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Preface 
 
 
 

ost books written for students in the area of power engineering 
emphasize either the physics or design of energy conversion 
machines, the operation of the power system or (more recently) 

power electronics.  In each of these cases, the transmission and distribution 
system is either neglected or treated relatively simply (e.g., as an inductor in a 
one line representation of a balanced system).  Some books do discuss the 
transmission and distribution system more carefully, such as the 
Westinghouse Transmission and Distribution Book, The EPRI AC 
Transmission Line Reference Book – 200 kV and Above, and the Southwire 
Overhead Conductor Manual. These are now difficult to find or are priced 
out of the range of students.  There does not appear to be a manuscript that 
summarizes what we know about the electromagnetics of the transmission 
and distribution system.  This text is designed to fill that void.  

One text that did inspire this one is entitled, “Transmission and 
Distribution of Electrical Energy” authored by the late Walter L. Weeks of 
Purdue University. Unfortunately, it was published in 1981, available only 
briefly and is now difficult to find.  Since this author has not been able to 
find anything to replace that text, the present text will cover much of the 
same material, but will also extend the theory beyond what was covered by 
that excellent book.   

There are two purposes for this manuscript.  The first is to examine the 
electromagnetic theory behind many of the calculations relevant to the design 
of high voltage power lines.  These include electromagnetic propagation on 
wires above the earth, corona onset calculations, electrostatic fields near 
insulators and electromagnetic induction effects between high voltage 
transmission lines and other systems that share the right of way.   This 
portion of the book can be used as the basis for further research in these 
areas.  Sections of the book that require more advanced theory are indicated 
by a ◄ and can be skipped by the reader who is not interested in research.  
Following these sections (if necessary) are short introductions that provide a 
summary of the ideas introduced in the more advanced section.   

The second purpose is to show how the more general theory reduces to 
the theory commonly used by practicing engineers.  Mastering this material 
will result in a better understanding of the limitations of the simplified theory 
of transmission lines that is often presented in power systems courses.  As an 
adjunct to this, some practical aspects of designing high voltage transmission 
lines will be discussed. These include discussions of transmission line 
ampacity and sag calculations, a general approach to the selection of 
insulators and the physics behind switching surges and their consequences.   

M 
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Given that the title has the word “overhead” in it, the book’s focus is on 
overhead transmission lines.  Nevertheless, there are places where 
underground transmission lines will be mentioned to contrast them with 
overhead transmission lines.  One example would be the significantly 
different capacitance per unit length that places severe limits on the length of 
underground (but not overhead) alternating current transmission lines.   

It is assumed that the reader has had an undergraduate course in 
electromagnetic theory although a graduate course in electromagnetic would 
provide better preparation.  Since some of the techniques introduced in the 
book use theory that is beyond that covered in an undergraduate course, 
there is a chapter designed to cover some of these more advanced topics as 
well as appendices that supplement material in the text as needed. 

The fundamental approach taken here is to consider power transmission 
lines to be waveguides that direct energy along the wave guiding structure. 
This will become evident in the way that the analysis is presented here; it is 
valid for all frequencies from 0 (i.e., DC) to nearly optical.  Although most 
applications for power transmission lines require an understanding of their 
behavior at “low frequencies,” there are some special cases for which 
transmission lines must be treated at high frequency.  The models introduced 
in this text are general enough to allow the analysis of transmission lines at 
these higher frequencies.   

Another (and very important) aspect of the approach to the book is the 
assumption that the ultimate measure of a theory’s usefulness is successful 
comparison to measurement.  Theory is a very valuable tool for providing 
insight into the operation of electric power transmission systems and because 
it is generally significantly less expensive to perform calculations than to 
conduct an experiment.  But, if there is no confidence that an experiment 
(that can be defined and, in principle conducted) will produce the same 
results as the theory predicts, the value of the theory is (at best) severely 
diminished and (at worst) negligible.  Because of this assumption, a chapter 
on measurements has been written and experiments designed to validate 
theory are discussed.   
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On Notation 
 
 
 

xplicit field points will generally be indicated by unprimed 
rectangular coordinates.  Continuously distributed sources of 
electromagnetic fields will be indicated by primed rectangular 

coordinates.Discrete sources of electromagnetic fields will generally be 
indicated by numerically subscripted rectangular coordinates where “n” in 
the number of the source.  Given these designations, a z directed line source 
(discrete in x and y, but continuous in z) will be indicated by the coordinates. 

In the special cases for one or two sources at the same height above the 
earth (assumed here in the y = 0 plane), the heights may be indicated as 
(single source) and (two sources at equal heights) while the locations along 
the x axis are    (two sources with a total separation of d).   

Given that many of the operations are conducted in the spatial Fourier 
transform domain, the three transform domain coordinates corresponding to 
are , and respectively.  Since many operations are carried out in the    domain, 
transformed variables in this domain are indicated by a “tilde” above the 
variable in addition to the explicit functional dependence upon, for example. 
Phasor quantities are indicated by a “hat” above the variable in addition to 
the explicit functional dependence upon the radian frequency, for example.   
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Chapter I 
Introduction to High Voltage Electric Power 

Transmission 
 
 
 

1.1 Wireless vs. Wired Power Transmission 
 
Since the topic of this manuscript is power transmission “electromagnetics,” 
it is instructive to note that energy can be transported from one location to 
another using electromagnetic fields without the use of wires between the 
two locations.  In fact, small amounts of power are routinely transferred over 
long distances from a transmitter to a receiver without the use of wires in all 
types of communication systems.  The key phrase here is “small amounts” 
because in communication systems only a tiny fraction of the power 
transmitted is recovered by the receiver.  This “inefficiency” is acceptable for 
communication systems but not acceptable for the transport of large 
amounts of energy.  In fact, generally efficiencies on the order of 90% or 
better are required for systems designed to transport large amounts of 
energy.   

It is often pointed out that Nikola Tesla pursued “wireless” power 
transmission in the 1890’s.  While it is true that Tesla’s plans called for no 
human-made or installed wires to be introduced between transmitter and 
receiver, his proposals involved using natural conductors (i.e., the earth 
and/or the ionized atmosphere) that spanned  the distance between the 
source and the load (Anderson 1992).  Hence, it is not clear whether his 
proposals should or should not be properly referred to as “wireless.”   

Recently, there has been renewed interest in wireless power transfer and a 
number of devices for this purpose have been introduced into the market 
(Karalis et. al. 2008).  These systems have, however, been restricted to 
relatively short distances and small rates of energy transfer.  A good 
discussion of wireless power transfer through this “magnetic resonance 
coupling” mechanism can be found in a paper by Cannon, Hoburg, Stancil, 
and Goldstein (2009).  It is shown there that it is very difficult to achieve the 
efficiencies generally expected of high voltage overhead transmission lines 
(i.e., 90 – 95%) with wireless power transfer systems.   

Given the waveguide approach to power transmission lines used in this 
text, it is perhaps useful to provide a short comparison between wireless and 
wired transmission of energy for long distances.  Consider first, wireless 
power transmission. The simplest source of electromagnetic fields is an 
electric dipole antenna (a short element of length (h) and electric current (I) 
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driven by a voltage source at its center) as shown by the arrow in Figure 
1.1.1.  The electromagnetic fields of this dipole antenna in free space are 
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Where 
0  and 

0  are respectively the permittivity and permeability of free 

space,  /2000 k  where ω is the radian frequency of the source 

and λ is its wavelength and 
000   is the impedance of free space1. 

 
Fig. 1.1.1.  Geometry for explaining energy transfer efficiency in wireless power transfer. 

 
At a distance from the dipole large compared to the wavelength (i.e., the 

“far field”), these fields reduce to 
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A graphic of the field pattern from this dipole is shown in Figure 1.1.1. 

 
To the right and left of the dipole are circles that indicate (by the distance 

from the center of the dipole to the far edge of the circle) the relative “far 
field” amplitude of the electromagnetic fields emitted in that direction (i.e. 

                                                           
1 The coordinate system used here for the dipole is a bit nonstandard, but its utility will be 
evident later.  It is oriented in the x direction and θ is defined with respect to the x axis.  

Further, the magnetic field (in the ϕ direction is in the yz plane with ϕ = 0 along the y axis. 
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proportional to sin θ).  Thus, it can be observed that a dipole generates 
electromagnetic “far” fields in all directions except directly above and below 
it and that these fields are greatest to the right and left.  It turns out that since 
the emitted power is spread out over (almost) all space and since space is 
considered lossless, the power density (i.e., watts/m2) must decay inversely 
with the area of a sphere (i.e., 4πr2) that is centered on the dipole2 in order 
that the total power passing through the sphere is constant.  Thus, the power 
density in any given direction decays algebraically and is proportional to3 
1/r2.  In some cases, “gain” can be added to these systems to enhance the 
amplitude of the power density in certain directions but the decay is still 1/r2 
because the power still spreads out in all directions (albeit with a different 
spatial distribution).  Unfortunately, at low frequencies it is very difficult (if 
not impossible) to achieve much gain by modifying the directivity of a 
source; doing this requires that the source be comparable in size to a 
wavelength (λ = 3x108/f(Hz) where f is the frequency of the source).  Hence 
this is not an option for power transmission systems that operate at low 
frequencies since the wavelength at 60 Hz is 5000 km.   

Now, the power emitted in a certain direction can be transferred from the 
electromagnetic fields to a “receiving antenna” as also shown in Fig. 1.1.1. 
But, the receiving antenna is roughly of the same size as the source dipole 
and because of the 1/r2 decay and the related fact that its ability to gather 
emitted energy is roughly limited to that which it physically intercepts, the 
receiving system extracts only a small fraction of the energy emitted by the 
source dipole4.  More specifically for an electrically short dipole receiving 
antenna with an assumed uniform current distribution and oriented as shown 
in Fig. 1.1.1, the maximum power that can be received by a receiver that is 
conjugate matched to the antenna is equal to 
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where Ra is the input resistance5 of the antenna (Weeks, 1968).  Using the last 
term of (1.1.3) since it is dominant for k0r << 1, 
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2 In the far field, the magnitude of the power density is equal to 

 HE  .  More will be said 

about power density in Chapter 3.  
3 It turns out that the power density from this dipole decays as 1/r2 even when the far field 
condition is not satisfied.   
4 “Matching” can maximize the amount of energy  retrieved,  but cannot overcome the fact 
that the fields decay as 1/r2   
5 The resistance Ra is left unspecified here because the interest is only to compare the 
wireless and wired cases.   More information about can be found in Weeks (1968).   
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since θ = π/2 for the geometry of Fig. 1.1.1 and f is the frequency in Hz.  For 
typical values of parameters, the power received can be shown to be very 
small fraction of the power emitted and not appropriate for power systems 
that require efficiencies as close to 100% efficient as possible.   

As an aside, it is interesting to note that a method for (reasonably 
efficient) wireless energy transport at high frequency has been proposed.  
This involves the conversion of power generated by photovoltaic cells in 
space to microwave frequencies for transmission to the earth (Flournoy 
2011).  One of the reasons for using microwave frequencies is that the 
wavelength is much smaller and hence a very narrow electromagnetic beam 
can be used.  The fact that this beam is so narrow significantly improves the 
overall efficiency of the system.    

There is an alternative to the wireless system shown in Fig. 1.1.1 that is 
“wired” and results in a much smaller loss of energy (and hence significantly 
greater efficiency).  The idea is to use some kind of a structure (e.g., two 
wires near the dipole as shown in Fig. 1.1.2) that extends from the dipole to 
the place where the energy is transported (i.e., the receiver).  If the dipole is 
“close” to the wires, it is capacitively coupled to the wires and it turns out 
that most of the energy emitted by the dipole is “captured” by the pair of 
wires and “guided” to the place where it will be extracted and used (Olsen 
and Aburwein, 1980). Such a structure is a called a “waveguide” (or a 
transmission line) because even if the pair of wires changes direction, the 
energy will still follow the new direction of the wires (hence the word 
“waveguide”).  There is no longer the 1/r2 attenuation because the 
electromagnetic fields are confined to the vicinity of the wires.  However, 
because any material used to make the waveguide is electrically lossy (e.g., 
resistance in a wire) there will be attenuation that (since the loss is 
proportional to the incident power) corresponds to exponential decay with a 
decay constant α.  Nevertheless, if the wires are lossless enough, then this 
decay can be much less than the geometric loss associated with wireless 
transmission and (hence) “wired” transmission is more efficient than wireless 
transmission.  A more explicit proof of this can be found in Appendix A.   

 

 
Fig. 1.1.2. Geometry for explaining energy transfer efficiency in capacitively coupled, 

“wired” power transfer. 
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Using the result from A.8 of Appendix A, the incident electric field at a 
distance r from the source dipole is 
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where d is the spacing between the wires and a is the radius of each wire.  
Given this result, 
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The ratio of wiredPmax
 to wirelessPmax
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For realistic distances, this is generally a huge number because  rdIm2  is 

generally much less than 1 and indicates that wireless transmission at typical 
power transmission frequencies is just not viable.   

 

 
Fig. 1.1.3. Geometry for explaining energy transfer efficiency in conductively coupled, 

“wired” power transfer. 

 
At low frequencies, this relatively much more efficient transmission line 

system is the reason why most power transmission is “wired” rather than 
“wireless.” Note that the system shown in Fig. 1.1.2 can be made even more 
efficient if the dipole and receiver are conductively coupled (i.e., 
“connected”) to the two wire transmission line as shown in Fig. 1.1.3.  This 
process eliminates the relatively inefficient low frequency capacitive coupling 
and represents a close approximation to a simple realistic low frequency 
power line.    
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In summary, except for the microwave system discussed above, it does 
not appear that wireless transmission of energy will be a major competitor to 
power lines for efficient long distance power transfer in the foreseeable 
future.  For this reason, emphasis will be placed on power transmission lines 
for the remainder of the manuscript.   
 
 

1.2 Power Transmission Line Basics 
 

Introduction 
The purpose of this manuscript is to describe techniques to analyze the 
electromagnetic fields associated with high voltage overhead power 
transmission lines.  As a preliminary to this exercise, an introduction is given 
here to simple power transmission systems and to some of the reasons why 
they are designed and built as they are.   

The goals for the transmission system planner are to provide a reliable, 
efficient, safe and cost effective source of electric power with known 
characteristics (i.e. voltage, amplitude and waveshape) throughout the system.  
The system should supply sufficient electric energy to meet the needs of the 
public, private and commercial sectors of society and should be as 
environmentally benign and aesthetically pleasing as possible with minimal 
interaction with other legitimate systems that share the transmission line 
right-of-way.  The integration of these goals into the design of the system will 
be evident in the remainder of this manuscript.   
 

Simple transmission lines 
From the time that electricity was first generated for commercial purposes, it 
was necessary to use it at a different location from that where it was 
generated.  This was done by connecting wires between the generator of 
electricity and the device that was using the power (i.e., the load) as shown in 
Fig. 1.2.1.  For this discussion, the load will be assumed to behave like a pure 
resistor; this condition will be relaxed in subsequent sections. This system is a 
simple representation of what is called in the power industry a “single phase” 
transmission line.  In this system there is a single voltage source which 
generates a waveform that is sinusoidal in shape with a given “single” phase 
angle; hence the name “single phase.”    This characteristic distinguishes this 
transmission line from the more complicated multiphase systems (e.g., three 
phase transmission lines) that will be discussed later in this chapter and 
which contain at least two sinusoidal voltage sources with distinct phase 
angles.   

The behavior of the transmission system depends not only on the 
characteristics of the conductors, but on the nature of the generator and load 
as well.  More specifically, one important characteristic of the generator is its 
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voltage (vg(t)) that can (as mentioned earlier) be assumed to be sinusoidal in 
time and described mathematically in (1.2.1)6.   

 

     ftVtv pg 2cos                                (1.2.1) 

 
Here Vp is the zero to peak amplitude in volts, f is the frequency in Hertz 

(Hz) and α is the phase angle in radians (e.g., one time t at which the 
maximum voltage occurs is t = -α/(2πf)).  Note that the “direct current” case 
is the limiting case for which the frequency f → 0 and α = 0 radians. A plot 
of a typical sinusoidal voltage is shown in Fig. 1.2.2. Here, Vp = 1 kilovolt 
(kV), the frequency (f) is 160 Hz and the phase angle (α) is –π/2 radians. 

 
 

 
 

Fig. 1.2.1.  Simple generator, load and transmission system. 

 
The choice of frequency does make a difference.  For example, it will be 

shown later that the power transfer across a short transmission line with 
fixed voltages at each end is inversely proportional to frequency. Thus, lower 
frequencies are preferred.  But the use of too low a frequency causes 
unanticipated consequences such as flickering of lights and a requirement for 
more, heavy magnetic material in devices such as transformers.  Through the 
early days of electric power systems, a variety of frequencies between 16 2/3 
Hz and 133 1/3 Hz were used although eventually the frequency for 
alternating current (AC) systems (i.e., those that use sinusoidally time-varying 
voltages and currents) was standardized on either 50 or 60 Hz in different 
parts of the world (Electrical Science 2009).   Direct current (DC) systems 
are still used in some circumstances and (as mentioned above) can be 
represented by (1.2.1) with f = 0 and α = 0.   

                                                           
6 A sinusoid has the property that its wave shape is unaltered if used in a power system that 
generally contains “reactive” elements such as lumped capacitors, lumped inductances and 
distributed parameter transmission lines.   
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Fig. 1.2.2.  Generator voltage with Vp = 1 kV, f = 160 Hz and α = -π/2 

 
To this day, voltage levels for different parts of the power system are less 

standardized. In fact, significantly different voltage levels are used both in the 
transmission (i.e., generally higher than approximately 80 kV) and 
distribution (i.e., generally lower than approximately 50 kV) portions of the 
system in different parts of the world.   Transmission lines with voltages 
between these two levels are often referred to as sub-transmission.   
For the case of sinusoidal voltages,  
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In most power systems analysis, the time varying voltage is represented as a 
“phasor” quantity with an amplitude (usually, but not always the rms voltage) 
and a phase expressed in degrees or radians.  Such a voltage (with phase 
expressed in radians) is written as  
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where the carat ^ indicates a phasor quantity and α is given in radians.  The 
phase in degrees = 180α/π. A similar result can be found for sinusoidally 
time varying currents.   

The time varying voltage can be recovered from the phasor voltage (i.e. 
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where Re( ) means “real part of” and Euler’s identity (i.e., eαx = cos(α) + jsin(α)) 
can be used to convert the exponential to explicit sinusoidal or co-sinusoidal 
form.  Note that the last expression in (1.2.5) is identical to (1.2.1).  For 
completeness, the current at any point in the system can be represented as  
 

     ftIti rms 2cos2 
                             (1.2.6) 

 
where Irms is the rms amplitude of the current and α is the phase angle in 
radians7.   

The wires in Fig. 1.2.1 are called the transmission line and the most 
relevant parameters here are the voltage (vg(t)) between the wires at the 
generator, the current (ig(t)) that travels from the generator down one wire 
through the load and returns on the other wire, the voltage (vℓ(t)) between the 
wires at the load and the current (iℓ(t)) through the “load8.” The resistance  of 
each wire is (RΔℓ/2) where R/2 is the resistance per unit length of each wire 
and Δℓ is the length of the transmission line.   Note that for this simple 
example, the effects of capacitance and inductance have been ignored in 
order that some fundamental characteristics of power transmission systems 
not be obfuscated by too much complexity. These will be introduced later.   
 

The reason for the use of higher voltage levels 
One of the issues that arose early in the age of electric power is that of 
increasing the efficiency of transmitting power from generator to load.   The 
imperfect efficiency is primarily due to the fact that some power is lost as 
heat in the wires during the process of moving it from one place to another.   
This issue can be studied in the following way using the assumptions 

rmsgrms VV  (i.e., low loss) and 
rmsgrms II  (i.e., capacitive effects ignored).  

Using the circuit in Fig. 1.2.1, the average power lost (Plost) in the process of 
transmitting power from the generator to the load is9   
          

2/
2

2/2
2

2

2   R
V

P
RIP

grms

gavg

grmslost                          (1.2.7) 

 
As a fraction of the transmitted power (i.e., (1.2.7) divided by Pgavg), the power 
loss can be written as   

2/
2

2
 R

V

P

P

P

grms

gavg

gavg

lost                                  (1.2.8) 

                                                           
7 Since the load is assumed to be resistive, the phase angle of the current is the same as that 
of the voltage. This will not be true in general.   
8 Since capacitive effects have been ignored, the generator current and the load current will 
be identical  
9 Note that the “2” in this result is because there is loss in each of the two conductors.   
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Hence, for a given transmitted power (Pgavg), the fractional power lost (i.e., 
Plost / Pgavg) can be reduced by either reducing the electrical resistance of the 
conductors or increasing the voltage between the wires.  Consider first, 
reducing the resistance.  The resistance per unit length of a wire of circular 
cross section at very low frequencies is  

 

2
2/

a
R




                                          (1.2.9) 

 
where ρ is the resistivity of the conductor material and a is the radius of the 
wire.  The resistivity ρ can only be changed by using a different material for 
the wire and (given the common materials available) cannot be changed very 
much.  Further, if the material is changed, the goal would more likely be to 
reduce wire weight for mechanical reasons or cost (such as replacing copper 
with aluminum as has been done historically) and this might actually increase 
the resistivity.  Increasing the radius “a” is possible, but there is a limit to 
how much this can be done because both wire weight and cost are 
proportional to the cross sectional area of the wire (and hence to a2).  Thus, 
the better of these two candidates for reducing relative losses (and hence 
improving efficiency) is to increase the voltage between the wires.    
 

 
 

Fig. 1.2.3.  The use of transformers to increase the voltage on a transmission line. 

 
In this context, it is interesting to note that in the earliest part of the 

“electrical age,” there was a well-known and well publicized argument over 
the appropriateness of using direct current (DC) or alternating current (AC) 
systems for distributing electrical energy (McNichol 2006).  Over time the 
clear winner was AC because it was much easier to change voltage levels on 
different parts of the system (in order to reduce losses) using transformers 
than with any technique that could be used for DC systems10.  It should be 
noted that the physical basis for transformers is magnetic induction based on 
Faraday’s law that requires a time varying magnetic field. Hence transformers 

                                                           
10 At present, power electronics has made it more feasible to change voltage levels at DC.   
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do not work for DC systems.   For an AC system, transformers are used as 
shown in Fig. 1.2.311.   

As discussed above, these higher voltages were desirable because 
transmission lines operate   more efficiently at higher voltages. Clearly, for a 
fixed power flow, the higher the voltage, the smaller the losses as a fraction 
of the power flow. The resulting economic benefits are clear.   

As a side note (and as will be demonstrated in more detail later), it is 
known that the resistance of typical power line conductors increases with 
frequency due to the “skin effect.”  This factor would tend to favor DC over 
AC systems. But, the reduced resistive losses for DC transmission are usually 
(but not always) offset by the energy lost in converting from AC to DC and 
vice versa unless the transmission lines are very long and the cost of these 
voltage conversions can be averaged over a large distance.   

Also as mentioned above, it was necessary to introduce a transformer that 
raises the voltage to a higher level to implement these higher voltage 
transmission lines12. Of course, these also introduce some losses into the 
system, but usually at an acceptable level.  As a final note, even though higher 
voltages were recognized to result in more efficient transmission systems, 
there are upper limits to voltages used in power equipment at the generator 
and load due to insulation limitations and safety issues.    

 

More realistic transmission line model 
 

 
 

Fig. 1.2.4.  A more appropriate model for an AC transmission line system 

 
While the simple model for the transmission line used to this point (i.e., wires 
with resistance and a purely resistive load) is adequate for illustrating the 

                                                           
11 Note that it is necessary to have a transformer because neither generators nor loads can 

operate at arbitrary large voltages.  Transformers also introduce additional losses into the 

system and have power capacity limits.   
12 On real power systems, there are more than two voltage levels for a number of reasons.  
Portions of the system that operate at voltages greater than about 80,000 volts are called 
transmission lines while those at less than this are called distribution lines.   
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points that have been made, it is overly simplistic for the AC systems that are 
most commonly used.  There are two fundamental reasons  for this.  First, 
the current at the generator will not in general be the same as the current at 
the load due to currents that flow through capacitance between the wires.  
Second, the resistance of the transmission line conductors will be augmented 
by a series inductive reactance that causes additional voltage drops between 
the two ends of the transmission line. If the transmission line is electrically 
short, these effects can be represented by lumped impedances as illustrated 
here in Fig 1.2.4.  More specifically, R, C and L13 represent the resistance, 

capacitance and inductance per unit length respectively while  is the length 
of the transmission line.  If the transmission line is longer, then they must be 
treated as distributed parameters (Weeks 1981).  More will be said about this 
topic later.  Finally, the assumption made earlier that the load is purely 
resistive will be relaxed here.  In general, it will have a resistive and a reactive 
part.   

Fig. 1.2.4 illustrates a more reasonable lumped circuit model for the 
transmission line.  It consists of distributed capacitance between the wires 
and distributed inductance along the transmission line in addition to the 
distributed wire resistance modelled earlier.  One consequence of allowing 
these reactive elements in the transmission line model as well as the load is 
that voltages and currents, in addition to having different amplitudes 
throughout the system also have different phases.   One specific consequence 
of this is that voltages across and currents through any circuit element in the 
system will, in general, have different amplitudes and phases.  This can be 
illustrated in as shown in Fig. 1.2.5.   

  

 
Fig. 1.2.5. Load voltage and current with peak values 

rmsp VV  2 = 10 kV and 

rmsp II  2 = 5 kA. f = 160 Hz, α = 0 and θ = π/4. The current “leads” the voltage by π/4 

radians or 45 degrees. 

                                                           
13 These parameters combine the effects of both wires 



 

21 

More specifically, the sinusoidal voltage across and current through a load 
can be written respectively as14  

 

   ftVtv rms 2cos2                                 (1.2.10) 

and 

     ftIti rms 2cos2 
                          (1.2.11) 

 
where it has been assumed that the phase angles of the voltage and current 
are zero and θ radians respectively and that both are written in terms of their 
rms amplitudes.  Note that if the angle θ is a positive number, the current 
is said to “lead” the voltage because the current peak occurs before the 
voltage peak as shown in Fig. 1.2.5.   Similarly, if the angle θ is a negative 
number, the current is said to “lag” the voltage. 
 

The importance of reactive elements 
A cursory examination of Fig. 1.2.4 does not reveal the full significance of 
the inductive and capacitive elements yet.  Hence, this topic will be examined 
here more carefully in the frequency domain.     
 

Inductance 
A “very short” transmission line is shown in Fig. 1.2.6.  Typically, the 
capacitance can be neglected in this case since its impedance is inversely 
proportional to the line length Δℓ and the inductive impedance15 is large 
compared to the series resistance of the transmission line connecting two 
voltage generators (usually called generator busses).   
 

 
 

Fig. 1.2.6.  Two generator busses connected by a short transmission line. 

                                                           
14 The phase angle of the voltage across the load end is not equal to the phase angle of the 
generator.  Without loss of generality, α in (1.2.1) is set equal to 0 to get (1.2.10).     
15 Note in this case that the inductances in both wires of the transmission line shown in Fig. 
1.2.4 have been combined into one and placed into the upper wire.  This will not affect the 
results here.   
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Clearly, if there is current through the transmission line, there will be a 
voltage drop across the transmission line.  One consequence of this is that 
both the amplitude and phase of the generator and load voltages are 
different. It will be shown later that since the voltage drop is proportional to 
the current, the current and hence the power (since it is proportional to 
current) that can flow from one generator to another is limited. This is, 
perhaps the most significant effect of the inductive reactance.  More will be 
said about this shortly when power flow is quantified.  
 

Capacitance 
Consider next a short “open circuited” transmission line connected to a 
voltage generator as shown in Fig. 1.2.7.  In this case, relatively little current 
flows and inductive effects can be neglected.  It would be tempting to simply 
say that the current entering this transmission line was zero because the 
transmission line is open circuited. But, if this assumption is made, an 
important characteristic of these transmission lines will be missed.  It is more 
appropriate in this case to consider the “hidden” capacitance per unit length 
of the transmission line as illustrated in Fig. 1.2.8.  

 
 

Fig. 1.2.7.  A short, “open circuited” transmission line connected to a generator. 

 

 
 

Fig. 1.2.8.  A short, “open circuited” transmission line of length Δℓ connected to a generator 
with “hidden” capacitance shown. 
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(a) 
 

 
(b) 

 

 
(c) 
 

 
(d) 

 
(e) 
 

Fig. 1.2.9. Sequence of open circuited transmission lines with increasing capacitive current 
illustrated by the size of the red arrow a) thin widely spaced short wires, b) thick widely 

spaced short wires, c) thick widely spaced long wires, d) thick, closely spaced long wires, e) 
coaxial, closely spaced long wires with a solid dielectric. 

 
For AC systems, the current flowing into the transmission line is  

 

    gg VcjI ˆˆ                              (1.2.12) 

 
where c and Δℓ are the capacitance per unit length and length of the 
transmission line respectively.   

Now, in many cases for traditionally designed overhead transmission lines, 
this current is small enough to be neglected.   But, the issue is important 
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enough in some cases that a further examination will be given here.  Consider 
the sequence of transmission lines shown in Fig. 1.2.9.  In each, the 
amplitude of the current that flows from line to line is indicated by the size 
of the red arrow.   

As shown in Fig. 1.2.9a, electrically short (typically less than 100 km) 
traditionally designed transmission lines have very small capacitive current, 
but if the length is increased, the capacitive current increases as shown in Fig. 
1.2.9b. If “thin” wires are replaced by thicker wires (such as conductor 
bundles) as shown in Fig. 1.2.9c, the capacitive current increases. Closer 
spacing (such as for compact lines) results in a further increase in capacitive 
current as illustrated in Fig. 1.2.9d.  Finally, as shown in Fig. 1.2.9e, the use of 
a coaxial geometry with inner and outer conductors separated by a solid 
dielectric (such as for an underground cable) results in an even larger 
capacitive current.   

It is illustrative to consider the capacitance per unit length of a typical 
underground cable used for power transmission. It would be  

 

)/ln(

2 0

ab
c r
   F/m                             (1.2.13) 

 
where εr is the relative dielectric constant of the dielectric insulation and a 
and b are the inner and outer radii of the cable respectively.  For typical 

parameter values (i.e., εr =3, b/a = 4), c kmF /12.0  .  Using this value for 

the capacitance per unit length, the magnitude of the generator current is  
 

  045.02ˆ/ˆ  fcVI gg  Amps/(km – kV)          (1.2.14) 

 
For short, low voltage cables this current is relatively small (e.g., 4.5 A for 

a 10 kV, 10 km cable).  However, for long, high voltage cables the current 
can be significant (e.g., 450 A for a 100 kV, 100 km cable).  This current is 
comparable to the total current carried by the cables to the load. Capacitive 
currents this large present a serious problem for the power system in part 
because they result in losses even under no load conditions.  

These capacitive currents and the associated losses are a significant part of 
the reason why it is reasonable to use short low voltage underground cables 
for residential distribution but not to replace long high voltage overhead 
transmission lines.  In fact, whenever long high voltage underground cables 
are needed (such as for undersea applications), they are operated at DC to 
eliminate capacitive currents.   
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1.3 Complex Power Flow in Simple Transmission 
Systems 
 

Introduction  
Using 1.2.10 and 1.2.11, the time averaged power16 absorbed by a load is 
defined as  
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      (1.3.1) 

 
where T = 2π/ω is the period of the voltage and current.   
 

 
Fig. 1.3.1. Plots of pℓ(t) and qℓ(t) for the parameters of Fig. 1.2.5 

 
Before moving on, it is instructive to plot the parameter  
 

         titvtqtpts                              (1.3.2) 

                                                           
16 Averaged over one period of the sinusoidal waveform  
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for the assumed sinusoidal voltages and currents in (1.3.1). 
 
Here, from (1.3.1) 
 

     tIVtp rmsrms  2cos1cos                       (1.3.3) 

 
and  
 

    tIVtq rmsrms  2sinsin                          (1.3.4) 

 

 tp  and  tq correspond to the first and second terms in the integrand for 

the last integral of (1.3.1). These two terms are plotted in Fig. 1.3.1 for the 
same parameters as given in Fig. 1.2.5.   

It is clear that   0tp  and the dark blue horizontal line in Fig. 1.3.1 

corresponds to the time averaged power absorbed by the load.  This term 
represents the time varying real power absorbed by the load with an average 

value of cosrmsrms IV   as shown in the light blue line.  But another 

important component of the power is the time varying term  tq . This term 

is in quadrature with  tp  and is alternatively positive and negative with a 

time average of zero.  It represents energy that is alternatively being stored in 
and returned from the reactive (i.e., inductive and capacitive energy storing) 
parts of the load. While its time average is zero, it is an important component 
of the electrical activity within the system. For positive values of θ, its peak 
amplitude multiplied by the time varying term is17  

 

 tQtq 2sin)(                                      (1.3.5) 

where  

sinrmsrms IVQ                                      (1.3.6) 

 
turns out to be an important parameter for power load flow studies.  Hence 
to fully capture the electrical response of the load in phasor analysis, it will 
become necessary to define “complex power” as described next and to use 
the imaginary part (i.e., Q) to characterize the energy storage capacity of a 
load.    

It is very useful at this point to consider the power calculation using 
phasors.  To this end, the phasor versions of (1.2.10) and (1.2.11) are 
respectively 

rmsVV  
ˆ                                                (1.3.7) 

 

                                                           
17 The minus sign is used to be consistent with the definition of Q in the phasor analysis 
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and 
j

rmseII  
ˆ                                             (1.3.8) 

 
If (1.3.7) is multiplied by the complex conjugate (denoted by the 

superscript “*”) of (1.3.8), the following result is obtained.  
 

   



sincossincos

ˆˆ *

jSjIV

eIVIVjQPS

rmsrms

j

rmsrmsavg



 



          (1.3.9) 

 
where S is defined as the “complex power” and its magnitude 

rmsrms IVS  is defined as the  “apparent power.”  Clearly, the real part of 

(1.3.9) is equal to the time averaged power absorbed by the load.  Hence  
 

  cosˆˆRe *

rmsrmsavg IVIVP                         (1.3.10) 

 
But, there is additional information in (1.3.9) that will be useful for the 

analysis of power systems.  More specifically,  
 

  sinˆˆIm *

rmsrms IVIVQ                         (1.3.11) 

 
where Q is called the “reactive power.”  This is the term described above as 
the peak value of “out of phase power” defined in the last section.  

To illustrate how this concept can be useful, consider a load that is a 
capacitor. In this case, for the voltage across the load given by (1.3.7), the 
current through the capacitor is  

 
2/ˆ  j

rmsrms eCVCVjI                           (1.3.12) 

 
and the “reactive power” is  
 

        22* 2/sin2/cosImˆˆIm rmsrms CVjCVIVQ       (1.3.13) 

 
Since Q is a measure of the reactive power “absorbed” by the load and is 

a negative number, it is said that a capacitor “supplies” reactive power to 
a network.  Similarly, an inductor absorbs reactive power from a 
network.   
 

Complex power is conserved 
If radiation is ignored, the sum of the complex power supplied by the 
independent sources (all at the same frequency) in a power network equals 
the sum of the complex power absorbed by all other branches of the 
network (Bergen, 1986). This property is a direct result of Poynting’s 



 

28 

theorem that will be introduced in Chapter 3.  One implication of this 
property is that if reactive power is absorbed somewhere in the system, then 
it must have been generated somewhere else in the system.  In some cases, 
reactive power is purposely generated close to where it is absorbed in order 
to avoid losses and voltage differences due to the flow of reactive power.  
This can be done by installing devices such as capacitor banks and static 
voltage ampere reactive (VAR) compensators.   
 

Power factor 
A final concept related to this is “power factor” which is defined as the ratio 
between real power and the apparent power in a circuit element.   
 

Power factor = 
rmsrms IV

P



                            (1.3.14) 

 
Power factors are usually stated as "leading" or "lagging" to indicate the 

positive or negative sign of Q respectively (i.e., the sign of the phase angle of 
current with respect to voltage). A capacitor has a “leading” power factor and 
an inductor a “lagging” power factor.   
 

Why introduce the concept of “complex power?” 
It is, in principle, possible to solve for the currents and voltages in any power 
system network in the same way that circuits are analyzed in textbooks used 
for linear circuit analysis courses (or distributed parameter analysis if 
necessary).  Techniques that could be used for this include mesh and nodal 
analysis with subsequent solution of large sets of linear equations for the 
currents or voltages respectively.  However, quantities in a power system that 
are easily specified do not easily lend themselves to such analysis nor does 
the analysis provide as much insight as alternative techniques. More 
specifically, it is much more meaningful to specify complex power either 
supplied by a generator or absorbed by a load18 and/or phasor voltage at a 
generator terminal than load impedance, and source voltage or current. As a 
result, an alternative set of equations known as “power flow” equations are 
set up and solved. While these equations are more amenable to the type of 
data available and result in more insight, they are nonlinear equations that are 
(in general) solved iteratively.   

                                                           
18 Part of the reason that complex power is specified is that there are voltage regulators on 
the distribution side of the power system that adjust the transformer ratio up and down in 
order to keep the distribution voltage constant as the transmission bus voltage changes.  
Hence, as long as the number of devices connected to the power system is the same, the 
complex power required stays constant as the transmission bus voltage changes.   Another is 
that the object of the system is to deliver power, hence this is the desired variable. For this 
reason,  system planners (who use load flow studies)  specify increases in required load (i.e., 
power) than current.   
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A simple example using these equations is given here.  Consider the 
power system shown in Fig. 1.3.2 that consists of a single generator of 

known phasor voltage 
gV̂ connected through a transmission line (modeled as 

a pi network with admittances Ygg, Ygl and Yℓℓ ) to a load which absorbs a 
specified amount of power Sℓ. The derivation begins with the writing of 
Kirchoff’s current law at each node (usually called a bus in power engineering 
terminology).  The results are  

 

  VVYVYI gggggg
ˆˆˆˆ                                (1.3.15) 

and 
 

 gg VVYVYI ˆˆˆˆ  
                            (1.3.16) 

 

 
 

Fig. 1.3.2.  Simple power system to be modeled with power flow equations. 

 
 
The power supplied by the generator and by the load are respectively 
 

  **
2

*** ˆˆˆˆˆ
 VVYVYYIVjQPS ggggggggggg             (1.3.17) 

and 

  **
2

*** ˆˆˆˆˆ
ggg VVYVYYIVjQPS              (1.3.18) 

 
If it is now assumed that the generator voltage is known (and typically set 

to 1 for per-unit analysis) and the (complex) power (Sℓ) “absorbed” by the 
load is known, then (1.3.17) and (1.3.18) form a set of nonlinear equations 

that can be solved for the voltage at the load (  V̂ )  and the generator 

complex power (Sg)
19.  These equations are: 

                                                           
19 The assumption that the generator bus voltage is known but the power is not is equivalent 
to assuming that this generator bus is a “swing bus” (Bergen, 1986).  This type of bus is 
required in order that the total complex power of the system be conserved.   
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   **** ˆ
 VYYYjQPS ggggggg                    (1.3.19) 

 
and 
 

      **
2

** ˆˆ
 VYVYYjQPS gg              (1.3.20) 

 
But, it should be noted that a natural consequence of using these 

equations is that the power is assumed complex and hence includes both real 
and reactive power.   

Clearly, this methodology can be (and has been) extended to the case for 
which there are multiple generator and load busses20.  This extension can be 
found in many power system analysis texts (Bergen, 1986).   

It turns out that reactive power is important for several reasons. One is 
that losses in the system occur whether the power transmitted is real or 
reactive. Since real power is the only kind that can result in real work, it is 
necessary to minimize reactive power in order to minimize losses. In 
addition, the flow of reactive power is associated with differences in voltages 
at different parts of the system (as will be shown here and again later in 
Chapter 4). Hence, minimizing reactive power flow generally results in more 
uniform distribution of voltage throughout the power system.   
 

Power flow example (short transmission line- generators at each end) 
Consider again the simple power system shown in Fig. 1.2.6. The power that 
flows from Generator 1 to Generator 2 (S12) can be found using (1.3.18) with 
Sℓ, Vg, Vℓ and Ygl replaced by S12, Vg1, Vg2 and jωLΔℓ respectively. The result 
is 

 
 

 21

21
*

2

*

12

1212 sin

ˆˆˆˆ
ReRe 


























 L

VV

Lj

VVV
SP

ggggg
       (1.3.21) 

 
and 
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In most cases the phase angles of the voltages at the two ends are not too 

different (i.e., 121  ).  As a result, (1.2.41) and (1.2.42) can be written 

                                                           
20 Other generator buses have the property that real power and voltage magnitude are 
specified.   
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in a form that provides insight into the relationship between voltage and 
power in a power system.  They are:  
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                           (1.3.23) 

 
and 
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Clearly, the flow of real power between two generator busses is related to 
the phase angle of the voltages at the two busses. Since there are limitations 
on the voltage angle difference related to system stability (to be discussed 
further in Chapters 4 and 8), the inductance of a short transmission line 
limits the amount of power that can be transferred from one end of the 
transmission line to the other.   But, in addition, it should be clear that the 
flow of reactive power results in differences between the amplitudes of the 
two bus voltages.  Because it is important to keep the voltages in a power 
system as uniform as possible, it is clear that attention needs to be paid to 
reactive power flow.  In summary, real power flow is related to 
differences in voltage phase angles while reactive power flow is related 
to differences in voltage amplitude.   
 

