PacketShader: A
GPU-Accelerated
Software Router

Some images and sentence are from original author Sangjin Han’s




Why? What? How?

* Why used software routers ?

* What is GPU ?

* Why use GPU ?

* How to use GPU ?

* What is PacketShader’s design ?

* How is the performance ?

* If have time, configuration of the system.




Software Router

* Not limited to IP routing

You can implement whatever you want on it.

* Driven by software

Flexible

* Based on commodity hardware
Cheap




What is GPU?

* Graph process units.
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Figure 1: Architecture of NVIDIA GTX480
* 15 Streaming Multiprocessors consist 32 processors = 480 cor




Why use GPU?

Benefit:

* Higher computation power
1-8 v.s. 480

* Memory access latency
Multi-thread to hide the latency
CPU has miss register (up to 6)

* Memory bandwidth
32GB v.s. 177GB

Down Sides:
* Thread start latency
* Data transfer rate




How to use GPU?

* GPU is used for highly parallelizable tasks.
* With enough threads to hide the memory access latency
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PacketShader Overviw

* Three stages in a streamline

Pre-shader
Fetching packets from RX queues.

Shader
Using the GPU to do what it need to be done

Post-shader
Gather the result and scatter to each TX queue
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[Pv4 Forwarding Example

2. Forwarding table lookup

* Checksum, TTL
* Format check (
. Update packets
1. IP addresses I 3. Next hops | and transmit
wp Post —
sI:Zder Shader sﬁ:der

Some packets
go to slow-path




Scaling with Muti-Core CPU

* Problems:

GPU are not as efficient if more than one CPU access it.
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Another view
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Optimization
* Chuck Pipelining:
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Performance: hardware

Oty | Unit price

Item

Specification

CPU

Intel Xeon X5550 (4 cores, 2.66 GHz)

5925

EAM

DDR3 ECC 2 GB (1,333 MHz)

sh4

M/B

Super Micro XEDAH+F

H4E3

GPU

NVIDLA GTX480 (480 cores, 1.4 GHz, 1.5 GB)

H500

NIC

Intel X520-DA2 (dual-port 1{GhE)

= | b | = O] 2

628

Table 2: Test system hardware specification (total $7,000)
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Figure 3: Block diagram of our server




Performance: IPv4 Forwarding
* Algorithm: DIR-24-8-BASIC

It requires one memory access per packet for most cases, by storing
next-hop entries for every possible 24-bit prefix.

* Pre-shade:
Require slow path => Linux TCP/IP stack
Else, Update TTL and checksum.
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Performance: IPv6 Forwarding

* Same idea of IPv4, more memory access

45
40
35
30
23
20
15
10

5

]

Throughput (Ghps)

BCPU-only
BCPU+GPU
inamnij
b4 | 28 256 512 | 024 1514
Packet size (bytes)




Performance: OpenFlow

* OpenFlow is a framework that runs experimental protocol s
over existing networks. Packets are processed on a flow basis.

* The OpenFlow switch is responsible for packet forwarding
driven by flow tables.
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Performance: IPsec

* IPsec is widely used to secure VPN tunnels or for secure
communication between two end hosts.

* Cryptographic operations used in IPsec are highly compute-
intensive
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Configuration of the System

* Problem:
Linux Network Stack Inefficiency.

NUMA (None uniform memory access)
Dual-IOH Problem

* Solutions:

Better Driver, use Huge Packet Buffer
NUMA aware driver

In research




Network Stack Inefficiency

1. Frequent allocation/deallocation memory
2. skbtoo large (208 bytes)
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NUMA

* None Uniform Memory Access due to RSS.
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* Solution : Reconfigure RSS to we configure RSS to distribute
packets only to those CPU cores in the same node as the NICs




Dual-IOH Problem

* Asymmetry on Data transfer rate.
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* Cause: Unknown!!




