PacketShader: A
GPU-Accelerated
Software Router

Some images and sentence are from original author Sangjin Han’s

Why? What? How?

* Why used software routers ?

* What is GPU ?

* Why use GPU ?

* How to use GPU ?

* What is PacketShader’s design ?

* How is the performance ?

* If have time, configuration of the system.

Software Router

* Not limited to IP routing

You can implement whatever you want on it.

* Driven by software

Flexible

* Based on commodity hardware
Cheap

What is GPU?

* Graph process units.

:) . | Host Memo

: GH‘L. Streaming Mulbiprocessor 14 . :
D emem . . B |

; Streaming Multiprocessor 1 b % : 32 GEJEI

+| | Streaming Multiprocessar O : Z|: CFU |
: E g | S .
(| BB AR pooiter e #3 L L
| DO B0 o 3|izs 156
- HESE IR - e
: - | | = -+ —

|| om Bm ol@ -

* m =1,

i II II L1 cache (16KB) l N I I Stream

i : processor

Figure 1: Architecture of NVIDIA GTX480
* 15 Streaming Multiprocessors consist 32 processors = 480 cor

Why use GPU?

Benefit:

* Higher computation power
1-8 v.s. 480

* Memory access latency
Multi-thread to hide the latency
CPU has miss register (up to 6)

* Memory bandwidth
32GB v.s. 177GB

Down Sides:
* Thread start latency
* Data transfer rate

How to use GPU?

* GPU is used for highly parallelizable tasks.
* With enough threads to hide the memory access latency

RX queue

TIIID

b 11

1. Batching

2. Parallel Processing
in GPU

i uga

PacketShader Overviw

* Three stages in a streamline

Pre-shader
Fetching packets from RX queues.

Shader
Using the GPU to do what it need to be done

Post-shader
Gather the result and scatter to each TX queue

4
|

Pre- : Post-
shader Shader shader

[Pv4 Forwarding Example

2. Forwarding table lookup

* Checksum, TTL
* Format check (
. Update packets
1. IP addresses I 3. Next hops | and transmit
wp Post —
sI:Zder Shader sﬁ:der

Some packets
go to slow-path

Scaling with Muti-Core CPU

* Problems:

GPU are not as efficient if more than one CPU access it.

¢ [Master core

!

> Shader |
Device Pre- Post- Device
— — > — T
driver shader shader driver
—> — > —>
— — > —>

Worker cores

Another view

Application
(e.g., [Pv6)

Shader

FPre-shader Past-shader

GPU
acceleration
framework 3 workers master
nade 0 node 1
Packeat APL CUDA APL |
------------------------- Show-pathr1---- ""“"E" =
Fast-path I Linux TCP/IP stack GPU

Kernel device

Packet L/O engine driver

Figure 7: PackeiShader software architeciure

Optimization
* Chuck Pipelining:

Waorker
Pre.
Proc,
Master
* Gather/Scatter
[nput queuws
T

CDutput gueuess

* Concurrent Copy and Execution

Data transter

=D H=D
=] EETVIETE] - e

Exec

Exec

Kemel execution

Performance: hardware

Oty | Unit price

Item

Specification

CPU

Intel Xeon X5550 (4 cores, 2.66 GHz)

5925

EAM

DDR3 ECC 2 GB (1,333 MHz)

sh4

M/B

Super Micro XEDAH+F

H4E3

GPU

NVIDLA GTX480 (480 cores, 1.4 GHz, 1.5 GB)

H500

NIC

Intel X520-DA2 (dual-port 1{GhE)

= | b | = O] 2

628

Table 2: Test system hardware specification (total $7,000)

NIC4,5

NICE,7

NICO, 1 ¥ ¥
IOHO &=~ IOH1
NICZ,3

Hode & | GPUO | | GPU1 |

Node 1

i

=8 106 port e PCle x16 +— PCle xB <--+ (QP]

Figure 3: Block diagram of our server

Performance: IPv4 Forwarding
* Algorithm: DIR-24-8-BASIC

It requires one memory access per packet for most cases, by storing
next-hop entries for every possible 24-bit prefix.

* Pre-shade:
Require slow path => Linux TCP/IP stack
Else, Update TTL and checksum.

23 -
40 =
35 -
30~
23
20 -
15 1
10 -
% o
'::I'

Throughput (Ghps)

BCPU-only
BCPUHGPU
b | 28 2360 512 1024 1514
Packet size (bytes)

Performance: IPv6 Forwarding

* Same idea of IPv4, more memory access

45
40
35
30
23
20
15
10

5

]

Throughput (Ghps)

BCPU-only
BCPU+GPU
inamnij
b4 | 28 256 512 | 024 1514
Packet size (bytes)

Performance: OpenFlow

* OpenFlow is a framework that runs experimental protocol s
over existing networks. Packets are processed on a flow basis.

* The OpenFlow switch is responsible for packet forwarding
driven by flow tables.

_ ESCPU-only EERCPUSGPU ==Speedup - 13

g 57 115
n -

2 309 10

!

T ¥ 35 S
= 20 4 + F
B |5 - s ;
E

=

| 1ai:

FK + 16K+ 12K+ (4K <+ 128K + 256K + 512K+ 1M+
£ 16 32 hd 128 256 512 K

Flow table size (# of exact entries + # of wildcard entries)

Performance: IPsec

* IPsec is widely used to secure VPN tunnels or for secure
communication between two end hosts.

* Cryptographic operations used in IPsec are highly compute-
intensive

24 7 E=SCPU-only WECPU+GPU =Ck=Speedup | T 4

200 1 - 3.5
16 4
11 =

B4 e
Speedup

Throughput (Ghps)
-3

- 1.5

128 256 312 1024 1514
Packet size (bvtes)

Configuration of the System

* Problem:
Linux Network Stack Inefficiency.

NUMA (None uniform memory access)
Dual-IOH Problem

* Solutions:

Better Driver, use Huge Packet Buffer
NUMA aware driver

In research

Network Stack Inefficiency

1. Frequent allocation/deallocation memory
2. skbtoo large (208 bytes)

FX guaus

ﬁ \ E Packet data buffer
—

| | \

akh

(a) Linux packet buffer allocation

RX gueue

_/\\\
\ /ﬂf/”__

Buffer for metadata

Buffer for packet data

(b) Huge packet buffer allocation

NUMA

* None Uniform Memory Access due to RSS.

..

| M |
1 ;s !
NICO,1 Y \ NIC4,5
IOHO «--+ IOH1
NIC2,3 : NIC6,7

. .

-~ 10G port €e=p P(Cle x16 <—» P(Cle x8 <*+--+» QPI

* Solution : Reconfigure RSS to we configure RSS to distribute
packets only to those CPU cores in the same node as the NICs

Dual-IOH Problem

* Asymmetry on Data transfer rate.

. TX only CRX only
RN A+TX C O RXA+TX (node-crossing)
=J=RX+TX CPL usage
L0 - L (W}
U -
E 80 - R &
2 70 - =
= 60 1 60 =
& 50 4 =
B 40 4 4 g
g 30 - =
£ 20 - 2 B
10 -
0 A ' 0
64 128 256 312 1024 1314
Packet size (bytes)

* Cause: Unknown!!