Power flow example (short transmission line – passive load) 
In this section, the power flow equations given in (1.3.19) and (1.3.20) will be 
applied to a simple, but well-known problem in electrical engineering circuits; 
that of calculating the power transferred to a load from a voltage source 
behind fixed impedance21. The difference is that the terminology and 
approach used will be that of a load flow program. The problem is illustrated 
in Fig. 1.3.3.  Here the generator bus has a sinusoidal voltage with fixed rms 
amplitude (here set equal to 1) and is connected to a very simple electrically 
short transmission line modelled as a series inductor. The transmission line 
is, in turn, connected to a load that could be considered as a simple 
impedance, but that is instead characterized by  specified real and reactive  
powers  rather than a specified impedance value.  Hence the complex power 

S  in (1.3.19) becomes  jQP  .  

 

                                                           
21 If the fixed impedance is a resistor, the load is a resistor, and the goal is to determine the 
maximum power transferred to the load, this is the problem used to prove the maximum 
power transfer theorem.   
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Fig. 1.3.3.  Determining the power flow to an arbitrary load through a short transmission line 

 
Using these assumptions and equating real and imaginary parts separately, the 
nonlinear power flow equation (1.3.20) reduces to   
 

ig VPL   ˆ                                    (1.3.25) 

and  

rg VVQL   ˆˆ
2

                            (1.3.26) 

 

where 
ir jVVV  ˆ .  If (1.3.25) and (1.3.26) are each squared and added, 

the result is  
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      (1.3.27) 

 
This can be put in standard quadratic form as 
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  QPLVQLV ggl                 (1.3.28) 

 
(1.3.28) can be solved using the standard quadratic formula as  
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This is the formula for a parabola, but this may be made more clear by 

considering the standard parabolic form  
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   '2'
2

xxpyy                                (1.3.30) 

 

where the nose of the parabola is at  ',' yx , the parabola opening faces 

toward negative x and its directrix is at  2/' px  .  In this form, (1.3.28) 

becomes  
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and the coordinates of the “nose” of the parabola ( in the coordinates
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Further, the points of intersection with the 
2

ˆ
V axis (i.e. 2

P = 0 ) are  
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             (1.3.33) 

 

At this point, the special case 0Q  will be considered.  In this case, the 

nose of the parabola is at 
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and the points of intersection with the 
2

ˆ
V axis are 

2
ˆ
V = 1 and 0.  If (as is 

usually done) the parabola is plotted in the coordinates   VP ˆ,  (i.e., the 

square root of each coordinate) then it looks like shown in Fig. 1.3.4.   
The first thing to notice is that the power absorbed by the load has a 

maximum value.  This result ( maxP ) = 1/(2ωLgℓΔℓ) is consistent with the fact 

that a voltage source in series with fixed impedance can only deliver a finite 
amount of power. Second, because (1.3.28) is nonlinear, there are in some 
cases (i.e., )2/(1   gLP  ) multiple solutions for load voltage given load 

power and in other cases no solutions (i.e., )2/(1   gLP  ). In the case for 

multiple solutions, the solution relevant to the problem under consideration 
must be selected carefully to be consistent with the physics of the problem.  
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Third, if it is assumed that the correct solution is the one for which the load 

voltage 1ˆˆ  gVV
when Pℓ = 0, then it is clear that as the power absorbed 

by the load is increased, the load voltage decreases.  This is consistent with 
the general property that power flow in transmission systems results in (or 
from) differences in source and load voltage that the power system designer 
should control.  Fourth, in this simple model, if the power demanded by the 
load (e.g., the load resistance is reduced below   gLR  ) is increased 

beyond its maximum possible value, the actual power will decrease and the 
solution for the voltage will revert to the lower portion of the curve.  Under 
these conditions, the voltage can be said to “collapse” to a very small value.  
While the behavior of a real power system is much more complicated due to 
stability issues, the existence of (for example) protection systems and the fact 
that “voltage collapse” is not entirely well defined, situations have occurred 
for which the system voltage is not stable.  These situations are referred to as 
voltage collapses and have led to widespread system blackouts.   

 
Fig. 1.3.4.   Solving the load flow problem for a generator and resistive load connected by an 

inductive transmission line 

 
To complete this derivation, the complex power supplied by the generator 

will be computed using (1.3.19) for the special case    gLP 2/1max
.  In 

this case 2/1ˆˆ  ir VV   and (1.3.19) becomes  
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where the complex power absorbed by the transmission line is  
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Complex power is conserved because the real plus reactive power 

supplied by the generator is equal to the real power absorbed by the load plus 
the reactive power absorbed by the transmission line.  

Finally, it is worth noting that this circuit is similar to the one used in 
circuits courses to prove the “maximum power transfer” theorem. 
Conclusions should not be made about power systems based on that model 
because “maximum power transfer” is generally not the optimum condition 
for operating a power system.  Rather it is more correct to either maximize 
the efficiency of the system which is done by minimizing the losses within 
the system or to achieve an acceptable degree of voltage uniformity over the 
system.   
 

“Thinking” Reactive Power  
To illustrate the utility of thinking in terms of complex power, the results in 
Fig. 1.3.4 will be extended to the case for which a portion of the load is 
characterized by reactive power, Qℓ. This may be accomplished in a variety of 
ways.  First, it could be that the load is simply reactive.  Second, it could be 
that either a “shunt” inductor or capacitor is placed in parallel with the load 
for some purpose (e.g., to cause an increase or reduction in voltage).  Third, 
this reactance could be a model for the natural capacitance of a transmission 
line long enough to require parallel capacitances to appropriately model it22.   

Again, the coordinates of the “nose” of the parabola in   VP ˆ,  

coordinates are at  
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If 14   QLg , then after using a one term Taylor series to expand 

the square roots above, these coordinates become 
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22 In this case, the capacitance of the transmission line on the generator end has no influence 
on the fixed generator voltage although reactive power must be absorbed somewhere in the 
system to match the amount supplied by this capacitance.   
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Fig. 1.3.5.  Effect of injecting or absorbing reactive power at the load 

 

If the reactive element is capacitive (i.e. 0Q ), then the nose of the 

curve is moved to the right by an amount Q  which means that more power 

is available at the load.  This is illustrated in Fig. 1.3.5. Using the same Taylor 

series approximation, the points of intersection with the V̂ axis (i.e. P = 0 ) 

are  

0ˆ
2

V    and     QLg  21                        (1.3.39) 

 
Clearly, “injecting reactive power” at the load has an impact on the 

voltage there. If, for example, the voltage at the load is too small, a shunt 
capacitor can be added to increase the voltage to a desired level.  If, on the 

other hand, P is small and the voltage is too high due to the capacitance of 

the line (i.e., the Ferranti effect), then a shunt inductor (i.e. a shunt reactor) 
can be added to reduce the voltage to an appropriate level.  The Ferranti 
effect will be discussed further in Chapter 4.  A photograph of s shunt 
reactor will be given in Chapter 2 and shunt capacitors and inductors (i.e., 
shunt reactors) will be analyzed in Chapter 4.  
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1.4 Unbalanced Single Phase Transmission Lines 
with Reactive Effects 
 

Introduction  
The simple transmission line models considered earlier are useful for 
illustrating properties of transmission lines such as the origin of transmission 
line losses, the reason why power systems are more efficient if they utilize 
higher transmission voltages and the importance of reactive elements.  
However, a more sophisticated model must be used to illustrate issues related 
to the fact that power transmission lines are operated in the presence of the 
earth and often have parts that are connected to earth. A model of a single 
phase transmission line above earth with one wire grounded is shown in Fig. 
1.4.1.   

In this figure, one of the wires is connected to earth at each end of the 
transmission line.  This connection allows some of the current to flow in the 
earth so that in addition to unequal voltages at the ends, the wire currents 
will no longer generally be equal and opposite.   In addition, there may be 
capacitances between the wires and other objects such as the earth that are 
not shown in the figure and that can result in further current imbalances. 
Finally, the circuit parameters that define the transmission line (i.e. R, L and 
C) are affected by the presence of the earth.  This subject will be considered 
in Chapter 4.  Details of the connections to the earth will be considered in 
Chapter 13.   

 

 
 

Fig. 1.4.1.  Model of a short single phase power transmission line with earth connections 
shown 

 

The importance of grounding 
 
Current paths and current continuity (hidden paths) 
Having observed that currents through “hidden capacitances” can be 
important, it is useful to consider the set of all possible paths for current.  In 
Fig. 1.4.2, several current “paths” are indicated that may not have been 
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obvious initially.  These include capacitive paths between conductors and 
between conductors and ground.  In addition, current may flow from the 
generator and/or load to the earth.  In some cases, the generator and/or load 
are bonded to their housing which is, in turn grounded.  In others the 
generator and/or load are intentionally insulated from the housing and hence 
the ground.  But, if this is the situation, there is still capacitive coupling from 
the generator and/or load to the housing and ground.   The only difference is 
that the connection to ground is now of much higher impedance.  In either 
case there are ground currents as shown in the figure.   

Once all current paths have been identified “current continuity” can be 
invoked.  This restriction is a direct result of Maxwell’s equations as will be 
shown in Chapter 3.  As an example, the current continuity calculation must 
be applied to all currents flowing in and out of the generator in Fig. 1.4.2. 
Clearly, in this figure some current flows as displacement or ‘capacitive” 
current through “hidden” circuit elements to earth or other conductors that 
are not explicitly part of the circuit diagram as it returns to the generator as 
shown. Other current may flow in the earth through either intentional or 
unintentional grounds.   

 

 
 

Fig. 1.4.2.  Current paths and current continuity 

 
On the definition of voltage with respect to ground (there must be a 

reference point) 
Before moving to a consideration of grounding systems, it is useful to 

point out that whenever a voltage is given (especially with respect to ground), 
its description should include the two points between which it is defined.  
One should never say, “the voltage at point A is” because the reference 
location is then ambiguous.   Rather, the voltage should be described as the 
“voltage between A and B” or “voltage at A with respect to B” as shown in 
Fig. 1.4.3.  It may seem that this is not a problem, but it becomes an issue 
especially in describing grounding conditions as shown in Chapter 13.    



 

39 

 
 

Fig. 1.4.3.  Correct method for defining a voltage 
Impact of imperfect ground (the earth is NOT an equipotential) 

 

 
 

Fig. 1.4.4.  Illustration of why the earth is NOT an equipotential 

 
Having defined voltage carefully, it is important to remember that the 

earth is NOT an equipotential surface.  In fact, it cannot be an equipotential 
surface because, if current flows through the earth and the earth is not a 
perfect conductor, then there must be voltage between different points on 
the earth as shown in Fig. 1.4.4 (i.e., VAB(ω) is NOT equal to zero if there is 
current flowing in the earth) between points A and B.  
 
Grounded vs. ungrounded systems (there is no such thing as an 
ungrounded system) 
An important topic to consider is, “why power systems are ‘grounded’.” To 
begin the answer to this question, it should be noted that actually all power 
systems are grounded (whether explicitly as shown in Figs. 1.2.9 and 1.2.16 - 
17 or not as discussed earlier). A system that is not explicitly grounded is 
illustrated in Fig. 1.4.5.   
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Fig. 1.4.5.  Illustration of how “isolated” electrical systems are “grounded” through 
capacitance to earth through the generator and load cases. 

 
As shown in this figure, even if an attempt is made to isolate the power 

system from the earth, there is a path for currents to the earth through the 
hidden capacitances between (for example) the generator and its housing 
which may sit on the earth.  Hence no electrical system is ungrounded.  
Rather, the only question to ask is whether the system is grounded through a 
high impedance (as shown in Fig. 1.4.5) or a low impedance explicit ground 
(as shown in Fig. 1.4.1).  The difference between these two types of grounds 
can be dramatic especially during fault (i.e., unintentional grounding of some 
point in the power system) conditions as will be illustrated next.   

 
Fig. 1.4.6.  A simple power system used for calculating neutral to ground voltage under 

normal operating conditions 

 
This point about the impact of grounding impedance is important enough 

that a more detailed explanation is warranted.  Fig. 1.4.6 shows a very simple 
power system which consists of a voltage generator, a two wire (i.e., a phase 
and a neutral conductor) transmission line with a series impedance Zc for 
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each conductor and a load RL at the end. The neutral conductor is grounded 
at each end through equal impedances Zg.  In this configuration the system is 

in normal operation.  It can be shown that if 
Lgc RZZ ,  (a reasonable 

assumption for normal operation) 
 

  VRVZV Lcng  2/                             (1.4.1) 

 

where 
ngV is the voltage from the neutral conductor to a point on the earth 

“far” from the ground connection called “remote earth.”    
Hence, under normal conditions and independent of whether the 

grounding impedance is high or low as long as, 
Lgc RZZ ,  the voltage 

between the generator neutral and remote earth (i.e., center of the power line 
– more will be said about “remote earth” in Chapter 13) is very small 
compared to source voltage and the issues related to personnel safety or 
neutral conductor insulation breakdown would be minimal.   
If, however, this system is analyzed under fault conditions, a different 
situation exists.  Consider the situation shown in Fig. 1.4.7a.  Here, the phase 
conductor is inadvertently grounded (for simplicity through an impedance to 
ground of Zf ) and the neutral to remote earth ground voltage is calculated.  If 

it is assumed that 
fLgc ZRZZ ,, , then Zc can be ignored in Fig. 1.4.7a 

resulting in the circuit shown in Fig. 1.4.7b.  In this case, the voltage between 
neutral and ground can be written as  
 

 fggng ZZVZV 2/                             (1.4.2) 

 

 
                              
                               (a)                                                       (b) 

 
Fig. 1.4.7.  A simple power system used for calculating neutral to ground voltage under fault 

conditions with a low impedance ground 
 

If 
fg ZZ 2/ , the neutral to ground voltage is relatively low and issues 

related to personnel safety or neutral conductor insulation breakdown would 
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be minimal.  The case for a high impedance ground is significantly different, 

however.  If, fg ZZ 2/ , then  

 

VVng                                        (1.4.3) 

 
This means that this “ungrounded” (i.e., high impedance grounded) 

systems may experience neutral to ground voltages that could be hazardous 
to personnel and/or high enough to damage the insulation on the neutral 
conductor.  This exercise illustrates why intentional grounding is important 
for most transmission systems.     
 

Thevenin Equivalent Circuits (they are handy)  
As an aside, Thevenin equivalent circuits are very handy for analyzing electric 
power transmission systems (assuming that linearity can be assumed).  Fig. 
1.4.8 shows how a complicated power transmission system can be 
represented as a simple Thevenin equivalent circuit.   

Here, the Thevenin equivalent can be used to determine the effect of the 
entire system on a device (or person) connected between terminals A and B.  
Later in the text, methods for determining the parameters of the Thevenin 
equivalent will be discussed.   

 

 
 

Fig. 1.4.8. Replacing an entire transmission system at terminals A and B by a Thevenin 
equivalent circuit 
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1.5 Why is Three Phase Power Used?  
 
An early development in power systems related to improving efficiency was 
the advent of three phase transmission lines.  To understand why, consider 
the superposition of three separate “single phase” systems with equal loads as 
shown in Fig. 1.5.1.  For simplicity, the loads will be assumed to be 
resistances and inductive/capacitive effects are ignored.  Here the voltage 

sources 
ba VV ˆ,ˆ  and 

cV̂  represent the generator for each circuit, 2/R is the 

resistance of each wire where R/2 is the resistance per unit length and Δℓ is 
the wire length and “RL” represents the resistance of the load for each circuit. 

Each of the circuits has a loss 
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where n = a, b or c for a total loss of  
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Fig. 1.5.1.  Superposition of three identical single phase circuits 

 
In each of the three circuits the current (expressed as a phasor) is equal to 
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where n is a, b or c.  The collective current in the set of three return current 
wires is  
 

 2/2

ˆˆˆ
ˆ






RR

VVV
I

L

cba                                      (1.5.4) 

 

If  0ˆˆˆ  cba VVV , then the total current through the three wires is zero.  

Given this, if the ends of the wires are connected together there is no net 
voltage drop across this set of wires because there is no total current. Since 
there is no current through this set of “return current” wires they could be 
eliminated as shown in Fig. 1.5.223. The effect of this is to eliminate the need 
for these three wires and hence their cost.  In addition, the resistive losses in 
these three wires are eliminated and, hence, the efficiency of the system is 
approximately doubled since there is loss in only three wires rather than six.    
The loss in the three-phase case is  

 

 
 

Fig. 1.5.2.  Three phase system “wye” connected system with return (neutral) wires 
eliminated 

 

                                                           
23 This type of connection is called a “wye” connection because the generator and load 
connections look like the letter Y.  Another common connection for generator and load is 
the delta or ∆ connection for which the connections look like a ∆ and there is no return 
wire.    
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Such a system is constructed generally using  
 

3/23/20 ˆ,ˆ,ˆ  j

c

j

b

j

a VeVVeVVeV  
              (1.5.6) 

 

so that 0ˆˆˆ  cba VVV . There are other reasons why three phase systems are 

used including the fact that three-phase connected generators and motors 
have a constant power output in time and the fact that three phase 
components such as transformers can be constructed more economically 
than three single phase components.  Further, these advantages are not 
limited to three phase systems.  But, this subject is beyond the scope of this 
discussion (Bergen 1986).   

 

 
 

Fig. 1.5.3. Three-phase grounded “wye” connected system 

 
Practical three-phase systems are grounded to the earth at the center of 

each “wye” as shown in Fig 1.5.3.  This kind of a connection is used because 
the power system is almost never completely balanced (especially during 
unbalanced fault conditions) and grounding in this way carries unbalanced 
currents to ground and hence, enhances safety and system recovery.    
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As a final note, transmission lines (e.g., a 500 kV transmission line) are 
usually identified by their line to line voltage.  The relationship between line 
to line and line to ground voltage is 

 

all VV ˆ3ˆ                                              (1.5.7) 

 
The reason for the square root of 3 term can be illustrated by referring to 

the phasor diagram of the voltages associated with a three phase system in 
Fig. 1.5.4.  Here the three phase voltages in (1.5.6) are plotted.   The line to 
line voltage between phases A and B which is the phasor difference between 

aV


and 
bV


is also shown  

 

 
Fig. 1.5.4.  Phasor diagram of the voltages on a three phase system 

 
 

1.6 On Increasing the Capacity of Power 
Transmission Lines  
 

Introduction 
It is known that the power transferred through a power transmission line is 
proportional to some current and some voltage.  Earlier in this chapter, it 
was shown that in order to realize efficient power transmission over long 
distances, the voltage of a transmission line should be increased rather than 
its current.  It is also generally true, that higher voltage transmission lines 
have greater capacity for transferring electric power.  Hence, the most 
important approach to increasing the power capacity of transmission lines is 
that of developing techniques for building transmission lines at higher 
voltages.  This will be covered in the next section.  Following that will be a 
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brief introduction to techniques for increasing the capacity of transmission 
lines to handle electric current.   
 

Voltage limitations on high voltage transmission systems and their solutions 
In the twentieth century as electric power became more ubiquitous, a trend 
continued towards the use of even higher voltages for power transmission 
over long distances, again because of the desire to improve the efficiency of 
power transfer and to transfer more power. Before, these higher voltage lines 
could be used practically however, it was necessary to solve problems related 
to the use of high voltage on these transmission lines.  To be complete, there 
is a short section about techniques that have been used to increase the 
current handling capacity of high voltage transmission lines.   

 

 
 

Fig. 1.6.1. a) Single cap and pin insulator b) String of cap and pin Insulators used on a high 
voltage transmission line. The hardware at the bottom end is a pair of grading rings that will 

be discussed in more detail later. (photo courtesy R. Aho - BPA) 

 
The two most important of these solutions were the development of 

insulators appropriate for high voltage applications and the design of 
conductors and hardware suitable for managing corona effects on power 
lines (Maruvada 2000).  The key development in insulation design was the 
development of the cap and pin suspension insulator which is further 
discussed by Mills (1979) and Creager and Justin (1927) and shown in Fig. 
1.6.1. The individual unit is shown in Fig. 1.6.1a while a sting of units is 
shown in Fig. 1.6.1b.  Also visible near the end of the string of insulators is a 
“ring” structure often called either a “grading” ring or a “corona” ring.  The 
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primary purpose of this hardware is to distribute the power frequency electric 
field near the conductor end of the insulator more evenly (i.e., to “grade” it) 
so that the insulation strength is more nearly proportional to the number of 
insulator units in the string.  A positive side effect (and part of the solution to 
t*he corona issue) is that these rings can also act to reduce corona (i.e., partial 
electric discharge in air near high voltage conductors and hardware).  Corona 
occurs because the electric field near these conductors is large enough to 
cause ionization of the air and results in power loss as well as audible and 
electromagnetic noise (see Figs. 1.6.2 and 1.6.3). More information about this 
can be found in Chapters 8 and 9. Another aspect of the solution to the 
corona problem was the development of “bundled” conductors as will be 
visible in the photographs of power line conductors in the next section.  
While some aspects of corona will be covered in this manuscript the subject 
is covered more completely in (Maruvada, 2000). A negative side effect of 
grading rings is that they reduce the insulation strength for impulsive voltages 
(EPRI 1982).   

 

 
 

Fig. 1.6.2. The white spots at the tips of the attachment hardware are corona discharges. 
(courtesy B. Clairmont – EPRI) 

 

 
 

Fig. 1.6.3.  The white spots are corona discharges randomly located along a conductor 
energized to high voltage 
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To be complete, it should be noted that there are also limitations on the 
current carrying capacity of these transmission lines such as excessive 
conductor sag and temperature.  These will be discussed in more detail later 
in Chapter 8.  
 

Current limitations on high voltage transmission systems and their solutions 
While voltage issues were the primary limitation on the development of high 
voltage transmission lines, increasing current limits can be another way to 
increase the power handling capability of high voltage transmission lines.  
Many of these issues will be covered in much more detail in Chapter 8.  
However a short summary is included here. The primary issue that limits 
current carried by high voltage power lines is that the current causes heating 
of the conductors and if excessive, this in turn leads to stretching and hence 
unsafe sagging of conductors and shorter lives for conductors and other 
components such as splices.  This issue can be mitigated primarily in two 
ways.  First, reducing the resistance of the conductors by using conductors 
with larger diameters results in less heat dissipation and a higher current 
capacity.  Second, the use of different materials for conductor core strength 
material results in reduced stretching for a given temperature.  Other 
remedies include closer monitoring of weather conditions to determine 
conditions under which higher currents can be tolerated without violating 
standards on maximum sag.  Having said this, the power handling capacity of 
very long high voltage overhead transmission lines is often limited by other 
issues such as system stability.  In these cases, replacement of conductors 
does not result in increased current capacity since the current can never get 
large enough to be of concern without violating other limits such as those 
related to stability.    
 
 

1.7 Alternative Transmission Line Systems  
 

Introduction 
As mentioned earlier, there are many types of high voltage transmission lines.  
Some are modifications of the standard single circuit three phase 
transmission line such as “double circuit,” “compact,” “low sag conducting,” 
“high surge impedance loading” and “low reactance” each designed to 
mitigate against some disadvantage of conventional high voltage transmission 
lines.  Each of these will be considered in some detail later in this manuscript.  
However, there are other designs that are more radical than those just 
mentioned. Two of these are introduced in the following sections and will be 
discussed further in Chapter 8.   
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High voltage direct current (HVDC)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1.7.1.  Transmission line structure for the HVDC Pacific Intertie. (courtesy R. Aho, 

BPA) 

 
It was mentioned earlier that during the beginnings of electric power, direct 
current (DC) systems were one of the competing technologies for power 
transmission (Bahrman 2008).  Alternating current (AC) systems prevailed 
primarily because transformers made it relatively easy to change from one 
voltage level to another in order to reduce energy losses associated with 
transmission.  However, as also mentioned earlier, the electrical resistance of 
a conductor at DC is lower than that of the same conductor at AC.  Hence, 
even through the cost (both in terms of dollars and losses) of converting AC 
to DC and vice versa is high, economics may favor DC lines if the line is 
long enough.  Since the 1950’s some long DC transmission lines have been 
constructed such as the Dalles, OR to Los Angeles, CA Pacific Intertie 
shown in Fig. 1.7.1. The fact that there are only two power carrying 
conductors should be noted.  The other two conductors are shield wires.   

For overhead transmission lines, HVDC has the advantages of lower line 
losses due to a smaller resistance per unit length and the removal of stability 
related load limits for long transmission lines (and hence larger power 
transfer on a given corridor).  In addition, while cables are not the specific 
subject of this manuscript, DC technology is exclusively used for long 
underwater cables due to the large capacitive currents that flow in unloaded 
AC cables.     
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High phase order transmission  
 

 
 

Fig. 1.7.2.  Experimental six-phase power system tower.  (Courtesy J. R. Stewart) 

Three phase transmission lines are not the only transmission lines that have 
been studied and or constructed in the past. In fact high phase order (e.g., six 
or twelve phase) transmission lines have been considered as an alternative 
(Grant and Stewart 1984).  While it is difficult to determine exactly what is 
the best way to compare these to traditional three phase transmission  lines 
(e.g., voltage, number of phases, conductor size, right of way width, 
environmental criteria, and phase spacing), the principal advantages of high 
phase order lines are:  a) They can provide the same power transfer (thermal 
or surge impedance) capability as three phase lines, on a smaller right of way, 
for the same electric field and audible noise criteria, with smaller structures 
and reduced overall cost and b) They can provide higher power transfer-on a 
given right of way than three phase, for the same electric field and noise 
criteria. A photograph of a six phase line can be found in Fig. 1.7.2.    
 
 

1.8 Conclusion 
 
It should be clear that the design of high voltage, overhead power lines is a 
complicated process.  In the following chapter, an overview of real high 
voltage overhead power lines will be given in order that the reader 
understand the hardware that is used to build these lines.  At the end of the 
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discussion is a list of simplifying physical assumptions that must be made 
before realistic mathematical models of the electromagnetic fields of these 
power lines can be developed.   
 
 

1.9 Problems 
 
P1.1. Of the three following possibilities, what is the fundamental reason 
why wireless power transmission is not generally used for transporting bulk 
power?   
a. Not as efficient as wired transmission  
b. More expensive than wire transmission 
c. Frequency spectrum not available for wireless transmission  
 
P1.2. Assume a simplistic model for an antenna that radiates power equally in 

all directions.  Hence the radiated power density is 
24 r

P
P

gen

rad


  Watts/m2.  

If, equally simplistically, it can be assumed that a receiving antenna captures 

an amount of power ( recP ) equal to the incident power density multiplied by 

the area of the receiving antenna, calculate the efficiency (i.e., 100x
P

P

gen

rec  % ) 

of a wireless power transmission system for a receiving antenna with an area 
of 100 m2 over a distance of 1000 meters.  Compare this to the efficiency of 
a 1000 meter long “wired” system that connects a 10 kV rms 60 Hz voltage 
source to a purely resistive 1 Mw load with copper wire of 5 mm diameter 
(assume no skin effect).  At room temperature, the resistivity of copper is 

1.68 ×10−8 Ω-m.  Hint: use the power flow equation 1.3.17 with V assumed 

to be real because the load power is real and there are no reactive elements.   
 
P1.3. How much weight can you save if you replace a copper conductor with 
an aluminum conductor of the same total dc resistance and length? (The 
density of copper and aluminum are 8960 kg/m3 and 2700 kg/m3, 
respectively. At room temperature, the resistivity of copper and aluminum 
are 1.68 ×10−8 Ω-m and 2.82 ×10−8 Ω-m, respectively.) 
 
P1.4. Calculate the RMS value of the square and triangular waves shown in 
Figure P1.9.4 
 

P1.5. You are given the phasor voltage 6/120ˆ jeV  .  If the frequency is 60 
Hz, calculate the voltage in the time domain.   
 
P1.6. Why are 50/60 Hz the most common frequencies for power systems 
around the world?   
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Fig. P1.4. Square and Triangular Waves 

 
P1.7. You are given a simple single phase transmission line of length 100 km 
and made of aluminum wire with a radius of 1.0 cm.  The resistivity of 
aluminum at room temperature is 2.82 ×10−8 Ω-m.  Assume that inductive 
effects can be neglected and that there is no skin effect.   
a. What is the resistance of each wire?   
b. If the voltage of the generator is 10 kV and the power absorbed by the 

load (purely resistive) is 1 MW, what is the efficiency of the system?  
c. Repeat for a generator voltage of 100 kV. 
d. Hint: start with the power flow equation 1.3.17. 
 
P1.8. Historically, what fundamental advantage did AC have that resulted in a 
mostly AC transmission and distribution system rather than a DC one?   
 
P1.10. You are given that the inductance per unit length of a two wire 100 
kV, 100 km AC transmission line is  
 











a

d
L ln0




 Henries/m 

 
where d is the spacing between the wires and a is the wire radius.  Assuming 
that d = 3 m, a = 2 cm and the frequency is 60 Hz, show that resistive effects 
can be ignored compared to the inductive effects if the wires are made of 
aluminum.  Find conditions for which capacitive effects can also be ignored 
given   
 











a

d
C

ln

0
 Farads per meter 

 

P1.11. Suppose           titvtqtpts    and  
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   ftVtv rms 2cos2                 ftIti rms 2cos2 
 

What is the most important distinguishing characteristic between  tp  and 

 tq ?   

 
P1.12 Is the current (green) in Fig. P1.12 leading or lagging the voltage 
(blue)? By how much?   
 

 
  

Fig. P1.12. Voltage across and current through a load. 

 
P1.13. Assuming that complex power is conserved, what is the reactive 
power supplied to (or by) each of the circuit elements (including the 
generator) in the following circuit.  Vg = 100 kV and Pℓ + jQℓ = 1 MW + j 
0.2 kVAr.   

 
 

Fig. P1.13. Power System for problem P1.13 

 
P1.14. Using the power flow equation, 1.3.23, the fact that the total 
inductance of a short transmission line is 0.2 H and the fact that the voltage 
at generator 2 is 100kV, how much reactive power (in kVAr) can flow across 
the transmission line with less than a 10% voltage drop between generator 
and load?  What can be done to reduce this voltage drop?   
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P1.15. Given the list below, identify which are the valid attributes of power 
flow equations?   
a. Nonlinear 
b. Linear 
c. Multiple solutions  
d. Unique solutions 
 
P1.16. If positive reactive power is injected into a power network, what 
happens at (and near) that point ? 
a. voltage increases 
b. voltage decreases 
c. phase changes 
d. the system is more efficient 
 

P1.17. In a simple two bus power system with bus voltages 1

1

j
eV and 2

2

j
eV

connected by a transmission line that can be modelled as an inductor, the real 
and reactive power flows follow which of the following   

a.   21122112 VVQP    

b.    21122112   QP  

c.  21122112   QVVP  

d. 
21122112 VVQVVP   

 
P1.18. Explain why the earth cannot be considered an equipotential surface.  
 
P1.19. Which of the following is an appropriate way to define a voltage? 
Indicate all that apply.   
a. The voltage at point A is … 
b. The voltage between points A and B is …. 
c. The voltage at A with respect to B is ….. 
d. all of the above 
 

P1.20. You are given a cable with capacitance per unit length 
)/ln(

2 0

ab
c r


F/m. The outer and inner radii of the cable are b = 10 cm and a = 2 cm 

while the relative dielectric constant of the dielectric is 0.3r .  Calculate 

the reactive power supplied to the system by a 10 km long, 230 kV single 
phase cable.  Assume that the frequency of operation is 60 Hz.  Compare this 
to a similar cable that is 1 km long and is operated at 13.8 kV.   
 
P1.21. What is the maximum power that can be supplied to the load by the 
system shown below in Fig. P1.21 if the load is resistive (i.e., Qℓ = 0)?  
Explain what happens to the maximum power output if Qℓ is added.  Note 
that Qℓ can be positive or negative.    
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P1.22. What is the primary reason that three phase systems are used?  Is this 
property unique to three phase systems?  What about systems that are n x 3 
phase?   

 
 

Fig. P1.21. Simple Power System 

 
P1.23. Show that the power output (in time) for a balanced three phase 
system in Fig. P1.26 is independent of time.  Show that this does not happen 
for a two phase system.   
 

 
 

Fig. P1.23. Balanced Three Phase Power System 

 
P1.24. Under what conditions is it possible to eliminate the neutral conductor 
of a Y connected 3 phase system?  
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P1.25. What are the key problems that have placed limits the amount of 
power that can be carried by a high voltage transmission line?  
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Chapter II 
Real High Voltage Overhead Transmission Lines 

and Physical Approximations Prior to Analysis 
 
 
 

2.1 Introduction 
In this chapter, a description of real high voltage overhead power 
transmission lines and their associated components will be given.  Special 
attention will be paid to the differences between these and the idealized 
transmission lines that are usually analyzed.  For example, in most cases, the 
fact that power line conductors sag between towers is ignored and the towers 
used to suspend the conductors above ground are ignored.   Hence, it is 
important to understand the differences between the electrical behavior of 
real high voltage overhead power transmission lines and the idealizations that 
are mathematically analyzed and, even more important, to understand when 
these differences result in significant inaccuracies.  Later in this chapter, the 
issue of inaccuracies introduced by these approximations as well as some 
ideas for overcoming these inaccuracies (when necessary) will be discussed.   
 
 

2.2 Brief Description of Real High Voltage Overhead 
Power Transmission Lines 
 

Transmission vs. distribution 
On power systems the higher voltage overhead power lines are usually 
referred to as “transmission lines” and the lower voltage power lines referred 
to as “distribution lines.” The transition between these two is usually 
between 50 kV and 80 kV. In this manuscript, emphasis will be placed on the 
higher voltage overhead “transmission lines.”  An example of a three phase 
high voltage alternating current (AC) overhead transmission line is shown is 
Fig. 2.2.1.  It is clear from this photograph that transmission line 
components include conductors, towers, insulators and other hardware.  
These and more will be discussed in the following sections.   

 
Conductors, conductor bundles, and shield wires  
 Early lower voltage power transmission lines used solid (usually copper) 
conductors.  Copper was initially selected because of its relatively low 
resistivity compared to other common conducting materials.  But, eventually 
there was an almost complete switch to the use of aluminum conductor 
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because, while its resistivity is nearly 60% higher than copper, its density is 
only 30% that of copper.  Hence for a given weight per unit length 
(according to (1.2.9)) the resistance per unit length of aluminum conductor is 
roughly half that of a copper conductor. As the diameter of conductors was 
made larger, most conductors were constructed from “strands” of wire for 
mechanical reasons (primarily flexibility) as shown schematically in Fig. 2.2.2.   
This is still the case today. 
 

 
 

Fig. 2.2.1. A typical high voltage transmission line on steel towers.  (courtesy BPA) 

 

.   
 

Fig. 2.2.2. An example cross section of a stranded all aluminum conductor (AAC) with 7 
strands 

 
In addition to resistance per unit length, two other important design 

criteria for conductors are their mechanical and thermal properties.  The 
mechanical properties are important because conductors must be strong 
enough to suspend their own weight over long spans between towers as well 
as to sustain forces due to high winds that cause additional stress on the 
conductor.  In cold climates, accumulated ice and snow augments the 
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conductor weight (see Section 2.4). All of these factors must be accounted 
for in the design. The thermal properties are important since the power 
dissipated in the conductor’s resistance by the large currents that pass 
through them is converted into heat that raises the temperature of the 
conductors.  This, in turn, causes two problems.  First, most conductors 
expand in length as temperature rises.  This causes the conductors to sag and, 
if large enough, to cause flashovers to objects under the line and/or 
potentially unsafe conditions for humans under the line.  Ultimately this 
problem limits the power flow on many (but not all) transmission lines24.  
Second, the material properties of the conductor may be changed 
permanently by the heating. Aluminum, for example, can be annealed and (as 
a result) may lose its strength over time if it becomes too hot for too long a 
time (Thrash, et. al. 2007).     

 

 
 

Fig. 2.2.3.  An aluminum conductor steel reinforced (ACSR) conductor 

 
It was recognized early that (for typical power line conductors carrying 

AC current) the current flows mostly near the outside surface (or “skin”) of 
the conductor (This effect is called the skin effect and will be discussed in 
Chapter 4 and Appendix B). Thus, it is possible to use a strong, but higher 
resistance material in the “core” of the conductor and a lower resistance 
material with less desirable mechanical properties on the outside without 
significantly sacrificing either the mechanical or electrical properties of the 
conductor.  Such a conductor is shown schematically in Fig. 2.2.3.  This 
conductor uses a steel inner core for strength and an aluminum outer shell 
for low resistance.  Such a conductor is called an aluminum conductor steel 
reinforced (ACSR) conductor. 

A photograph of the cross-section of an ACSR conductor with many 
strands is shown in Fig. 2.2.4. In this photo, the smaller diameter darker 
colored strands near the center are steel for strength and the larger diameter 
lighter colored strands are aluminum for lower resistance. More recently, 
conductors with different core material to reduce sag have been developed.  

 
 

                                                           
24 Other factors that limit power flow are system stability (generally for long lines) and 
voltage regulation (generally for lines of medium length) (Maruvada ,2000).  
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Fig. 2.2.4. Cross sectional view of a stranded aluminum conductor steel reinforced (ACSR) 
conductor (courtesy R. Aho, BPA). Note that the rubber coating is here only for the purpose 

of holding the sample together. Conductors in service will generally not have this coating. 

 

 
 

Fig. 2.2.5.  Cross-sectional view of a three subconductor bundle 

 
The higher the voltage, the more likely that a single conductor will be 

replaced by a “conductor bundle” as shown in Figs. 2.2.5 and 2.2.6.  These 
bundles consist of several parallel subconductors (each of which is stranded) 
and are used (as will be illustrated later in the manuscript) to control corona 
by reducing the electric field at its surface compared to that for a single 
conductor of the same weight per unit length.  The use of bundles also 
reduces the inductance per unit length of a transmission line and sometimes 
is the primary reason why they are incorporated into a design.   

Although not evident from Fig. 2.2.6, conductor bundles always involve 
some spacer hardware to maintain the designed spacing between 
subconductors at all points between towers, especially during wind. One 
example of spacer hardware for a four conductor bundle is shown in Fig. 
2.2.7. 
 

 
 

Fig. 2.2.6.  A three conductor bundle on a 500 kV line 

 
In many locations around the world, lightning is a significant cause of 

transmission line outages. In these cases, utilities often install “overhead 
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shield wires” above the phase conductors as shown in Fig. 2.2.8 that are 
usually (but not always) connected to ground at each  tower (Eriksson 1987).  
In some cases a small gap between shield wire and ground is purposely used 
to reduce losses during normal operating conditions but to allow the higher 
voltages during faults and lightning strikes to flashover the gap and hence 
ground the shield wire during these conditions.  The purpose of these shield 
wires is to divert lightning away from the phase conductors and to ground it 
through the towers and their grounding systems to reduce the probability of 
a flashover to a phase conductor and a subsequent outage.  They also 
conduct fault current during system faults and are useful for detecting faults.  
At power frequencies, they are often included in an analysis of the electric 
field near power lines (they are assumed to have a potential of 0 at power 
frequency because of grounding at each tower and the fact that the spacing 
between towers is a small fraction of a wavelength25), but ignored for 
magnetic field calculations because relatively little current is induced on these 
wires under normal operating conditions.  At significantly higher frequencies, 
such simple analysis may not be possible because the spacing between towers 
becomes a significant fraction of a wavelength. In fact, at some frequencies 
in the hundreds of kilohertz to low Megahertz range, sections of grounded 
shield wire may become resonant and have a noticeable effect on the 
electromagnetic fields from broadcast stations (Madge and Jones, 1986).    
 

 
 

Fig. 2.2.7.  Typical spacer hardware on a four conductor 765 kV bundle. (courtesy J.R. 
Stewart) 

 
Finally, there are a number of different ways that the phase conductors 

can be configured in space.  The specific configuration shown in Fig. 2.2.1 is 
a “single circuit” (i.e., a single set of three phase conductors) “delta” 
configured line because the phase conductors are arranged in a ∆ 
arrangement (in the cross section of the transmission line) with two phases at 
one lower height and one centered above them.  But, the phase conductors 
could also be arranged in a “horizontal” configuration (i.e., all at the same 
height above the ground) as illustrated later in Fig. 2.2.10 or as a “vertical” 
configuration for which each conductor is at the same horizontal location 
but one above the other at different heights.  It is also common to see two 

                                                           
25 Wavelength (λ) is defined as 300,000 km divided by the frequency in Hertz. At 60 Hz, the 
wavelength is 5,000 km and much larger than typical spacing between towers.   
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circuits on a single tower (i.e., a “double circuit” configuration) as shown in 
Fig. 2.2.9. The reasons for the different configurations include (but are not 
restricted to) maximizing the power transfer through a fixed right-of-way, 
balancing currents, minimizing the cost of construction, reducing the line 
inductance and aesthetics. 
 

