate member function could be selected
while the program is running

 This is known as runtime polymorphism

 How could it happen?
 C++ supports a mechanism known as virtual function to achieve

runtime polymorphism

 At run time, when it is known what class objects are under
consideration, the appropriate version of the function is called.

Introduction (cont.)

 Function is linked with a particular class much later
after the compilation, this processed is termed as late
binding

 It is also known as dynamic binding because the selection of
the appropriate function is done dynamically at runtime.

 Dynamic binding is one of the powerful feature in C++

 Requires the use of pointers to objects

 We will discuss in detail how the object pointers and virtual
functions are used to implement dynamic binding or runtime
polymorphism

Introduction (cont.)

Polymorphism

Compile time
Polymorphism

Runtime
Polymorphism

Function
Overloading

Operator
Overloading

Virtual
Functions

 Polymorphism enables us to “program in the general” rather than
“program in the specific.”
 Enables us to write programs that process objects of classes that are part of

the same class hierarchy as if they were all objects of the hierarchy’s base
class.

 Polymorphism works off
 base-class pointer handles

 base-class reference handles

 but not off name handles.

 Relying on each object to know how to “do the right thing” in
response to the same function call is the key concept of
polymorphism.
 The same message sent to a variety of objects has “many forms” of results

 Polymorphism is the ability to create a variable, a function, or an
object that has more than one form.

Introduction (cont.)

 With polymorphism, we can design and implement

systems that are easily extensible.

 New classes can be added with little or no modification to the general

portions of the program

 New types of objects that can respond to existing messages can be

incorporated into such a system without modifying the base system.

 Client code that instantiate new objects must be modified to

accommodate new types.

 Direct a variety of objects to behave in manners

appropriate to those objects without even knowing their

types

 Those objects belong to the same inheritance hierarchy and are being

accessed off a common base class pointer or common base class

reference.

Introduction (cont.)

 Demonstrate how base-class and derived-class pointers can be
aimed at base-class and derived-class objects
 how those pointers can be used to invoke member functions that

manipulate those objects.

 A key concept
 an object of a derived class can be treated as an object of its base class.

 the compiler allows this because each derived-class object is an object of
its base class.

 However, we cannot treat a base-class object as an object of any
of its derived classes.

 The is-a relationship applies only from a derived class to its
direct and indirect base classes.

Relationships Among Objects in an
Inheritance Hierarchy

 Example classes: CommissionEmployee and
BasePlusCommissionEmployee

 Aim a base-class pointer at a base-class object
 invoke base-class functionality.

 Aim a derived-class pointer at a derived-class object
 invoke derived-class functionality.

 Relationship between derived classes and base classes (i.e., the
is-a relationship of inheritance)
 aiming a base-class pointer at a derived-class object.

 the base-class functionality is indeed available in the derived-class
object.

Invoking Base-Class Functions from
Derived-Class Objects

an object of a derived
class can be treated as an
object of its base class.

pointer specific

 Assign the address of derived-class object to base-class pointer,

 invoke member function print from base class.

 This “crossover” is allowed because an object of a derived class is
an object of its base class.

 The output of each print member-function invocation in this
program reveals

 the invoked functionality depends on the type of the handle (i.e.,
the pointer or reference type) used to invoke the function, not the
type of the object to which the handle points.

Invoking Base-Class Functions from
Derived-Class Objects (cont.)

 We aim a derived-class pointer at a base-class object.

 Assign the address of base-class object to derived-class pointer

 C++ compiler generates an error.

 The compiler prevents this assignment, because a

CommissionEmployee (base-class object) is not a

BasePlusCommissionEmployee. (derived-class object)

Aiming Derived-Class Pointers at Base-Class
Objects

 Off a base-class pointer, the compiler allows us to

invoke only base-class member functions.

 If a base-class pointer is aimed at a derived-class

object, and

 an attempt is made to access a derived-class-only member

function,

 a compilation error will occur.

 Shows the consequences of attempting to invoke a

derived-class member function off a base-class

pointer.

Derived-Class Member-Function Calls via
Base-Class Pointers

 The compiler will allow access to derived-class-only
members from a base-class pointer that is aimed at a
derived-class object if we explicitly cast the base-
class pointer to a derived-class pointer

 known as downcasting.

 Downcasting allows a derived-class-specific
operation on a derived-class object pointed to by a
base-class pointer.

 After a downcast, the program can invoke derived-
class functions that are not in the base class.

Derived-Class Member-Function Calls via
Base-Class Pointers (cont.)

 Why virtual functions are useful?

 Consider a base class Shape.
 classes such as Circle, Triangle, Rectangle and Square

are all derived from base class Shape.

 Each of these classes might be endowed with the ability to draw itself
via a member function draw.

 Although each class has its own draw function, the function for each
shape is quite different.

 In a program that draws a set of shapes, it would be useful to be able
to treat all the shapes generically as objects of the base class Shape.

 To draw any shape,

 simply use a base-class Shape pointer to invoke function draw
 let the program determine dynamically (i.e., at runtime) which

derived-class draw function to use

 based on the type of the object to which the base-class Shape
pointer points at any given time.

Virtual Functions

 To enable this behavior, declare draw in the base class as
a virtual function
 override draw in each of the derived classes to draw the

appropriate shape.

 From an implementation perspective, overriding a
function is no different than redefining one.
 An overridden function in a derived class has the same signature

and return type (i.e., prototype) as the function it overrides in its
base class.

 If we declare the base-class function as virtual, we can
override that function to enable polymorphic behavior.

 We declare a virtual function by preceding the
function’s prototype with the key-word virtual in the
base class.

Virtual Functions (cont.)

 Invokes a virtual function through

 a base-class pointer to a derived-class object (e.g., shapePtr->draw())

 a base-class reference to a derived-class object (e.g., shapeRef.draw())

 the program will choose the correct derived-class function dynamically (i.e.,
at execution time) based on the object type—not the pointer or reference
type.

 Known as dynamic binding or late binding.

 A virtual function is called by referencing a specific object by name and
using the dot member-selection operator (e.g., squareObject.draw()),

 the function invocation is resolved at compile time (this is called static
binding)

 the virtual function that is called is the one defined for (or inherited by)
the class of that particular object

 this is not polymorphic behavior.

 Dynamic binding with virtual functions occurs only off pointer handles.

Virtual Functions (cont.)

Observations: Virtual Functions

 With virtual functions, the type of the object determines
which version of a virtual function to invoke

 not the type of the handle (pointer or reference) used to
invoke the member functions

 When a derived class chooses not to override a virtual
function from its base class, the derived class simply
inherits its base class virtual functions implementation.

 classes CommissionEmployee and
BasePlusCommissionEmployee

 The only new feature in these files is that we specify each class’s
earnings and print member functions as virtual

 Functions earnings and print are virtual in class
CommissionEmployee,

 class BasePlusCommissionEmployee’s earnings and
print functions override class CommissionEmployee’s.

 Now, if we aim a base-class CommissionEmployee
pointer at a derived-class BasePlusCommissionEmployee
object

 the BasePlusCommissionEmployee object’s
corresponding function will be invoked.

Virtual Functions (cont.)

 Declaring a member function virtual causes the
program to dynamically determine which function to
invoke
 based on the type of object to which the handle points,

rather than on the type of the handle.

Virtual Functions (cont.)

Virtual Functions (cont.)

Static Binding

Static binding

Base-class pointer to

derived-class object

Virtual declaration

makes it object

specific, not pointer

specific.

Now print() from

derived-class is called

instead of base-class

 There are cases in which it’s useful to define classes from
which you never intend to instantiate any objects.
 Such classes are called abstract classes.

 These classes normally are used as base classes in inheritance hierarchies

 These classes cannot be used to instantiate objects, because,
abstract classes are incomplete
 derived classes must define the “missing pieces.”

 An abstract class provides a base class from which other classes
can inherit.

 Classes that can be used to instantiate objects are called
concrete classes.
 Such classes define every member function they declare.

Abstract Classes and pure virtual Functions

 Abstract base classes are too generic to define real objects;

 we need to be more specific before we can think of instantiating
objects.

 For example, if someone tells you to “draw the two-
dimensional shape,” what shape would you draw?