 
 

Fig. 2.2.8. Overhead shield wires visible at the tops of the two poles. (courtesy J.R. Stewart) 

 

 
 

Fig. 2.2.9. Double circuit transmission line. (courtesy R. Aho, BPA) 

 

Towers 
In order to operate at high voltages, transmission line conductors must be 
supported in space and effectively isolated from the earth and the public so 
that very little or none of the current can “leak” into the earth and that 
electrical safety standards for the public are satisfied.  This is accomplished 
by using towers such as the one shown in Fig. 2.2.1 to suspend the 
conductors above the earth. These towers can be constructed of steel (as 
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shown in Fig. 2.2.1), wood (as shown in Fig. 2.2.10), concrete or other 
material. The conductors are suspended in the air with insulators that are 
mechanically strong but which have  very high electrical resistance.  The 
towers and their foundations must be strong enough to both suspend the 
conductors in air as well as to avoid failure in the harshest of environmental 
conditions (e.g., rain, snow, conductor ice and wind during hurricanes or 
tornados) during the expected lifetime of the tower. This civil engineering 
problem is an entire field in itself and is discussed extensively in standards 
(IEEE 2001, ASCE 1991).  

 

 
 

Fig. 2.2.10. A wood pole tower with vertical suspension insulators 

  
    

 
 

Fig. 2.2.11.  A dead end tower that is stronger and does not allow conductor movement 
parallel to the transmission line direction 
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Since this manuscript is designed primarily for electrical engineers, it 
should be mentioned that there will always be conflicts between the design 
requirements of the civil engineers who design towers and the electrical 
engineers who design the insulators and the conductors.  Compromises are 
often necessary. Finally, it should be mentioned that transmission line towers 
are grounded to provide protection of the system during faults and lightning.  
More will be said about this in Chapter 13.  

Different kinds of towers are used along a transmission line in part 
because transmission lines are designed in sections with each end terminated 
by a structure that does not allow movement of the conductors parallel to the 
direction of the line (i.e., mechanical ends of the line section). Mechanically 
separate sections such as these are terminated by “dead-end” towers at the 
ends as shown in Fig. 2.2.11. Generally, these dead end towers will be 
stronger and the insulators positioned horizontally as shown in the figure.  
Between the dead end structures, the towers are typically “suspension” 
towers such as shown in Fig. 2.2.10 that allow movement of the conductors 
both parallel to and perpendicular to the transmission line direction.  
Suspension towers are used when possible because they are less expensive. 
However, they cannot be used for arbitrarily long sections of the 
transmission line because the mechanical failure of one suspension tower can 
cause adjacent towers to fail as well in what is called a “cascading failure.” 
The use of dead-end towers tends to limit the extent of cascading failures  
(CIGRE 2012).  
 

 
 

Fig. 2.2.12.  Transmission line tower with line post insulators. These do not allow movement 
of the conductors in any direction.  Hence, clearances between conductors and the tower 

can be smaller. 

 
Another type of tower (a Vee string tower) is illustrated in Fig. 2.2.1 for 

which the conductors can move parallel to but not perpendicular to the 
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direction of the transmission line.  Finally, some towers use “post” insulators 
as shown in Fig. 2.2.12 that do not allow either horizontal or vertical 
movement at the structure.  Such restrictions on conductor movement 
generally allow smaller clearances between conductors and towers, but 
generate stricter mechanical requirements for the insulators.  

 

Insulators and insulator contamination 
Some towers (e.g., wooden towers)  provide partial electrical insulation of the 
conductors from the earth, but  even these must be augmented by devices 
called insulators that provide the bulk of the electrical insulation.  Suspension 
insulators such as the ones that connect tower to conductor as shown in 
Figs. 2.2.13 are designed for this purpose.  These are referred to as 
“suspension” insulators because they are suspended vertically and carry the 
weight of the conductor directly but do not provide mechanical support in 
any other direction.  Care must be taken in the design so that insulator 
characteristics and clearances between conductors and conductors at other 
voltages or grounded structures are sufficient to withstand voltage surges and 
lightning even during wind conditions26 as well as to provide sufficient 
working space and protection of the public (EPRI 1982; Kuffel and Zaengl 
1984).   
 

 
 

Fig. 2.2.13.  Close-up of a suspension insulator with a grading ring and suspension clamp at 
its bottom.  Also shown on the conductor at short distances in both directions away from 

the attachment point are vibration dampers 

                                                           
26 Wind is accounted for differently for power frequency and switching surge voltages. In the 
former, the maximum expected swing is used while in the latter, statistical calculations are 
done since the probability of a simultaneous switching surge and maximum wind swing is 
very small.   
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Historically, insulators have been constructed from glass or porcelain, but 
in earlier days, the designs for such insulators were not sufficient to 
withstand the desired higher voltages.  As discussed in Chapter 1, a 
fundamental improvement that allowed higher voltages to be used was the 
cap and pin suspension insulator that allowed individual insulators to be 
“stacked” together to be able to withstand higher voltages.  More recently, 
polymer insulators have been used and other materials have been considered, 
but issues about brittle fracture and lack of live-line work methods have 
caused some utilities to return to porcelain cap and pin suspension insulators.  
Again, insulation is an area of engineering in itself and has been covered 
extensively in (EPRI 1982, RUS-USDA 2005).  One of the most important 
topics covered in these references is that overhead transmission lines are 
exposed to the environment.  As a result, insulators can become 
contaminated with, for example, salt from the sea, chemicals from industrial 
effluents and automobile exhaust. When combined with water, these 
contaminants can form conducting layers on the insulators.  Hence, (over 
time) the insulator’s capability to provide the necessary insulation level can be 
compromised.  In fact, it has been shown that insulators (usually due to 
contamination) are responsible for nearly 70% of the line outages and over 
50% of the line maintenance costs (Gorur, 2012). For this reason, insulators 
are often selected while taking into account the particular environment in 
which they will be used.  In some cases special insulators with semi-
conducting coatings designed to be heated by leakage current and keep the 
insulators dry (and hence reduce the problem of insulator caused outages) are 
used.  In some cases, insulators in severely contaminated environments are 
periodically washed.   

Another issue to note with transmission line insulators is that they may 
incorporate additional hardware such as the grading rings shown in Fig. 
2.1.13 near the bottom of the insulator.  The purpose of this grading ring is 
to more evenly distribute the electric field along the length of the insulator 
and hence produce an insulation strength that is more nearly proportional to 
the number of insulator discs in the string.  A positive side effect of this is 
that the electric field is reduced near places where it otherwise may be strong 
enough to produce corona.    A negative side effect is that the critical 
flashover voltage during fault events may be reduced.  The other hardware 
shown in Figure 2.2.13 on the conductor a short distance away from the 
insulator is a vibration damper designed to reduce Aeolian vibration.  
  

Conductor sag, direction changes and transpositions 
Another characteristic of real overhead transmission lines is that the power 
line conductors are not horizontal (i.e., they sag under their own weight 
between towers) as shown in Fig. 2.2.14.    This sag is an important design 
consideration for utilities because the amount of sag is dependent on 
conductor temperature which (in turn) depends on weather conditions and 
the amount of current flowing on the line. In fact, there is usually a 



 

69 

maximum allowed conductor sag because of public safety issues and this can, 
in turn, limit the maximum power flow for that transmission line. The 
conductor sag also raises questions about the accuracy of electromagnetic 
field calculations that are based on the assumption of horizontal conductors. 
An introduction to methods used to calculate sag will be given later in 
Chapter 8 (House and Tuttle, 1959). 
  

 
 

Fig. 2.2.14.  A sagging conductor.  (courtesy BPA) 

 

 
 

Fig. 2.2.15.  A “heavy angle” structure at a change in the transmission line direction. 
(courtesy J.R. Stewart) 

 
Also, as mentioned earlier, transmission lines are constructed in sections 

with “heavy angle” or “dead-end” towers at the ends of each section. One 
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reason for this is to allow transmission lines to change direction as illustrated 
in Fig. 2.2.1527. It is clear from this figure, that special mechanical design is 
needed for these structures to ensure mechanical stability. Again, changes in 
direction such as this beg questions about the accuracy of electromagnetic 
field calculations that assume infinitely long horizontal parallel conductors.   
 

 
 

Fig. 2.2.16. A transposition tower designed to reposition the phase conductors on the 
transmission line in order to balance the currents on long transmission lines (courtesy R. 

Aho BPA) 

 
Another type of tower that is occasionally seen on long high voltage 

transmission lines is a “transposition” tower such as the one shown in Fig. 
2.2.16.  Here, the positions of the three phase conductors with respect to 
earth are shifted in order to preserve the balance (i.e., relative magnitude and 
specified 120 degree separation of electrical phasing) of the phase conductor 
currents as much as possible.  Here, the red arrowed line traces the 
repositioning of an upper phase conductor to the lower position on the 
tower.  It will be shown in Chapter 7 that current balance is lost due to the 
lack of symmetry of the transmission line conductor configuration and 
occurs both at the beginning of and continuously along the transmission line.   

   Terrain, vegetation and river crossings 
A further complication is that transmission lines pass through terrain that is 
not horizontal as illustrated in Fig. 2.2.17.  Such realities not only create 
problems for transmission line designers, but also generate questions about 

                                                           
27 Others are the end of the line, at major crossings such as rivers and at periodic intervals 
for long lines 
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the accuracy of electromagnetic field calculations based on the assumption of 
a horizontal homogeneous earth.    
   

 
 

Fig. 2.2.17. An example of a transmission passing through hilly territory 
 

  

 
 

Fig. 2.2.18. Flashover to vegetation from a power line.  Although this photo is from a lower 
voltage distribution line, it illustrates the point that vegetation can cause faults. (courtesy C. 

Gellings,  EPRI) 

 
It is clear in Fig. 2.2.15 that vegetation often grows under transmission 

lines.  Since living vegetation is a reasonably good conductor, it may (given 
enough time) grow close enough to one or more conductors to cause an arc 
to ground (i.e., a flashover).  Fig. 2.2.18 is a photo of a flashover between 
vegetation and a power line conductor.  Although this particular photo was 
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taken of a lower voltage distribution line, the same phenomenon occurs on 
higher voltage transmission lines and has (historically) been responsible for 
flashovers that have led to system failures.  Another related issue is the 
relatively high electric fields at the tips of vegetation near a high voltage 
transmission line.  These higher electric fields can result in corona from tips 
of vegetation.  For these reasons, utilities have aggressive programs to 
monitor and control vegetation under transmission lines.   

Finally, another feature of transmission line construction is crossings of 
long distances such as rivers that often require special towers on either side 
due to the length of the spans.  One example is shown in Fig. 2.2.19. 
 

 
 

Fig. 2.2.19. River crossing that requires special towers for long spans. (courtesy R. Aho, 
BPA) 

 

Hardware mounted on a conductor 
Many different pieces of hardware are found on transmission line structures 
and conductors.  This topic will be introduced here because these may (in 
some cases) cause corona and, if so, it may be necessary to either calculate 
electric fields in their vicinity while developing designs to reduce  corona or 
to do special laboratory testing to evaluate corona performance (Kuffel, et. 
al. 2001).      

The first type of hardware to be discussed here is the hardware used to 
attach conductors to insulators.  Varieties of such hardware can be found in 
Figs. 2.2.11 and 2.2.13. A view from underneath of the kind of hardware 
sometimes used at a dead-end tower is shown in Fig. 2.2.20. Somewhat 
unusual in this photo is the “barrel shaped” object in the upper left-hand 
corner which is a “wave trap” for a power line carrier communication 
system.    Signals from these systems are used to monitor and control 
substations from a remote location. Wave traps are signal blocking devices 
installed in series with one or more of the phases on the transmission line at 
a tap point to prevent the signal from following the tap line.  
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Fig. 2.2.20. Transmission Line Hardware. (courtesy R. Aho, BPA) 

 
In Fig. 2.2.21, a close up view of a conductor suspension clamp is shown.  

Along with the clamp is a section of “armor rod” that surrounds the 
conductor and is often used to provide mechanical support for the 
conductor at tower attachment points as shown. 
 

 
 

Fig. 2.2.21.  A suspension clamp and armor rod used to connect a conductor to a suspension 
insulator. (courtesy R. Aho, BPA) 

 
Another type of hardware is a splice between sections of conductors that 

are placed during construction when the conductor on one reel ends and 
must be connected to the conductor on a new reel of conductor to form a 
continuous conductor.  These are also inserted when the conductor has 
broken for some reason and the break has been repaired with one or more 
splices.  A close-up view of a splice on a transmission line is shown in Fig. 
2.2.22.  Generally, splices do not have a large effect on the electric fields of 
the conductor, but they may have a relatively large resistance if the contact is 
not good enough and hence, becomes excessively heated.    
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Fig. 2.2.22. A splice on a transmission line conductor. (courtesy J.R. Stewart) 

    

 
 

Fig. 2.2.23.  Marker ball on power line conductor near an airport. 

 
Near airports or along long river or valley crossings, there is a concern 

that power line conductors may not be visible to pilots.  In order to ensure 
that the power lines are visible, marker balls are often placed on the 
conductors.  An example is shown in Fig. 2.2.23.  

Marker balls are also often used when power lines cross large distances 
such as over a river where conductors are high and may not be as visible as 
illustrated in Fig. 2.2.20.  Clearly, the marker ball is more visible from a 
distance than the conductors.  As with other hardware on the transmission 
line, care must be taken to design these so that the effect of corona is 
minimized.  

Power line conductors often experience wind-induced conductor motion 
such as Aeolian vibration, swinging or “galloping” that can limit the 
performance and/or lifetime of the transmission line.  A variety of devices 
have been installed on transmission line conductors to reduce the motion 
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and hence to minimize its effects on transmission line performance.  One 
example is the damper to reduce Aeolian vibration shown on the conductor a 
short distance away from the insulator in Fig. 2.2.13. Other devices have 
been developed to reduce galloping (Akagi et. al. 2002).    

Finally, another form of hardware found on power lines is environmental 
control hardware. For example, the “cover” placed over the insulator 
junction in Fig. 2.2.24 is designed to protect birds from exposure to 
potentially lethal voltages and currents.  Other examples of similar hardware 
can be found on transmission line systems.   
 

 
 

Fig. 2.2.24.  Bird control hardware.  (courtesy A. Stewart, EDM Intl.) 

 
Grounding of towers 
In order to protect the power system and surrounding areas from excessive 
voltages during faults and lightning strikes, grounds are often provided at 
towers (IEEE 2000).  These are designed to have a low enough resistance to 
ground that unbalanced currents occurring during faults and currents due to 
lightning strikes do not cause hazardous voltages to which personnel near the 
tower are exposed.  This is important since the lightning trip out rate is very 
sensitive to grounding resistance.  Although these grounds are generally 
mostly below the ground and hence, not visible, connections to them are.   
These include (if the towers are not metallic) the wires that connect shield 
wires (if any) to the bottom of the structure as well as the connections from 
this wire to the buried ground.  An example of a connection to ground is 
shown in Fig. 2.2.25.  An example of a grounding system to which the 
ground wire in Fig. 2.2.25 might be connected is shown with a top schematic 
view of a tower and ground in Fig. 2.2.26.  The mesh at each tower leg is 
below the ground and consists of fat stranded wire often  augmented by 
vertical ground rods.  
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Fig. 2.2.25.  Wire connection to tower ground. (courtesy N. Mullen, BPA) 

 
 

 
 

Fig. 2.2.26. Schematic view (from above) of a tower and grounding system that consists of 4 
metallic meshes below ground, one connected to each leg of the tower. 

Lumped parameter devices along or at the ends of the transmission line 
 
Introduction 
Another issue along transmission lines is that there may be lumped parameter 
devices along it or at its ends that are needed to increase power transfer or to 
ensure efficient and/or reliable operation of the transmission system.  More 
specific information will be given about several of these devices in Chapter 4 
after some foundational theory is introduced.  Here, a brief introduction to 
each will be given.  
 
Series capacitors 
One example of a lumped parameter device is a series capacitor as shown in 
Fig. 2.2.27. These capacitors are placed there because the amount of power 
that can be transmitted through an electrically short power transmission line 
is limited by the inductive reactance of the line and this reactance is 
proportional to the length of the line.  The reactance of the series capacitors 
is designed to (at least partially) cancel the inductive reactance and hence 
increase the power handling capability of the line.  They also can be used to 
compensate for voltage variations along the line during light loading 
conditions.  
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Fig 2.2.27.  Series capacitors along a 500 kV transmission line.  (courtesy J. Hildreth, BPA) 

 
Surge arresters  
Another device that can be found either along its length or at the ends of a 
transmission line is a surge or lightning arrester such as shown in Figs. 2.2.28 
(line arrester) and 2.2.29 (substation arrester). These are nonlinear devices 
designed to limit the overvoltages on power lines during transients due to 
lightning strikes and switching events.  Surge arresters in substations are 
nearly universal, but many utilities choose not to use line arresters since they 
may not be needed or due to maintenance and/or economic issues.   
 

 
 
 

Fig. 2.2.28.  Three line surge arresters installed along a transmission line, each connected 
from an individual phase to ground.  http://www.liveline.co.za/high-voltage-surge.php 

Note one disc missing on the leftmost insulator 

 

http://www.liveline.co.za/high-voltage-surge.php
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Fig. 2.2.29.  Three single phase surge arresters installed in a substation.  (courtesy of BPA) 

 
Shunt reactors  
 

 
 

Fig. 2.2.30.  A three phase shunt reactor installed in a substation.  (courtesy BPA) 

 
Another device that is relevant to the operation of high voltage transmission 
line is a shunt reactor as shown in Fig. 2.2.30.  These can be used to 
compensate the capacitive reactive power of (especially long higher voltage) 
transmission lines (especially during lightly loaded conditions), reduce 
system-frequency overvoltages when a sudden load drop occurs or there is 
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no load and to improve the stability and efficiency of the energy 
transmission.  
 
Circuit breakers 
Another device that is found at the ends of high voltage transmission line is a 
circuit breaker as shown in Fig. 2.2.31.  These are used to separate the line 
from the remainder of the transmission system during maintenance or to 
clear faults.  Operation of these devices is controlled by relays designed to 
detect faults and to proscribe appropriate action.   
 

 
 

Fig. 2.2.31.  A three phase circuit breaker installed in a substation. 

 
Transformers 
The final device illustrated here in Fig 2.2.32 is a three phase power 
transformer. As mentioned earlier, the purpose of these is to change the 
voltage level of whatever is connected to each end of a transmission line 
(e.g., a generator, another transmission line or the distribution system) to the 
desired voltage level for transmission line.  The purpose is to transmit power 
more efficiently over long distances by using the highest reasonable 
transmission line voltage.   
 

 
 

Fig. 2.2.32.  Three phase 230 kV – 115 kV power transformer. (courtesy BPA) 
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2.3 Services that Share the Right of Way 
 

Introduction  
Given the increasing density of both population and buildings, long 
uninterrupted corridors of land are not as readily available as they once were. 
Because of this, other services that need these corridors (e.g., railroads, 
pipelines and optical communication systems) often share or request to share 
a right-of-way with a power transmission line.  When this happens, there is 
always a question about the compatibility between these systems that is 
related to the electromagnetic field environment of the power line.   
 

Railroads 
The railroad/power line corridor shown in Fig. 2.3.1 is an example 
(AAR/EEI 1977;IEC 2003) of a railroad and high voltage transmission line 
that share a right-of-way. In cases like this, the potential exists for 
interference between the power line and the railroad crossing guard system 
shown due to inductive coupling with the track signaling circuit  as well as 
other signaling and communication systems.  In addition, there will be 
concerns about personnel safety both during normal operation and during 
fault conditions.   More about these issues can be found in Chapter 10.  
 

 
 

Fig. 2.3.1.  A railroad and a power line that share a corridor. (courtesy B. Cramer) 

 

Pipelines 
 
A second service that commonly shares power line rights-of-way is pipelines 
(usually underground) as shown in Fig. 2.3.2 (Bonds 1999; CEA 1994).  In 
cases such as this, there are concerns that voltages induced on the pipeline 
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can cause electrical shock hazards, ignition of gas in case of leaks,  corrosion 
at locations for which the pipeline is above ground or damage to insulating 
flanges designed to electrically isolate sections for cathodic protection. Such 
interference can occur because while the pipelines are buried, the earth is 
transparent to the transmission line’s magnetic fields.  More about these 
issues can be found in Chapter 10.   

 
 
 
 
  
 
  
 
 
 
 
 
 
 

 
Fig. 2.3.2. Although not evident because most pipelines are buried, there is a buried pipeline 

to the left of the transmission line in this photo. (courtesy, J. Dabkowski) 

 
Optical fiber communication 
 

 
Fig. 2.3.3.  Optical fibers inside of an optical ground wire (OPGW). 

http://www.aflglobal.com/Products/Fiber-Optic-Cable/OPGW/HexaCore-
Cable/HexaCore-Optical-Ground-Wire-(OPGW).aspx 

 
In recent years, many utilities have installed optical fiber communication 
systems on their transmission systems.  In some cases, optical fibers are 
placed within shield or “ground” wires.  Such shield wires are called optical 
ground wires (OPGW).  Lightning and large fault currents are the biggest 
threats to these (Austin 1984; Zischank and Weisinger 1997).   

http://www.aflglobal.com/Products/Fiber-Optic-Cable/OPGW/HexaCore-Cable/HexaCore-Optical-Ground-Wire-(OPGW).aspx
http://www.aflglobal.com/Products/Fiber-Optic-Cable/OPGW/HexaCore-Cable/HexaCore-Optical-Ground-Wire-(OPGW).aspx
http://www.aflglobal.com/productlist/Product-Lines/Fiber-Optic-Cable/HexaCore-Optical-Ground-Wire-(OPGW)/img/HexaCore.aspx?maxsidesize=800
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A photo of an OPGW cable is shown in Fig. 2.3.3.  Here it is shown that 
the fibers are placed at the center of the cable and hence designed to be 
protected from lightning by the outside wires.   Despite this design, lightning 
strokes with the right characteristics can damage these shield wires. 

Another type of system is an “all dielectric self-supporting” (ADSS) cable 
that is generally suspended somewhere beneath the phase conductors such as 
shown in Fig. 2.3.4 (the cable that turns in this figure is ADSS).  Threats to 
these include dry band arcing and corona on attachment hardware (Carter 
and Waldron 1992; Tuominen and  Olsen 2000).  The former is controlled by 
careful placement of the cable and the latter by devices placed on the cable 
such as the “corona coil” shown in Fig. 2.3.5.   Again, the issue of 
compatibility between high voltage transmission lines and ADSS cable is 
considered in more detail in Chapter 10. 

 

 
 

Fig. 2.3.4.  An ADSS communications cable below three phase conductors.  It is the second 
conductor from the bottom in the figure (i.e., the one that changes direction). 

 

 
 

Fig. 2.3.5.  A “corona coil” placed on an ADSS cable to reduce corona activity near the tip  
of the armor rod. 

 

Wireless communication 
Another service that is more commonly found to share transmission line 
facilities is wireless communications base stations such as the one shown in 
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Fig. 2.3.6.  Such locations are desirable for wireless companies since they can 
install antennas on existing towers. Here, several antennas have been placed 
on a transmission line tower and the RF electronics and switching equipment 
is placed in a small building at the base of the tower.  It has been shown that 
the power frequency electromagnetic fields can interfere with the operation 
of instruments used to measure the radio frequency (RF) fields and that 
common grounding systems can cause unintended voltage pulses on 
distribution systems during faults (Olsen and Yamazaki 2005).  
 

 
 

Fig. 2.3.6. Wireless communications antennas on transmission line tower (courtesy R. Tell) 

 

 
 

Fig. 2.3.7.  Transmission line with nearby AM transmitting antennas in background. 
(courtesy T. Osborn, BPA) 

 
AM broadcast stations such as the one shown in the background of Fig. 

2.3.7 radiate electromagnetic fields that can interact with the transmission 
line system. One consequence is that re-radiated electromagnetic fields from 
the transmission system can cause deviations in the legally required radiation 
pattern of the broadcast antenna (Madge and Jones 1986).  Another is that 
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the radiated fields can cause significant high radio frequency (RF) voltages on 
transmission line conductors especially when they are being installed.  
Without some care taken in work practices, these can lead to RF burns to 
exposed workers (Olsen et. al. 2011).   

 
Distribution underbuild 
 

 
 

Fig. 2.3.8.  Distribution underbuild. 

 
Next, it is often true that distribution lines share towers with transmission 
lines as shown in Fig. 2.3.8.  This is often called, “distribution  underbuild.”  
In these cases, care must be taken that the National Electric Safety Code is 
satisfied and that excessive voltages are not induced on the distribution lines 
during faults (IEEE 2002).  
 

Human occupancy 
 

 
                                      (a)                                                   (b)           

 
Fig. 2.3.9.  (a) Power line over a parking lot.   (b) warning sign. (courtesy M. Tuominen, 

BPA) 
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Fig. 2.3.10. Non permitted structure constructed near transmission line. (courtesy R. Aho) 

 
Power lines often are constructed near other facilities and can cause potential 
safety issues.  One example is a power line constructed over a parking lot as 
shown in Fig. 2.3.9a.  Here, the electric fields from the power line cause 
voltages to be induced on the cars and, hence shocks to people when they 
touch the cars (EPRI 1982).  This must be managed as (for example) 
indicated by the warning sign illustrated in Fig. 2.3.9b.  Another is the 
occasional construction of non-permitted structures such as the playhouse 
shown in Fig. 2.3.1028.  Clearly, these are of concern to electric utilities and 
can present true safety hazards.   
 

Other compatibility issues 
Finally, while not explicitly covered here, there are issues with a variety of 
other systems that share the right-of-way.  These include irrigation systems, 
GPS navigation devices using VLF augmentation and broadband over the 
power line (BPL) communication  issues (Olsen and Heins 1998; Silva and 
Whitney 2002; Tengdin 1987; Tesche, et. al. 2003, Galli et. al. 2011).   
 
 

2.4 Environmental Issues  
 

Introduction  
All of the above photographs and nearly all of the discussion relate to power 
transmission lines in reasonably good weather conditions.  But, power lines 
are outdoors and hence subject to a wide variety of weather conditions.  
These cause everything from ice on conductors that leads to excessive sag,  
corona in rain and snow that generates electromagnetic interference, to 
resistive leakage on insulators caused by contamination plus moisture that 

                                                           
28 This structure was later removed at the request of the local utility  
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can lead to failure, to lightning strikes that may cause line failure to icing of 
conductors that can cause excessive sag.  These issues and many others must 
be accounted for in designing power transmission lines.   
 

Ice and snow 
 

 
 

Fig. 2.4.1. Iced insulators after a snowstorm resulting in tower failure. (courtesy BPA) 

 
Examples of power lines in ice and snow are shown in Figs. 2.4.1. – 2.4.2  It 
is clear from Fig. 2.4.1 that snow can cause tower failure as well as insulator 
failure during melting and from Fig. 2.4.2 that ice loading on conductors can 
cause excessive sagging of conductors.   
 

 
 

Fig. 2.4.2.  Iced conductors in a winter storm that caused conductors to sag.  (courtesy BPA) 
 

Rain 
 
In rain, water drops form on conductors and hydrophobic insulators such as 
the one shown Fig. 2.4.3.  On conductors, these drops lead to a significant 
increase in corona activity and hence to electromagnetic interference and 
audible noise as shown in Fig. 2.4.4.  Water on contaminated insulators can 
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lead to flashover and insulator failure. (RUS – USDA, 2005). In addition, 
water on non-ceramic insulators can cause material degradation and 
premature failure (Phillips et. al., 1999). 
 

 
 

Fig. 2.4.3.  Rain on a transmission line insulator. (http://www.bing.com/images/) 

 
 

 
 

Fig. 2.4.4.  Corona discharge on a rain droplet on an energized transmission line conductor 
(courtesy EPRI) 

 

Lightning 
 
Lightning strikes to transmission lines and currents induced by nearby 
lightning such as that shown in Fig. 2.4.5 are common.  If transmission lines 
are not properly designed these strikes and induced currents can lead to trip 
out  of the transmission line as well as cause safety hazards to personnel who 
are near transmission line towers.   More about how lightning models can be 
used to calculate lightning induced currents on transmission lines and how 
injected lightning currents propagate on transmission lines can be found in 
Chapter 7.    

http://www.bing.com/images/
http://www.energy.siemens.com/br/pool/hq/services/power-transmission-distribution/high-voltage-services/test-highvoltage-equipment/high-voltage-test-laboratory/insulator-details-b.jpg
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Fig. 2.4.5.  Lightning near a transmission line. 
http://ts3.mm.bing.net/th?id=H.4580600666718958&pid=1.7&w=121&h=138&c= 

 
 

Wind 
 

 
 

Fig. 2.4.6.  Conductor galloping in wind http://i.ytimg.com/vi/IfhfsjFG0jo/0.jpg 

 
During windy conditions, Aeolian vibrations, galloping and conductor 
swinging can occur.  An example of galloping in wind is shown in Fig. 2.4.6.  
Aeolian vibrations are caused by the interaction of aerodynamic forces 
generated as the wind blows across the conductor with the conductor's 
natural mechanical vibration frequency (Lu et. al. 2007). This wind induced  
vibration can cause cracks on the conductors due to fatigue particularly 
where the conductors are fastened to the insulators by means of clamps.  
This kind of vibration can be minimized by the use of dampers clamped to 

http://ts3.mm.bing.net/th?id=H.4580600666718958&pid=1.7&w=121&h=138&c
http://i.ytimg.com/vi/IfhfsjFG0jo/0.jpg
http://www.bing.com/images/search?q=lightning+strike+of+power+line+photo&view=detail&cbir=ms&mid=C914CEC2318294EA50917D45348A22C7BF62C95C&id=C914CEC2318294EA50917D45348A22C7BF62C95C&first=0&FORM=IDFRMS
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the conductor as shown in Fig. 2.2.13.  When the conductor vibrates, the 
weights dissipate the vibrational energy.  Gallop vibrations are low frequency, 
high amplitude vibrations and can result in breaking of the conductor or 
flashover if the conductors come too close to each other during oscillations 
(Fu, 2012).  Swinging is the result of steady forces on the conductors that 
push them in the direction of the wind.  The major impact of this 
phenomenon is to require larger clearances between the conductor and either 
towers or other conducting structures (IEEE 2002).   

 
Fire 
Fire near a power line such as shown in Fig. 2.4.7 can affect its performance 
since fire causes a significant amount of ionized particles in the air that affect 
its conductivity and hence its ability to withstand the high electric fields in its 
vicinity (Fonseca et. al. 1990). 
 

. 
 

Fig. 2.4.7.  A fire near a high voltage transmission line. (courtesy of BPA) 

 
In addition to the direct effect of fires on high voltage transmission, it is 

known that under certain environmental conditions (e.g., moisture after 
prolonged dry spell) fires can be started on wood poles that support high 
voltage transmission lines (Lusk and Mak, 1976).   
 

Geomagnetic induced currents  
Quasi-DC electric currents are created in the ionosphere by solar activity in 
space. During severe solar weather, these currents can be large enough to 
cause visible colored light (aurora borealis) such as shown in Fig. 2.4.8 and 
(more importantly for power engineers) can cause induced currents in power 
lines that can (among other things) cause  transformer cores to saturate and 
generate unwanted harmonics on the system.  Further information about 
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these currents along with a method for calculating them can be found in 
Chapter 7.   
 

 
 

Fig. 2.4.8.  Aurora near power line. http://images.nationalgeographic.com/wpf/media-
live/photos/000/244/cache/northern-lights-solar-flare-power-line_24418_600x450.jpg 

 

Landslides, earthquakes, volcanoes, and windblown material  
Landslides and Earthquakes can have a dramatic effect on transmission and 
distribution lines.  As indicated in Figs. 2.4.9 and 2.4.10, towers may collapse 
resulting in line outages.   
 

 
 

Fig. 2.4.9.  Landslide damage to a power line.  The Exponent Telegram 
http://www.theet.com  Staff photo by Darlene J. Swiger 

http://images.nationalgeographic.com/wpf/media-live/photos/000/244/cache/northern-lights-solar-flare-power-line_24418_600x450.jpg
http://images.nationalgeographic.com/wpf/media-live/photos/000/244/cache/northern-lights-solar-flare-power-line_24418_600x450.jpg
http://www.theet.com/
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Fig. 2.4.10.  Earthquake damage to transmission line towers.  

http://www.hindawi.com/journals/mpe/2013/829415/fig1/ 

 
The fall of volcanic ash as illustrated in Fig. 2.4.11 can also have a negative 
impact on the operation of overhead transmission lines (Wardman et. al., 
2012).  More specifically, it may (in the presence of moisture such as rain) 
lead to insulator flashover, as well as to increased corona activity (e.g., 
audible noise and radio interference and mechanical damage to moving 
parts).   
 

 
 

Fig. 2.4.11.  Volcanic ash that can impact the operation of high voltage transmission lines. 
http://skywalker.cochise.edu/wellerr/students/Los-Alamos/earthquake_files/image001.gif 

http://www.hindawi.com/journals/mpe/2013/829415/fig1/
http://skywalker.cochise.edu/wellerr/students/Los-Alamos/earthquake_files/image001.gif
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In addition to volcanic ash, a variety of other solid material can be carried 

by the wind. This can include dust that is either conductive by itself or 
conductive when wet.  An example of windblown material (i.e., 
tumbleweeds) common in the western United States in a substation is shown 
in Fig. 2.4.12.  Other examples could be sand and dust (Yu et. al. 2006).   
 

 
 

Fig. 2.4.12. Windblown tumbleweeds in a substation.  (Courtesy of BPA) 

 
2.5 Rationale for Physical Assumptions and the 
“Gold Standard”  
 
It should be clear at this point that real power lines are quite complicated 
structures.  Hence, before reasonably simple mathematical models can be 
developed, simplifying physical assumptions must be made.  That is the 
subject of this section.  

As mentioned briefly in the Foreword to this text, mathematical 
analysis of physical systems is useful for one of two reasons: 
 

 To provide insight into the dependence of measurable quantities of 
interest on certain  parameters (e.g., the fact that the 60 Hz electric 
field usually decays laterally away from a power line as the inverse of 
the distance squared can easily be understood by appealing to 
mathematical analysis)  

 To eliminate the need for setting up and performing (often very 
time consuming and expensive) experiments.        

 
However, as also mentioned in the Foreword, no theory is useful at all 

unless it is validated well enough for the user to have confidence that it can 
be used to predict the results of some experiment that is well specified and 
can (in principle) be performed.   Hence, ultimately, measurements are 
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usually the “gold standard” by which any theory is validated.  It is, of course, 
recognized that no measurement is completely accurate and that this issue 
should be noted and used in the determination about whether measurement 
and theory agree.  Also, in some cases, “gold standard” could refer to an 
exact closed form solution to a canonical problem.   

The overall purpose of this text, then, is to introduce mathematical 
analysis techniques to study the electrical design and operation of high 
voltage overhead transmission lines.  Of specific interest is the calculation of 
measurable quantities used to characterize overhead transmission lines such 
as the distribution of voltage and current along the lines as well as the 
electromagnetic fields associated with them.  These can be used, for example, 
to determine how the power flow along a specific transmission line can be 
maximized, or to determine if the operation of a transmission line is 
compatible with another system that occupies the right-of-way.  The 
mathematical analysis is used to develop appropriate relationships between 
these measurable quantities and specified physical parameters (e.g., 
conductor locations and sizes, materials used and earth electrical properties).  
Each of these measurable quantities is then used to characterize the 
operation of these transmission lines.  

The first purpose of this portion of the chapter is to summarize the 
characteristics of real transmission lines that were discussed in more detail 
earlier. This is done in Section 2.6. Given the fact that the geometries and 
other relevant electrical properties of real transmission lines are very 
complicated, it should be clear that numerous physical approximations to 
real transmission lines must be made before an “idealized” problem is 
realized for which realistic mathematical analysis can be attempted.  This 
leads, then, to the second purpose of this portion of the chapter; to identify 
the physical approximations that are usually made to the real physical 
problem prior to mathematical analysis of idealized problems.  This is done 
in Section 2.7.   

It will be shown in subsequent chapters that, in many cases, exact closed 
form solutions for the measurable quantities associated with these idealized 
problems can be found.  However, it is also shown that simple (and often 
sufficiently accurate) approximate solutions for these same variables can be 
found.  In developing these approximate solutions, it is usually possible (as 
will be done in this text) to identify conditions under which the simple 
approximate solutions to the idealized physical problem are valid.   

It is, however, usually not as easy to characterize the differences between 
solutions for the real and idealized high voltage overhead transmission lines. 
When attempted, it is usually done in one of two ways.  First, in some cases, 
the idealized problem can be modified in some way (e.g., use of a two layer 
earth rather than a single layer earth) that still allows for an exact solution. A 
comparison of the solutions to the original (i.e., “idealized) and modified 
problems can be used to determine the conditions under which the 
simplified geometry is acceptable. In this case, the modified problem is the 
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“gold standard.”  If not acceptable, the solutions to the modified problem 
can be used to provide more accurate solutions.  Several examples of such 
modified problems are given in this chapter.  A second method is to compare 
theoretical solutions to careful measurements made on the original system 
for which physical approximations have (obviously) not been made.  In this 
case, measurements are the “gold standard.”   

As much as is practical, care will be taken in this text to quantify the range 
of errors that have been introduced by making both physical and 
mathematical approximations.  It is important to understand when the 
differences between real and idealized transmission lines either are not 
important or result in significant inaccuracies for calculations using idealized 
transmission lines. Some initial comments on this topic are given in Section 
2.8.   

Next, a survey of some techniques that have been used in the past to relax 
the physical assumptions made in the initial canonical problem described in 
Section 2.7 is given in Section 2.9. Solutions to these problems can be used in 
two ways.  First, and as mentioned earlier, by comparing solutions of 
physically modified problems with those of unmodified problems, it may be 
possible to validate the former.  For example, it can be shown (in most cases) 
by using the solutions to single conductor over a two layered earth that the 
60 Hz. electric field just above the earth’s surface is essentially insensitive to 
the specific assumed vertical distribution of earth conductivity.  Hence, a 
single layered earth model is adequate.  In fact, it is quite accurate in this case 
to assume that the earth is perfectly conducting.  Second, if it is shown that 
the modified problem produces significantly different results than the 
unmodified problem, it should be clear that the solution to the modified 
problem should be used.  For example, it can be shown that a two layer earth 
model is necessary for many calculations of subsurface electric field that 
relate to substation grounding problems (Meliopoulos, Webb and Joy, 1981).   

Finally, a number of simple techniques are described that can be used to 
estimate when solutions for idealized transmission lines are satisfactory.  
Last, a summary of “rules of thumb” often used for identifying parameters to 
be used in simple models of transmission lines is given.   
 
 

2.6 Brief Review of Real Overhead Power 
Transmission Line Construction 
 
Most real power transmission lines consist of multiple parallel “phase” 
conductors (that may consist of two or more subconductors) energized to 
the rated line voltage and (in many but not all cases) periodically grounded 
shield wires above the phase conductors.  The phase conductors (or 
subconductors) usually consist of many “strands” of wire wound together in 
a cable and hence do not have a smooth surface. The (usually three or more) 
phase conductors and shield wires (collectively called a power transmission 
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line) are located above the earth.  Each transmission line extends over a finite 
distance between two end points (usually substations).   In nearly all cases, 
the horizontal orientation (e.g., east, south etc.) and the elevation of the 
power line is not the same all along the entire distance.  In addition, the 
orientation with respect to the vertical also changes along its length since the 
terrain over which the line passes can be hilly or even mountainous.  Finally, 
vegetation above the earth may be important.  It may interfere with the 
operation of the transmission line as it grows taller and/or may also influence 
the electric fields near the earth’s surface.    

The electrical properties of the earth below the transmission line are 
usually inhomogeneous both as a function of depth as well as position along 
the length of the transmission line (e.g., the permeability and conductivity of 
the earth vary with soil type as well as between land and water).  In some 
relatively rare cases (such as near iron ore deposits) the earth may be 
magnetic. If the electrical current density induced in the earth by the power 
line is large enough (such as near a grounding electrode during a fault), the 
earth may also exhibit non-linear properties caused (in part) by excessive 
ohmic heating.   The author is not aware of any model (relevant to power 
lines) in which the earth is (or needs to be) assumed to be anisotropic.   