 Concrete classes provide the specifics that make it reasonable
to instantiate objects.

 An inheritance hierarchy does not need to contain any abstract
classes, but many object-oriented systems have class
hierarchies headed by abstract base classes.

 In some cases, abstract classes constitute the top few levels of the
hierarchy.

Abstract Classes and pure virtual Functions
(cont.)

 A good example of this is the shape hierarchy, which

begins with abstract base class Shape.

 A class is made abstract by declaring one or more of its

virtual functions to be “pure.”

 A pure virtual function is specified by placing “= 0” in its

declaration, as in

virtual void draw() const = 0; // pure virtual
function

 The “= 0” is a pure specifier.

 Pure virtual functions do not provide implementations.

Abstract Classes and pure virtual Functions
(cont.)

 Every concrete derived class must override all base-class pure
virtual functions with concrete implementations of those
functions.

 The difference between a virtual function and a pure
virtual function is that
 a virtual function has an implementation and gives the derived class the

option of overriding the function.

 By contrast, a pure virtual function does not provide an implementation
and requires the derived class to override the function for that derived class
to be concrete; otherwise the derived class remains abstract.

 Pure virtual functions are used when it does not make sense
for the base class to have an implementation of a function,
 you want all concrete derived classes to implement the function.

Abstract Classes and pure virtual Functions
(cont.)

 Although we cannot instantiate objects of an abstract

base class

 we can use the abstract base class to declare pointers and

references that can refer to objects of any concrete classes

derived from the abstract class.

 Programs typically use such pointers and references to

manipulate derived-class objects polymorphically.

Abstract Classes and Pure virtual Functions (cont.)

Observations

 An abstract class defines a common public interface for
the various classes in a class hierarchy

 An abstract class contains one or more pure virtual functions
that concrete derived classes must override.

 Failure to override a pure virtual function in a derived
class makes that class abstract

 Attempting to instantiate an object of an abstract class causes
a compilation error

 An abstract class has at least one pure virtual function

 An abstract class also can have data members and concrete
functions (including constructors and destructors) which are
subject to the normal rules of inheritance by derived classes

 Problem: A company pays its employees weekly. The
employees are of three types:

 salaried employees are paid a fixed weekly salary regardless
of the number of hours worked,

 commission employees are paid a percentage of their sales
and

 base-salary-plus-commission employees receive a base
salary plus a percentage of their sales.

 The company has decided to reward base-salary-plus-
commission employees by adding 10 percent to their base
salaries.

 The company wants to implement a C++ program that
performs its payroll calculations polymorphically.

 We use abstract class Employee to represent the general
concept of an employee.

Case Study: Payroll System Using Polymorphism
(cont.)

Abstract Base Class: Employee

Abstract Base Class: Employee

Abstract Base Class: Employee

Abstract Base Class: Employee

Abstract Base Class

Employee’s print () is a

virtual member function but

not pure virtual function

It has an implementation

pure virtual function

earnings() has no

definition/implementation

Abstract Base Class: Employee

Concrete Derived Class SalariedEmployee

Class SalariedEmployee

derives from class Employee.

Override Abstract

Base-Class’s print() &

earnings() function

 Function earnings overrides pure virtual function
earnings in Employee to provide a concrete implementation
that returns the SalariedEmployee’s weekly salary.

 If we did not implement earnings, class
SalariedEmployee would be an abstract class.

 In class SalariedEmployee’s header, we declared member
functions earnings and print as virtual
 This is redundant.
 We defined them as virtual in base class Employee, so they remain

virtual functions throughout the class hierarchy.

Concrete Derived Class SalariedEmployee (cont.)

Concrete Derived Class SalariedEmployee (cont.)

Definition of print()

in derived-class

Override pure virtual

function earnings()

Concrete Derived Class SalariedEmployee (cont.)

 Function print of class SalariedEmployee
overrides Employee function print.

 If class SalariedEmployee did not override

print, SalariedEmployee would inherit the

Employee version of print.

Concrete Derived Class SalariedEmployee
(cont.)

 Class CommissionEmployee derives from

Employee .