The conductors of the transmission line are suspended in the air by 
structures (e.g., towers) that may be constructed of wood, steel or some other 
material. Steel towers and shield wires are generally connected to a grounding 
electrode.  Towers are of several types including the “suspension” towers, 
“dead end” towers and transposition towers described earlier in this chapter.  
Insulators are used to mechanically connect to and electrically separate the 
phase conductors from the structure (and the earth) while shield wires are 
(usually) connected to the structure and to a grounding electrode buried in 
the earth.  Because the conductors are suspended only at the points where 
they are attached to insulators that are in turn connected to towers, they 
“sag” between towers.  The specific amount of sag can vary quite a bit since 
with time since it is a function of the amount of current on the line (through 
ohmic heat generation in the conductors) and local weather conditions in 
addition to the conductor weight per unit length, the mechanical properties 
of the conductor material and the tension to which the conductor is installed.  

Located along the power line and connected to it are a variety of pieces of 
hardware including insulators and tower attachment hardware, splices 
between sections of conductor, devices to control mechanical vibration, 
devices to protect animals and birds and devices to provide warning to 
airplanes and others of the power line’s existence. These may be 
supplemented by lumped elements such as series capacitors and surge 
arresters designed to limit the voltage during surges.  Also, towers may play 
host to devices such as wireless communication antennas or aircraft warning 
lights.  Finally, the path followed by the transmission line may be shared by 
other power lines (on the same or separate structures) or another service 
such as a railroad, a pipeline or communication line.  In some cases (such as 
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optical fiber cables) the transmission line towers may be shared.  The 
presence of the transmission line and its associated electromagnetic fields 
may lead to interference between it and any one of these services.   

An example of a transmission line that illustrates several of these 
characteristics of real transmission lines is given in Fig. 2.6.1. Shown in this 
photograph is a double circuit transmission line with sagging phase 
conductors and multiply grounded shield wires that is located over irregular 
terrain, that changes direction and is located near another transmission line 
on separate structures.  Further, there are trees near the right of way that can 
affect the electromagnetic fields associated with the transmission line.  Steel 
towers distort the electric field near them and insulators affect the electric 
fields in their vicinity.  Finally, in the distance is an AM broadcast antenna 
(visible slightly to the left of the closest tower) that may cause significant 
radio frequency electromagnetic fields in the vicinity of the transmission line.   

 

 
 

Fig. 2.6.1.  Real power line that will shortly be modeled using simplifying physical 
assumptions (courtesy R. A. Tell) 

 
In summary, the typical power line is a “messy” system.  Mathematical 

analysis of the exact system appears to be almost impossible.  For this 
reason, physical approximations are made and it is important to consider the 
consequences of making these approximations.  It is probably, for example, 
not reasonable in most cases to carry out calculations to four significant 
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figures after the earth has been assumed to be perfectly flat and conductor 
sag has been ignored.  The use of either mathematical or physical 
experiments to either increase confidence in the final results or to “calibrate” 
them so that they can be used for calculations on real systems is another 
important topic.   
 

2.7 Summary of the Physical Approximations 
Generally Made Before Analysis 
 
To analyze typical real transmission lines, numerous physical approximations 
must be made before a canonical29 mathematical problem can be obtained.  
These approximations are:   
 

 The earth is assumed to be flat, homogeneous, linear, isotropic and 
(usually) non-magnetic 
 

 Towers and insulators are simply ignored 
 

 Stranded conductors are approximated as smooth homogeneous 
conductors and conductor bundles may be  approximated as smooth 
conductors of  some “equivalent radius” 

 

 The phase conductors are assumed to be perfectly horizontal, straight 
and infinitely long (i.e., transmission line terminations, transpositions, 
conductor sag, changes in direction and altitude changes are ignored). 

  

 The shield wires are often (but not always) ignored.  
  

 All hardware connected to the system is ignored.   
   

 Any systems that share the right-of-way with the transmission line are 
ignored.   

 
A diagram of a simple idealized and mathematically tractable power line 

for which all of the above approximations have been made is shown in Fig. 
2.7.1. This can be contrasted to the real transmission line that is shown in 
Fig. 2.6.1.  Clearly there are differences between the idealized and real power 
lines.  Given this, it is important to understand the relationships between the 
calculations made using the idealized line and measurements on the real line.   
 
                                                           
29 Here, canonical is taken to mean a problem for which it is possible to develop a 
mathematically exact solution in closed form (i.e., it is not necessary to use a numerical 
method to develop the formal solution).  Note that it still may be necessary to use numerical 
methods to evaluate the formal solution.     
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(a) 

 

 
 

(b) 
 
Fig. 2.7.1.  Idealized geometry of a power line used for analysis.  (a) cross sectional view, (b) 

side view 

 
 

2.8 Comments on the Validity of Solutions Based on 
Simplifying Physical Approximations 
 
Ultimately the reason why a theory is constructed and used to calculate 
predictions of voltages, currents, electromagnetic fields etc. is to eliminate (or 
severely restrict) the need to conduct an extensive set of (generally very 
expensive) measurements.  However, as mentioned earlier, unless there is 
confidence that 1) there is a well-defined transmission line system on which 
measurements could have been done to generate equivalent results and 2) the 
calculations are actually “equivalent” to measurements that could have been 
done on this system, there is no reason to pursue the theory.  It is imperative 
that calculations be understood in terms of an experiment that could have 
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been done and that there is confidence that the results are the same (within 
certain accuracy limits) to those that would have been measured.   

Again, the most important test of a theory is the comparison of it to 
careful measurements.  This is certainly true for the case of calculations based 
on power transmission line models similar to those discussed in the last 
section.  Whether this comparison is successful may depend on the specific 
variable calculated, the number and type of additional mathematical 
approximations made in obtaining the solution, the range of parameters over 
which the variable is computed and the accuracy of the measurement.  For 
example, if one is only interested in the voltage and current at the ends of a 
transmission line at power frequency, the results of making the 
approximations in Section 2.7 are generally adequate. The same calculation 
method, may, however, not be appropriate for calculating voltage and current 
on a dc transmission line (especially in the monopolar mode) because the 
portion of the series impedance due to the earth is affected by earth electrical 
properties deep in the earth that may not be modeled properly. In addition, 
the simplifying assumptions in Section 2.7 are clearly not good enough for 
calculating the electric field near a tower because the tower has a significant 
influence on the electric field near it and cannot be neglected.   

As mentioned earlier, the idea of a “gold standard” to which all 
calculations will be compared is often raised.   Sometimes this may refer to a 
very carefully controlled and conducted experiment.  Other times it may refer 
to an exact mathematical solution to a problem for which physical 
approximations have been made.  In any case, the term “gold standard” 
always refers to a solution to a problem that is well defined and for which 
there is great confidence in the accuracy of its results.  In many cases, 
problems are solved that do not have an exact solution, but the gold standard 
is used to validate the solution to the more general problem when parameters 
are selected for which it is directly comparable to the “gold standard.” For 
example, one might compare the results for the magnetic field of a sagging 
conductor with those for a perfectly horizontal conductor in the special for 
which the sag is assumed to be zero.  A successful comparison of these two 
solutions is a necessary but not sufficient proof that the general solution is 
correct.  Nevertheless such comparisons are very useful tools.  In summary, 
whenever possible a “gold standard” should be used to establish the validity 
of a new calculation.   

An interesting example of how measurement can guide theory occurs in 
the history of radio noise theory development.  From the beginning, it was 
assumed that the (approximately 1 MHz) electric and magnetic fields 
associated with radio noise could be calculated using the same theory as used 
to calculate the (nearly static) 60 Hz electric and magnetic fields.  One 
characteristic of these fields is that they decay as on over the distance squared 
laterally away from the transmission line.   Unfortunately, measurements 
showed that the radio noise fields decayed at a rate smaller than one over the 
distance squared.   It was not until a more sophisticated theory that more 
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accurately accounted for the earth’s finite conductivity was used that 
comparisons of theoretical and measured lateral radio noise profiles came 
into agreement.   
 
 

2.9 Survey of the Techniques that Extend Solutions 
to More General Problems  
 
New research is often suggested by recognizing that approximations made in 
existing work restrict the applicability of theory derived using those 
approximations.  Thus, a new problem is often identified by relaxing one or 
more of the assumptions and solving the modified problem.  For example, 
the conditions under which the use of a single layer earth is satisfactory can 
be identified by studying a two layer earth model.  The same two layered 
earth model can be used in cases for which it is necessary to achieve 
reasonable accuracy.  In the following subsections, several problems like this 
will be described.  
 
Two layered earth   
 

 
 

Fig.  2.9.1.  Power line over a two layered earth. 

 
As mentioned briefly above it is usually assumed that the earth is a single 

layer homogeneous medium.  Whether this is sufficient for any situation may 
be studied by considering the two layered earth model shown in Fig. 2.9.1 
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(Anderson, 1976).  In this figure the homogeneous earth that was earlier 
characterized  by permittivity and conductivity εr and σ respectively had been 
replaced by an inhomogeneous two layered earth with the first layer of 
thickness d characterized by permittivity and conductivity εr1 and σ1 over a 
second infinitely thick layer of earth characterized by permittivity and 
conductivity εr2 and σ2.   Based on these studies, it can be shown that a single 
layer earth model may not be appropriate for problems related to calculating 
earth losses or dc transmission or geomagnetic induced currents. In these 
cases the problem defined in Fig. 2.7.1a can be used as an alternative to that 
shown in Fig. 2.9.1.   

 
Effect of terrain and vegetation on electric field calculations  
 

 
 

(a) 

 
                                   (b)                                                                                 

 
Fig. 2.9.2. Calculation of power line electric fields near non horizontal terrain with trees at 

the edge of the right of way a) the real transmission line b) the approximate model for 
electrostatic calculations. 

 
It has been found that the problem shown in Fig. 2.7.1 cannot be used to 
accurately examine the electric fields in space surrounding the power line in 
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Fig. 2.9.2a because the land is not horizontal and trees at the edges of the 
“right-of-way” can be good conductors at power frequencies. Hence, the flat 
earth assumption is not valid.  Instead the problem shown in Fig. 2.9.2b 
could be used for the purpose of studying the effect of vertical trees at the 
edge of the right-of-way (Simpson and Brice, 1987). This problem could be 
done using a numerical method to solve electrostatic equations for the 
electric field as discussed in Chapter 6.   Note that if vegetation can be 
assumed of uniform height over the right-of-way, the effect of vegetation 
growth over time can be studied by reducing the height of the conductors.    

It should be noted that it is not necessary to perform a similar calculation 
for magnetic fields. This is because (as will be shown later) the earth (or 
vegetation such as trees) has little effect on the magnetic fields of a 50/60 Hz 
transmission line and can usually be ignored.  

 
Effect of conductor sag on magnetic fields 
There have been instances for which it is important to know the magnetic 
field of a sagging conductor more precisely than is available by assuming the 
conductors to be purely horizontal and infinitely long.  In this case, the 
geometry shown in Fig. 2.9.3 can be used to replace the geometry shown in 
Fig. 2.7.1b (Mamishev, Nevels and Russell, 1996).  The first use of this 
problem is to validate the use of horizontal conductors when this is 
permissible.  For example, the further the calculation or measurement point 
is from the transmission line, the more reasonable it is to use infinitely long 
horizontal conductors as long as the calculation point is not near to a change 
in direction of the transmission line. When more precision is needed, the 
method used to solve this problem is to divide the conductors into short 
segments and to calculate the total magnetic field by superimposing the 
magnetic fields of each of these segments.   
 
 

 
 

Fig. 2.9.3.  Power line with sagging conductors 

 

Electric fields near a bundled conductor  
As will be shown later in Chapter 4, a bundled conductor (i.e., two or more 
subconductors) is usually approximated as a single equivalent conductor.  But 
there are times (e.g., calculating the surface electric field needed for 
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electromagnetic interference calculations when it is necessary to know the 
electric fields on the surface of individual subconductors.  In these cases, the 
problem shown in Fig. 2.9.4 can be solved (Sarma, M.P. and W. 
Janischewskyj 1969).   

 
 

Fig. 2.9.4.  A power line with conductor bundles shown explicitly. 

 
Effect of a tower on the electric field  
In some cases, it is important to be able to calculate the electric field near a 
tower.  In that case, a simple model such as that shown in Fig 2.9.5 can be 
used (Olsen, 1999). This problem shown is an example of a very crude model 
for a tower window, but one that can be solved analytically if the toroid is far 
from the earth compared to its diameter.   More about this problem can be 
found in Chapter 6.   
 

 
 

Fig. 2.9.5.  Simple model of a tower window that allows analytic calculation of perturbed 
electric fields for a single conductor transmission line above earth 
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The effect of tower geometries much more complicated than the one 
shown in Fig. 2.9.5 can be analyzed using the numerical electrostatics 
techniques described in Chapter 6.  An example of a method for determining 
the electric field to which the worker on the tower in Fig 2.9.6 is exposed is 
given by Olsen et. al. (2007).   
 

 
Fig. 2.9.6.  Tower model used to calculate the electric field to which a worker (shown on the 

left side of the tower) is exposed when climbing a tower. 

 
Use of lumped circuits as approximations 

 
Fig. 2.9.7.  Insulator supporting a conductor above ground a) explicit insulator b) equivalent 

capacitor useful for calculating the currents and voltages along a conductor with multiple 
insulators. 
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In many cases, hardware of complex geometry is approximated by a circuit 
element in order to calculate the current and voltages along a transmission 
line.  For example, the insulator geometry shown in Fig. 2.9.7a can (for 
purposes of calculating its effect on the voltage and current along the 
transmission line) be replaced by the capacitor in Fig. 2.9.7b.  Using this kind 
of an approximation allows more complex problems to be solved.  

 
Three dimensional electrostatic fields  
Three dimensional methods have been used to evaluate the electrostatic 
fields near attachment hardware in order to understand why corona occurs 
there.   As described in Chapter 5, these problems are often solved by 
defining small region of space and solving electrostatic equations using 
numerical methods.  This technique is illustrated in Fig 2.9.8.  Here, the 
space within the shaded region in Fig 2.9.8a is excised and the electric field 
found by solving the problem shown in Fig. 2.9.8b.  There are (as described 
in Chapter 6) several techniques including the boundary element method, the 
charge simulation method, the finite difference method, the Monte Carlo 
method and the finite element method that have been used for this purpose.   
 

 
 

 
 

Fig. 2.9.8.  a) original problem b) problem to be solved with electrostatic theory and 
numerical methods. 
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2.10 “Rules of Thumb” for Minimizing the Effect of 
Physical Approximations on Accuracy 
 

Effect of finite length and corners 
One of the most useful tools for evaluating the effect of physical 
approximations is the expression for the magnetic field of a finite length wire 
carrying a current I.  Consider the geometry shown in Fig. 2.10.1.  Here, the 
total length of the current can be written as 
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Fig. 2.10.1.  Geometry for calculating the magnetic field from a uniform current of 

magnitude I of finite length.  For this figure, it is assumed that the calculation point “P” is in 
the yz plane. 

 
The magnetic field from this finite length of current (in the yz plane for y 

< 0) is  
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                               (2.10.2) 

 
It should be clear that as θ1 and θ2 approach 0, (2.10.2) approaches 

 

r
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2

0                                         (2.10.3) 

 
which is the magnetic field of an infinite line of current.  Given this result, 
the percentage error in the magnetic field calculation (i.e., by approximating a 
finite length wire by an infinitely long wire) is  
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    21 coscos5.01100%  E                      (2.10.4) 

 
As an example, the error made if the length of the wire is 20 times the 

distance from the wire and the field point is halfway between the ends of the 
wire is approximately 0.5%.  But, if the field point is at the end of the wire, 
the error is about 50%!  (2.10.4) can be used to estimate the error made in 
magnetic field30 calculations near ends of transmission lines.    

A similar calculation can be made for wires that turn a 90 degree corner.  
Consider the geometry shown in Fig. 2.10.2  

 

 
 

Fig. 2.10.2.  Geometry for calculating the magnetic field from a uniform current of 
magnitude I of finite length along with a second wire at a 90 degree angle.  For this figure, it 

is assumed that the wires and the calculation point “P” are in the yz plane. 

 
In this case, the magnetic field (Bx) can be calculated by summing the 

contribution from each segment of the wire. The result is  
 

   








 bb

b

aa

a

x
rr

I
B 2121

0 coscos
1

coscos
1

4





       (2.10.5) 

 

where 2/11   ba .   

As an example, consider a case for which the field point is midway along 
wire “a” in Fig. 2.10.2 at a distance from the wire of ra and that the length of 

                                                           
30 (2.10.4) is not explicitly for electric field calculations because the charge distribution is not 
uniform near the wire’s end, it is reasonable to use it to estimate error for electric field as 
long as it is recognized that the estimate is crude.   
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each wire is 10 ra.   In this case, it can be shown that the error made in 
assuming that wire “a” is infinitely long and neglecting the effect of wire “b” 
is approximately 10%.   
 

Effect of conductor sag on field measurements 
An approximation to the error made by ignoring the effect of sag in 

calculating magnetic fields can be estimated by considering the geometry 
shown in Fig. 2.10.3.  Here a sagging transmission line conductor is 
approximated by a set of three finite length current carrying wires.  As an 
example, suppose that h = rb/3 and that the length of each wire is 2rb.  Given 
this, it can be shown that the error in approximating the magnetic field of the 
system shown in Fig. 2.10.3 at P = rb can be approximated by 5%.   
 
 

 
 

Fig. 2.10.3.  Geometry for calculating the magnetic field from a uniform current of 
magnitude I of finite length with additional currents at each end a distance h above the 

center wire.  For this figure, it is assumed that the wires and the calculation point “P” are in 
the yz plane. 

 
Effect of conductor sag on transmission line distributed parameters 
The most important parameters used to describe the propagation of power 
frequency voltages and currents on high voltage transmission lines are 
inductance and capacitance per unit length.  It will be shown later in this 
manuscript that the inductance per unit length (at least for balanced 
transmission line currents) is largely unaffected by the presence of the earth 
because (unless the earth is magnetic) it is essentially transparent to magnetic 
fields at power frequencies.  Hence, it is reasonable to specify the average 
height of each transmission line conductor when calculating the inductance 
per unit length because the choice has little effect on the inductance 
calculation.  Capacitance per unit length, however, is dependent on the 
conductor height because the earth can be considered a perfect conductor 
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for electric field calculations at power frequencies.  But, it is found that the 
dependence on height appears in logarithmic terms similar to  
 

 ah /2ln  
 
where h is the height of a conductor above earth and a is its radius.  For a 
typical conductor radius of 1 centimeter and height of 15 meters, a 30% 
increase in conductor height causes less than a 4% change in the parameter.  
This issue is further minimized by the fact that for balanced voltages, the 
proximity of other conductors is more important than the effect of the earth.  
Given these observations, it is again, reasonable to use average height of a 
transmission line conductor when calculating capacitance per unit length.   
 

The capacitive effect of a tower 
In principle, the towers add additional lumped capacitance to the system 
parameters.  However, it is generally found that (at power frequencies) this 
excess capacitance can be ignored.  More details about this issue can be 
found in Section 6.2. 
 

Rule of thumb for electric field measurements when steel towers exist 
Generally, electric field measurements directly under the transmission line are 
made as far from a tower as possible and, hence usually at midspan.  As a 
rule of thumb, it is probably reasonable to make measurements at least 4-5 
tower window diameters from the tower if the measurements are to be 
compared to calculations that neglect towers.  To calculate the electric fields 
at midpoint and close to the transmission line, the transmission line 
conductors are modeled as infinitely long and located at the minimum 
conductor height. In these cases, it is found reasonable to ignore the effect of 
the towers.   For field points further away from the transmission line, the 
assumption that the conductors are at the average height will generally 
produce better results.   
 

Rule of thumb for magnetic field measurements  
There are fewer problems with comparing calculated and measured magnetic 
field results at power frequencies since towers have only a minimal influence 
on these magnetic fields.  Nevertheless, magnetic field measurements are 
usually made near midspan.  For field points close to the transmission line, 
predictions are more accurate if the conductor height is selected to be the 
minimum conductor height.  Further from the transmission line, it is 
reasonable to use the average conductor height, although calculations further 
away from the field point are less sensitive to conductor height than those 
close to the transmission line.   
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Rule of thumb for electromagnetic interference measurements  
Since electromagnetic interference31 (EMI) fields are generated by random 
corona pulses with a frequency spectra that extend well above tens of MHz, 
this is one of the few problems for which a high voltage transmission line is 
“operated” at significantly higher frequencies than those for which it was 
designed.  At these frequencies, one might easily assume that the results are 
more sensitive to physical approximations.  In fact, as stated above, the earth 
is assumed to be flat and homogeneous, the conductors are assumed to be 
infinite and horizontal, conductor sag has been ignored, the corona activity 
has been assumed to be nearly uniformly distributed along the conductors, 
and that the effect of towers has been ignored. Nevertheless it has been 
found that these physical approximations do not lead to predicted EMI levels 
that deviate significantly from measured values of EMI at field points 
relatively close to the transmission line. For these calculations, it is generally 
assumed that the conductors are at their “average height” (Olsen et. al. 1992), 
that the measurements are made at midspan and that the terrain is reasonably 
flat.  In addition, measurements are generally made at a significant distance (5 
– 10 km) from a substation in order that reflections from the substation be 
attenuated enough to be ignored.   

One difference at higher frequencies is important enough to mention.  As 
50/60 Hz, the earth can be considered a perfect conductor for electric field 
calculations and to be transparent for magnetic field calculations.  This is no 
longer true at EMI frequencies especially for field points that are at least a 
significant fraction of a wavelength32 away from the transmission line.  Here 
it is found that the rate of decay of the EMI field away from the transmission 
line is affected in a noticeable way by the earth conductivity.  In these cases, 
simpler models that either ignore the earth or equate it to a perfect conductor 
do not produce satisfactory results (Olsen, 1998).   
 

 
2.11 Problems 
 
P2.1 A balanced two wire transmission line above the earth is shown in Fig. 
P2.1. The capacitance per unit length for the balanced (i.e., equal and 
opposite) voltage case is   
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31 Historically these fields were called “radio noise” fields.   
32 At 1 MHz, the wavelength (λ) is 300 meters and a “significant fraction” of a 

wavelength might be λ/10 = 30 m. 
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where  22 2hds  . For a = 2 cm, d = 5 meters and h = 10, 20 and 30 

meters, calculate the capacitance of these wires above the earth. Assume that 
the frequency is 60 Hz and the earth conductivity is assumed to be infinite.  
Comment on the difference between these results and then about the effect 
of sag and varying earth height along a transmission line path on inductance 
per unit length  

 
 

Fig. P2.1. A balanced two conductor transmission line above earth 

 
P2.2. Consider one possible reason for using spacers along the bundled 
conductors of a transmission line.  In SI units, the magnetic force per unit 
length between the two conductors can be calculated using the formula 
 

d

II
F





2

210      Newtons/m           (P2.2) 

 
where the force pulls the conductors together if I1 and I2 have the same sign.  
Clearly, if the force is large enough, the conductor spacing may not be as 
large as the design value.  a) Calculate the force between two wires separated 
by a distance d = 0.457 meters (18 inches) and carrying identical 500 A 
currents.  Compare this force with the force of gravity per unit length on the 
conductors if the conductors are made of aluminum and have a radius of 2 
cm.   The density of aluminum is 2700 kg/m3 and the acceleration of gravity 
is 9.8N/kg. Comment on the relative size of the two forces.  b) does 
anything change if the currents are each 5000 A during a fault event?   
 
P2.3.  a) Calculate the resistance per unit length of the solid conductor shown 
below in Fig. P2.3. It has aluminum on the outside and steel on the inside 
and the resistivity of these are 2.62 x 10-8 and 1.0 x 10-7 Ω– m respectively.  b) 
Using a simplified version of the skin effect, assume that all of the current 
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flows in the aluminum, how much would this change the resistance per unit 
length?   

 
 

Fig. P2.3. A solid steel core surrounded by a solid aluminum conductor 

 
P2.4. Why are typical transmission line conductors stranded?   
 
P2.5. What is the purpose for using conductor bundles?  Identify the 
appropriate reasons from the list below 

a. Lower inductance 

b. Reduced capacitance 

c. Increased corona onset voltage for a given weight per unit length  

d. All of the above 
 
P2.6. What is the purpose of installing shield wires?  Are they grounded at 
each tower?   
 
P2.7. What are the reasons why someone might consider using post 
insulators?  Select from the following list 

a. Reduced weight 

b. Reduced conductor movement 

c. Reduced phase to phase spacing for a compact line 

d. All of the above 
 
P2.8. Why are grading rings used? Identify appropriate reasons from the list 
below.   
a. Minimization of corona on hardware 
b. Reduction of damage to non-ceramic insulators due to water drop corona 
c. Results in a more uniform voltage distribution along an insulator string 
d. All of the above 
 
P2.9. What can be done in very high contamination areas to improve 
insulator performance?   

a. Use insulators with resistive coatings that carry current and cause 
moisture to dry 

b. Periodic washing of insulators 

c. Use of different materials that do not attract contamination.  

d. All of the above 
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P2.10. What is the purpose of marker balls on transmission line conductors?   
P2.11. Identify different types of conductor movement from the list below. 
Describe each  
a. Aeolian vibration 
b. Galloping 
c. Swinging 
d. Hydrostatic vibration  
e. All of the above  
 
P2.12. Why are towers grounded?   
 
P2.13. What are vibration dampers?  For what purpose are they installed on 
transmission line conductors?   
 
P2.14. What is the difference between a dead end tower and a suspension 
tower? 
 
P2.15. You are given a 2 meter long, 3 cm radius cylinder of wet wood with a 
conductivity of    10-3  S/m.  Calculate the total resistance of the cylinder.  
Calculate how much power is dissipated in this wood if it is placed between 
two conductors with a voltage difference of 100 kV.  Based on your answer, 
what do you think might happen if a tree branch falls across pair of 
conductors with a voltage difference of 100 kV rms? Given you answer, why 
are electrical utilities concerned about the growth of vegetation near 
transmission lines?   
 
P2.16. What can happen when an insulator is exposed to the environment?  
How and why does its performance change? 
 
P2.17.  Why does conductor sag change with time? Why are there limits to 
the amount of sag that can be accepted?  
 
P2.18. Why are transposition towers used on long transmission lines by some 
utilities?  
 
P2.19. Name several kinds of hardware used on high voltage overhead 
transmission lines. Explain the purpose of each.   
 
P2.20. What is the purpose of installing series capacitors along a high voltage 
transmission line? Under what conditions would you expect to find them 
used?    
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P2.21. What is the purpose of installing shunt reactors along a high voltage 
transmission line? Under what conditions would you expect to find them 
used.  
   
P2.22.  What is the purpose of installing surge arresters either in substations 
or along a high voltage transmission line? Under what conditions would you 
expect to find them used.    
 
P2.23.  Why are most conductors made of a steel core with aluminum outer 
strands?   
 
P2.24. In (a) – (e) is a list of services that could share the right-of-way with an 
overhead transmission line.  In (f) – (n) is a list of compatibility issues which 
are possible consequences of sharing the right-of-way with at least one of 
these services.  Identify which consequences can be identified with which 
services.   
a. ADSS optical fiber 
b. Railroads 
c. Pipelines 
d. Wireless communication antennas 
e. AM broadcast towers   
f. Interference with signaling  
g. Dry band arcing 
h. Shocks to personnel 
i. Ignition of gas leaks 
j. Minimize corona on armor rod 
k. Corrosion 
l. RF burns  
m. Shocks from vehicles  
n. Distortion of radiation patterns   
 
P2.25. In (a) – (f) is a list of environmental issues that affect the performance 
of an overhead transmission line.  In (g) – (l) is a list of consequences which 
may accompany at least one of these environmental issues.  Identify which 
consequences can be identified with which environmental issue.   

a. Ice 

b. Rain 

c. lightning 

d. wind 

e. geomagnetic storms 

f. volcanoes   

g. excessive conductor motion  

h. excessive conductor sag 

i. excessive corona 

j. flashover 
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k. additional contamination  

l. quasi-dc current induction 
 
P2.26. What effect might rain have on a transmission line? How (if at all) 
does this affect the design and/or maintenance of the transmission line?   
 
P2.27. What effect might lightning have on a power line? How (if at all) does 
this affect the design and/or maintenance of the transmission line?   
 
P2.28. What might a fire under a transmission line cause? Why?  How (if at 
all) does this affect the design and/or maintenance of the transmission line?   
 
P2.29.  Why would a utility be concerned about vegetation management?  
How (if at all) does this affect the design and/or maintenance of the 
transmission line?   
 
P2.30. What is geomagnetic induced current and under what conditions 
might you expect to see its effects?  What effects might you expect?  
  
P2.31. What is meant by the term, “gold standard?” 
   
P2.32. Explain why mathematical analysis of transmission lines is used?   
 
P2.33.  List the physical approximations that are usually made to high voltage 
transmission lines prior to analysis?  
 
P2.34. Describe some methods by which a physical approximation to a 
transmission line prior to analysis could be validated?   
 
P2.35. What precautions should one use to be certain that electric field 
measurements made under a transmission line can be appropriately 
compared to electric field calculations carried out with two dimensional 
methods?     
 
P2.36. What are “rules of thumb?” 
 
P2.37.  Examine transmission lines in the area where you live.  Identify some 
of the hardware that is generally ignored in the analysis of propagation 
characteristics as presented in this manuscript.  What impact might this 
hardware have on the propagation analysis if it was not ignored?  How do 
you think you could account for these effects if necessary?                
 
P2.38. Consider an infinitely long single conductor power line in free space 
carrying a current of 1000 Amps as shown in Fig. P2.1.1 below (note that the 
infinitely long conductor prior to sag follows the dashed line).  a) Calculate 
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the magnetic field (Bx) a the point P a distance 20 meters below the 
conductor.   b) To simulate sag, a 20 meter length of the conductor  is now 
moved 5 meters below the rest of the conductor as shown.  For this 
configuration, calculate the magnetic field (Bx) at point P and compare the 
results with part a.   

 
 

Fig. P2.38. A single conductor power line with and without sag. 

 
P2.39. Evaluate the magnetic field of a 90 degree bend in an infinitely long 
single conductor power line carrying a current of 1000 A as shown in Fig. 
P2.39?  At any distance that is 10 meters from the closest conductor, where is 
the magnetic field the largest?   

 
 

Fig. P2.39. A single conductor power line with a 90 degree. 
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Chapter III 
Brief Overview of Relevant Electromagnetic 

Theory 
  
 
 

3.1 Maxwell’s Equations  
 

Differential form - time domain 
Electromagnetic theory is based on solutions to Maxwell’s equations, a set of 
coupled partial differential equations in the electric and magnetic fields.  In 
the time domain, these equations can be written (Harrington, 2001)  
 
 

,0





t

B
Ex Faraday’s Law                        (3.1.1) 

 

,J
t

D
Hx 




 Ampere’s Law                     (3.1.2) 

 

0 B                                            (3.1.3) 
 

 D  Gauss’ Law                           (3.1.4) 

 

where Qx and Q are the curl and divergence operator, respectively, that 

will be defined more carefully shortly.  These equations are often 
supplemented by the continuity equation (i.e., a mathematical statement that 
charge is conserved)  
 

t
J







                                 (3.1.5) 

 
It is possible to derive this equation by taking the divergence of (3.1.2), 

using the vector identity  
 

0 Qx                                   (3.1.6) 

 



 

122 

which holds for mathematically well behaved (Harrington 1961) vector 
fields33 and inserting (3.1.4) into the result.   

The variables in (3.1.1) – (3.1.4) are all functions of x, y, z and t and are 
defined as: 

E  – Electric field strength (a vector field) 

D  – Electric flux density (a vector field) 

H  – Magnetic field strength (a vector field) 

B – Magnetic flux density (a vector field) 

J  – Electric current density (a vector field) 
ρ – Electric charge density (a scalar field) 

 
Fully written out, a vector field looks (in rectangular coordinates) like  

 

        zzyyxx atzyxEatzyxEatzyxEtzyxE ,,,,,,,,,,,,       (3.1.7) 

 

where the 
yx aa , and za are respectively unit vectors in the x, y and z 

directions.  It is clear that each vector field contains three unknown scalar 
fields and that each of these may independently vary in both space and time.   

A scalar field (for example, charge density) can be written as  
 

 tzyx ,,,                                             (3.1.8) 

 
The curl and divergence operators can be written in rectangular 

coordinates respectively as  
               

Curl (Q ) = 

zyx

zyx

QQQ

zyx

aaa

Qx











 det                          (3.1.9)  

and 
 

Divergence (Q ) =
z

Q

y

Q

x

Q
Q zyx














                (3.1.10) 

 
Clearly, the result of a “curl” operation on a vector field is another vector 

field while the result of a “divergence” operation on a vector field is a scalar 
field.  Formulas for these operations in other coordinate systems are available 
in most electromagnetic textbooks.   

                                                           
33 Generally this entails conditions on the continuity of the vector function Q and its 

derivatives.  More specific information can be found in books by Stratton (1941 – Section 
8.13) and Dudley (1994).    
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It is useful to note (Stratton 1941) that if conservation of charge (i.e., 
(3.1.5)) is assumed then only (3.1.1) and (3.1.2) of Maxwell’s equations are 
independent since (3.1.3) and (3.1.4) can be derived from (3.1.1), (3.1.2) and 
(3.1.5) if (3.1.6) is invoked.  Given the number of unknowns, further 
conditions must be imposed before unique solutions to Maxwell’s equations 
can be found34.  The additional relationships needed to accomplish this relate 
to the interaction of electric and magnetic fields with materials on a 
macroscopic level and will be discussed in Section 3.2.  One important 
property of these materials is linearity which will be discussed further in 
Section 3.2 and which will be assumed in the following discussion of time 
harmonic fields.   

 

Differential form - frequency (phasor) domain 
If all materials are linear, then it is possible to assume that all sources (and 

hence all fields) vary in time as  tjexp  where ω = 2πf is the radian 

frequency and f is the frequency in Hertz.  If this is done, then Maxwell’s 
equations become (Harrington, 2001).   
 

,0ˆˆ  BjEx  Faraday’s Law                      (3.1.11) 

 

,ˆˆˆ JDjHx   Ampere’s Law                      (3.1.12) 

 

0ˆ  B                                      (3.1.13) 
 

̂ˆ  D  Gauss’ Law                          (3.1.14) 

 

 ˆˆ jJ        Continuity equation               (3.1.15) 

 
where it is assumed that the magnitude of the field is its RMS value equal to 

the peak value divided by 2  for a sinusoidal field. Thus, for example, 

 ,,,ˆˆ zyxEE   is now a “phasor” quantity indicated by a “carat” (i.e., â ) 

over the variable from which the time harmonic solution in the time domain 
can be found as 
 

    tjezyxEtzyxE ,,,ˆRe2,,,                (3.1.15) 

 
In the time harmonic case, equations (3.1.13) and (3.1.14) can be obtained 

from (3.1.11) and (3.1.12) respectively by taking the divergence of each, using 
the identity (3.1.6) and then (3.1.15).  Thus, only (3.1.11, (3.1.12) and (3.1.15) 

                                                           
34 Conditions for uniqueness will be discussed in Section 3.6  
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are needed in the time harmonic case and if the region is sourceless, then 
only (3.1.11) and (3.1.12) are needed.   
 

Integral form - time domain 
The first Maxwell’s equation can also be written in integral form by 
integrating (3.1.1) over some surface “S”  
 

, 





SS

sdB
t

sdEx                 (3.1.17)   

 
where it has been assumed that the functions are well behaved enough to 

allow the order of the derivative and integral to be interchanged and that sd
is an oriented differential element of the area “S” with its direction normal to 
“S.” 

Next, Stokes theorem (Stratton 1941) 
 

 
CS

ldQsdQx                        (3.1.18) 

 
is applied to (3.1.16) where “C” is a contour that forms the boundary of S as 
shown in Fig. 3.1.1.  The positive side of the surface S (the normal is directed 
outward to this side) is related to the positive direction of circulation on 
contour C by the right hand rule convention; with fingers following the 
direction of C, the thumb points in the direction of the normal to S.    

 
 

Fig. 3.1.1. Definition of Geometry for Stokes Theorem. Note that the positive sense of the 
contour C is “counterclockwise” and the positive side of the surface (shaded) is the top of 

the paper. This is consistent with the right hand rule described above. 

 
Using (3.1.18), (3.1.17) becomes  

 

, 





SC

sdB
t

ldE                           (3.1.19) 

 
which is the integral form of Faraday’s law.  
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Similarly (3.1.2) can be integrated and rewritten as  
 

, 













SC

sdD
t

JldH                     (3.1.20) 

 
which is the integral form of Ampere’s law. 

Next, if (3.1.4) is integrated over some volume “V” it becomes  
 

 
VV

dvdvD                                (3.1.21) 

 
If next, the divergence law (Balanis 1989) 

 

 
SV

sdQdvQ                              (3.1.22) 

 
is applied, then  (3.1.21) becomes 
 

 
VS

dvsdD                                 (3.1.23) 

 
which is the integral form of Gauss’ law.  Here, S is the closed surface that 

surrounds V and sd is the outward normal at any point on S.   
Similarly (3.1.3) can be integrated over a volume in space and the 

divergence law used to get 
  

0
S

sdB                                     (3.1.24) 

 
Finally, the continuity equation can be integrated over a volume and the 

divergence law used to get  
 

 




VS

dv
t

sdJ                            (3.1.25) 

                                 

Integral form - frequency (phasor) domain 
 Frequency domain forms of Faraday’s law (3.1.19) , Ampere’s law (3.1.20) 
and the continuity equation (3.1.25) can be developed by simply substituting 
jω for the time derivative to get respectively 
 

,ˆˆ
 
SC

sdBjldE                       (3.1.26) 
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  ,
ˆˆˆ

 
SC

sdDjJldH                    (3.1.27) 

 




VS

dv
t

sdJ ̂ˆ                             (3.1.28) 

 
Here, the field and source variables become phasors.  

 
 

3.2 Constitutive Relationships for Dielectric and 
Conducting Materials 
 
As mentioned earlier, before unique solutions to Maxwell’s equations can be 

found, it is necessary to specify relationships between D and E , B and H

and J and E .  These are called constitutive relationships and characterize 
the materials in which the fields exist.   

In free space, the relationships are simply  
 

ED 0                                          (3.2.1) 

HB 0                                         (3.2.2) 

0J                                               (3.2.3) 
 

where 
0 and 0  are the permittivity (dielectric constant) and permeability of 

free space respectively.  
In more complex media, it is convenient to augment the electric and 

magnetic flux densities by electric polarization  EP and magnetization 

 HM  vectors respectively.  These account for the influence of the materials 

and are defined as:  
 

 EPED  0                                 (3.2.4) 

  HMHB  0                              (3.2.5) 

 

Finally, the electric current J can be separated into an impressed source 

current 
0J and a current that is dependent on the local electric field  EJ  as  

 

 EJJJ  0
                                  (3.2.6) 

 
Given (3.2.4) and (3.2.5), Maxwell’s equations can be rewritten as  
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Ampere’s Law           (3.2.8) 

 

0 B                                             (3.2.9) 
 

  EPE  
 0

1
 Gauss’ Law                (3.2.10) 

 
Written in this way, it is clear that the “material” can be treated as a source 

(albeit a dependent source) of electric and magnetic fields.  In the next 
paragraph, the dependence of these sources on the local electric and 
magnetic field will be examined further.    

In matter that is “linear35,” then it is possible to write the following 
relationships between these quantities (Harrington 1961) 
 








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E

t

E
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21
t
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HB                     (3.2.12) 

 
and                                












2

2

21
t

E

t

E
EJ                       (3.2.13) 

 

where the permittivity (
i ),  permeability (

i ) and conductivity (
i ) 

coefficients are (in general) tensors (indicates an anisotropic material) and 
functions of space coordinates (indicates an inhomogeneous material).  In 
general, the time derivatives must be included because of losses and inertia in 
real material (Balanis 1989).     

                                                           
35 Linearity means that if two sets of fields  11, HE  and  22 , HE  are separately solutions of 

Maxwell’s equations and the constitutive relationships, then so is  2121 , HHEE  . If a 

material is non-linear, the right hand sides of (3.2.1) – (3.2.3) would be non-linear functions 
of the field amplitudes.  In this text, it is appropriate to model nearly all materials as linear.  
One exception is the case for which a very large current is injected into the earth such as in a 
grounding system during a fault.   
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Since the materials are considered to be linear, (3.2.1) – (3.2.3) can be 

simplified in the time harmonic case (i.e.,  tjexp ) time variation assumed) 

to  
 

 EEEjED ˆˆˆˆˆ
2

2

1                 (3.2.14) 

 

 HHHjHB ˆˆˆˆˆ
2

2

1             (3.2.15) 

 
and                        

 EEEjEJ ˆˆˆˆˆ
2

2

1               (3.2.16) 

 

The terms   ,    and    are complex functions of ω and 

represent the frequency dependence of the permittivity, permeability and 
conductivity respectively.  Recall that each of these could still be a tensor 
(anisotropic material) and a function of spatial coordinates (inhomogeneous 
material).   

Many materials have relatively simple behavior.  They are linear, 
homogeneous, isotropic materials.  In addition, the higher order coefficients 
in (3.2.14) – (3.2.16) are zero.  Hence, for such “simple materials” (3.2.14) – 
(3.2.16) reduce to  

 

EED r

ˆˆˆ
0                               (3.2.17) 

 

HHB r

ˆˆˆ
0                            (3.2.18) 

 
and                                                          

EJ ˆˆ                                             (3.2.19) 
 

where r  (relative permittivity or relative dielectric constant), r (relative 

permeability) and σ are scalar constants that characterize the material.   
Often, in the frequency domain the effects of permittivity and 

conductivity are combined since according to (3.1.13) 
 

   EjjEjEEjHx ˆ/ˆˆˆˆ          (3.2.20) 

 

where the term   j  is often called the “complex conductivity” of the 

material or alternatively the term   /j  is called the “complex 

permittivity” of the material.   
 
 



 

129 

3.3 The Wave Equation - Frequency Domain  
 
Consider Faraday’s and Ampere’s laws in the phasor domain as given 
respectively by (3.1.11) and (3.1.12).  If the “curl” operation is applied to 
Faraday’s law then 
  

0ˆˆ  BxjExx                                   (3.3.1) 

 

If now, it is assumed that HB ˆˆ   as in (3.2.18) where  represents a 

homogeneous medium, and (3.1.12) is substituted into (3.3.1) where ED ˆˆ   
as in (3.2.17), then 
 

JjEExx ˆˆˆ 2                             (3.3.2) 

 
Now, the vector identity 
 

  EEExx ˆˆˆ 2                              (3.3.3) 

 
is applied.  If the region of interest has no free charge and   also represents 
a homogeneous medium, then (3.1.13) can be used to obtain  
 

JjEE  ˆˆˆ22                             (3.3.4) 

 
(3.3.4) is the wave equation for the electric field in a homogeneous 

medium.  If the current is assumed to consist of a source current 
0J  and an 

ohmic current characterized by (3.2.3) then (3.3.4) can be written as  
 

  0

22 ˆˆ/ˆ JjEjE           (3.3.5) 

 
It is interesting to note that (in rectangular coordinates only)  

 

  zzyyxxzzyyxx QaQaQaaQaQaQQ ˆˆˆˆˆˆˆ 22222    (3.3.6) 

 
In a similar way, the wave equation for the magnetic field can be found as  

 

  0

22 ˆˆ/ˆ JxHjH               (3.3.7) 

 
where again, (3.3.6) can be used in rectangular coordinates.   
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3.4 Boundary Conditions 
 
The boundary conditions discussed below can be derived by applying the 
integral forms of Maxwells equations to either a “pillbox” that spans two 
different materials (for surface integral) or a rectangular contour that spans 
two different materials (for line integral).  These derivations are included in 
many textbooks such as Balanis (1989).    

The general conditions that the electric and magnetic fields must satisfy at 
any boundary between two lossy dielectric materials are:   
 

  sDDn  211
(surface charge)                   (3.4.1) 

 

  sJHHxn  211
(surface current)                  (3.4.2) 

 

  0211  BBn                                              (3.4.3) 

 

  0211  EExn                                               (3.4.4) 

 

where the geometry (including the definition of 1n ) is shown in Fig. 3.4.1. 

On boundaries between two lossy dielectrics (with finite conductivity), ρs = Js 
= 0 (Balanis 1989).   
 

 
 

Fig. 3.4.1.  Definition of normal vector for boundary conditions. 

 
At a perfectly conducting boundary (i.e., region 2 in Fig 3.4.1 is a perfect 

conductor for which σ2 → ∞) 
 

sDn  11
(surface charge)                        (3.4.5) 

 

sJHxn 11
(surface current)                        (3.4.6) 

 

011 Bn                                                   (3.4.7) 

 

011 Exn                                                   (3.4.8) 
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3.5 Poynting’s Theorem in the Frequency Domain◄ 
 
The derivation of Poynting’s Theorem begins with the two Maxwell curl 
equations for time harmonic electromagnetic fields from (3.1.11) and (3.1.12) 
(Harrington, 2001; Balanis, 1989).   
 

HjEx ˆˆ                                           (3.5.1) 

 

          EjEJHx ˆˆˆˆ
0                                 (3.5.2) 

 
where ε, μ and σ are assumed to be real scalar functions of position and 
frequency, the current in (3.5.2) has been separated into an impressed 

“source” current (
0J ) and an ohmic “bulk” current  ( E ).  The next step is 

to dot multiply (3.5.1) by *H (where * indicates the complex conjugate) and 

the complex conjugate of (3.5.2) by E .  The results are  

 
** ˆˆˆˆ HHjExH                               (3.5.3) 

 

***

0

* ˆˆˆˆˆˆˆˆ EEjEEJEHxE               (3.5.4) 

 
(3.5.3) can now be subtracted from (3.5.4) to get 

 

****

**

ˆˆˆˆˆˆˆˆ

ˆˆˆˆ

HHjEEjEEJE

ExHHxE

i 




           (3.5.5) 

 
Using the vector identity 

 

  211221 QxQQxQQxQ   ,                     (3.5.6) 

 
(3.5.6) becomes 

 

 












****

0

*

ˆˆ

2

1ˆˆ

2

1
2

ˆˆˆˆ

ˆˆ

EEHHjEEJE

HxE


      (3.5.7) 

 
For time-harmonic fields, this represents the conservation of energy 

equation in differential form.  Integrating (3.5.7) and applying the divergence 
theorem  
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  
S V

dvQsdQ                              (3.5.8) 

 
where V is the volume bounded by the surface S as shown in Fig. 3.5.1 yields 
 

 

















V

VSV

dvEEHHj

dvEEsdHxEdvJE

**

***

0

ˆˆ

2

1ˆˆ

2

1
2

ˆˆˆˆˆˆ





    (3.5.9) 

 
 

 
 

Fig. 3.5.1. Region V (bounded by the closed surface S) that may contain a continuously 
inhomogeneous material (i.e., no discontinuities in material parameters). 

 
Here  

 

 
V

s dvJEP *

0

ˆˆ
                                                           (3.5.10) 

 is the complex power supplied to the volume V (Watts)  
     

  
S

e sdHxEP *ˆˆ                                    (3.5.11) 

 
is the complex power leaving the volume V through S (Watts)   
  

dvEEP
V

d   *ˆˆ                                                        (3.5.12) 

 

is the real power dissipated inside the volume V (Watts)  
  

 









V

m dvHHW *ˆˆ

2

1
                         (3.5.13) 

 



 

133 

is the time averaged magnetic energy stored in V (Joules)  
 

      









V

e dvEEW *ˆˆ

2

1
                          (3.5.14) 

 
is the time averaged electric energy stored in V (Joules)   so that Poynting’s 
theorem can be written as  
 

 emdes WWjPPP  2                       (3.5.15) 

 

where, as stated earlier, it is assumed in (3.5.10) - (3.5.14) that E and H  are 
written in terms of “RMS” values.  This result is a statement of conservation 
of energy although the interpretation of specific terms has been a subject of 
controversy (Wen et. al 2000).  Nevertheless, the interpretation of the term   
 

  







 

S

e sdHxEP *ˆˆRe  Watts                        (3.5.16) 

 
which will be used in this manuscript is clear.  It represents the is the time 
averaged real power leaving the volume V and passing through the surface S.   
 
 

3.6 The Uniqueness Theorem – Frequency Domain 
◄ 
 
To understand how boundary conditions interact with Maxwell’s equations, it 
is necessary to consider the uniqueness theorem (Harrington 2001; Balanis, 
1989).  In this section, materials that are linear (because of the time-harmonic 
assumption) and isotropic (since based on Poynting’s theorem) but possibly 
continuously inhomogeneous in a region V surrounded by a boundary S will 
be considered.  The volume is shown in Fig. 3.5.1.   

Since the problem will be limited to the time harmonic (i.e., exp(jωt)) case, 
Poynting’s theorem can be used as the starting point here and is  

(3.6.1) 

     0ˆˆˆˆˆˆˆˆ ***

0

*  
VS

dvHHjEEjJEdsHxE   

 
To study uniqueness, it is first assumed that there are two sets of solutions 

within V.  They are: 
 

   
bbaa HEandHE ˆ,ˆˆ,ˆ

. 
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Now since it has been assumed that all material within V is linear, the 

difference between solution sets “a” and “b” must also be a solution. This 
“third” solution is written as 
 

 HE ˆ,ˆ   

where  

baba HHHandEEE ˆˆˆˆˆˆ   . 

 
Note that since the source of the “a” and “b” fields is the same, 

0ˆˆ
00  ba JJ . If the difference fields are now used in Poynting’s theorem, 

then  
 

    0
ˆˆˆˆ

22
* 








 

VS

dvHjEjdsnHxE       (3.6.2) 

 
where 

*
2

*
2

ˆˆˆˆˆˆ HHHandEEE   . 

 
At this point, it is possible to look for conditions under which the surface 

integral in (3.6.2) becomes zero.  If these are found, then the volume integral 

must also be zero. As long as σ ≠ 0, then this implies that 0ˆˆ  HE 

everywhere within the volume V.  This implies that if a set of fields ( HE , ) 

satisfies Maxwell’s equations (used in setting up Poynting’s theorem) and 
satisfies some conditions on the surface S, then there can be only one 
solution throughout V because any two separate solutions must be equal 
everywhere within V.  

Now, the specific conditions for which the surface integral in (3.6.2) is 

equal to zero will be determined. Let ba ExnExn ˆˆ  on S (i.e., the tangential 

component of E is known on the surface S and hence must be the same for 
all solutions “a” and “b”).  The integrand of the surface integral is  

 

          dSnHxE ˆˆ                                       (3.6.3) 
  

If the difference fields are written explicitly in terms of tangential and 
normal components as 

 nnEaEE tt  ˆˆˆ                            (3.6.4) 

 nnHaHH tt  ˆˆˆ  ,                          (3.6.5) 



 

135 

 
Then (3.6.3) reduces to  

 

dSnHxE tt ˆˆ                                      (3.6.6) 

 
Clearly if either the tangential E field or the tangential H field is known 

everywhere on S then ba ExnExn ˆˆ  , tÊ or tĤ  = 0 on S and the surface 

integral in (3.6.2) is zero.  Given this, as stated above, the E and H fields 
everywhere within V must be unique and uniqueness is proven.    

Next, it is useful to expand this theorem to the case for which V is 
divided into two parts and the boundary coincides with a step jump in the 
values of at least one material parameter.  Consider the volume shown below 
in Fig. 3.6.1 
 

 
 

Fig. 3.6.1. Regions V1 and V2 (bounded by S1 and S2) that each contains a continuously 
inhomogeneous material except on S’ where there is a discontinuity in at least one material 

parameters. 

 
The approach to the proof here by assuming the following sets of 

solutions.  
 

Volume 1 -    bbaa HEandHE 1111

ˆ
,

ˆˆ
,

ˆ
 

 

Volume 2 -    
bbaa HEandHE 2222

ˆ,ˆˆ,ˆ
 

 
Again, by linearity,  

 

 11

ˆ,ˆ HE   is a valid solution set in volume 1 and 

 

 22

ˆ,ˆ HE   is a valid solution set in volume 2. 
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If now, Poynting’s theorem is applied in both Volume 1 and Volume 2, 
the result is 

(3.6.7) 

    









11

0
ˆˆˆˆˆˆ

2

11

2

111

'

1

*

111

*

11

VSS

dvHjEjdsnHxEdsnHxE 

 
(3.6.8)     

    0
ˆˆˆˆˆˆ

22

2

22

2

222

'

1

*

222

*

22 







 

VSS

dvHjEjdsnHxEdsnHxE     

 

Now, given that either HxnorExn ˆˆ is assumed known on S1 and S2, the 

integrals over S1 and S2 go to zero as in the first case.  To examine the 
remaining terms, the two equations will be added to get (noting that 

21 nn  on S’) 

(3.6.9) 

     












2

1

22

'

1

*

22

*

11 0
ˆˆˆˆˆˆ

i V

iiiii

S i

dvHjEjdsnHxEHxE 

 
Suppose next that on S’ 

 

bbaa ExnExnExnExn 2121

ˆˆ,ˆˆ    and 

bbaa HxnHxnHxnHxn 2121

ˆˆ,ˆˆ   

Then, 

2121

ˆˆˆˆ HxnHxnandExnExn    

 
In this case, the integral over S’ portion of (3.6.9) goes to zero and by the 

same arguments used previously E and H are unique with V1 and V2.   
Note that the condition imposed on the fields on S’ is the different from 

the condition on S1 and S2.  On S’ it is NOT assumed that HxnorExn ˆˆ is 

known.  Rather, it is assumed that the DISCONTINUITY (usually = 0 
which means that the component of the field is continuous) of both 

HxnandExn ˆˆ IS KNOWN across S’.    

 
In summary, the boundary conditions that result in a unique solution to 
Maxwell’s equations are 
 

HxnorExn ˆˆ  is known on S1 and S2                           (3.6.10) 

   2121

ˆˆˆˆ HHxnandEExn   are known on S’         (3.6.11) 
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Infinitely large regions 
Suppose that volume V becomes all space.  If this happens, then a boundary 
condition must be applied at infinity in order to prove uniqueness since it can 
be shown that the fields may not go to zero fast enough for the integral on 
the infinite surface to be zero.  If there is even a small amount of lossy 
material filling the space, the fields decay away from the sources (assumed to 
be contained in a finite volume) exponentially and the field can be said to be 
zero on the infinite interface.  Thus, uniqueness conditions are satisfied.  If 
the region is not lossy, however, then it can be shown that uniqueness holds 
if the fields behave as 
 

0
lim



















jk

r
r

r
                               (3.6.12) 

 
as the infinite surface is approached. Here ψ is represents the radial variation 
of either E or H and k is the propagation constant as the infinite surface is 
approached.  This condition is called the “radiation condition” (Stratton 
1941).   
 

Edge conditions  
Before completing the discussion of the uniqueness theorem, it is necessary 
to point out that the proof of the uniqueness theorem depends on the 
convergence of the two integrals on the right side of (3.6.2).  This places 
some restrictions on the fields primarily at sharp edges of the geometry. 
Fields may diverge, but not so rapidly that the volume integral doesn’t 
converge.  These additional constraints on the fields are known as “edge 
conditions” (Hurd, 1976).      
 
 

3.7  Electromagnetic Potentials ◄ 
 
In sourceless space, Maxwell’s equations can be written as  
 

,0





t

B
Ex Faraday’s Law                           (3.7.1) 

 

,0





t

D
Hx Ampere’s Law                         (3.7.2) 

 

0 B                                                     (3.7.3) 
 

0 D    Gauss’ Law                               (3.7.4) 
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According to the Helmholz theorem (Collin, 1991) any well behaved 

vector field (Q ) satisfies 

(3.7.5) 

 








































   

V SV S

ds
rr

nQ
dv

rr

Q
ds

rr

nxQ
dv

rr

Qx
xzyxQ '

'4
'

'4

'
'

'4
'

'4

'
,,



 

where V is any volume and S is its boundary and 'rr   is the source field 

point distance (in rectangular coordinates)   
 

     222
'''' zzyyxxrr   

 
Now, if V is assumed to be all space, then 

 

 
































 

spaceallspaceall

dv
rr

Q
dv

rr

Qx
xzyxQ '

'4

'
'

'4

'
,,


     (3.76)                           

 

Next, since 0 B  everywhere from (3.7.3) above,  
 

AxB   where   0AA                      (3.7.7) 

and 

 




spaceall

dv
rr

Bx
A '

'4

'
0


                           (3.7.8) 

 

where ψ is any scalar field since   0 x  by vector identity.   

Next, using (3.7.1) 

  0



 Ax

t
Ex  

or 

 00 




























t

A
Ex

t

A
Ex                        (3.7.9) 

 

since, again,    0 x .   

If, next, the field 
t

A
E




 0 is inserted into the Helmholz theorem (3.7.6), 

then  







t

A
E 0                                  (3.7.10) 
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where   

t





 0                                     (3.7.11) 

 

 


















spaceall

dv
rr

t

A
E

'
'4

' 0

0


                        (3.7.12) 

 

Again, 
t


can be added because it is known that    0 x .   

Next, from (3.2.4) (for a simple linear medium)   
 

  000 PEEPED r                      (3.7.13) 

 

where D includes the not only the displacement (free space) contribution 
and that of the linearly polarizable charges in the dielectric, but also 

impressed (i.e., source) polarization 
0P , the impressed electric dipole 

moment per unit volume. Thus36,  
 

00 PE
t

A
D r 












                     (3.7.14) 

 
and if  

HB r0 ,  

 
then 

 AxH
r


0

1
 

 
Using these results in (3.7.2) and (3.7.4) yields 

 

t

P

t

A

t
Axx






























 0

2

2




                  (3.7.15) 

where 

r 0 and r 0   

and  
 

                                                           
36 Here ψ has been set to zero without loss of generality.  Hence A and 

0A  are identical  
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00

2 











 P

t

A
                         (3.7.16) 

 

At this point, it can be recognized that only Ax  has been specified.  But, 

according to the Helmholz theorem, A is not fully specified until A is 
specified.  Thus, it may be said (for convenience) that 

 

0





t
A


  .                            (3.7.17) 

 
Hence, (3.7.15) becomes 
 

 
t

P

t

A
AAxx









 0

2

2

  

or 

t

P

t

A
A









 0

2

2
2                           (3.7.18) 

 
where (only in rectangular coordinates) 
 

      zzyyxx aAaAaAA 2222              (3.7.19) 

 
This equation defines the “electric vector potential.” 
 
(3.7.16) now reduces to  
 

 
                    (3.7.20) 

 
 

By superposition, another solution to the homogeneous Maxwell 

equations may be added to A and ϕ.  To do this, the following can be 
written  
                    

*AxD                                       (3.7.21) 
 

  00000 M̂HHMHB r                     (3.7.22) 

 

where 
0M  is the magnetic moment per unit volume for simple magnetic 

material.   
The resulting equation for the “magnetic vector potential” is 

02

2
2 1

P
t

A

















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t

M

t

A
A









 0

02

*2
2 *                           (3.7.23) 

 

with a similar equation for *  

 

0

0

2

*2
*2 1

M
t





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











                        (3.7.24) 

 

Now in the sinusoidal steady state, it is only necessary to solve for A and
*A since   and * can be derived from them.  

Next, the Hertz electric and magnetic potentials ( and * respectively) 
can be defined.  These are:  

 

t
A




                                          (3.7.25) 

and 
 

t
A






*
*  .                                    (3.7.26) 

 

The wave equations for  and *  become  
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2
2 1

P
t 

 



                           (3.7.27) 

and 

02

*2
*2 1

M
t r

 



                       (3.7.28) 

where  
 

   and  **  . 

 
Thus,  

t
x

t
E


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


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2

2

                    (3.7.29) 

and 
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x
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
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2

*2
*                     (3.7.30) 

 
For the time harmonic case 
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0

22 1
P


                                (3.7.31) 

 
and 
 

02

*2
2*2 1

M
t r

 



                       (3.7.32) 

 

where    and  **  .  Thus, (3.7.29) and (3.7.30) can be 

written as  
 

*2  xjE                    (3.7.29) 

 
and 
 

 xjH  *2*                 (3.7.30) 

 
 

3.8 Reciprocity Theory ◄ 
 

Electromagnetic reciprocity 
The study of reciprocity theory begins with Faraday’s and Amperes laws in 

time harmonic form from (3.1.11) with  00

ˆˆˆ
MHB    and (3.1.12) with 

ED ˆˆ  and 0

ˆˆˆ JEJ  that are repeated here as (3.8.1) and (3.8.2) 

respectively (Harrington, 2001; Balanis, 1989) 
 

,
ˆˆˆ

0MHjEx                         (3.8.1) 

 

where 
0M  is an impressed magnetization and  
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               (3.8.2) 

 

where the source currents are designated as 0Ĵ and separated from the 

conduction currents EJ c ˆ
 and that 

  

EzyxJandEzyxDHzyxB c
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ˆ
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These two equations are next applied to a linear and isotropic, but 
generally inhomogeneous region in space as shown in Fig. 3.8.1.  Each region 
in the figure could represent a different material with position dependent 
conducting, dielectric and magnetic properties.  
 

 
 

Fig. 3.8.1. The inhomogeneous region to which the reciprocity theorem applies. 

 
Next, some distribution of electric and magnetic sources is inserted in the 

region as shown in Fig. 3.8.2.  Maxwell’s equations in this case become 
 

,ˆˆˆ
0aaa MHjEx                          (3.8.3) 

 

,ˆˆˆˆ
0aaaa JEEjHx 


                    (3.8.4) 

 

 
 

Fig. 3.8.2 The inhomogeneous region to which the reciprocity theorem applies with “a” 

sources and field points. 
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Similarly, it is possible to place a different set of sources and field points 
in the same region as shown in Fig. 3.8.3.   

 

 
 

Fig. 3.8.3.  The inhomogeneous region to which the reciprocity theorem applies with “b” 
sources and field points. 

 
Maxwell’s equations in this case become 

 

,ˆˆˆ
0bbb MHjEx                              (3.8.5) 

,ˆˆˆˆ
0bbbb JEEjHx 


                      (3.8.6) 

 
It is very important to note that, since both sets of sources (i.e., “a” and 

“b”) are in the same medium, the terms μ, ε, and σ are identical in both sets 
of equations.  The next step in deriving the reciprocity theorem is to dot 

multiply (3.8.3) by
bH , (3.8.4) by 

bE , (3.8.5) by 
aH and (3.8.6) by 

aE .  The 

result is  
 

,ˆˆˆˆˆˆ
0ababab MHHHjExH               (3.8.7) 

 

 ,ˆˆˆˆˆˆˆˆ
0abababab JEEEEEjHxE 


     (3.8.8) 

 

,ˆˆˆˆˆˆ
0bababa MHHHjExH             (3.8.9) 

 

,ˆˆˆˆˆˆˆˆ
0babababa JEEEEEjHxE     (3.8.10) 
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If now, (3.8.7) and (3.8.8) are added together and (3.8.9) and (3.8.10) 
subtracted from this result, then 
  

baabbaab

baabbaab

JEJEMHMH

ExHExHHxEHxE

0000

ˆˆˆˆˆˆˆˆ

ˆˆˆˆˆˆˆˆ




          (3.8.11) 

 
Note that all of the terms that contain material properties cancel because 

the material properties are the same for both the “a” and “b” problems.  
Next, by vector identity 

(3.8.12) 
 

 
abbabaabbaab HxEHxEExHExHHxEHxE ˆˆˆˆˆˆˆˆˆˆˆˆ 

    
 

Hence, if (3.8.11) is integrated over all space and the divergence law (i.e., 
3.1.21) is applied,  

 

  
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abba dvHxEHxE ˆˆˆˆ                                                 (3.8.13) 
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             (3.8.14) 

 

where S is the infinite boundary.   If E  and H decay rapidly enough that 

the integral over S  = 0, then (3.8.14) becomes 

 

  0ˆˆˆˆˆˆˆˆ
0000 

spaceall

baabbaab dvJEJEMHMH        (3.8.15) 

 
In the form that will be used here, M is set equal to zero, so that  

 

    
spaceall

ba

spaceall

ab dvJEdvJE 00

ˆˆˆˆ                         (3.8.16) 
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Clearly, the only places that the integrands are not zero are where the 
source currents for either problem “a” or “b” are located.  For currents that 
exist only along a line, (3.8.16) can be rewritten as (Weeks, 1968) 
 

 
cb

ba

ca

ab dlIEdlIE 00

ˆˆˆˆ                               (3.8.17) 

 
where “ca” and “cb” represent the lines on which sources Isa and Isb lie.   
 

Application to circuit theory 
As an example, consider the environment shown in Fig. 3.8.4 which is 
designed to look like that of a simple electrical circuit.  

 
 

Fig. 3.8.4. The environment of a simple electrical circuit. 

 

 
 

Fig. 3.8.5. The environment of a simple electrical circuit with a source at the left terminals. 
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As shown in Fig. 3.8.6, a current source placed between the two terminals 
on the right hand side of the circuit (problem “b”) causes an electric field 
everywhere, but most specifically between the terminals on the left  hand side 
of the circuit where the problem “a” current was placed earlier.  

 

 
 

Fig. 3.8.6. The environment of a simple electrical circuit with a source at the left terminals. 

 
If 3.8.16 is now applied to problems “a” and “b” shown in Figs. 3.8.5 and 

3.8.6 respectively, the result is  
 

 

2

1

12

2

1

12
ˆˆˆˆˆˆˆˆ
ababbaba VIdlEIVIdlEI                (3.8.18) 

 
This is the familiar reciprocity theorem from circuit theory, but derived 

from electromagnetic theory. Note that there are no frequency restrictions on 
this except that the terminals over which the voltage is defined must be close 
compared to a wavelength.  Further, the only restrictions on the geometry are 
that the material be linear and isotropic.   
 

Electrostatic reciprocity 
Reciprocity can also be formulated using electrostatic theory (Smythe, 1968).  
The geometry that will be assumed is the same as shown in Fig. 3.8.1.  The 
first “a” problem that will be considered next is shown in Fig. 3.8.7.  Here a 

charge distribution a  is placed in the region which causes a potential 

distribution aV in the region.  Similarly, for the “b” problem, a charge 

distribution b  is placed in the region which causes a potential distribution 

bV  in the region.  This problem is shown in Fig. 3.8.8.   
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Fig. 3.8.7. The inhomogeneous region to which the reciprocity theorem applies with “a” 
sources and field points. 

 

 
 

Fig. 3.8.8.  The inhomogeneous region to which the reciprocity theorem applies with “a” 
sources and field points. 

 
The governing equations for the electrostatics problem above with the “a” 

sources are: 
 

aaD                                        (3.8.19) 

and 
 

aaE                                         (3.8.20) 

  
Similarly, the governing equations for the same problem but with the “b” 

sources are: 
 

bbD                                        (3.8.21) 

and 
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bbE                                              (3.8.22) 

 

If now, (3.8.19) is multiplied by
b , (3.8.21) is multiplied by

a and the two 

results are subtracted, the following result is obtained 
 

baabbaab DD                           (3.8.23) 

 
but, by the vector identity 
 

    DDD                            (3.8.24) 

 
(3.8.23) can be converted into 

 

    baababbabaab DDDD       (3.8.25) 

 

Next, (3.8.20) and (3.8.22) can be used along with the relation ED  to 
obtain  
 

   
    baabbaab

baabbababaab

DD

orEEEEDD








  (3.8.26) 

 
where the two center terms cancel because the environment is the same for 
the “a” and “b” problems. If, now, (3.8.26) is integrated over a volume V 
 

        
V V

baabbaab dvdvDD          (3.8.27) 

 
Finally, an application of the divergence theorem  

 

 
SV

sdAdvA                               (3.8.28) 

results in  
 

    
V

baab

S

baab dvsdDD           (3.8.29) 

 
If S is expanded to include all space and the surface integral goes to zero, 

then  

  0
V

baab dv                              (3.8.30) 

 
which is the desired result.  
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3.9 Problems 

 
P3.1. Based on the Maxwell’s equations listed in (3.1.1) – (3.1.4) and the 
vector identity of (3.1.6), derive the continuity equation as given by (3.1.5). 
(Briefly explain the physical meaning of the continuity equation.) 
 
P3.2. The time-harmonic electric field inside a source-free, homogeneous, 
isotropic, and linear medium is given by (in Cartesian Coordinates and 
assume the time variation term is ejωt) 
 

zj

y exyEaE 



 








 sinˆˆ

0                            (P3.2a) 

 
where E0, α, and β are all constants. Given the permittivity of the medium, ε 
(Farads/m), the electric flux density D (Coulombs/m2) can be found by 
 

ED ˆˆ                                              (P3.2b) 
 
In the medium, by using the Maxwell’s equations, determine: (a) the electric 
charge density ρ (Coulombs/m3), (b) the magnetic field H (A/m) given that 
the permeability of the medium is μ (Henries/m) and the magnetic flux 
density B = μ H.  
 
P3.3. Derive the wave equation for the magnetic field as given by (3.3.6). 
Assume the region of interest has, respectively, the permittivity and 
permeability of ε and μ, neither of which is a function of position.  
 
P3.4. Consider an interface between two source-free (no free charges) media, 
shown in Fig. P3.4, both of which have finite conductivity. Media 1 and 2 are 
characterized by the constitutive parameters ε1, μ1, σ1 and ε2, μ2, σ2, 
respectively. Show that the tangential electric fields across the interface are 
continuous (E1t = E2t) by applying the integral form of Faraday’s law given in 
(3.1.18). (Note: the “= 0” on the most right hand side of (3.1.16), (3.1.18), 
and (3.1.19) should be removed.) Hint: choose a rectangular box as shown in 
Fig. 1 and apply Faraday’s law on the box. The integral of the B field can be 
reduced to zero if the height Δh of the box is small enough.   

 
  

Fig. P3.4.  A source-free interface between two media 
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P3.5. Suppose there is a current I (A, rms value) flowing through a long 
straight resistance cylinder, which has radius of a (m) and conductivity of σ 
(S/m). Choose the axis of the cylinder to be the z-axis and the x-y plan 
coincides with one of its cross-sections, as shown in Fig. P3.5 Now only 
consider a segment of length L (m) of this cylinder. Assume the current is 
evenly distributed over the cross-section of the cylinder. Determine:  
 
a. the electric and magnetic fields on the circumferential surface of the 

cylinder and the directions of them; (Hint: the electric field can be 

determined by the current density in the cylinder, EJ c  .) 

b. the power dissipated in the cylinder (  
V

is dvJEP *ˆˆ );  

c. the Poynting vector (including the magnitude and direction) and the 
power exiting (or entering) the circumferential surface of the cylinder         

(   
S

e sdHxEP *ˆˆ ).  

d. Compare the results from (b) and (c).  
 

 
Fig. P3.5.  Resistance cylinder 

 

P3.6. The parameters of a simple circuit are given as shown in Fig. P3.6 (a). 
An ammeter is connected in one of the branches. Determine the current, Ib, 
flowing through the ammeter. Then, switch the position of the voltage 
source Vs and the ammeter, Fig. P3.6 (b). Calculate the new current in the 
meter. Compare the results of the two calculations. 
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(a) 
 

 
(b) 

 
Fig. P3.6.  Simple circuit to demonstrate the reciprocity theorem 
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Chapter IV 
Propagation on an Infinitely Long Single 

Conductor Transmission Line above 

Homogeneous Earth 
 
 

4.1 Introduction    
 

Problem definition 
The purpose of this chapter is to review the exact mathematical theory for 
the problem illustrated in Fig. 4.1.1.   
 

 
(a) 
 

 
(b) 

 
Fig. 4.1.1.  a) end view and b) side view of the wire of radius “a” and height “ y1= h” above a 
linear, homogeneous isotropic lossy earth where V is a voltage source at its center and Ee is 

the electric field from an external source. 
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More specifically, the electric currents on a single infinitely long horizontal 
conductor located above a single-layer, linear, homogeneous, isotropic, lossy 
(i.e., non-zero conductivity) earth caused by a single frequency voltage 

source37 at its center and/or an electromagnetic field (
eE ) from an external 

source will be found. This problem is the idealized problem described in 
Chapter 2, Section 2.3 for a single conductor.   
Here, the z-oriented, horizontal conductor has radius a, and is located at a 
distance h above the earth and a distance x’ from the y axis (Wait 1962;  
Kuester et. al. 1978).   Standard International (SI) units are assumed.  The 
upper half space (i.e., y > 0) is free space and is characterized by permittivity 

and permeability
01    and  

01    respectively while the lower half space 

(i.e., y < 0) is a linear, homogeneous, isotropic lossy material characterized by 

conductivity, permittivity and permeability 
0222 ,  r and 

022  r

respectively. 
2r  and 

2r  are the relative permittivity and permeability of the 

half space respectively. The conductor is assumed to be non-magnetic (i.e., 

0 w
) and to have a conductivity 

w . The dielectric constant of the 

conductor is not needed since it is only used to calculate displacement 
currents and below optical frequencies these can always be neglected in the 
conductor.  The conductor is driven by a voltage source of RMS magnitude 

V at z = 0 and by an electric field 
eE from some external source and it is 

assumed that all sources vary in time as  tjexp . The external source could 

represent a man-made source such as a communications antenna or a natural 
source such as lightning or a corona discharge near a conductor.   
 

Problem solution 
The method by which the solution is found can be summarized as follows.  

First, an unknown current distribution  'ˆ zI  is assumed to be carried by the 

conductor. Second, this current distribution is divided into infinitesimal 

lengths dz and the axially directed electric field  ',ˆ zzEz
due to the short 

current element  dzzI 'ˆ is formally written (the specific formula for this will 

be determined later). Third, this result for  ',ˆ zzEz
is integrated over the 

entire conductor. The result is a formal expression for the axial electric field 

 zEz
ˆ of the entire conductor current.  Finally, an integral equation for the 

(as yet) unknown current distribution is obtained by setting  zEz
ˆ plus the 

axial electric field of the external source (if any) equal to the axial electric 
field of the source voltage at z = 0 and an impedance boundary condition on 
the remainder of the conductor.   

                                                           

37 It will be assumed that sinusoidal steady state sources and fields are phasors (e.g., Â ) 
with RMS magnitudes and phases measured in radians. Hence the time variation can be 

found as     tjAta expˆRe2 .     
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The effect of the earth is taken into account when calculating the 
electromagnetic field of each short current element and is represented by 
Sommerfeld integrals (details are provided later). At lower frequencies, these 
integrals will be shown to produce expressions for the external inductance 
and capacitance per unit length of an equivalent transmission line for this 
system. The impedance boundary condition accounts for the distribution of 
current inside the conductor caused by the skin effect.  At low frequency, 
this will be shown to produce expressions for the internal inductance and 
resistance per unit length of an equivalent transmission line. Details of the 
solution process are provided in Section 4.2.  Once the integral equation has 
been set up, it is solved using Fourier Transform theory38.  Details of this are 
provided in Section 4.3. 
 

Solution validity 
The solution is formally valid at any frequency for which the conductor 
radius is small compared to a wavelength at the frequency of interest, for 
which the earth is represented by electrical constants appropriate to the 
frequency and for which the conductor can be represented by a surface 
impedance (generally at and below microwave frequencies).  As a result, the 
solution can be used to study antenna problems at high frequency as well as 
power line propagation problems at low frequency.  These two extremes are 
not separate issues and it is important that this not be forgotten.  In fact, 
there are certain cases (such as for calculating electromagnetic interference 
from corona) for which general theory is needed even for analysis of power 
transmission lines.    
 

Readers interested only in low frequency behavior 
Given, however, that the interest of many readers is restricted to the 
behavior of power lines at lower frequencies (i.e., generally below 1 MHz), 
there is no need for these readers to spend a great deal of effort to 
understand the first few sections of this chapter. Rather, these readers can 
skip sections marked with a ◄ here and in the table of contents and proceed 
to Section 4.7 where a special introduction is written for readers who have 
skipped earlier sections.    

In Section 4.7, systematic mathematical approximations to the exact 
solution will be made with care taken to list exactly the conditions under 
which each approximation is valid.  These approximations include those that 

                                                           
38  It is useful to note how the uniqueness theorem introduced in Chapter 3 applies to this 

problem. More specifically, if a solution to Maxwell’s equations can be found that accounts 

for the source term (including the external electric field if any), satisfies the radiation 

condition as the distance from the center of conductor, r → ∞ and for which the tangential 

electric and magnetic fields are continuous across the air-earth boundary and the air-

conductor boundary, then this solution is the one and only solution to the problem.    
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lead in later sections to equivalent transmission line theory, circuit theory and 
quasi-static field calculations. 
 
 

4.2 Setting up an Integral Equation for Conductor 
Current with Series Voltage and External Field 
Sources ◄ 
 
Strategy and approximations 
The first step in finding the current on the wire shown in Fig 4.1.1 is write 
down a formal expression for the electric and magnetic fields of an 

infinitesimal element (i.e., length dz’) of the wire at  ',, 11 zhyx   that carries 

a current I.  This current “element” is called a dipole with moment Idz’.  The 
geometry for this problem is shown in Fig. 4.2.1  
 

 
(a) 
 

 
(b) 

 
Fig. 4.2.1. a) end view and b) side view of the dipole height “h” above a lossy linear, 

homogeneous isotropic earth. 
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The electric and magnetic fields in medium 1 (i.e., y ≥ 0) for the current 

element at  ',, 11 zhyx    can be written down as (Baños 1966) 
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where it is assumed that all of the functions 
ijg  are selected to satisfy the 

appropriate boundary conditions at infinity and at the air-earth interface 
discussed earlier. Later in this chapter, it will be shown explicitly how this can 
be done.  Note that the reason why y and h appear separately in (4.2.1) and 
(4.2.2) (unlike x-x1 and z-z’) is due to the air-earth interface which makes the 
region inhomogeneous along any vertical line.   Thus, the y variation of the 
field is not simply related to the difference y-h.   

As mentioned earlier, the current on the wire (  zÎ ) is yet unknown and 

is the object of the derivations in this section.   As discussed earlier, this 
current can be found by setting up an integral equation on the surface of the 
wire.  To do this, it is necessary to match appropriate boundary conditions 
on the wire surface. If the wire was perfectly conducting, then it would be 
sufficient to set the tangential component of the total electric field equal to 
zero on the wire surface (except at the voltage source where an electric field 
boundary condition that accounts for the difference in electric potential 
across the voltage source can be used). But, there are two problems with this 
approach. First, the wires of interest here are not perfect conductors and 
second, it is a laborious process to match boundary conditions at all points 
along the cross section of the conductor. Here the first of many 
approximations in this chapter will be made. More specifically, what is called 
the “thin wire” approximation will be made for which it is assumed that the 
electric field component along the direction of the wire is equal to the 
“intrinsic impedance per unit length” of the wire multiplied by the total 
current on the wire at one location on the cross-section of the wire.  This 
approximation is valid under the condition (Pogorzelski and Chang 1977) 
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For the z directed non-magnetic wire considered here, the thin wire 
condition can be implemented as  
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1

1 zIZzhaxE iwz                        (4.2.4) 

 
where it has been assumed that the boundary condition is matched on the 

side of the wire (i.e., more specifically at  hax ,1  .  In Appendix A, it is 

shown that (Weeks 1981)  
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is the resistance per unit length of the wire at dc (i.e., zero frequency).  σw is 

the wire conductivity,    2/1

0 ww jk   and  )( akJ wo and )( akJ wo are 

Bessel functions of argument q, and order zero and one respectively where 

the wire has been assumed to be non-magnetic since w  (the wire 

permeability) = 0 .  Note that displacement currents in the wire can be 

neglected (i.e.,  /0 wrw  ). Hence it is not necessary to specify εw , the 

dielectric constant of the wire. If the frequency is low enough that │kwa 
│<< 1, then  
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In this case, the current flows uniformly throughout the wire and “dc” 

calculations are accurate. The latter term of (4.2.7) represents the internal 
inductive reactance of the conductor and is equal to zero when ω = 0 as 
expected.   

If the frequency is high enough that │kwa │>> 1, then 
 

 
 

1,
2

1

2

2/1














 ak

a

j
Z w

w

o
iw




               (4.2.8) 

 
In this case, the current can be shown to flow primarily near the outside 

surface of the wire (i.e., the skin effect) where the thickness of this layer is 
roughly one skin depth  
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0

2
                                        (4.2.9) 

as shown in Fig. 4.2.2.   
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Fig. 4.2.2.  Cross section of a round conductor. At high frequency, current flows in the 
“skin” (i.e., the shaded region of thickness δ) of a round conductor.  The impedance per unit 

length is inversely proportional to the area 2πaδ. 

 
As a result, the impedance is significantly larger than it is at lower 

frequencies. This is also why the impedance is proportional to the square 
root of ω.  In fact, as a general rule, the smallest intrinsic impedance per unit 
length for a round conductor occurs at zero frequency.  Since resistive losses 
are proportional to the real part of the intrinsic impedance, the smallest 
resistive losses are achieved by using the lowest frequency possible. This is 
the fundamental reason why dc power lines are more efficient (i.e., smaller 
resistive losses per unit length) than ac power lines.   Generally, however, 
they are used only for relatively long distances because of the losses in 
transforming ac to dc and vice versa at the two ends of the transmission line.  
 

The integral equation 
If (as has been assumed) the boundary condition (4.2.4) is applied at the side 

of the conductor (i.e., at  hax ,1  ), then the total electric field (an integral 

over all sources plus the external source field) can be equated to the 
boundary condition on the surface of the conductor.  The result is (Chang 
and Olsen 1975; Kuester et. al. 1978) 
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               (4.2.10) 

 
Here, δ(z) is the Dirac delta function which is zero everywhere except at z 

= 0 and has the property that any integral which  includes z = 0 in its domain 
is equal to 1.  Thus the term –Vδ(z) represents a voltage source of RMS 
amplitude V on the wire at z = 0 since  
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where ε is an arbitrarily small number.   