 The constructor passes the first name, last name and

social security number to the Employee
constructor to initialize Employee’s private
data members.

 Function print calls base-class function print to

display the Employee-specific

information.

Another Concrete Derived Class
CommissionEmployee

Another Derived Class CommissionEmployee

Another Derived Class CommissionEmployee

Another Derived Class CommissionEmployee

Another Derived Class CommissionEmployee

Another Derived Class CommissionEmployee

Override the pure virtual

function earnings()

Another Derived Class CommissionEmployee

Definition of print() in

derived-class

 Class BasePlusCommissionEmployee directly

inherits from class CommissionEmployee

 it is an indirect derived class of class Employee.

 BasePlusCommissionEmployee’s print function

outputs

 "base-salaried", followed by the output of base-class

CommissionEmployee’s print function (another example

of code reuse), then the base salary.

Indirect Concrete Derived Class
BasePlusCommissionEmployee

Indirect Concrete Derived Class
BasePlusCommissionEmployee

Indirect Concrete Derived Class
BasePlusCommissionEmployee

Indirect Concrete Derived Class
BasePlusCommissionEmployee

Definition of virtual

function earnings()

in derived-class

Indirect Concrete Derived Class
BasePlusCommissionEmployee

Definition of print() in

derived-class

 Create an object of each of the three concrete classes
SalariedEmployee, CommissionEmployee and
BasePlusCommissionEmployee.

 Manipulates these objects

 static binding,

 polymorphically, using a vector of Employee pointers.

 Each member-function invocation is an example of static
binding
 at compile time, because we are using name handles (not

pointers or references that could be set at execution time)

 the compiler can identify each object’s type to determine
which print and earnings functions are called.

Demonstrating Polymorphic Processing

Example: Polymorphic Processing

const Employee * :pointer to an object and the object cannot be modified.

Employee * const :you cannot change what the pointer points to.

const Employee * const :a pointer which cannot be changed to point to something

else, nor can it be used to change the object it points to.

Example: Polymorphic Processing

Example: Polymorphic Processing

Example: Polymorphic Processing

Example: Polymorphic Processing

Example: Polymorphic Processing

Example: Polymorphic Processing

 vector employees, which contains three Employee pointers.

 employees[0] at object salariedEmployee.

 employees[1] at object commissionEmployee.

 employees[2] at object basePlusCommissionEmployee.

 The compiler allows these assignments, because a
SalariedEmployee is an Employee, a
CommissionEmployee is an Employee and a
BasePlusCommissionEmployee is an Employee.

Polymorphic Processing (cont.)

 Function virtualViaPointer receives in parameter
baseClassPtr (of type const Employee * const)
the address stored in an employees element.

 Each call to virtualViaPointer uses
baseClassPtr to invoke virtual functions print and
earnings

 Note that function virtualViaPointer does not contain
any SalariedEmployee, CommissionEmployee or
BasePlusCommissionEmployee type information.

 The function knows only about base-class type Employee.

 The output illustrates that the appropriate functions for each
class are indeed invoked and that each object’s proper
information is displayed.

Polymorphic Processing (cont.)

 Function virtualViaReference receives in its parameter
baseClassRef (of type const Employee &) a reference
to the object obtained by dereferencing the pointer stored in
each employees element.

 Each call to virtualViaReference invokes virtual
functions print and earnings via reference
baseClassRef to demonstrate that polymorphic processing
occurs with base-class references as well.

 Each virtual-function invocation calls the function on the
object to which baseClassRef refers at runtime.

 This is another example of dynamic binding.

 The output produced using base-class references is identical to
the output produced using base-class pointers.

Polymorphic Processing (cont.)

 Internal implementation of polymorphism, virtual
functions and dynamic binding.

 More importantly, it will help you appreciate the overhead of
polymorphism

 in terms of additional memory consumption and processor
time.

 Polymorphism is accomplished through three levels of
pointers (i.e., “triple indirection”).

 How an executing program uses these data structures to
execute virtual functions and achieve the dynamic binding
associated with polymorphism.

Polymorphism, Virtual Functions and Dynamic
Binding “Under the Hood”

 C++ compiles a class that has one or more virtual functions

 builds a virtual function table (vtable) for that class.

 An executing program uses the vtable to select the proper function
implementation each time a virtual function of that class is
called.
 the vtables for classes Employee, SalariedEmployee,

CommissionEmployee and BasePlusCommissionEmployee.

 In the vtable for class Employee, the first function pointer is set to
0 (i.e., the null pointer).
 This is done because function earnings is a pure virtual function and

therefore lacks an implementation.

Polymorphism, Virtual Functions and Dynamic
Binding “Under the Hood” (cont.)

 The second function pointer points to function print, which
displays the employee’s full name and social security number.

 Any class that has one or more null pointers in its vtable is an
abstract class.

 Classes without any null vtable pointers are concrete classes.

 Class SalariedEmployee overrides function earnings to
return the employee’s weekly salary,
 the function pointer points to the earnings function of class

SalariedEmployee.

 SalariedEmployee also overrides print, so the
corresponding function pointer points to the
SalariedEmployee member function that prints
"salaried employee: " followed by the employee’s name,
social security number and weekly salary.

Polymorphism, Virtual Functions and Dynamic
Binding “Under the Hood” (cont.)

Virtual function working mechanism

 The earnings function pointer in the vtable for class
CommissionEmployee
 points to CommissionEmployee’s earnings function

 returns the employee’s gross sales multiplied by the
commission rate.

 The print function pointer points to the
CommissionEmployee version of the function,

 prints the employee’s type, name, social security number,
commission rate and gross sales.

 As in class SalariedEmployee, both functions
override the functions in class Employee.

Polymorphism, Virtual Functions and Dynamic
Binding “Under the Hood” (cont.)

 The earnings function pointer in the vtable for class
BasePlusCommissionEmployee
 points to the BasePlusCommissionEmployee’s earnings

function

 returns the employee’s base salary plus gross sales multiplied by
commission rate.

 The print function pointer points to the
BasePlusCommissionEmployee version of the function,

 prints the employee’s base salary plus the type, name, social security
number, commission rate and gross sales.

 Both functions override the functions in class
CommissionEmployee.

Polymorphism, Virtual Functions and Dynamic
Binding “Under the Hood” (cont.)

 Polymorphism is accomplished through an
elegant data structure involving three levels
of pointers.

 One level—the function pointers in the
vtable.

 These point to the actual functions that
execute when a virtual function is
invoked.

 Second level of pointers.
 Whenever an object of a class with one

or more virtual functions is
instantiated, the compiler attaches to the
object a pointer to the vtable for that
class.

 Display each of the object’s data member values.

Polymorphism, Virtual Functions and Dynamic
Binding “Under the Hood” (cont.)

 The third level of pointers

simply contains the

handles to the objects that

receive the virtual
function calls.

 The handles in this level

may also be references.

Polymorphism, Virtual Functions and Dynamic
Binding “Under the Hood” (cont.)

 Let’s see how a typical virtual function call executes.

 vector employees contains Employee pointers.

 Consider the call baseClassPtr->print() in function
virtualViaPointer.

 Assume that baseClassPtr contains employees[1] (i.e.,
the address of object commissionEmployee in employees).

 When the compiler compiles this statement, it determines that the
call is indeed being made via a base-class pointer and that print
is a virtual function.
 The compiler determines that print is the second entry in each of the

vtables.

 To locate this entry, the compiler notes that it will need to skip the first entry.

Polymorphism, Virtual Functions and Dynamic
Binding “Under the Hood” (cont.)

 The compiler compiles an offset or displacement of

four bytes (four bytes for each pointer on today’s

popular 32-bit machines, and only one pointer needs to

be skipped) into the table of machine-language object-

code pointers to find the code

 that will execute the virtual function call.

Polymorphism, Virtual Functions and Dynamic
Binding “Under the Hood” (cont.)

 The compiler generates code that performs the following

operations.

 Select the ith entry of employees, and pass it as an argument to

function virtualViaPointer. This sets parameter

baseClassPtr to point to commissionEmployee.

 Dereference that pointer to get to the commissionEmployee
object.

 Dereference commissionEmployee’s vtable pointer to get to

the CommissionEmployee vtable.