Equation 4.2.10 is a homogeneous Fredholm integral equation of the first 
kind for the current induced on the conductor by the voltage source and 
external sources.   
 
 

4.3 Formal Solution to the Integral Equation for 
Conductor Current with Series Voltage and External 
Field Sources ◄ 
 

Explicit expressions for  zhaxEze ,,ˆ
1

1  can be (and will be later) found for 

sources such as plane waves and isolated dipoles above the earth (Olsen and 
Usta 1977; Olsen 1983).  If in addition gez(a, h, h, z - z’) is known, then it is (in 
principle) possible to solve (4.2.10) for the current distribution using 
numerical methods.  But, this approach gives little insight into the solutions.    
Here, a formal solution for the current will be developed that is 
straightforward and elegant. It is based on the fact that the integral equation 
is valid over the entire range of z values from -∞ to ∞.  The solution can be 
found by taking the spatial Fourier transform of both sides of (4.2.10).  This 

transform and its inverse (i.e.,  F
~

and  1~F ) used here are defined as  
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The symbol ~ indicates a spatial Fourier transform with respect to the 

wire direction z that is dependent on the spatial Fourier transform variable γ.   
Taking the Fourier transform of (4.2.10) using (4.3.1) and using the 

convolution identity 
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results in the algebraic equation 
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where the axial electric field of the wire current is  
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If terms containing  I
~̂

are gathered, the equation can be solved for  I
~̂

, 

resulting in 
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Finally, an explicit expression (i.e., the formal solution to the integral 
equation) for the current as a function of position z can be written using the 
inverse Fourier transform as 
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Clearly, an explicit expression now exists for  zÎ if an expression for 

 ,,,
~1 hhaGez

can be found.   

 

Special case – no external sources 

As the next step, it will be assumed that 0
~̂1 zeE  (i.e., no external incident 

fields).  Hence, (Chang and Olsen 1975) 
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4.4 The Axial Electric Field of a Propagating 
Horizontal Current above Earth ◄ 
 

Introduction 
In this section, an explicit expression for the term  ,,,

~1 hhaGez
 in (4.3.6) 

and (4.3.7) will be found.  This term represents the Fourier transform of the 
z-directed electric field due to a unit-amplitude impulse (in space) of current 
(i.e., an infinitesimal length dipole) at z = z’. Note that the spatial Fourier 

transform of an impulse at z = z’ is simply    zjI   exp
~̂

.  Hence, in the 
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transform domain, an infinitesimal current source at z = z’ becomes a line 

source carrying a current of the form  'exp zj .  The fundamental issue 

that complicates the solution to this problem is the fact that the line current 
is above the earth and hence that appropriate boundary conditions have to 
be satisfied at the air-earth interface.  This is done in the spatial Fourier 
transform domain as illustrated below.  

It has been shown (in Chapter 3) that the electromagnetic field of this 
type of source can be derived from a set of electric and magnetic “potentials” 
(Wait, 1972).  As mentioned in Chapter 3, these potentials are not used 
because it is necessary to do so, but rather because it provides a simpler 
formulation to the problem which (in turn) leads to a more elegant and 
simple representation of the result.   

 
(a) 
 

 
(b) 

 

Fig. 4.4.1. a) end view and b) side view of the line current at  hx ,1
above a lossy linear, 

homogeneous isotropic earth carrying a current exp(-jγz’) (i.e., RMS current magnitude  = 1). 

 
Here, Hertzian electric and magnetic potentials will be used because it is 
possible to represent the entire set of electric and magnetic fields in terms of 
an axial (i.e., z directed) Hertzian electric and magnetic potential.  The 
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“proof” of this is that if e

z  and m

z are used, then it can be shown possible 

to find a solution to Maxwell’s equations that satisfies all required boundary 
conditions.  By the uniqueness theorem, this must be the solution.   
Consider next, the specific problem to be solved as shown in Fig. 4.4.1.  This 

figure shows a line current of form    zjI   exp
~̂

 above a homogeneous 

lossy earth as shown.  As mentioned earlier, it is possible to use z directed 
electric and magnetic Hertzian potentials to solve for the electromagnetic 
fields of this source as shown below. 
 

 ,,,
~̂

hhaGez
 for a conductor in free space 

Consider first only the source term (i.e., the earth is ignored for the moment).  
In this case, it is possible to represent the entire set of fields with a z-directed 
Hertzian electric potential.  Since the vector potential must have the same z 
variation as the source, the wave equation for the potential can be written as  
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where 01000111 ,   kk and it has been assumed that 

the z variation of  zyxez ,, is 
zje 
 since (as mentioned above) the source 

current has this form.  
A couple of comments about the source term in (4.4.1) are in order.  Note 

first, that in (3.3.27) of Chapter 3, the source term for the electric Hertzian 
potential is –P0/ε where P0 is a “fixed” polarization that can be related to a 

current density (again, 01   in this case since the source that is in 

Region 1 is assumed to be free space).  More specifically,  
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where the line current’s current density (for a current with z variation 
zje 

 
can be written as  
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and I  is the RMS amplitude of the current.  Since    'exp
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zjI    in this 

case, the source term in (4.4.1) is 
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can be written as  
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since the term 
zje 
is on both sides of the equation and cancels.   

To solve (4.4.1), it is first transformed into the (κ, ξ) plane by using the 
Fourier transforms  
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in succession. The result is 
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Using the inverse Fourier transforms corresponding to (4.4.6) and (4.4.7) 

(see (4.3.12), it is possible to write a formal solution for the Hertzian 
potential in the spatial domain as follows: 
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where 

                    2

0

22

1 ku    ,   0Re 1 u                       (4.4.11) 

 
The ξ integration can be easily performed using the theory of residues (see 

Appendix B for details) by deforming the ξ contour into the lower infinite 
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semi-circle. If it is assumed that   0Re 1 u 39 so that   0Im 1 ju , and (y-h) 

> 0, then the integrand   hyj  exp  goes exponentially to zero in the 

lower infinite semi-circle and the pole that occurs in the lower half plane is at 

1ju  (see Fig. 4.4.2).   

 
Fig. 4.4.2. Location of the pole at –ju1 in the complex ξ plane. 

 
The residue for the ξ integration (the portion of (4.4.10) in brackets) is  
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and the result is 
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Where again,   0Re 1 u and the absolute value sign has been used to 

combine the result with a similar integration for the case (y-h) < 0.   
Before proceeding, it is useful to recognize the identity (Abramowitz and 

Stegun, 1972)  
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where   qH 2

0
 is the Hankel function of the second kind, order zero and 

argument q.  In order to satisfy the radiation condition at infinity, 

   0Im
2/122

0 k since the asymptotic expansion for the Hankel function 

is  

                                                           
39 The choice is arbitrary.  But, once made, all other operations must be consistent with this 
assumption. 
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Given this result, 4.4.13 becomes    
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Before proceeding, it is appropriate to illustrate how the result in (4.4.15) 

can be checked by integrating the magnetic field derived from (4.4.15) 
around a closed contour that just surrounds the current carrying conductor.  
Using cylindrical coordinates, the magnetic field can be expressed (for a 

current of the form  zjexp  where this term is suppressed)   
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Since      2/122

1 hyxxr   and for small arguments (Abramowitz 

and Stegun 1972)   
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So that 
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where C is a contour that encircles the conductor. The result is as expected 
since the wire current amplitude was set equal to 1.    

 ,,,
~1 hhaGez

 for a conductor above a half-space 
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At this point, general expressions for the electric and magnetic fields in terms 
of the axial Hertzian potentials can be written (Wait 1972).  Again, in all cases 

the current is of the form  zjexp where this term is suppressed.   

The electric field related to the Hertzian electric vector potential in 
medium “i” is: 
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but from the wave equation (4.4.1) away from sources 
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The electric field related to the Hertzian magnetic vector potential is: 
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Similarly, the magnetic fields can be found as 
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and 
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where  /ˆ
0 irii j is the complex dielectric constant40 and 

iiik  ˆ is the complex propagation constant of medium “i”.  (4.4.19) – 

(4.4.23) will be used as the basis for calculating electric and magnetic field 

components other than 
zÊ  in Chapter 5.  

 
Given these results, the boundary conditions on the tangential components of the 

electric and magnetic field on a y = constant plane (in this case y = 0) are: 
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For Ez  
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and for Hz 
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where   ./22022  jk r   

 
At this point, forms for the Hertz vector in each region will be set up.  

The particular forms will be selected in order to 1) match the source 
condition in Region 1 and 2) lead to results that will have simpler algebraic 
equations than otherwise might result.  In each case, the result will be a 
spectral function which (when found and transformed back into the spatial 
domain) leads to an exact closed form expression for the respective vector 
potential.  

It should be noted that there are only “down-going” waves in Region 2 

(i.e., only an  yu2exp  term) and (aside from the source term which radiates 

in all directions) only “up-going” waves in Region 1 (i.e., only an  yu1exp 

                                                           
40 Here, the carat symbol over the dielectric constant ̂ indicates a complex number, not a 

phasor. 
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term).  These assumptions are consistent with the requirement of the 
uniqueness theorem that in “open” regions, there are no sources at infinity.   

Appropriate expressions for the (yet unknown) Hertzian potentials are:   
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where   04/ jA  and  2u is defined as 
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Using the boundary conditions in (4.4.24) – 4.4.27), the following 

algebraic equations in the unknowns R(κ), M(κ), T(κ) and N(κ) can be written 
for each boundary condition. This results in four coupled linear equations in 
four unknowns that can be solved for R(κ), M(κ), T(κ) and N(κ) (Wait 1972).    
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For Hx 
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and for Hz 
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The factor K(γ) is defined as  
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After T(κ) and N(κ) have been eliminated by inserting (4.4.35). (4.4.36) 

and (4.4.37) into (4.4.33) and (44.34), (4.4.33) and (4.4.34) become 
 

             KjMuKuRKj  11 2210
   (4.4.38) 

 
And 
 

         

  2210

22101

uKu

RuKuMKj








         (4.4.39) 

 
These two equations can be rewritten as: 
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where 
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  221012 uKua                            (4.4.42) 

  221021 uKua                           (4.4.43) 

 
From the second equation in (4.4.40), it is possible to solve for M(κ) to 

get  
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Equation (4.4.44) can be inserted into the first equation in (4.4.40) to get 
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where 21122211 aaaa  .   Expanding yields (Wait 1972) 
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From these results, the other unknowns can be written as  
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       RKT  1                                  (4.4.48) 

      MKN                                         (4.4.49) 

 
Here, an alternative expression for R(κ) is derived (under the condition that 

the earth is non-magnetic (i.e., 021   ).  Q is defined as Num/Den, 

where Num = the numerator of (4.4.46) and Den = the denominator of 

(4.4.46).  If, in addition, 021   then,  
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Now, Q can be written as 
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Next, substitute (4.4.37) into Den to get  
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(4.4.52) 

 
 

 
 

 
 

 
       

       22

2

22

021

2

221

2

0

222

0

2

2

2

2

222

2

2

1

2

0

222

2

22

2

22

0

222

0

22

222

2

22

2

22

0
2122

2

22

0
2

2

21

2

0

2

22

2

22

022

2
1

1







































































kkuukuukkukkuk

kkkk
k

k

k
uu

k

k
ukuk

k

k
Den

       

 
Collecting terms 

(4.4.53) 
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Next let  
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Similarly 
 

  22

2

2

2

2

2

2

2

2

22









kk

ukB
                                 (4.4.55) 

 
Inserting (4.4.54) and (4.4.55) into (4.4.53) and moving the common terms  
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Finally, using (4.4.50) and (4.4.56)  
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It can also be shown (here done backwards) that the factor  
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This is done by 1) rewriting (4.4.59) with a common denominator and 2) 

multiplying numerator and denominator by  21 uu  .  After writing 1u  and 

2u  in terms of their definitions (i.e., 4.4.11 and 4.4.32) and collecting terms, 

(4.4.58) can be shown to be equal to (4.4.59).  Hence 
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Given this result, it is now possible to find an expression for the total 

axially (i.e., z) directed electric field anywhere.  Using (4.4.20),  
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where from (4.4.28),  
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so that 
(4.4.63) 
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where R(κ) is given by (4.4.57) or (4.4.60) (Wait 1972).   

For the specific point    haxyx ,, 1  (i.e., at the side surface of the 

wire) 
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It is useful to note that (in some publications) (4.4.64) is written in an 
alternative form as 
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Finally, as discussed in Section 4.3, the electric field of the wire (for an 
arbitrary current) can be written explicitly as  
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4.5 Exact Modal Equation and General Expression 
for Current ◄ 
 
Introduction 
Now that 1~

ezG  is known, it is possible to use (4.3.8) to calculate the current 

on the wire.  This equation is repeated here as (4.5.1) 
 

 
 




 de

ZhhaG

V
zI zj

iwez







 

















,,,
~̂2

1ˆ
1

  (4.5.1) 

 
This integral can be evaluated using the theory of residues for analytic 

functions in a manner similar to (4.4.10) (see also Appendix B).   In that case 
the original contour of integration (i.e., the real γ axis from - ∞ to ∞) was 
deformed into the lower infinite semicircle of the complex plane.  This can 
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also be done here for z > 0 since e-jγz → 0 as Im (γ) → -∞.  Since this is true, 
this semi-infinite integral is zero and the integral is simply the sum of 
residues of the poles of the integrand.  More will be said about these for the 
case of (4.5.1) shortly.   

There is, however, an additional complication in this case.  According to 
Appendix B, a function of a complex variable is “analytic” in a specific 
domain D of the complex plane only if it is “single valued.”  This requirement 
can be violated if the integrand involves multiple valued functions such as 

logarithms (i.e.,  ln ) or fractional powers (e.g., 2/1 ).  In these cases 

branch cuts can be drawn between the branch points (they always occur in 
pairs – one of which may be at ∞).  Branch cuts must not be crossed in order 
to preserve the single valued property of the integrand.   An example of a 
function in the complex plane that contains a pair of branch points at 0 and -
j∞ along with vertical branch cut and a legitimate “deformed” contour of 
integration is shown in Fig. 4.5.1.  In this case, the original contour must be 
deformed around the branch cut as shown in the figure.  Thus the new 
integration (in addition to any residues that occur between the original and 
new contours) must include the integrations along C∞1 and C∞2 as well as 
those along Cb1 and Cb2.   

 
 

Fig. 4.5.1. The effect of a branch cut on permissible contour deformation. 

 
In the next two sections, the simple poles of the integrand (i.e., simple 

zeros of the denominator) as well as the branch points and cuts of the 
integrand of (4.5.1) will be identified.   
 

The exact modal equation – zeros of the denominator 
The zeros of the denominator of (4.5.1) can be found by solving 
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Using (4.4.60) and (4.4.64), (4.5.2) can be expanded and written as  
(4.5.3) 
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Multiplying through by the initial factor  2

0

2 k  and using the definition of 

the Hankel function in (4.4.14), (4.5.3) can be rewritten as  
(4.5.4) 
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If next, terms multiplied by γ2 are separated, then (4.5.4) becomes 
(4.5.5) 
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Equation (4.5.5) is the exact modal equation for a thin wire above the 
earth.  It can be shown that discrete values of γ (i.e., γp) for which (4.5.5) is 
equal to zero represent different modes of current propagation on the 
conductor.    The currents that correspond to each of these modes vary with 
z as 

 
zj pe



                                                   (4.5.6) 
 

The exact modal equation – branch cuts and points 
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It can be shown that integrand  of (4.5.1) has branch point pairs at 

 jk ,0  and  jk ,2  due to the existence of Hankel functions that 

behave as logarithmic functions close to k0 and k2 (Olsen, R. G. and D. C. 
Chang 1974a).   The integration along these two branch cuts can be related to 
electromagnetic fields that radiate in the free space and the earth respectively.  
In addition there is another branch point pair with one branch point between 
the k0 and k2 and its pair at -j∞.  Integrations along this branch cut can be 
related to electromagnetic fields that radiate along the free space-earth 
interface. The locations of these three branch cuts are shown in Fig. 4.5.2.     
 

Generalized impedance per unit length parameters for a wire above earth 
The modal equation (4.5.5) can be recast in a form that leads naturally to 
identification of an equivalent transmission line with impedances and 
admittances per unit length.  This can be achieved by defining  
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where Z(γ) and Y(γ) are defined as  

(4.5.8) 
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It will be evident later that 
 

 Z(γ) is the equivalent series transmission line impedance per unit 
length, and 

 Y(γ) is the equivalent shunt transmission line admittance per unit 
length.   

 
Given this, the modal equation can be written as   

 

    YZj                                          (4.5.10) 

 
where in this general case, Z(γ) and Y(γ) are functions of γ. 

Although (4.5.8) – (4.5.10) look very much like the formula used for 
determining the propagation constant for a distributed parameter 
transmission line, the parameters are still complicated functions of the 
Fourier transform variable γ.  In the low frequency case, however, these will 
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reduce to a form that is directly interpretable as an equivalent conventional 
distributed parameter transmission line with a single set of constant 
distributed parameter values.  This will be done in the next section.   
Given these definitions, 4.5.1 can be reformatted to look like  
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which (given the denominator of the integral) begins to resemble a 
transmission line formulation (and this will become even more apparent 
later).  As mentioned above, however, it is important to note again that Z(γ) 
and Y(γ) are functions of γ and have a fairly complicated set of singularities 
to be described further below (Olsen and Chang 1974a; Olsen and Chang 
1974b; Olsen et. al. 1978).   
 

General modal solution for the current  
As mentioned above, for z > 0, the integral of (4.5.11) can be evaluated by 
closing the integration contour in the lower half of the complex γ plane.  To 
keep the integral single-valued (or analytic) within and on the contour, the 
integral along the axis is deformed and set equal to the sum of several 
integrals each with its own physical significance.  There are three types of 
these integrals: integrals about the various poles of the denominator of 
(4.5.11) (i.e., modal integrals), integrals along the various branch cuts of the 
denominator of (4.5.11) (i.e., radiation integrals) and an integral about the 
lower, infinitely extended semi-circle.  This last contribution is zero by virtue 
of the radiation condition and the branch cut definitions, which specify that 
the real parts of the various multivalued functions be greater than zero.  This 
specification defines the proper Riemann sheet.  A detailed depiction of the 
deformed integration contour is shown in Fig. 4.5.2.  

First, and most important (to power engineers) is the pole TL (the 

transmission line or quasi-TEM zero) that is bound to the wire (i.e., the fields 
decay rapidly away from the wire) and will be seen later to be the dominant 
term for most power engineering applications. It is called quasi-TEM 
because as the earth conductivity becomes infinite, this mode becomes 
equivalent to the TEM mode on a perfectly conducting wire above a 

perfectly conducting ground plane.  There is a second zero, SA that is called 

a “surface attached” zero since it relates to a wave that travels along the wire, 
but is mostly bound to the interface between the air and the earth and which 
becomes less important at low frequencies.  In addition, there are three 

branch points and associated branch cuts.  The first one is at 0k  and the 

integration along its branch cut represents radiation away from the wire in all 

directions.  The second one is at Ak and represents radiation that travels 

along the air-earth interface in all directions away from the wire.  The third 
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occurs at 2k and represents radiation away from the wire into the earth.  This 

integration can usually be ignored for typical earth parameters.   

 
Fig 4.5.2. Spectrum of currents on the wire. The open dots represent zeros of the 

denominator and hence modal currents.  The closed dots represent branch points of the 
denominator. 

 

More specifically, it can be shown that the quasi-TEM modal current 
dominates the continuous spectrum currents if: 1) the wire height is small 
compared to the free-space wavelength and 2) the earth is a reasonably good 
conductor at the frequencies of interest.  Since these conditions hold for 
many low-frequency systems, the quasi-TEM current can be, and has been 
assumed to be the total (or complete) current.   
It is a reasonable question to ask whether the entire current can (in all cases) 
be represented by these components.  One necessary (but not sufficient) 
condition for this is that the total current begin to approximate the (known) 
current on a wire in free space as the height of the wire above the earth 
becomes large compared to a wavelength (Olsen and Chang 1974).  The 
results of such a calculation are shown in Fig. 4.5.3.  More specifically, this 
represents an examination of the input conductance (i.e., current at z = 0 
divided by the voltage of the source) of the wire.  It is shown in Fig. 4.5.3 
that the input conductance does (in fact) approach the correct result (i.e., 3.1 
milli-siemens) when all terms mentioned above are included.  Based on this 
result, an argument can be made that all significant spectral components of 
the current have been identified.    
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Fig. 4.5.3.   Input conductance of the infinitely long wire.  The individual contributions of 
modal and radiation terms are shown.  The wire was assumed to be perfectly conducting. 

 
As mentioned above, for small heights the transmission line (or quasi-

TEM) component is dominant which agrees with the common assertion that 
the total current can be approximated as simply the quasi-TEM current.  It is 
this current that will be considered when the low frequency approximation is 
discussed later.   
 
 

4.6 Derivation of the Low-frequency Carson 
Approximation 
 

Introduction 
It has been shown in Sections 4.2 – 4.5 that an exact closed form solution for 
the conductor current can be written as  
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For this result  
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(4.6.2) 
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where   qH 2

0
 is the Hankel function of the second kind, order zero and 

argument q (Abramowitz and Stegun, 1972),   
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Finally, 
 

000 k ,     
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It is not important for the reader who has skipped Sections 4.2 – 4.5 to 

understand the details of   (4.6.1) – (4.6.3).  Rather, it is important only to 
recognize that this is an exact closed form solution that will be used in the 
next subsection to develop expressions that are very familiar to power 
engineers.   
 

Approximations 
According to Fig. 4.5.2, the “quasi-TEM” or “transmission line” mode is 
dominant for wire heights that are a small fraction of a wavelength (λ = 
3x108/f in meters where f is the frequency in Hertz). If 0.05 λ is used as the 
criterion for “small,” then (at 60 Hz) h must be less than 250 km.  Clearly, 
this condition is satisfied for all practical situations.  In fact, if h is as much as 
30 m, then the approximation that the total current is the “quasi-TEM” or 
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“transmission line” is valid up to approximately 0.5 MHz. In practice, it has 
been used to nearly 2 MHz.    

When the wire height, h, is a small fraction of a wavelength and is much 
larger than the wire radius and the earth is a reasonably good conductor, then 
it can be generally assumed that  
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Reduction to the Carson integral  
Under these conditions, Q(γ)  is small compared to Λ and P(γ) where  
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since Λ is independent of k2, Q(γ)  is proportional to 1/k2

2 and P(γ) is 
proportional to 1/k2.  (Wait 1972; Olsen and Pankaskie 1983) 
Further,                             
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where γe = 0.5772… is Euhler’s constant.  Hence  
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where 
2

2

2 ku   and u1 ≈ κ over most of the integration since 1/(2h) >> 

k1.  
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Low frequency equivalent per-unit length parameters 
The result is that Z and Y can be considerably simplified and written as  
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where (in a more general form)  
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(4.6.7)  is the “Carson” integral (Carson 1926)41. Finally,     
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Of greatest importance here is that Z and Y are no longer functions of γ 

and hence, the set of singularities is much simpler than above. It will be 
shown later that “C” is the capacitance per unit length for a wire over a 
perfectly conducting earth and  
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which is the external inductance per unit length where  
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More will be said later in Chapter 7 about generalizing (4.6.9) and (4.6.10) 

to the case for a conductor bundle.  The equivalent “external” resistance due 

to losses in the earth ( eR ) can be written as  
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41 Note that the method used here to derive Carson’s integral is not the same as used by 
Carson in his original paper on this subject.  Appendix C has been written to review the 
methodology used by Carson in his original paper. 



 

185 

while the equivalent resistance (Ri) and internal inductance (Li) due to the 
conductor are: 
 

 iwi ZR Re                                            (4.6.13) 

and 

  /Im iwi ZL                                        (4.6.14) 

 

Relationship to real conductor specifications  
In handbooks used for specifying conductors used for high voltage 
transmission lines, the per-unit parameters introduced in the last section are 
presented in a different way.  The purpose of this section is to relate the 
parameters presented here with those used to specify real conductors.  Again, 
only the electrical properties of these conductors will be emphasized.  For a 
more exhaustive discussion of conductor specifications, the reader is referred 
to (EPRI, 1982) and (Thrash et. al. 2007).   
 
Conductor type and sizing 
As mentioned in Chapter 2, transmission line conductors are generally 
stranded and constructed of aluminum strands.  In many cases, there is a 
core of steel strands for strength.  Nearly all conductors are 2.5 cm in 
diameter or larger.  Most are “aluminum conductor steel reinforced” (ACSR) 
although there are a variety of other types such as “all aluminum conductor” 
(AAC) and “aluminum conductor alloy reinforced” (ACAR).  More recently 
conductors with cores made of composite materials designed to operate at 
higher temperatures have become available.   

Transmission line conductors are usually designated in tables by given 
names (usually birds such as Chukar or Pheasant).  In addition to specifying 
the number of strands, the stranding pattern and outer diameter of the 
conductor (in millimeters or inches), it is common to specify the total cross 
sectional area of aluminum in the conductor since this represents the primary 
current carrying area of the conductor42.  The cross sectional area is 
presented in either square millimeters or circular mils (the area of a circle that 
is 1 millimeter in diameter).   
 
Resistance 
In conductor tables, the resistance of the conductor at certain frequencies 
and temperatures is given.  These will in general differ from the resistance 
given by the “internal” conductor resistance in (4.6.12) because the 
conductor is stranded rather than solid.  The frequency correction is given 
because of the skin effect inherent in (4.6.12) and generally leads to higher 
resistances at higher frequencies.  Since the component of resistance given in 
(4.6.11) is related to the overall transmission line geometry and the earth’s 

                                                           
42 The effect of considering currents in the steel core would reduce the resistance by 1 – 2%. 
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electrical properties, it is not considered in conductor tables.  Rather, it must 
be considered separately when the overall transmission line is designed.   
 
Capacitance 
As shown earlier in (4.6.9), the capacitance per unit length of a conductor 
over earth (with the earth well approximated as a perfect conductor) is  
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Since this is a function of both a conductor parameter (i.e., the radius “a”) 

as well as a parameter that represents the overall geometry of the 
transmission line (i.e., the conductor height “h”), it is necessary to separate a 
portion that can be attributed to the conductor alone.  This is done by first 
converting the capacitance per unit length into a capacitive reactance per unit 
length, 
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This result is then split into two parts as  
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The first term of (4.6.17) (designated AX ' ), is called the “conductor 

component” and represents the capacitive reactance “to one meter” (or one 

foot if English units are used)43.  The second term (designated DX ' ), is 

sometimes tabulated and called the “separation component.” Usually, these 
are given in units of Ohms per km or Ohms per mile.    
 
Inductance 
As shown earlier in (4.6.10) and (4.6.14), the external and internal 
inductances per unit length of a conductor over earth are:    
 

(4.6.18) 
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43 Here the actual radius and height are used because the conductor is only a single 
conductor.  In Chapter 7, this will be generalized to conductor bundles and “geometric mean 
radius” (GMR) and “geometric mean distance” (GMD) substituted for “a” and “h” 
respectively.   
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In conductor tables, this is first converted into inductive reactance by 
multiplying by ω as shown in (4.6.19)  

(4.6.19) 
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The next step is to separate the conductor component in a similar way as 

to that done for the capacitance term as shown in (4.6.20)   
(4.6.20) 
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Ω/m.        

 

AX  represents the reactance of the conductor to one meter (or one foot 

if English units are used). DX  has sometimes been tabulated under the 

assumption that the earth is a perfect conductor,  but as will be shown in 
Chapter 5, while this assumption is acceptable for capacitance, it is not for 

inductance.  AX  is further simplified by selecting a fictitious distance 

“GMR” that is used to combine the two terms together.  More specifically   
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In conductor tables the GMR refers to a radius called the geometric mean 

radius of a stranded conductor that is calculated by taking into account the 
geometry and material of the strands, the presence or absence of a steel core 
and the skin effect44.  More information about this calculation can be found 
in (EPRI, 1982). Typical values of GMR for stranded conductors range from 
75% - 80% of the conductor radius.   Usually, these are given in units of 
Ohms per km or mile.  
 

Carson full series and first order approximation 
Carson developed a full series expression for the integral that is given here in 
Appendix D (Carson 1926).  If all terms that decay at least as fast as

  222 ''ln rkrk are dropped then   
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44 As indicated earlier with respect to the presentation of capacitive reactance GMR will be 
generalized in Chapter 7 for conductor bundles.     
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where 
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is the distance from the line current’s image at    11,, yxyx   and it is 

assumed that    25.02 irk  where    
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In the case for which a = 0 and 12 hk , (4.6.22) reduces to 
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This result can be shown to be nearly equivalent to an alternative 

expression for Jc developed in Section 5.4 that is interpreted as a complex 
image.  If this result  is used in (4.6.6), the series impedance of a wire above 
earth  becomes  
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The last term of this formula has the interpretation of the series 

impedance of a wire in the presence of a “complex image” wire at a complex 

distance  2/2 jk  meters below the source where the earth has been replaced 

by free space (Wait and Spies 1969).  This very simple interpretation will be 
revisited later.  Before finishing, however, it is interesting to note that the 
inductance L in (4.6.10) and (4.6.26) becomes infinite as ω → 0 since k2 → 0 
as ω → 0.  Thus, application of (4.6.24) to the “dc” case will require some 
additional thought (Bracken, 1982). 
 

Transmission line equivalent 
Again, repeating (4.6.1) with Z and Y written explicitly to indicate that after 
the “Carson” approximations they are no longer dependent on γ 
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where there is a pair of zeros in the denominator at  
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It will be assumed45 that 0)Im( TL  which will be seen shortly to allow 

the original contour to be deformed in the lower half plane for z > 0.  This 
zero represents the “quasi-TEM” or “transmission line” mode and can be 
represented by an equivalent transmission line with distributed parameters 
given by (4.6.6) and (4.6.8).  Since this zero in the denominator represents a 
simple pole of the integrand, it becomes straightforward to evaluate (4.6.26) 
by residue theory.  (4.6.26) becomes   
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If z > 0, then 
zzjzj eee    tends to zero for values of γ in the lower half 

of the complex γ plane and the integration along the real axis can be 
deformed as shown in Fig. 4.6.4 with the contribution of the infinite lower 
semi-circle (i.e., C∞) is equal to zero.  The only remaining contribution is that 

of the residue of the simple pole at TL .   

The contribution of the pole can be evaluated by using the transformation  
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equal to the integral around the pole (i.e., the residue contribution) and is  
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where                                 
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45 This is arbitrary, but once the assumption is made all other operations must be consistent 

with this assumption.   
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Fig. 4.6.4. contour integration for current on the wire 

 
If z < 0, a similar derivation using the same reference direction for the 

current yields 
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In the following section, this result will be interpreted using an equivalent 

distributed parameter transmission line that can be analyzed with all of the 
techniques that have been developed for analyzing transmission lines such as 
coaxial cable, parallel wire lines or microstrip.   
 
 

4.7 Equivalent Transmission Line Theory  
 

Approach 
The first step in developing an equivalent transmission line theory is to 
recognize that, even though the conductor that was analyzed appears to be 
open circuited, it is also infinitely long. Hence the input current is not 
expected to be zero because the current never reaches the end of the 
conductor to “get the information” that the wire is open circuited.   

 
 

Fig. 4.7.1.  The “voltage” in (4.7.23) as a source in series with the conductor. 

 



 

191 

The second step is to recognize that while the current I(z) is the current 
that would be expected to appear in an equivalent transmission line theory 
for the conductor over the earth problem, the voltage V is not.  First, the 
voltage V is due to a source in series with the conductor as shown in Fig. 
4.7.1 rather than a voltage that is defined between two conductors as would 
be expected in transmission line theory.  Second, V exists only at the origin. 
In the next section, the traditional transmission line “voltage” will be derived.   
 

Identification of voltages  
To identify a voltage that can be used to interpret (4.6.30) in terms of 
equivalent distributed parameter transmission line theory, it is helpful to refer 
to the two circuits shown in Fig. 4.7.2. Given that all relevant cross 
sectional dimensions of the conductor over earth problem are small 
compared to a wavelength at power frequencies, and assuming that 
the electric potential at the center between the two voltages sources in 
a) is zero by symmetry, the circuit in b) is identical to that of a).  
Further, it will be shown in Chapter 5 that (for the low frequencies usually 
associated with power transmission lines) the voltage Vcg (the conductor to 
ground voltage) can be uniquely defined as the potential difference between 
the conductor and any point on the earth that is in the same cross sectional 
plane.   
 

 
(a)                                                       (b) 

 
Fig. 4.7.2.  a) circuit equivalent to Fig. 4.7.1 b) for the case that all cross sectional dimensions 

of the power line are small compared to a wavelength at the operating frequency. 

 
Given this equivalence, it is now possible to write (4.6.30) in terms of the 

equivalent transmission line driving voltage Vcg where the subscript “cg” is 
read as “conductor to ground.” Given this, the “voltage” on the equivalent 
transmission line is the voltage measured between the conductor and any 
point on the earth in the same cross-sectional plane.  In terms of this voltage   
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where (in addition) TL  has been written as TLTL j  to separate the 

propagation from the attenuation as often done in analyzing transmission 
lines.   
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Characteristic or surge impedance 
The voltage along the power line can then be written as  
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where (using (4.6.19)) 
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is called the “characteristic impedance” of the transmission line that is often 
referred to in the power engineering literature as the “surge impedance.” 
 

 
(a) 

 

(b) 
 

Fig. 4.7.3. a) Equivalent transmission line for an infinitely long power line. b) Equivalent 
input circuit 

 
Given this (as shown in Fig. 4.7.3), an equivalent circuit can be developed 

to assist in understanding (4.7.2).  The current into the transmission line can 
be written as  

 

 
TL

cg

TL Z

V

Z

V
zI

002
0                                 (4.7.4) 

 
Now that the voltage and current are defined, an equivalent transmission 

line distributed parameter system can be defined as shown in the “T 
equivalent” transmission line shown in Fig. 4.7.4  where in the limit, Δl → 0.  
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Fig. 4.7.4.  Distributed parameter equivalent circuit of a power transmission line 

 

Per unit length parameters of the equivalent system 

Here, the parameters (i.e., Z and Y) of the distributed system are indicated. 
To review  
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where   Re , Ri , Le and Li are defined by (4.6.11), (4.6.12), (4.6.10) and (4.6.13) 
respectively and  
 

CjY                                            (4.7.6) 

 
where C is defined in  (4.6.9).  In the special case for a perfectly conducting 

conductor and earth, the propagation constant TL  and the characteristic 

impedance TLZ0  can be written as  

 

000   kZYjTL                        (4.7.7) 

 
and 
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In the approximate forms of (4.7.7) and (4.7.8) both the conductor and 

the earth have been represented approximately as perfect conductors.  This 
results in a propagation constant and characteristic impedance equivalent to 
that of a TEM transmission line.    
 

Finite length transmission lines 
Real power transmission lines are not infinitely long and, hence, it is 
important to consider the influence of the “end” (i.e., z = ℓ) of a single wire 
power line.  To do this, transmission line theory will be revisited (Ramo et. al. 
1965). This can be done by assuming that there is a terminating “load 
impedance” ZL at a distance ℓ from the source Vcg as shown in Fig. 4.7.5.  
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Fig. 4.7.5.  Simple transmission line model for a “short” power line of length ℓ. 

 
This impedance can be related to a reflection coefficient as  
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Hence, the voltage at some point z along the power line (with respect to 

earth) can be written as  
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where V+ and V- = ΓV+ are the voltage amplitudes of the forward and 
reflected waves.  Given that the voltage at z = 0 is Vcg , V(z) can now be 
written as  
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Similarly, the current distribution can be written as  
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Note that this formulation in terms of forward and reflected waves 

is valid no matter what the length of the line.  This is important because 
for “short” power lines the voltage and current are usually not discussed in 
terms of forward and reflected waves. Rather, only voltage and current are 
discussed.  To understand why, it is useful to examine (4.7.11) and (4.7.12) 

under the condition that 1TL  using the Taylor approximation

1,1  qqeq .    

Clearly V(0) = Vcg , but from (4.7.11) 
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where (4.7.8) – (4.7.9) have been used to simplify the result.  Clearly, this 
result is identical to the result obtained from the simplified power line model 
shown in Fig. 4.7.5 and justifies this simple model (Weeks 1981).  It is also 
interesting to note that the simple model is equivalent to taking a single “T” 
circuit form Fig. 4.7.4 and assuming that Yℓ is small enough to be ignored.  

It is always permissible, however, to describe the voltage distribution on a 
short power line as a superposition of forward and reflected traveling waves. 
Taking the ratio of (4.7.11) and (4.7.12) at z = 0 yields 
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If TLZ0  is known and measurements of V(0) and I(0) (amplitude and 

phase) are known, then (4.7.14) can be solved for Γ and Vcg found from 
(4.7.11).  Alternatively, if the forward and reflected wave amplitudes and 
phases are known, then the input voltage and current can be found.   
 
 

4.8 Circuit Equivalents for Short Power Lines   
 
The analysis at the end of Section 4.7 indicates that an electrically short (i.e.,

1TL ) single conductor power line can be represented by an equivalent 

circuit.  In this section this result will be generalized somewhat and more 
explicit circuits shown for short power lines.  The most general circuit used 
for power lines is shown in Fig. 4.8.1.  This is a pi network that consists of a 
series impedance that consists of resistive and inductive components and a 
pair of parallel capacitors at either end.   

 
 

Fig. 4.8.1. Simple circuit equivalent for an electrically short power line of length ℓ 

 
The value of each capacitance is  
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while the value of the inductor and resistor are respectively   
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Fig. 4.8.2. Simple circuit equivalent for an electrically short power line ignoring capacitance 

 
In many cases, the line is short enough that the capacitors at the end of 

the equivalent circuit can be ignored.46 In this case, the equivalent circuit can 
be simplified to the one shown in Fig. 4.8.2.   

 

 
 

Fig. 4.8.3. Simple inductor circuit equivalent for an electrically short power line 

 

                                                           
46 Because the capacitance per unit length of an underground cable is generally much larger 
than that for overhead lines it is usually not possible to ignore the capacitance for 
underground lines.  In fact, the capacitance of underground cables is a limiting factor in the 
maximum length of underground ac cables because of the shunt current through the 
capacitance that is proportional to the length of the cable.  Long underwater links are nearly 
always dc links because (except for initial transients) the capacitance can be ignored.   
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For many power system calculations the circuit of Fig. 4.8.2 is further 
simplified by ignoring the resistance per unit length since the impedance of 
this element is generally much smaller than that of the inductor at power 
frequencies of 50 or 60 Hertz.  The resulting circuit is shown in Fig. 4.8.3   
 
 

4.9 Limiting Case for DC Lines   
 
It is tempting to apply the circuit of either Fig. 4.8.1 or Fig. 4.8.2 to the zero 
frequency (i.e., DC) case by simply allowing the frequency to go to zero for 
the circuit parameters. It would normally be assumed that (since inductive 
reactance is proportional to frequency and capacitive reactance is inversely 
proportional to frequency) the equivalent circuit is simply a series resistor 
and that its value is equal to (4.8.3).  This value would be  
 

 )a/( = 2

w dcRR  .                            (4.9.1) 

 
Unfortunately, more care must be used because in (4.6.11) the value of Re 

approaches zero as ω → 0 (Bracken, 1982).  This happens because as the 
frequency approaches zero, the skin depth of the earth approaches infinity 
and the current in the earth spreads out to an infinite depth.  The result is 
that the earth resistance is zero despite the finite conductivity of the earth.  
This can be resolved by using a more realistic layered model of the earth that 
has a lower layer with zero conductivity.    
 
 

4.10 Lumped Element Devices Along Lines – Line 
Compensation  
 

Introduction 
In Chapter 1, several lumped devices that are important to the successful 
operation of high voltage transmission lines were discussed.  These included 
series capacitors, shunt reactors and surge arresters.  The purpose of this 
section is to use the theory that has been developed in this chapter to 
examine the reasons why these devices are used and what can be accomplish 
by using them. While all of these devices are generally used on three phase 
transmission lines, the discussion here will be limited to the single phase case 
so that the fundamental ideas why they are used are not obscured by the 
relative complexity of three phase systems.  Alternatively, the single phase 
solution here can be applied directly to balanced three phases systems that 
have a single phase equivalent.  
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Series compensation – series capacitors  
Consider the use of a simple inductor model for a transmission line of 
inductance per unit length L and length Δℓ that is used to connect two 

system busses with voltages of  Vg1 = 11 V  and Vg2 = 22 V respectively. A 

circuit that shows this arrangement is illustrated in Fig. 4.10.1.   

 
 

Fig. 4.10.1. Two voltage busses connected by a short transmission line. 