 Skip the offset of four bytes to select the print function pointer.

 Dereference the print function pointer to form the “name” of

the actual function to execute, and use the function call operator

() to execute the appropriate print function.

Polymorphism, Virtual Functions and Dynamic
Binding “Under the Hood” (cont.)

Observations

 Polymorphism is typically implemented with virtual
functions and dynamic binding in C++, is efficient.

 We can use those capabilities with nominal impact on
performance.

 Polymorphism’s overhead is acceptable for most applications.

 Polymorphism’s overhead may be too high for real time
applications with stringent performance.

 Consider the company has decided to reward
BasePlusCommissionEmployees by adding 10 percent
to their base salaries.

 When processing Employee objects polymorphically, we did
not need to worry about the “specifics.”

 To adjust the base salaries of
BasePlusCommissionEmployees, we have to determine
the specific type of each Employee object at execution time,
then act appropriately.

 Demonstrate the powerful capabilities of runtime type
information (RTTI) and dynamic casting,
 enable a program to determine the type of an object at execution time

and act on that object accordingly.

Polymorphism and Runtime Type Information with
Downcasting, dynamic_cast, typeid and type_info

 Some compilers require that RTTI be enabled before it

can be used in a program.

 In Visual C++ 2010, this option is enabled by default.

 Exercise: Increase by 10 percent the base salary of each

BasePlusCommissionEmployee.

Polymorphism and Runtime Type Information with
Downcasting, dynamic_cast, typeid and type_info (cont.)

Example: Downcasting

Example: Downcasting

Example: Downcasting

Example: Downcasting

Example: Downcasting

 Since we process the employees polymorphically, we cannot be
certain as to which type of Employee is being manipulated at any
given time.

 BasePlusCommissionEmployee employees must be identified
when we encounter them so they can receive the 10 percent salary
increase.

 To accomplish this, we use operator dynamic_cast to determine
whether the type of each object is
BasePlusCommissionEmployee.

 This is the downcast operation.

 Dynamically downcast employees[i] from type Employee * to type
BasePlusCommissionEmployee *.

Polymorphism and Runtime Type Information with
Downcasting, dynamic_cast, typeid and type_info (cont.)

 If the vector element points to an object that is a

BasePlusCommissionEmployee object,

 then that object’s address is assigned to derivedPtr

 otherwise, 0 is assigned to derived-class pointer

derivedPtr.

 If the value returned by the dynamic_cast operator

is not 0

 the object is the correct type, and

 the if statement performs the special processing required for

the BasePlusCommissionEmployee object.

Using Polymorphism and Runtime Type Information with
Downcasting, dynamic_cast, typeid and type_info (cont.)

 Operator typeid returns a reference to an object of
class type_info

 contains the information about the type of its operand,
including the name of that type.

 When invoked, type_info member function name
returns a pointer-based string that contains the type name
(e.g., "class BasePlusCommissionEmployee")
of the argument passed to typeid.

 To use typeid, the program must include header
<typeinfo>

Polymorphism and Runtime Type Information with
Downcasting, dynamic_cast, typeid and type_info (cont.)

 A problem can occur when using polymorphism to process
dynamically allocated objects of a class hierarchy.

 So far we have seen non virtual destructors

 destructors that are not declared with keyword virtual.

 If a derived-class object with a nonvirtual destructor is
destroyed explicitly by applying the delete operator to a
base-class pointer to the object,

 the C++ standard specifies that the behavior is undefined.

 The simple solution to this problem is to create a
virtual destructor in the base class.

 This makes all derived-class destructors virtual even though
they do not have the same name as the base-class destructor.

 Now, if an object in the hierarchy is destroyed explicitly by
applying the delete operator to a base-class pointer,

 the destructor for the appropriate class is called based on the
object to which the base-class pointer points.

Virtual Destructors

Observations

 If a class has a virtual function; provide a virtual
destructor, even if one is not required for the class.

 ensure that a custom derived-class destructor will be
invoked (if there is one) when a derived-class object is
deleted via a base class pointer

 Constructor cannot be virtual

 Declaring a constructor virtual is a compilation error.