 
It has been shown in Chapter 1 equations (1.3.20) and (1.3.21) that the 

real and imaginary power transferred from Bus #1 to Bus #2 are  
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It is interesting to observe that (to first order in (θ1 – θ2)), Q12 is 

proportional to the difference in voltages between the busses.  As a general 
rule, this means that minimizing the flow of reactive power will as a natural 
consequence reduce voltage differences within a power network.  Hence 
controlling reactive power is an important tool for ensuring a high degree of 
uniformity in the voltage distribution.   

 
 
Fig.4.10.2. Two voltage busses connected by a short transmission line with a series capacitor 

inserted along the line. 
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Clearly, the real power transferred is limited by the reactance, ωLΔℓ, of 
the transmission line.  Given that (as will demonstrated later in Chapter 8) it 
is not desirable to use large values of (θ1 – θ2) it is useful to consider how this 
reactance can be reduced.  This can be done by inserting a lumped capacitor 
of value C in series with the transmission line as shown in Fig. 4.10.2. 
 
In this case, the power transferred from Bus #1 to Bus #2 can easily be 
shown to be  
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If the value of the capacitor’s impedance is smaller than that of the 

transmission line’s inductance, then the power flow can be larger for a given 
value of (θ1 – θ2).  This process is called series compensation.  Of course, care 
must be used to select a capacitor that is capable of withstanding both the 
voltage across is and the current through it.  A more general analysis of this 
problem for longer transmission lines can be found in (Weeks 1981).   
 

Voltage regulation – series and shunt reactors  
One criteria used to characterize the quality of a power line is changes in the 
voltage distribution along its length.  More specifically, it is important that 
the voltage changes along the line be minimized in order that the power 
system performs properly. This is the subject of “voltage regulation.”  To 
understand why these changes in voltage can occur, consider the model for a 
power line of length Δℓ shown in Fig. 4.10.3. In this figure, resistive losses 
are neglected, the inductive and capacitive parameters of the transmission 
line are L Henries and C Farads per meter respectively and the line is driven 
by a voltage Vg and terminated with a load Zℓ.    

 
 

Fig.  4.10.3. Power line with load Zℓ 

 
Two complementary approaches will be taken to solving this problem.  

The first is to use traditional linear circuit theory.  The second will be to use 
the power flow analysis introduced in Chapter 1.    
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Linear circuit theory approach 
The voltage across the load can easily be calculated to be  
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If the line is lightly loaded (i.e., Z  is large enough that the term Lj  

can be neglected) then (4.10.4) reduces to  
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It should be clear that the voltage at the load is larger than the input 

voltage and that the voltage rise is greater for longer line lengths.  On 
transmission lines, this phenomenon is known as the “Ferranti effect” 
(Ibrahim and Dommel. 2005).  Note that if the line is loaded normally (i.e., 

the Lj term cannot be neglected), the magnitude of (4.10.4) is  
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where Rℓ and Xℓ are respectively the real and imaginary components of the 
load impedance.  Without going into details, the voltage regulation is much 
better in this case because the second term in the denominator adds to the 
denominator of (4.10.4) and (at least partially) mitigates the large changes in 
voltage along the transmission line during light loading.  It is also useful to 
note that it is the reactance of the load that is responsible for this additional 
term.  This is a first suggestion that a lumped element like a shunt reactor to 
be discussed shortly may be used in the same way.   

 
 

Fig. 4.10.4. The use of a series capacitor (reactor) to reduce voltage increases during light 
loads. 
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Fundamentally, there are two methods that have been used to compensate 

for this problem.  The first is to use a capacitor in series with the inductance 
to reduce the voltage drop across the inductor as shown in Fig. 4.10.4.   

Given the insertion of this series capacitor, L can be replaced with the 

term  seriesCL 2/1   in (4.10.4) and the voltage across the load becomes 
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For large values of Z (i.e., light loading) this becomes 
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It should be clear that the value of seriesC  can be selected to reduce the 

difference in voltage between the source and load ends of the transmission 
line and hence improve voltage regulation.   

Another method to compensate for the Ferranti effect is to use an 
inductor in parallel with the load (i.e., a shunt reactor as shown in red) as 
illustrated in Fig. 4.10.5  

 
 

Fig. 4.10.5.  Transmission line with a shunt reactor across the load. 
 

Given the insertion of this shunt reactor, C can be replaced with the term  
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in (4.10.4) and the voltage across the load becomes 
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For large values of Z (i.e., light loading) this becomes 
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It should be clear that if shuntL  can be selected to reduce the difference in 

voltage between the source and load ends of the transmission line and again 
to improve the voltage regulation.   
 

Power flow approach 
In Chapter 1, the power flow equations have been set up and solved for the 
situation illustrated in Fig. 4.10.6 with ΔQℓ =0.  
 

 
 

Fig. 4.10.6. Determining the power flow to an arbitrary load through a short transmission 
line. 

 
While the transmission line model shown in Fig. 4.10.6 is not identical to 

the one shown in Fig. 4.10.3, the results for the analysis of power flow to the 
load and load voltage will be applicable for the following reasons.  First, the 
“generator” power in Fig. 4.10.6 can be considered to be the combination of 
that from the actual generator as well as the reactive power from the parallel 
capacitor CΔℓ/2 in Fig. 4.10.3. The voltage across this combination remains 
Vg.  Second, the reactive power supplied by the capacitor CΔℓ/2 in parallel 

with the load can be combined with that of the load.  Hence  jQP   
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includes the actual load plus the reactive power injected into the system by 
CΔℓ/2.  Given these assumptions, it is possible to apply results for the 
system of Fig. 1.1.3 of Chapter 1 to that of Fig. 4.10.6 with ΔQℓ = 0.   

Using the standard assumption that the magnitude of the generator 
voltage is equal to 1, an expression for the voltage magnitude across the load 
was found in (1.3.28) which is repeated here as.   
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It is assumed here that Q includes the reactive power supplied by the 

parallel capacitance of the transmission line, CΔℓ/2.  Note that for most 
situations the physical solution of (4.10.11) corresponds to the + sign in the 
equation.  This assumption will be made here.  The effect of adding a shunt 
capacitor or inductor (reactor) across the load (ΔQℓ in Fig. 4.10.6), the value 

of Q will be changed to  
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To evaluate the effect of adding a shunt capacitor or inductor, the load 

voltage (4.10.11) will be expanded in a first order Taylor series with respect 

to 'Q  around its value for  jQPS  .  An implicit derivative can be 

found by taking the derivative of both sides of  (4.10.11) as  
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If, next it is assumed that the system is lightly loaded and hence 
 

  144 22
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the square root term in (4.10.13) can be represented as the first two terms of 
a Taylor series.  The result is  
 
 

(4.10.14) 
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Given this result, the voltage after augmenting 'Q  by Q is 

 
(4.10.15) 
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Clearly, if a shunt capacitor is added at the load, the voltage at the load is 

increased since Q is a negative number.  This would provide additional 

support to the voltage.  Similarly, if a shunt inductor (reactor) is added at the 
load, the load voltage is decreased.  This could be used to counteract the 
Ferranti effect as described above. Finally, the increase or decrease in voltage 
can be written as  

(4.10.16) 
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The calculation can be completed by recognizing that (according to 

(1.3.12), the “reactive power” supplied by a shunt capacitor of value C F/m 
is  
 

2

rmsC CVQ                                  (4.10.17) 

 
Similarly, the “reactive power” absorbed by a shunt inductor of value L 

H/m is 
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In this section, two examples have been given about how the voltage 
distribution along the power line can be affected by adjusting the value of 
either a series capacitor or a shunt inductor..  Further studies of this idea for 
longer transmission lines can be found in Weeks (1981).   
 

Nonlinear elements - surge arresters 
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As mentioned is Chapter 1, nonlinear lumped element devices called “surge 
arresters” are used on the power system to suppress surges that occur during 
switching operations. In order to understand how these elements work 
without obscuring the result in too much mathematics, it is appropriate to 
consider transmission lines under DC excitation.  To this end, consider the 
problem illustrated in Fig. 4.10.7.  This system consists of a DC source of 
voltage Vs and internal resistance Rs that drives a two wire lossless 
transmission line of length ℓ with propagation velocity c (the speed of light in 
free space) and surge (or characteristic) impedance Zc. The transmission line 
is terminated in a resistor of value Rℓ. A circuit breaker disconnects the load 
at time t = 0. 

 
 

Fig. 4.10.7. Simple dc transmission line with a circuit breaker opening at t = 0. 

 
Prior to t = 0, the operation of the transmission line can be described by 

dc circuit theory so that  
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and  
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The subscript “0” means the initial condition before t = 0. In terms of 

transmission line theory, it can be shown that the voltage and current on the 
line prior to t = 0 can be written as  
 

 000000 1   frfin VVVVV                    (4.10.21) 

 

where 
0fV  is the constant amplitude of a forward traveling wave47, 

000 fr VV   is the amplitude of the reflected wave and 

                                                           
47 Since the voltage source is constant in this case, traveling waves can be written in terms of 
the unit step function as U(t+/-z/c).  It is assumed in (4.10.19) that enough time has passed 
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is the reflection coefficient of the load where cZ  is the transmission line’s 

surge (or characteristic) impedance.  In a similar manner, the current can be 
written  
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From this information,  
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and            
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Now, at t = 0+, the forward traveling voltage and current do not change 

because they were generated at the source and hence cannot change until 
enough time has passed to allow a wave to travel to the source and back 
again to the load.  The reflected traveling voltage and current can, however, 
change because they are generated at the load.  They must change to reflect 

the changing conditions at the load (i.e. the total load current I must 

instantaneously change from the value in (4.10.20) to zero since the circuit 
breaker has opened and the resistance of the load in now infinite (i.e., an 
open circuit).  Here, to get a somewhat more general solution, the load 

resistance will be assumed to change to 'R .  The total voltage and current at 

z = ℓ after t = 0 and until t = 2ℓ/c (because no changes take place at the 
load until a wave has time to travel to the source are back again to the load).   
 

 10101 1   frf VVVV         0 ≤ t  ≤ 2ℓ/c         (4.10.26) 

and  
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for all the traveling waves to have completed their travel across the transmission line (i.e., 
steady state conditions).  Hence the term U(t+/-z/c) = 1 and does not appear explicitly in 
(4.10.19).     
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where the minus sign in the expression for current occurs because a wave 
traveling in the –z direction must have voltage and current related by a minus 
sign.  The subscript “1” indicates the time after the first bounce at the load, 
but before the second.  Since the ratio of total voltage to total current at the 

load must be 'R , (4.10.26) and (4.10.27) can be solved for 1 . The result is  
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From this result, it is possible to easily calculate the load voltage and 

current as  
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and  
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Clearly, the voltage across the load can be significantly higher than the 

voltage prior to switching.  In the case for which 'R , the voltage across 

the load is a factor of    RZR c /  greater than the voltage before switching.  

Voltages this much higher than operating voltages might lead to flashovers 
and (if the voltage is not suppressed) enough air insulation must provided to 
withstand them.  Note that the condition described above lasts only until the 
reflected wave has a chance to travel back to the source, reflect and return to 

the load (i.e., for a time equal to c/2  where c is the speed of light).   For a 
150 km transmission line, this time is 1 mS, more than long enough for an 
arc to occur.   

It is useful to specifically continue this process for one more bounce to 
examine what happens when the reflected wave reaches the source at t = 
ℓ/c.  In this case, the reflected wave must be constant during this event and a 

new forward wave with voltage amplitude 
2fV  is generated.  The condition 

that must be satisfied at the source is   
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Equation (4.10.31) can be solved for 
2fV to get  
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The current is then   

c

f

f
Z

V
I

2

2   .                                        (4.10.33) 

This reflection process proceeds through an infinite number of cycles, but 
eventually, the voltage at the load (now an open circuit) will be equal to Vs.  
An example is shown in Fig. 4.10.8.  Here Vs = 100 kV, Rs = 30 Ω,  Rℓ = 70 
Ω Rℓ’ → ∞, ℓ = 100 km and Zc = 400 Ω.  

Clearly, the load voltage begins at 80 kV and increases dramatically (to 
approximately 480 kV) during this transition from the initial state to the final 
state at 100 kV, This is generally not an acceptable situation the cost of 
insulation (primarily air clearances as discussed in Chapter 8) required to 
prevent failure of the transmission line during this condition is unacceptable.  

 

 
Fig. 4.10.8.  The load voltage at the end of a 100 km transmission line with a 70 Ω load 

switched out at t = 0. 

 
To resolve this problem, surge arresters can be placed at the load.  These 

are non-linear devices that limit voltage swings to more reasonable levels. A 
fairly typical, (but idealized) surge arrester voltage current characteristic for 
use in the 100 kV range is shown in Fig. 4.10.9.   
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Fig. 4.10.9.   Typical surge arrester characteristics. 

 
For this particular surge arrester, the voltage (0 – 120 kV) is linear with 

current from 0 amps until 10 mA (it appears nonlinear due to the logarithmic 
scale).  In this normal operating range, the current (hence the losses during 
normal operation) is small.  Beyond 120 kV (and 0.01 A or 10 mA), however, 
the voltage increases only logarithmically with current. Effectively, this limits 
the voltage that can appear across the arrester.   

Mathematically, this device’s characteristics can be written as  
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          (4.10.34) 

 
If these VI characteristics are used in (4.10.26) – (4.10.27) instead of Rℓ’ 

and the equations solved iteratively since the device is nonlinear, then it is 
possible to calculate the reflected wave from the surge arrester.  A system 
that includes the surge arrester (shown in red) is illustrated in Fig. 4.10.10. 
For the arrester in this example, Vsao = 120 kV, Isao = 0.01 A and ΔVsao = 20 
kV. The response of the system to the opening circuit breaker is shown (in 
red) in Fig. 4.10.11 along with the response of the system without the surge 
arrester that was shown in Fig. 4.10.8.   
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Fig. 4.10.10. simple dc transmission line with a circuit breaker opening at t = 0 and a surge 
arrester. 

 
It is immediately clear that the surge arrester has had a significant impact 

on the system response.  More specifically, the peak voltage has been 
reduced from approximately 480 kV to approximately 160 kV.  This is a 
significant reduction and generally will justify the use of a surge arrester on 
economic grounds.     

 

 
Fig. 4.10.11. Response of the system in Fig. 4.10.10 with (red) and without (blue) the surge 

arrester 

 
This is, however, not done without penalty. During the initial reflections, 

not only is the voltage larger than the operating voltage, but the current as 
well.  Hence, the surge arrester absorbs a considerable amount of energy 
during the surge and, hence, must be designed to withstand this overvoltage 
condition.  Given this result, it is evident that a transmission line should be 
protected against voltages that are significantly larger than the operating 
voltage.  The specific amount depends on the system in which the 
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transmission line is operated and should be investigated before the line is 
designed.   
 

Natural surge arresters – earth and conductor losses and corona 
In the model used in the last section to study switching surges, it was 
assumed that the transmission line was lossless.  The attenuation of voltage 
and current waves traveling from one end of the transmission line to the 
other due to earth and phase conductor resistive losses were neglected. This 
attenuation can be relatively easily taken into account (albeit at some 
increased degree of complexity) and leads to smaller overvoltages than 
predicted by the lossless theory presented here.  While the effect of these 
losses are well understood, there is another important (and much more 
complicated) phenomenon that must be considered when calculating the 
effects of voltage surges on high voltage overhead transmission lines 
(Wagner and Lloyd. 1955). This phenomenon is corona on the phase 
conductors that occurs when voltage is large enough that the electric field at 
the surface of the conductors exceeds some corona onset value.  More about 
corona onset and other corona effects will be presented in Chapter 9.  Here 
it will simply be stated that corona has an important influence in attenuating 
dynamic overvoltages and should therefore be modeled when studying the 
dynamic overvoltage stresses on a transmission line.  Several models have 
been presented in the literature and while they are not perfect, they produce 
reasonable results when incorporated into programs designed to calculate 
transients on high voltage transmission lines (Suliciu, M.M. and I. Suliciu, I. 
1981; Maruvada, et. al. 1989).   
 
 

4.11 Problems 
 
P4.1. The surface impedance of a conductor can be calculated by (4.2.5) of 
the text book. In this equation, the Bessel function of the first kind and order 
zero and one, J0 and J1 will be used. In fact, Bessel functions can be 
approximated by some simpler formulas when the arguments are either very 
small or very large. For small arguments |q| << 1,  
 

  10 qJ
 

and 

  2/1 qqJ   
 
For large arguments |q| >> 1,  
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and 
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Assume a long conductor wire has the radius of 0.01m and conductivity 
of 3.5×107S/m. Its surface impedance is going to be calculated by different 
formulas. Let the frequency vary in this manner: from 10 to 90Hz with a 
10Hz step and from 100 to 10,000Hz with a 100Hz step (the frequency array 
will be like [10, 20, 30, …, 90, 100, 200, …, 10,000], the total number of 
frequency points is 109). The permeability is μ0 = 4π×10-7H/m. 
a. Calculate the surface impedance Ziw using the exact formula (4.2.5) and the 
small- and large-argument approximations of Bessel functions given before. 
Compare your results, plot the three curves in one figure, and make brief 
comments. The MATLAB functions to calculate J0(x) and J1(x) are 
“besselj(0,x)” and “besselj(1,x)”, respectively. 
b. Calculate the surface impedance Ziw using the approximations given in 
(4.2.6) and (4.2.7). Compare your results with those got in (a) using the small- 
and large-argument approximations of Bessel functions, respectively. 
Compare, plot, and make comments on the results. 
 
P4.2. Suppose that a conductor wire, radius 0.01m and conductivity 
3.5×107S/m, is placed horizontally over the ground at a height of 10m, as 
shown in Fig. P4.2. The permittivity, permeability, and conductivity of the 
ground are ε2 = 5ε0 (ε0 = 8.85×10-12F/m), μ2 = μ0 =      4π×10-7 H/m, and σ2 
= 0.01S/m, respectively. Let the frequency vary between 10Hz to 10,000Hz.  

 
Fig. P4.2.  A horizontal conductor wire above ground 

 
a. Calculate the approximation of Carson’s integral by using (4.7.14) and 
(4.7.15), respectively. Compare and plot the results. 
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b. Calculate the equivalent resistances due to the earth and the conductor by 
using (4.7.11) and (4.7.12), respectively. Which resistance dominates? 
c. Use any integration software/tools or write your own codes (in any 
language you prefer) to numerically evaluate the exact Carson’s integral given 
by (4.7.7). Compare the results with that obtained in part (a) and plot the 
three curves in one figure. 
 
P4.3. Use the same model and parameters given in Problem 8 except that 
now only consider the frequency at 60Hz.  
a.) Calculate the transmission line propagation constants formulated by 
(4.7.18) and qualitatively indicate the position of the two roots in the 
complex plane. In fact, these two values are the poles of the integrand in 
(4.7.17). 
b. According to the Cauchy integral theorem 
(http://en.wikipedia.org/wiki/Cauchy_integral_theorem) the integration in 
(4.7.17) 
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can be evaluated by deforming the integral contour from the real axis (CRe) to 
the infinite lower semi-circle (C∞), as shown in Fig. P4.3.  

The contour C∞ is formed by 5 parts, C∞1 to C∞5. Part C∞1 and C∞5 are the 
infinite semi-circle. Part C∞2 to C∞4 are presented to exclude the pole, γTL(+), 
out of the area enclosed by  CRe and C∞. C∞2 and C∞4 are the vertical branches 
extending to infinity. C∞3 is a circular contour encompassing the pole. 
Assume z > 0. Show that the integration in (4.7.17) equals to the integral only 
along the contour C∞3 (Hint-1), 

 
 

Fig. P4.3  Deformation of the integral contour for (4.7.17) 
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Then, evaluate the integration by using the residue theorem (Hint-2). 
Hint-1: you need to show that the integrals along the other four parts (C∞1, 
C∞5 and C∞2, C∞4) have zero contributions. Note that C∞2 and C∞4 are in 
opposite directions. 
Hint-2: the residue theorem: the integral for a complex variable function f(λ) 
over an enclosed contour can be evaluated by its residues,  
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where λpi is the ith pole of f(λ). If f(λ) only has simple pole (first order pole) λp 
and can be written as   
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P4.4. The cross-linked Polyethylene (XLPE) coaxial cable is very commonly 
used in high-voltage transmission systems. However, high voltage cables are 
usually only used for short-range cases because of their much higher 
capacitances compared to overhead transmission lines used in the same 
voltage range. A typical 138kV XLPE coaxial cable, shown in Fig. P4.4, may 
have parameters as d = 0.02m, D = 0.07m, and εr = 2.5, which are the 
diameter of the core conductor, diameter of the outer covering conductor, 
and permittivity (dielectric constant) of the XLPE filling, respectively.  
 

 
 

Fig. P4.4  Cross-sectional view of an XLPE cable 

 



 

215 

a.  Calculate the per unit length capacitance of the cable.  
115.56 10

( )
ln( / )

F/mr
bC

D d


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b. The single-wire overhead transmission line given in Problem 8 (radius 
0.01m and 10m above the ground) can be used in the voltage range around 
138kV. So, it is reasonable to compare its capacitance to the XLPE cable’s. 
Calculate the per unit length capacitance and capacitive reactance (XCTL = 
1/(ωCTL)) of the overhead line. Compare its capacitance to that of the XLPE 
cable.  
c. Ignore the effect of the earth (Carson’s term = 0). Calculate the per unit 
length inductance and inductive reactance (XLTL = ωLTL) of the overhead 
line. In practice, the shunt capacitance is usually ignored. Based on your 
results, is it reasonable to do that?   
 
P4.5. Consider a simple two-bus power system. Two generator buses, at 

voltage 11 V  and 22 V , are connected by a transmission line, 

characterized by its inductive reactance X (Ω), Fig. P4.5 (a). The resistance 
and shunt capacitance of the line have been ignored. To improve the power 
transfer capability of the transmission line, a capacitance, with reactance XC, 
is connected in series with the line, Fig. P4.5 (b).  
a. Determine the power transferred through the line before and after adding 
the series capacitance. 

b. Assume the voltages at bus 1 and 2, respectively, are )(01011 kVV o  

and )(125.1022 kVV o . The transmission line is 30 miles long with a 

per-unit length reactance of 0.5Ω/mile. The value of the series capacitance is 
chosen by its portion to the transmission line’s reactance, XC = kX. When k 
= 0, 0.2 and 0.4, determine the value of the series capacitance (in Farads) and 
the power transferred by the line. 
 

 
Fig. P4.5  Two-bus power system (a) without series capacitance, (b) with series capacitance 
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P4.6. A single-phase voltage source )(0100 VV o

S   (at 60Hz) is providing 

power to the load ZL = RL + jXL = 30 + j50(Ω) through a 50km long single-
wire transmission line, Fig. P4.6.  
 

 
Fig. P4.6.  System model for voltage regulation problem 

 
The line conductor is 1cm in radius and 8m above the ground. Ignore the 
resistance and shunt capacitance of the line. Calculate the voltage on the line 
at 10km and 25km away from the source and the voltage at the load end.  
 
P4.7  Show that at 60 Hz, the surface impedance of an “a” = 1 cm copper 
wire cannot be represented by either  (4.2.7) or (4.2.8) but rather must be 
evaluated by the more complicated (4.2.5).   
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Chapter V 
Electromagnetic Fields Surrounding an Infinitely 

Long Single Conductor Transmission Line above 

Homogeneous Earth 
 
 
 

5.1 Introduction    
 
In this chapter, expressions for the electromagnetic fields of the single wire 
power line described in Chapter 4 will be derived. More specifically, the 
electric and magnetic fields associated with an infinitely long z-oriented  
horizontal wire of radius a located at a distance h above a lossy earth and a 
distance x’ from the y axis will be developed.  The geometry for this problem 
is shown in Fig. 5.1.1.   

 
(a) 

 
(b) 

 
Fig. 5.1.1.  a) end view and b) side view of the line current at (x’,h) above a lossy linear, 

homogeneous isotropic earth carrying a current of    'exp' zjzI  . 
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In this figure, the upper half space (i.e., y > 0) is free space and is 

characterized by permittivity and permeability 01    and 01    

respectively while the lower half space (i.e., y < 0) is a linear, homogeneous 
isotropic lossy material characterized by conductivity, permittivity and 

permeability 0222 ,  r  and 022  r respectively.  It is assumed here 

that the wire is carrying a current    zjI   exp
~

.  The electric and 

magnetic fields associated with this current (where the explicit z variation 

 zjexp is suppressed) are labeled here as 

  
n

eiG
~

 (electric field in medium n; the subscript “i” denotes the specific vector component) 

n

hiG
~

 (magnetic field in medium n; the subscript “i” denotes the specific vector component) 

 
The ith electric and magnetic field component for general currents in the 

spatial Fourier transform domain can be found by multiplying these 

functions by the spatially transformed current  I
~̂

as follows 

 

 IGE n

ei

n

i

~̂~~̂
                                         (5.1.1) 

 IGH n

hi

n

i

~̂~~̂
                                        (5.1.2) 

 
These electric and magnetic fields can be found from (4.4.19) – (4.4.23).  

To use these results requires first that expressions for the z components of 
the Hertz Potential coefficients be found.  This will be done in the next 
section. 
 
 

5.2  Hertz Potential Coefficients Above and in the 
Earth ◄ 
 
Expressions for the z components of the electric and magnetic Hertz 
Potentials are found in (4.4.28) – (4.4.31).  In Section 4.4, an explicit 

expression for the reflection coefficient  R  was found so that 
1~
ezG  could 

be calculated. It is not possible, however, to write explicit expressions for 
field components unless the remaining coefficients in (4.4.28) – (4.4.31),

 M ,  T  and  N  are found first.  This will be done next.   

 

Above the earth  
To calculate the remaining components of the electric and magnetic fields 

above the earth (i.e., region 1), it is necessary to find an expression for  M

. 
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From (4.4.47), using (4.4.41), (4.4.42) and the assumption 021    

 

 
     

  210

11

uKu

RKj
M









                          (5.2.1) 

 
Equation (4.4.60) is repeated here as  
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These two results can be combined to obtain  
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This expression can be simplified by using the definitions of 21,uu and 

 K  in (4.4.11), (4.4.32) and (4.4.37), respectively and combining the two 

terms in the square brackets using a common denominator.  The result of 
this is  
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Expanding the term in square brackets in a partial fraction expansion 
simplifies (5.2.4) to  
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This result (i.e., 5.2.5) can now be used with (4.4.20) – (4.4.23), (4.4.28) and 
(4.4.29) to find expressions for all field components in the upper medium 
(i.e., Medium 1).    
 

In the earth 
To calculate the remaining components of the electric and magnetic fields in 

the earth (i.e., region 2), it is necessary to find expressions for  T  and  N

. 
From (4.4.35) – (4.4.36), 
 

         TkRk 22

2

22

0 1                          (5.2.6) 
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        NkMk 22

2

22

0                           (5.2.7) 

 
where the factor K(γ) is defined as  
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Given that  R and  M  are known as (5.2.2) and (5.2.5) these results 
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and 
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These last two results can now be used with (4.4.20) – (4.4.23), (4.4.30) 

and (4.4.31) to find expressions for all field components in the earth (i.e., 
Medium 2).    
 
 

5.3 General Expressions for the Electric and 
Magnetic Fields at Arbitrary Frequency◄ 
 
As shown in Chapter 4, formal expressions for the electric and magnetic 
fields in terms of the z-directed Hertzian potentials at arbitrary frequencies 
can be found.  These are given in (4.4.19) – (4.4.23).   
 

Fields above the earth  
In the upper half space (i.e., Region 1), the expressions for the z directed 
Hertzian potentials are,   
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and 
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where )4/( 0jA    and  2u  is defined as 
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In general, (i.e., including magnetic) media the coefficient R(κ) is (from 

(4.4.46)) 
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A simpler expression for non-magnetic media is  (from (4.4.60)) 
 

 
   













1

2

22

2

0

2

21

22

0

1

2

0 12
1

ukukuuk

uk
R




                (5.3.5) 

 
M(κ) was shown as (5.2.4).  Given these results, expressions for all field 

components in the upper medium (i.e., Medium 1) can be found.   The 
results are:   
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Repeating the result from Chapter 4, the axial electric field at any point in 

space is stated since that will be useful later.  From (5.3.1) and (5.3.8)  
  

(5.3.12) 
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where  R  is given by (5.3.5) so that  

 



 

224 

 
   

 

   
  











de

ukukuuk

ek

u

e

u

ekj
hyxxG

xxj
hyu

hyuhyu

ez

1

1

11

1

2

22

2

0

2

21

22

0

2

0

110

22

0

1

1

12

4
,,,

~








































 
 (5.3.13) 

 
But, from (4.4.14)  
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where                              2/122

1 hyxxr   

so that    
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where      2/122

1 hyxxr i  .           

Next, general expressions will be found for the transverse electric and 
horizontal magnetic fields will be found.   From (5.3.6) - (5.3.7) and (5.3.9) – 

(5.3.10), it is clear that the transverse derivatives of  ez  and mz  are 

needed.  These are 
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Similarly,  
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(5.3.17) 
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The derivatives of the magnetic potentials can be found from (5.3.2) and 

(5.2.4) as  
(5.3.18) 
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and  
(5.3.19) 
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Using (4.6.6) then  
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Clearly, if 20 kk   the integrals in the last two equations become the 

negative of the second Hankel function term leaving only the source term as 
should occur.  It will also be shown later that these results reduce to the well 
know wire above a perfectly conducting earth case for conditions that are 
commonly satisfied for electric power transmission lines at 60 Hz.   

Similar calculations using (5.3.9) and (5.3.10) for 1~
hxG and 

1~
hyG yield   
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(5.3.23) 

         

 

   










d
u

ee

uu

uj

rkHrkH
x

j
G

xxjhyu

i

hy

121

1

2/122

0

2

0

2/122

0

2

0

1

11

2

4

~





 

















                             
 

Clearly, if 20 kk   the integrals in the last two equations become the 

negative of the second Hankel function term leaving only the source term as 
should occur.  It will be shown later that these results reduce to the case for 
which the earth is essentially transparent for conditions normally satisfied for 
power transmission lines at 60 Hz.   

To find expressions for the electric and magnetic field components in the 
space domain, it is necessary to multiply the appropriate component by the 
Fourier Transform of the current and take the inverse Fourier transform.  
Several examples of this will be given later. 
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Fields in the earth 
The Hertzian electric and magnetic vector potentials in the earth are: 
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Inserting (5.2.9) and (5.2.10) into (5.3.24) and (5.3.25) results in  
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(5.3.27)     
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The electric fields in the earth have previously been defined in (4.4.19) 

and (4.4.21) as 
 

 
y

j
x

jhyxxG mzez
ex











2

2

2

1

2 ,,,
~

                (5.3.28) 

 
x

j
y

jhyxxG mzez
ey











2

2

2

1

2 ,,,
~

               (5.3.29) 

    22

2

2

1

2 ,,,
~

ezez khyxxG                                 (5.3.30) 

 
Substituting (5.3.26) and (5.3.27) into (5.3.38) yields 
 

 
 

 











d
ukuk

eeekj
hyxxG

xxjyuhu

ex 









1

2

22

2

00

2

0

1

2
121

2
,,,

~
     (5.3.31) 

 



 

228 

Similarly 
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Finally,  
 

(5.3.33) 
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The derivation of the magnetic fields will be left as a homework problem.  

They can be obtained either by using (4.4.22), (4.4.23), (5.3.26) and (5.3.27) 
directly or by application of Maxwell’s equations to (5.3.31) – (5.3.33).   
 
 

5.4 Low Frequency Approximations for the Electric 
and Magnetic Fields  
 

The electric field above the earth  
For readers who have skipped Sections 5.2 and 5.3, only the results from that 
section will be noted here.  Expressions for the axial and transverse electric 
fields above the earth are given in (5.3.15) and (5.3.20) – (5.3.21) respectively 
while expressions for the transverse magnetic fields above the earth are 
found in (5.3.22) – (5.3.23).  In the earth, expressions for the axial and 
transverse electric fields are found in (5.3.31) - (5.3.33).  It should be 
emphasized that these expressions hold for all frequencies as long as the 
conductor radius is small compared to a wavelength and that electrical 
parameters for the earth appropriate to the frequency of interest are used.  
Here, much simpler approximations that are appropriate for low frequencies 
will be derived from these results. 

First, for small arguments, it has been shown that  
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and further the last integral in (5.3.15) can be neglected for typical earths at 
low frequencies so that  
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where 
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But, as shown in (4.6.5) the integral  P  can be approximated at low 

frequencies for typical values of earth conductivity to be  
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Thus finally, for low frequencies48  
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This result can be written in more familiar form (using insight from (4.6.6 

– 4.6.8) and assuming an arbitrary current  I
~̂

) as  

(5.4.6) 
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48 If γ is set equal to zero as in the quasi-static approximation of Wait and Spies (1969) and Jc 
is approximated by the first term of (4.6.22), then this expression is equivalent to the 
complex image formulation for the magnetic field introduced later in this section.   
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where   
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The case for calculation of the vertical electric field at low frequencies is 

significantly different.  For zE
~̂

 the Hankel functions in (5.3.15) were 

multiplied by the factor  22

0 k . Since 0k for power applications at low 

frequencies,  22
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02  is proportional to 2/1 k .  However, 

for yE
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  the Hankel function terms are not small and the infinite integral can 

be ignored compared to them.   If again, the Hankel functions are replaced 

by small argument expansions (i.e., (5.4.1)), since    rk
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0   << 1, the 

expression for the vertical electric field reduces to   
 

     

 
    

 
    























22

1

22

10

2/122

0

2/122

0

0

1

2

lnln
2

~

hyxx

hy

hyxx

hy

rkrk
y

G i

ey










      (5.4.9) 

 
Clearly, this is the electric field of the current source above a “perfectly 

conducting earth” and is the approximation commonly used for power 
engineering calculations at typical power frequencies.  This should be no 

surprise since 1
0


r


 at low frequencies for typical earths and the earth 

can be treated as a perfect conductor.   

The electric field for an arbitrary current  I
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 can be written as  
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In a manner similar to that above, it can be shown that  
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Electric fields in the space domain 
To recover the electric fields in the space domain, it is necessary to perform 
the inverse Fourier transform with respect to γ in order to see the explicit z 
dependence.  The simplest way to do this is to assume that the current in the 
space domain is an exponential function of z (as in Section 4.8) that has the 
form in the γ domain 
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where ZYjTL   as in Section 4.6 and Z and Y are defined in (4.6.6) 

and (4.6.8) respectively. (5.4.13) corresponds to a current in the space domain 
of  
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where the “+” sign corresponds to z < 0 and the “-“ sign to z > 0.   
Given this result and applying it to (5.4.6), (5.4.10) and (5.4.12) results in  
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After transformation to the space domain, these fields are 
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where again, the “+” sign corresponds to z < 0 and the “-“ sign to z > 0.   
 

(5.4.19) 
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Given that a derivative with respect to z (for z > 0) corresponds to a 

factor TLj , the z component of the field can be recast in a different form 

that will be useful later as  
(5.4.21) 
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is the space potential due to the wire above the earth and for convenience  
from (5.4.8) and (5.4.4)  
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Equivalence to electrostatic fields  
Equations (5.4.19), (5.4.20) and the first part of (5.4.21) are identical to what 
would be obtained from electrostatic theory.  This can be understood more 
clearly by using the one dimensional current continuity relationship 
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where   zj TLez
 

 
ˆˆ  is the line charge density along the conductor.  Since 
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ˆˆ , using (5.4.23) results in  
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and (for example) the vertical electric field becomes  
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This result is identical to that which would be obtained by calculating the 

electric field of a line charge with line charge density    over a perfectly 

conducting half space.  At the surface of the earth (i.e., y = 0)  
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Since the tangential component of electric field is zero at a perfect 

conductor, this is the total electric field at the earth’s surface.  It must be 
vertical because components tangential to the earth must be zero because the 
earth is approximated as a perfect conductor.   

Equation (5.3.12) can be related to line voltage rather than line charge 
amplitude by calculating the voltage of the line relative to the earth (Vw) as 
follows.  
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Given this result,  
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For completeness, the horizontal component of the electric field at low 

frequencies is  
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The electric field at a point on the earth’s surface just below the 

conductor (i.e., ) 0,1  yxx  is 
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Using the same result for vertical electric field, it is possible to calculate 

the electric field at the surface of the conductor (i.e., ahyxx  ,1 ).  The 

result is 
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Clearly, the electric field at the surface of the conductor is a factor h/2a 

greater than the electric field at the surface of the earth.  This is almost 
always significantly greater since h >> a.  Note that these results are extended 
to the multiconductor case in Chapter 7.  

For completeness, the space potential can be found to be:  
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For a point on the wire (i.e., ahyxx  ,1 ),   wVzahxV  ,,1 as 

expected.   
 

Alternative low frequency expression for Ez – the complex image model  
Consider first, the general expression for axial electric field from (5.3.13)  
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where  
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If, as above, the last integral is ignored for typical earths at low 

frequencies, and the identity 
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is used for all of the first two integrals except the part of the second term 

multiplied by 2

0k , then (5.4.34) becomes  
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Next, recognizing that for low frequencies,   2/12
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2 kuu    and 

1u  over most of the integration path since k0(y+ h) << 1 and, hence the 

integral does not converge until κ >> k0,   
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where 
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  and the final step has been shown by Wait and Spies (1969).   

Using this result in (5.4.36) gives 
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Fig. 5.4.1.  Geometry for Complex Image formation 
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Since the approximations made limit this result to low frequencies, it is 
appropriate to use the small argument expansion for the Hankel functions to 
get (for the electric field)49 

 
(5.4.40) 
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The physical interpretation of (5.3.40) is shown in Fig. 5.4.1.  The second 
term of (5.4.40) is a “complex image” of the line current where h+α is the 
complex depth of the image and δ is the “skin depth” of the earth.  At 60 Hz, 
typical magnitudes for α are on the order of 1000 meters.   

Following (5.4.13) – (5.4.20), the field in the space domain is  
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(5.4.41) 

 

The magnetic field above the earth– the complex image model 
It is also important to calculate the magnetic field above the earth since it is 
not as clear at the beginning what will happen at low frequencies.  One issue 
is that the earth is assumed to be non-magnetic.  Hence, one would expect 
that the earth would be “transparent” at ω = 0 (and hence perhaps at very 
low frequencies).  But, the earth is also a good conductor and it is possible 
that the source’s magnetic fields would be modified by magnetically induced 
eddy currents due to the time rate of change of the magnetic field in the 
earth.  It turns out that this is an issue that needs to be considered. To see 
this, consider the horizontal magnetic field.   
 

                                                           
49 See the comment about (5.4.5) on setting γ = 0 in this expression.  
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(5.4.42) 
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In order to proceed, it is appropriate to combine all terms of (5.4.42) that 

account for the influence of the earth (i.e., all terms except for the source 
term).   This can be done (as was done in the last section on the axial electric 
field) by replacing the second Hankel function by its integral representation 
and combining all three integrands into one.  The result is  
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  (5.4.43) 

 
Clearly, if k1 → k2 the integrand of the integral becomes zero leaving only 

the source term as should occur.   
At low frequencies, several approximations can be made to this result.  

First, the Hankel function can be replaced by its small argument expansion as 
shown in (5.4.1). Next, it can be assumed that the propagation constant, γ, 
equals zero.  With these approximations and some manipulation of the 
integrand,  
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Next, taking the derivative and recognizing that for low frequencies, 
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As introduced earlier, Wait and Spies (1969) showed that  
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so that 
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Again, (5.4.47) is the “complex image” formation of the line current over 
the earth problem where h+α is the complex depth of the image and δ is the 
“skin depth” of the earth as illustrated in Fig. 5.4.1.  Again, at 60 Hz, typical 
magnitudes for α are on the order of 1000 meters.  Hence, for field points 
reasonably close to the power line, the earth appears to be transparent unless 
the frequency is increased substantially beyond power frequencies.  The 
complex image formulation has been used for calculation of power line 
magnetic fields (Olsen et. al.  1995).    

For completeness, a similar derivation for the y component of the 
magnetic field above the earth will be given.  The starting point for this 
derivation will be (5.3.23) which is repeated here as:  

(5.4.48) 
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Again, at low frequencies, several approximations can be made to this 
result.  First, the Hankel function can be replaced by its small argument 
expansion as shown in (5.3.1). Next, it can be assumed that the propagation 
constant, γ, equals zero. With these approximations and some manipulation 
of the integrand:   
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Next, taking the derivative and recognizing that for low frequencies, 
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of the integration path since k0(y+ h) << 1 and, hence the integral does not 
converge until κ >> k0, 
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Finally, using 5.4.46, approximating κ by u1 in the result and the fact that 

multiplication by j within the integrand of (5.4.50) is equivalent to taking 

the derivative with respect to x, (5.4.50) reduces to,  
(5.4.51) 
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where α is defined in (5.4.47).   

This result is consistent with complex image theory discussed above.   
 

Magnetic fields in the space domain 
To recover the magnetic fields in the space domain, it is again necessary to 
perform the inverse Fourier transform with respect to γ in order to see the 



 

241 

explicit z dependence.  The simplest way to do this is to assume that the 
current in the space domain is an exponential function of z (as in Section 4.8) 
that has the form in the γ domain 
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where ZYjTL   as in Section 4.6 and Z and Y are defined in (4.6.6) 

and (4.6.8) respectively. (5.4.52) corresponds to a current in the space domain 
of  
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where the “+” sign corresponds to z < 0 and the “-“ sign to z > 0.   

Now, as with the electric fields,  
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Given these and taking the inverse Fourier transform to each using 

(5.4.52) results in  
(5.4.56) 
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(5.4.57) 
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Electric fields in the earth 
At low frequencies, the x and y components of the electric field in the earth 
(i.e., (5.3.31) and (5.3.32) respectively) can be ignored compared to the z 

component (i.e., (5.3.33)) because 02 kk  and the integrals in (5.3.31) and 

(5.3.32) are proportional to (at least) 2/1 k ).   

Hence,  
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For the z component of the field, the latter integral of (5.3.33) can be 

ignored compared to the first for the same reason and  
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(5.4.59) can be approximated at low frequencies in a manner similar to 

that used in deriving Carson’s integral in (4.6.5).  The result becomes  
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  (5.4.60) 

 y < 0                 
 

where 1u  and 2

2

2

2 kuu    over most of the integration since the 

integral converges when κh >> 1 and k1h << 1.   

Next, if k2y << 1, then 
yuy ee   since k2 is an important part of u only 

when 1uye .  Hence 
 

(5.4.61) 

          hyxxJ
j

dxxeu
k

j
hyxxG c

yh

ez ,,
2

cos,,,
~

1

0

0

12

2

0

1

2  












  ,  

y < 0  
 



 

243 

This result can be further simplified by using the first two dominant terms 
of the Carson Series as in (4.6.14).  The result is  
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 y < 0            
 

This result can be transformed to the space domain by assuming a current 
of the form  
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that has the Fourier Transform  
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Given this, the axial electric field in the spatial domain becomes  
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y < 0      
 

As a check on this result, it is known from Maxwell’s equations that 
(assuming that both Ex and Ey are zero in the earth and reinserting the 
current into the expression for Ez)  
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or (for a general I (z))  
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This is the correct first order result for the magnetic field in the earth 

since the earth is non-magnetic.  
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5.5 Capacitance and Inductance Per Unit Length of 
a Conductor over Earth 
 
In this section, the capacitance and inductance per unit length will be derived 
using earlier results.  For capacitance, it is noted from (4.6.9) that the 
capacitance per unit length (C) of a wire over the earth is  
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This result is identical to the result obtained using electrostatic theory.   
The derivation of the inductance per unit length requires a bit more 

thought.  In (4.6.10) it was shown that the external inductance per unit length 
was  
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But, given the simple one term series approximation for Jc  
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But, at the low frequencies for which Carson’s equations are valid, 
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and hence 
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where di (the “distance” to the complex image) is equal to 
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and it has been assumed (as before) that the earth is non-magnetic.   

 
Fig. 5.5.1.  Geometry for Calculation of the External Inductance of a Wire above Earth 

 
The geometry, then, for calculating the inductance is shown in Fig. 5.5.1. 

The inductance per unit length can be calculated by integrating the flux 
generated by the current (I) and its return current located a distance (di) 
below over the region between the source conductor and the return 
conductor.  This flux is  
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Since the inductance is defined as the flux linkages per unit length divided 

by the loop current, the external inductance is   
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This result is identical to (5.4.6) that was derived from Carson’s one term 

series.  It should be no surprise that image theory and Carson’s theory are 
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connected.  It is interesting, however, to also note that the inductance 
becomes infinite as ω → 0.   

 
 

5.6 Justification for Electrostatics   
 
It should be clear from above that all of the electric field quantities (i.e., 
capacitance per unit length, and electric field near the conductor and the 
earth) could have been calculated using electrostatic theory for nearly all 
frequencies of interest to power engineers (i.e., frequencies low enough that ℓ 
<< λ where ℓ is the largest significant dimension and λ is the free space 
wavelength).  This is despite the fact that the length of the power line has 
been assumed to be   infinite.  This fact suggests that field calculations might 
be made using only the local geometry for which ℓ really is << λ.  For 
example, consider the problem shown in Fig. 5.6.1.  Here a finite length 
horizontal wire is energized to a voltage Vw and located above a perfectly 
conducting plane.   

 
 

Fig. 5.6.1. Geometry illustrating how electrostatics can be used to simulate the fields of an 
infinitely long conductor with a finite length conductor 

 
It can be shown that the electric fields in the shaded region of Fig. 5.6.1 

are essentially equivalent to the fields near an infinitely long conductor 
carrying a propagating current as long as Δz , h << ℓ << λ.  Outside of the 
shaded region the two results would not be equivalent due to edge effects 
from the ends of the conductor.   

The same result holds for problems that contain more geometrically 
complex regions such as insulators and hardware such as illustrated in Fig. 
5.6.2.  Here, a simulated potential transformer is located between the 
conductor and the perfectly conducting earth.   

Problems such as that shown in Fig. 5.6.2 cannot generally be solved 
using closed form techniques such as the ones that have been introduced 
earlier in this manuscript. Rather, electrostatic approximations to Maxwell’s 
equations are made first so that scalar theory rather than the more complex 
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vector theory required for the more general Maxwell’s equations can be used.  
Then numerical techniques can be used to solve the problems that are 
otherwise intractable.  In Chapter 6, several different types of numerical 
techniques in electrostatics will be introduced and some comments made on 
their utility.   

 

 
 

Fig. 5.6.2.  More complicated geometry that can be solved using electrostatic techniques. 

 
 
 

5.7 Problems  
 
P5.1. (electric field above the earth) A horizontal long conductor, radius a = 
1.5cm and height h = 12m, is placed along the z-direction, as shown in Fig. 1. 
The line charge density, ρl, along the conductor is 1.2×10-6 C/m. Assume z = 
0. 

 
Fig. P5.1  Geometry of the model 

 
a. Show that the x-component (Ex, tangential component) of the electric field 
at the ground surface (y = 0) is zero.  
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b. Find the decay rate of the y-component (Ey, normal component) of the 
electric field as a function of x for y = 0 and x >> h.  Calculate Ey at the 
three observation points A, B, and C, whose coordinates are (0, 0), (10, 0), 
and (100, 0), respectively.  
c. Calculate Ey at the point D, (0, h – a), right on the bottom of the 
conductor. What happens to Ey if the radius of the conductor is increased to 
2a? 
 
P5.2. (magnetic fields above the earth) Consider a single-conductor power 

line, radius a = 1.5cm and height h = 12m, carrying a current zj TLeII


 0
, as 

shown in Fig. P5.2. γTL is the propagation constant and I0 = 330A. The 
ground has a dielectric constant εr2 = 5 (its permittivity ε2 = εr2ε0, ε0 = 
8.85×10-12F/m) and a conductivity σ2 = 0.01S/m. Let the frequency of the 
current vary from 10 to 1000Hz. Assume μ2 = μ0 = 4π×10-7H/m. 
 

 
 

Fig. P5.2  Model of a single conductor power line for magnetic field calculation 

 
Use the version of (5.4.47) that has been transformed into the space 

domain as 
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a. Determine the depth (h + α) of the complex image (see (5.4.40)) at 60Hz. 
Compare the magnitude of (h + α) with h.  
b. There are two observation points, A and B, on the ground surface. They 
are both on the z-axis. A is at the origin, (0, 0, 0), and B is 100 km down the 
z-axis, (0, 0, 100,000). Calculate x-component Hx of the magnetic field at A 
and B over the frequency range 10 to 1000Hz. Plot the magnitude of Hx at 
each observation point vs. frequency.  
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c. How does your result change if x = 100 meters?  
 
(Hint: find the propagation constant γTL by using (4.6.27) with Ziw = 0. If you 
wish, you may use the approximation (4.6.24) 
 
P5.3. (magnetic field in the earth) Derive expressions for the magnetic fields 

in the earth from a wire above earth carrying a current    zjI   exp
~

.   

a. using (4.4.22), (4.4.23). (5.3.26) and (5.3.27) directly 
b. by application of Maxwell’s equations to (5.3.31) – (5.3.33)  
Show that the two are equivalent.   
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Chapter VI 
Brief Overview of Numerical Techniques for 

Electrostatics 
 
 

6.1 Introduction  
 

Electrostatics 
In the electrostatics case, ω = 0 and according to (3.1.10) 50 
 

0 Ex                                                (6.1.1) 
 

According to the Helmholz theorem in (3.7.5), if 0 Ex , then it is 
possible to write the electric field as 

 

E                                               (6.1.2) 

 
where ψ(x,y,z) is a scalar potential.  Further, since according to (3.1.14) 

0 ED  in a homogeneous, sourceless region, ψ satisfies 
 

02                                                  (6.1.3) 

 
which is Laplace’s equation.  

In rectangular coordinates, Laplaces’ equation is  
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This equation will be given later in other coordinate systems as needed.  
In solving electrostatics problems several boundary conditions will be 

used.  On a conductor,  
 

  BVzyx ,,                                             (6.1.5) 

 

                                                           
50 If ω = 0, the RMS value of the field amplitude is the same as the peak value.  Therefore, 
the electric field amplitude in this purely electrostatic case is the peak (i.e., constant) value 
and not a phasor.   
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where VB is a specified boundary potential will be the condition used 
here.51 The charge density (ρs) on the surface of a conductor can be 
determined once the potential is known as  
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                       (6.1.6) 

 

where n is the outward normal from the surface and 
r 0 is the dielectric 

constant of the material at the dielectric/conductor boundary. 
0  is the 

permittivity of free space and r is the relative dielectric constant.   

At an interface between two dielectric materials, two continuity boundary 
conditions must be used.  They are  
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where the two sides of the interface are indicated by “i” and “j” and the 
dielectric constants of each medium are εi and εj respectively.   
 

Electroquasistatics  
The terminology “electroquasistatics” is consistent with the definition in 
Haus and Melcher (1989).  This generalization of electrostatics to non-zero 
frequencies is introduced because while the spatial behavior of the dominant 
electric fields at power frequencies satisfies  Laplace’s equation (6.1.3), the 
behavior of materials can be enough different to warrant more care.  More 
specifically, any conducting material is essentially a perfect conductor at DC 
because charges have the time to relax to their natural positions such that the 
electric field inside the material is zero.  Only if a material is pure dielectric 
can it be characterized at zero frequency by its dielectric constant alone.  For 
time varying fields, on the other hand, electric current flow (both conduction 
current and displacement or “capacitive” current) must be taken into 
account.  More specifically, (assuming sinusoidal steady state at a radian 
frequency ω) the fields must satisfy  
 

0ˆ  Ex                                            (6.1.8) 
and 
 

                                                           
51 This is the Dirichlet condition.  It is also possible to use a Neuman condition in which 
case the derivative of the potential normal to the surface is used (Stratton 1941).  If some 
combination of these boundary conditions is used on the entire boundary of the problem, 
the uniqueness theorem for electrostatics can be used to state that if a solution is found that 
satisfies both LaPlace’s equation and these boundary conditions, it is the only solution 
possible.   
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where Ĥ  is the  magnetic field intensity, the term Ej r

ˆˆ
0 represents 

displacement currents and the term EJ ˆˆ  represents conduction currents52.  

Note that the source current sĴ has been assumed to be zero.  The carat over 

the electric and magnetic fields now indicates that they are both phasors 
(with RMS amplitudes) while the “carat” over the dielectric constant 
indicates that it represents a “complex relative dielectric constant,” 

 /jr  ,  which includes both conduction and displacement currents.  

The most relevant fact here is that (6.1.9) can be used to determine whether a 
material behaves more like a conductor or more like an insulator.   

For the problems discussed here, there are no free charge sources within 
the materials (i.e., all charges exist on the surfaces) so that  
 

0ˆˆ  ED                                    (6.1.10) 
 
and, again the potential satisfies Laplace’s equation  
 

0ˆ2                                                  (6.1.11) 

 
In this case, the potential is a phasor and has an RMS amplitude.  For the 

problems considered here, the magnetic field in (6.1.9) can generally be 
neglected.  More detailed information about the validity of this 
electroquasistatic approximation is available in Haus and Melcher (1989).  

Finally, again  
 

̂ˆ E                                              (6.1.12) 

 
The boundary conditions that will be used here are generalizations of 

(6.1.5) – (6.1.7) where the dielectric constants in (6.1.7) are replaced with the 
complex dielectric constants.    

There are many closed form solutions to Laplace’s equation for very 
simple geometries that are well known and introduced in undergraduate 
electromagnetics courses (e.g., point charge source, line charge source, 
coaxial cable, infinite parallel plate capacitor). These are useful for both 
understanding the nature of solutions to Laplace’s equation and as limiting 
cases to check the accuracy of numerical solutions.  Many examples of 
problems with more complex geometries that still have analytical closed form 

                                                           
52 Here the carat symbol of the dielectric constant ̂ indicates a complex number rather than 

a phasor.   
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solutions can be found in the literature (Schwab 1998).  Several will be 
introduced here.  However, for most complicated geometries, it is necessary 
to use numerical methods to solve Laplace’s equation.  In the final section of 
this chapter, short introductions to several numerical methods for solving 
Laplace’s equation subject to simple boundary conditions will be given along 
with references for further study.    
 
 

6.2 Analytical Solutions  
 

Simple shapes (parallel planes, coaxial cylinders, sphere) 
The simplest geometry in which to solve Laplace’s equation is that of parallel 
conducting planes as shown in Fig. 6.2.1.  Note that this is a one dimensional 
problem53 given the symmetry in the x and z directions.  Given this, it can be 
assumed that the solution to Laplace’s equation does not vary with x or z.  

Hence (6.1.4) expressed in rectangular coordinates can be written as  
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Fig. 6.2.1 The parallel plate geometry (the coordinate z is directed into the page). 

 
Integrating this equation twice with respect to y yields  

 

  BAyy ̂                                      (6.2.2) 

 
The application of the V = 0 boundary condition at y = 0 requires that B 

= 0.  The remaining V = 100 volt boundary condition at y = h requires that 
A = 100/h.  The final result is  

                                                           
53 Often one or two dimensional problems are useful approximations to real three 
dimensional problems in local regions for which the geometry is approximately one or two 
dimensional.   
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y 0ˆ                                          (6.2.3) 

 
The electric field can be determined using (6.1.12) and is  
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Then, using (6.1.6) (generalized to time varying fields), the charge density 

on the top plate can be determined to be 
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Finally, the capacitance per unit area of this parallel plate capacitor can be 

found as  
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Another simple geometry in which Laplace’s equation can easily be solved 

is that of coaxial conducting cylinders as shown in Fig. 6.2.2.   
 

 
 

Fig. 6.2.2 The coaxial cylinder geometry (the coordinate z is directed into the page). 

 
Since by symmetry it can be assumed that the solution to Laplace’s 

equation does not vary with  or z, (6.1.3) expressed in cylindrical 

coordinates can be written as  
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(6.2.7) 
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Multiplying (6.2.7) by ρ and integrating with respect to ρ yields  
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Dividing by ρ and integrating again with respect to ρ yields  
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Matching the boundary condition at ρ = a2 yields  

 

 2ln aAB                                       (6.2.10) 

 
Finally, matching the boundary condition at ρ = a1 yields 
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As before, it is possible to calculate the electric field as  
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The corresponding charge per unit length on the inner conductor 

(identical to that on the outer conductor) for this coaxial geometry is  
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Finally, the capacitance per unit length for this coaxial capacitor is 
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A final simple example is that of a spherical capacitor as shown in Fig. 
6.2.3 

 
 

Fig. 6.2.3 The sphere geometry. 

 
Since it can be assumed that the solution to Laplace’s equation does not 

vary with θ or φ (6.1.3) expressed in spherical coordinates can be written as  
 

(6.2.15) 
 

 

  0ˆ
1

,,ˆ
)(sin

1
)sin(

)sin(

11

2

2

2

2

222

2

2


































































r
r

r
rr

r
rrr

r
rr









                 

 
Multiplying (6.2.15) by r2 and integrating yields  
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Dividing by r2 and integrating again yields  
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Matching the boundary condition that the potential must be = 0 as r → a1 

yields  
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Finally, matching the boundary condition at r = a2 yields 
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Thus, 
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The electric field is  
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The total charge on the inner sphere (same as on the outer sphere) is  
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Finally, the capacitance of the spherical capacitor is  
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A useful special case is the capacitance of an isolated sphere that is the 

limit as a1 → ∞.  It is  
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Note that for all of these capacitances (i.e., parallel plate, coaxial and 

sphere), the capacitance for the case with free space replaced by a a dielectric 
material can be solved by multiplying the solution by εr.   
 

Imaging in conductors and dielectrics 
A very convenient tool for electroquasistatics is image theory.  This is 
illustrated by considering a point charge at a distance yq above a perfectly 
conducting plane as illustrated in Fig. 6.2.454.  It can be shown that the 
electric fields in the region y > 0 can be computed by replacing the conductor 
with a point charge of equal and opposite sign at y = - yq.  More specifically, 
this can be shown by calculating the tangential electric field at y = 0 from the 

                                                           
54 By superposition of charges along the line (x, y) = (0,yq) with -∞ < z < ∞, the image 
theory results for a point charge can be extended to a line charge with line charge density ρℓ .   
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charge and its image and demonstrating that it is zero as required for a 
perfect conductor.  By the uniqueness theorem, then, (since all necessary 
boundary conditions are satisfied) this is the only solution.  
 

 
 

Fig. 6.2.4.  Replacing a flat perfectly conducting interface with an image charge.  The result is 
valid for y > 0. 

 

 
 
Fig. 6.2.5.  Replacing a flat dielectric-dielectric interface with an image charge.  The result is 

valid for y > 0.  The material can be a pure dielectric as shown or a lossy material with a 

complex dielectric constant, )/(ˆ
000  jrr  . 
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A similar result can be obtained for a charge in the presence of an infinite 
dielectric half space as illustrated in Fig. 6.2.5.  The only difference is that the 
image now has a value that depends upon the dielectric constant. 

The image charge is (for general lossy material) 
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                                       (6.2.25) 

 
A similar result can be found that is valid for y < 0.  This is illustrated in 

Fig. 6.2.6.   
 
 

 
Fig. 6.2.6.  Replacing a flat dielectric-dielectric interface with an image charge.  The result is 
valid for y < 0.  Again, the material can be a pure dielectric as shown or a lossy material with 

a complex dielectric constant, )/(ˆ
000  jrr  . 

 
The image charge for general lossy material is 
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Again, this result can be proven by showing that the tangential electric 

field just above y = 0 in region 1 is identical to the tangential electric field just 
below y = 0 in region 2.  By the uniqueness theorem, then, (since all 
necessary boundary conditions are satisfied) this is the only solution.  
 

Spherical shell for quasi-electrostatic shielding 
Consider the shell structure that is shown in Fig. 6.2.7.  The shell is of inner 
and outer radius a2 and a1, (i.e., a thickness (a1-a2)) and a complex relative 

dielectric constant r̂ .  The shell is immersed in a uniform vertical electric 

field of amplitude 0Ê .   
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Given the symmetry, the solution for the potential must be independent 

of  .  Given this, Laplace’s equation (from 6.2.15) reduces to  
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Using separation of variables (Smythe 1968), it can be shown that a 

general solution to (6.2.27) is of the form (This result can be verified by 
direct substitution of (6.2.28) into (6.2.27).) 

 
 

Fig.  6.2.7  A thin spherical shell immersed in a uniform electric field. 

 

      cos/,ˆ 2rCBrr                       (6.2.28) 

 
Given this, solutions to Laplace’s equation that are valid in each region of 

the problem are: 
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Note that in the region, 1ar  , the term proportional to 1/r is dropped 

because it would result in a nonphysical singularity at r = 0.  The constants A 
– F are to be determined by applying boundary conditions in (6.1.7) that are 
generalized to the electroquasistatics case.  To do this, it is necessary to 
calculate the normal derivative of the potential (i.e., the electric field).  This is  
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 (6.2.30) 

 
To match the field for r >> a2,  
 

0ÊD                                             (6.2.31) 

 
Applying the boundary conditions at a1 and a2 results in 

 

3

20

3

20

3

2

3

1

3

1

3

2

3

1

3

1

ˆ

0

ˆ

0

2ˆ2ˆ0

0ˆ2ˆ

110

01

aE

aE

F

C

B

A

a

aa

a

aa

rr

rr

















                 (6.2.32) 

 
These equations can be solved for A to get  
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where 
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Note that as a1 → a2, A → -E0 as it should because for δ =1, no shell 

exists. Using (6.2.32) and (6.2.33),  
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If a1 → 0, the field inside the shell should reduce to that which is inside a 

solid dielectric sphere immersed in a uniform electric field.  For this case, 
(i.e., a1 = 0, δ → 0)55 

 r

E
B

̂2

3 0




                                          (6.2.36) 

 
Hence the electric field in the center of the homogeneous sphere is 

                                                           
55 In this case, C must equal zero.  If not, then there would be a singularity in the electric 
field at R = 0.   
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This result is in agreement with that of (Zahn, 1979) and has (for 

example) been used to estimate the electric field shielding of a house.   It is 
also interesting to note that the potential outside of the sphere is modified 
and can be written once an explicit expression for F is found.   
 

Ring surrounding a conductor ◄ 
In some cases, it is useful to examine the effect of a tower window on the 
electrostatic fields of a power line conductor (Olsen 1999).  One model that 
has been used to do this is shown in Fig. 6.2.8.  Here a tower window is 
modeled by a conducting toroid of major radius b and minor radius c at zero 
potential (Smythe, 1968)56. The phase conductor is modeled as a horizontal 
cylinder of radius a at a potential VP in free space.  

                                                                        
(a) 

                                                     
(b) 

Fig. 6.2.8 Simple model of a tower window a) end view b) side view. 

                                                           
56 In Olsen (1999) a perfectly conducting earth was added.  Here, that is neglected in order 
to retain perfect symmetry.   
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The total scalar electric potential (a phasor)  z,ˆ  , in space is 

independent of   and is the superposition of that due to charge on the 

toroid plus that due to the charge distribution on the phase conductor.  It 
will be assumed here that the potential outside the toroid can be 
approximated as that of a ring charge of radius b in the z = 0 plane and 
centered at ρ = 0 as shown in Fig 6.2.8a.  Similarly, it will be assumed that the 
potential of the phase conductor charge distribution can be represented as 
that of a line charge at the center of the ring. Thus, the total potential is  
 

     zzz linering ,ˆ,ˆ,ˆ                          (6.2.38) 

 
It is convenient to solve this problem by spatially Fourier transforming 

the z dependence of the scalar potential.  In the spatial Fourier transform 
domain (γ) the scalar potential of the ring charge is (for ρ < b) (Smythe 1968)  
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where Rq is the magnitude of the ring charge density,  I0(w) and K0(w) are 
respectively Modified Bessel functions of first and second kind of zero order 
and argument w (Abramowitz and Stegun 1964), and  
 

22 yx  . 

 
The Fourier Transform is defined as  
 

     dzzjz   




exp,ˆ,
~̂

.                     (6.2.40) 

 
It has been assumed here that the ring charge density is a constant due to 

symmetry.     
In a similar way, the Fourier transformed scalar potential of a line charge 

parallel to the z axis and passing through (x,y) = (0,0) with an unknown 

charge density distribution  zqL  , for Pa is:   
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where  LQ
~̂

is the Fourier transform of  zqL
ˆ .  Note that  zqL

ˆ  is not 

constant because of the presence of the tower.  The total Fourier 
transformed scalar potential is then 
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,
~̂ linering                      (6.2.42) 

 
The inverse Fourier transform of (6.2.42) represents the total potential 

due to the conductor in the presence of a concentric toroidal conductor.  
The charge density of the line charge can be found in terms of the ring 
charge density by matching the electric potential boundary condition (i.e., 

  PVz ̂ ) at the surface of the wire.  Assuming that the wire is thin, it is 

reasonable to do this at a single point.  Thus,  
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Taking the Fourier transform of (6.2.43) yields  

 

       

         



PLR

P

linering

VaKQaIbbKq

Vaaa





000

~̂
ˆ

,
~̂

,
~̂

,
~̂

     (6.2.44) 

 

where    is the Dirac delta function.  Hence,  
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so that  

(6.2.46) 
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(6.2.46) can now be converted back into the spatial domain by taking the 

inverse Fourier transform to get  
(6.2.47) 
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where     1,ln0  xxxK and L’Hospital’s rule was used to evaluate the 

limit of the ratio of the modified Bessel functions as γ → 0. To complete the 
solution to the problem, the following boundary condition is applied in order 

to determine Rq̂ .   
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0)0,(  cb                                 (6.2.48) 

 
Using this boundary condition, the following simple closed form solution 

for the ring charge density can be written as.  
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(6.2.49) can be used in (6.2.47) along with the gradient operation to 

calculate the z-directed electric field at any point for which ρ < (b-c).  This 
axial electric field can now be written as. 

(6.2.50) 
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 zEz ,ˆ   is negligible beyond z  4b since the tower window causes the 

non-zero axial field.  This is approximately the distance beyond which the 
tower can be ignored when calculating electric field and for which a two 
dimensional approximation to the fields is reasonable.   

By calculating the charge distribution on the conductor this result can also 
be used to find the excess capacitance due to the tower.  If this capacitance is 
comparable to the capacitance per unit length of the transmission line 
multiplied by the distance between towers, then it would become an 
important part of the propagation model for a power line. It usually is not 
comparable and hence towers are usually ignored.    
 
 

Non-infinite parallel plate capacitor ◄ 
Next, consider the case for a two dimensional parallel plate capacitor with 
plate spacing of 2h as shown in Fig. 6.2.9.  The capacitor extends to infinity 
to the left but ends at x = -h/π.  The upper conductor is held at a voltage V0 
and the lower at a voltage –V0.  Hence the axis y = 0 is at zero potential by 
symmetry.   
 

This problem can be solved using conformal mapping methods 
(Schinzinger and Laura, 2003). Here, the approach will be to take the known 
solution and show that it satisfies the required boundary conditions.  To this 
end, V0 is set equal to π volts and two functions u(x,y) and v(x,y) are defined 
implicitly as  
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Fig. 6.2.9 Semi-infinite parallel plate capacitor with plate spacing of 2h 

 
In the next few steps, it will be shown that (6.2.51) and (6.2.52) are both 

solutions to Laplace’s equation in two dimensions.  To do this, partial 
derivatives can be taken with respect to x and y. 
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Now, adding (6.2.54) and (6.2.55) gives 
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Subtracting (6.2.56) from (6.2.53) gives  

 

  0sincos1 


































ve

x

v

y

u
ve

y

v

x

u uu             (6.2.58) 
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Further, multiplying (6.2.58) by 
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Next, (6.2.60) can be subtracted from (6.2.59) to get  
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Each term in the square bracket must be zero since (6.2.61) must be zero 

for all values of u and v and because each squared term is positive. Thus,  
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(6.2.62) and (6.2.63) are the Cauchy-Riemann equations that are given in 

(C.18) and (C.19) of Appendix C.  Given this, it is known that u and v must 
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be solutions of Laplace’s equation as shown in (C.20) and (C.21) of 
Appendix C.  Hence,  
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At this point, let  

     /,, 0 yxvVyx                                   (6.2.66) 

 

where  yx, is the scalar potential in Fig. 6.2.9 and V0 and -V0 are the fixed 

potentials on the top and bottom plates respectively .   
If ψ is set to zero in (6.2.66), then v = 0 in (6.2.52) and y = 0 for any value 

of u selected.  This matches the known potential everywhere along y = 0 in 
Fig. 6.2.9.  The value of x then becomes  
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Thus, every point - ∞ < u < ∞ maps into a point on the - ∞ < x < ∞ axis 

as shown in Fig. 6.2.10.   
If now, v is set equal to π, then (6.2.52) gives y = h, but the value of x now 

becomes  
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so that over the range - ∞ < u < ∞,  x ranges from - ∞ to a maximum value 
of –h/π and then returns to - ∞. 

A plot of constant potential contour lines of ψ in (6.2.66) is shown in Fig. 
6.2.10 for the top right quadrant of Fig. 6.2.9.  It is assumed that the 
potential of the top and bottom plates are at the potentials V0 and – V0 
respectively.  A cursory examination of the equipotential lines in Fig. 6.2.10 
indicates that as the spacing of the lines becomes closer, the closer the field 
point is to the edge at (x,y) = (-h/π,h).  Of course, the potential must 
approach V0 in this case since that is the potential assigned to the electrode.  
But, the electric field is related to the “change” in potential over some 
distance.  Given this, a closer examination of the electric field near this edge 
is warranted.   
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Fig. 6.2.10 Equipotential Lines for the top right hand quarter of Fig. 6.2.9. 
 

Near the edge at (x,y) = (-h/π,h), it will be assumed that    0, Vyxv

and   yxu , where 1,  , (6.2.51) and (6.2.52) can be expanded to 

second order using Taylor series to get  
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According to (6.2.70), δ must be equal to 0 along the line hy   because 

the potential ψ has been assumed to have a first order variation, hence ε 
cannot be zero.  Given this result, (6.2.69) can be solved to get  
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Hence,  
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Finally,  
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This result indicates that the electric field near this sharp edge is 

unbounded and is the reason why sharp edges are avoided near high voltage 
components.  It is also useful to note here the comments on edge conditions 
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in the subsection entitled, “edge conditions” at the end of Section 3.6 on the 
uniqueness theorem.  It is situations such as the one here that are relevant to 
the subject of edge conditions.  

The equipotential lines in Fig. 6.2.10 define the shapes for Rogowski 
electrodes that are used in high voltage components to obtain constant 
normal electric field over the surface of the electrode (Trinh, 1980). This type 
of electrode is useful for minimizing the effect of corona.   

Although the solution to the semi-infinite parallel plate capacitor problem 
is useful for illustrating the edge effect, it still represents a non-physical 
problem due to its infinite size.  The solution for a square plate capacitor is 
only available via numerical computation, but it is useful for a number of 
reasons including the calibration of electric field meters and references will 
be given here to this work.  More specifically, further work on this problem 
can found in Shih et. al. (1977), Thatcher (1976) and IEEE (2008).    
 

Separation of variables – infinite series solution to Laplace’s equation in a 
two dimensional rectangular box 
The last problem to be considered in this section is that of finding an “exact” 
solution of Laplace’s equation within the two dimensional rectangular region 
shown in Fig. 6.2.11.  Part of the purpose for this exercise is to describe the 
method of separation of variables, a powerful tool that can be used to solve 
problems in several coordinate systems.  Another part is the fact that the 
exact solution developed here can be used to check the numerical results that 
have been determined using the methods developed in the next section.   

Starting with the two dimensional Laplace’s equation in rectangular 
coordinates,  

 

  0,
2

2

2

2


















yx

yx
                            (6.2.74) 

 

It is assumed that the potential  yx, can be written as an infinite sum 

of functions  
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where the functions  yxn ,  are also solutions of Laplace’s equation.  Next, 

it is assumed that each function  yxn ,  can be factored into a product of 

two functions, one a function of x only and the other a function of y only.  
This property can be written as  
 

     yYxXyx nnn ,                           (6.2.76) 

 



 

271 

 
 

Fig. 6.2.11.  Rectangular box of dimensions a and b with ψ = 0 on the right, left and bottom 
sides and ψ = Vc on the top side. 

 
Note that it may not be completely clear at this point why this assumption 

can be made.  However, given that the requirements of the uniqueness 
theorem can be satisfied by the solution that results, the assumption can be 
justified a posteriori.  

 Given this assumption, Laplace’s equation can be written as  
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Dividing both sides of (6.2.77) by    yYxX nn results in  

 

 
 

 
 
2

2

2

2
11

y

yY

yYx

xX

xX

n

n

n

n 







                    (6.2.78) 

 
Clearly, the left hand side of (6.2.78) is a function of x only while the right 

hand side is a function of y only.  Since the equality must hold for all x and y 
in the domain, each side must be equal to a constant called the “separation” 
constant.  Hence,  
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where 2

n  is the separation constant.  The solutions to (6.2.79) and (6.2.80) 

can easily be obtained by using elementary results from differential equations.  
They are:   
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so that  

(6.2.83) 
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Application of the boundary condition at x = 0 yields 

(6.2.84) 
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The only non-trivial solution to this equation is Bn = 0 for all n.  Now 

matching the boundary condition at y = 0 yields  
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The only nontrivial solution for this is to set Dn = 0.  Thus, the remaining 

terms are: 
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where the separate constant Cn has been set equal to   bnsinh/1 since 

there is no need for two separate constants and this will turn out to be a 
convenient substitution.  Thus,  
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This formulation satisfies the boundary condition   0, ya if 

ann /  where n  is an eigenvalue of the differential equations (6.2.79) 

and (6.2.80) and the functions  axn /sin  and  ayn /sinh  are 

eigenfunctions of the same equations respectively.  The final boundary 
condition is satisfied at y = b if  
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The values of An required to satisfy this condition can be obtained by 

multiplying (6.2.88) by  axm /sin  , integrating the result over the period 0 – 

a and using the orthogonality properties of the sine function.  More 
specifically,  
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Hence  
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The final solution is  
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with An given by (6.2.90).   The validity of this solution can be verified using 
the uniqueness theorem (Chapter 3) because the potential satisfies Laplace’s 
equation as well as the known potential (Dirichlet) boundary condition on all 
sides of the rectangle.   
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6.3 Numerical Solutions  
 

Introduction  
As mentioned in the introduction to this chapter, analytical techniques are 
useful for both insight and validation of numerical techniques.  But, they are 
restricted to relatively simple geometries and, hence, numerical techniques 
will have to be used for most problems.  The purpose of this section is to 
briefly introduce the reader to numerical techniques that have been used by 
the power engineering community to solve problems in electroquasistatics.  
These include techniques based on boundary source unknowns (i.e., 
boundary element method and charge simulation method) and field point 
unknowns (i.e. finite difference method, finite element method and Monte 
Carlo method).  Each has its advantages and disadvantages as indicated 
throughout the section.    

In each case, the numerical method will be introduced in the context of a 
two dimensional problem for which the computational domain is a finite area 
in space and involves only known electrical potential boundary conditions.  
More specifically, the computational domain will be identical to that shown 
in Fig. 6.2.11.  While each of the methods can be extended to both infinite 
and three dimensional regions and more complicated boundary conditions, 
these extensions require a) discussions that are beyond the scope of this 
section and b) obfuscate the basic ideas behind each method.     

 
The boundary element method57 
The Boundary Element Method (BEM) is designed to solve for the surface 
charges that are the sources of electrostatic fields (Daffe and Olsen 1979; 
Olsen 1986; Olsen and Einarsson 1987).  Variations of this method have 
been referred to as the integral equation method, the moment method and 
the charge simulation method (the latter will be discussed in the following 
section).   

In a two-dimensional homogeneous region of finite size with known 
potentials on its boundary, it is possible to write solutions of Laplace’s 
equation for points within the region as  
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where C is the perimeter of the region,  yx,  is the location of the field 

point,      ',' yx  is the set of points along the perimeter that represents the 

locations of the electrical surface charge distribution  s̂  that is the 

                                                           
57 More specifically, the method presented here is called the “Indirect Boundary Element 
Method” (O’Brien, J. L. and T. L. Geers 1990) 
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“source” of the potential in the region.  The geometry of the rectangular 
region to which the boundary element method will be applied is illustrated in 
Fig. 6.3.1.   
 

 
 

Fig. 6.3.1   Geometry for the boundary element method calculation 

 
It is assumed next that the potential (i.e., voltage with respect to zero = 

VB) is known everywhere on the boundary perimeter (C) so that  
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where the point  yx,  is now constrained to be on the boundary surface.  

(6.3.2) is now an inhomogeneous Fredholm equation of the first kind for the 
unknown charge density on the boundary.  An approximation to this charge 

distribution can be found by discretizing  s̂  into a set of N unknown 

charges of constant value but finite extent along the total perimeter.  A 
formula for each source can be written as  
 

 nsn f̂  

 

http://en.wikipedia.org/wiki/Inhomogeneous_function
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where  nf  is equal to 1 on the patch of the perimeter C for which 
nq

ˆ is 

the charge density there and the union of all functions  nf  covers the 

entire perimeter C. Given this, (6.3.2) can be written  
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If the potential is “matched” at a distinct point on the surface  mm yx ,

within each function  nf , then (6.3.3) becomes 
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where BnV  is the value of the boundary potential at  mm yx , .  (6.3.4) is a set 

of N algebraic equations in N unknowns that (in most cases) can be solved in 
a relatively straightforward manner.  Once the charges are known, the 
potential at any point within the computational domain can be written using 
(6.3.1) and the electric field calculated from (6.1.2).    

Note that one requirement for the simple implementation mentioned here 
is that the region be homogeneous.  While this is a negative, the number of 
unknowns is proportional to the perimeter of the boundary and hence 
generally much smaller than the number of unknowns for field based 
methods such as the finite element method.  While the number of equations 
is small, the matrix that represents the coefficients of the algebraic equations 
to be solved is completely filled or “dense.”  Given this, techniques used to 
solve “sparse” matrices that result in field based methods such as the finite 
element method cannot be used.  Another issue that must be considered 
when implementing the boundary element method is that the integrals in 
(6.3.4) have singular integrands.  While these singularities are integrable, 
some care must be used when evaluating them.   
 

The charge simulation method 
As mentioned above, one problem with the boundary element method just 
described is that the integrals in (6.3.4) have a singularity in the integrand at 
points on the surface for which the integrand and matching point coincide. 
While such an integral can be evaluated, it requires some care.    

An alternative approach to the boundary element method is to 
approximate the surface charges with a set of charges with simple forms but 
unknown amplitudes located outside the area for which the potential is to be 
calculated, but close to the surface (Singer et. al. 1974).  In this case, line 
charges are placed just behind the perimeter C.  The advantage is that field 
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calculations are simple and no singular integrals need be evaluated.  This 
approach is called the “charge simulation method.”    

 

 
 

Fig. 6.3.2 The geometry used to illustrate the charge simulation method. 

 
Consider the two dimensional problem shown in Fig. 6.3.2.  The 

perimeter C surrounds the computational domain that extends to infinity in 
front of and behind the page.  The perimeter is at a known potential (VB) that 
may vary from point to point along the perimeter.   

To implement the charge simulation method in this case, a large number 

(N) of line charges with amplitude ( n̂ ) are located at (xn,yn) close to but 

behind the surface S.  They are far enough away that their contribution to the 
potential on the nearby portion of the perimeter C can be reasonably 
constant, but close enough that the actual variation of potential on the 
surface is reasonably well matched.  The electric potential at any point in 
space from these unknown charges is  
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The values of the unknown charges are found by matching the potential 
on the surface at M =N points (xm,ym) on the surface of the rectangle.  Given 
this, N equations for the N unknown charges can be written as 

(6.3.6) 
 

      NmyyxxVyx nmnm

N

n

n

o

Bmm 




  



1,ln
2

1
,ˆ

22

1




              

 
Once these equations have been solved for the unknown line charge 

amplitudes, (6.3.5) can be used to find the electric potential at any point in 
the rectangular computational domain.  From this result, the electric field can 
be found using (6.1.2)      
 

The finite difference method 
Laplace’s equation can be written in rectangular coordinates as  
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The partial derivative 
x


can be approximated as  
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where the geometry for (6.3.8) is shown in Fig. 6.3.3 
 

 
 

Fig. 6.3.3 Geometry for calculating the numerical derivative. 

 
Using this result  
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and  
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(6.3.9) and (6.3.10) can be combined to yield 

 
(6.3.11) 
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Similar expressions can be found for 
2

2

y

 
 and 

2

2

z

 
.  

Next, these finite difference approximations will be applied to the 
“discretized” two-dimensional rectangular geometry shown in Fig. 6.3.4.   

 
 

Fig. 6.3.4 Grid for application of the finite difference method. 

 
In this grid, the potential on the top boundary surface is Vc while on the 

remaining boundary surfaces it is 0. It has also been assumed for the 
remainder of this derivation that ∆x = ∆y = ∆.   

At the point (x,y), the two dimensional Laplace’s equation can be written  
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(6.3.12) 
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or  
 

           yxyxyxyxyx ,,,,
4

1
,   (6.3.13) 

 
(6.3.13) can be written for every point within the rectangular region in Fig. 

6.3.4. For points next to the boundary surface one or more of these 
potentials is specified because it is on the boundary.  A disadvantage of the 
method is that the number of unknowns is proportional to the area over 
which the solution is sought.  This is in contrast to the two previous methods 
for which the number of unknowns is proportional to the perimeter of the 
area for which the solution is sought.  

If there are N points at which (6.5.13) is applied, then the result is N 
algebraic equations in N unknowns.  These equations can (usually) be solved 
in a relatively straightforward manner.  Given that each equation refers to 
only 4 other points, many of the coefficients are zero and there are many 
methods to accelerate the solution. This partially compensates for the fact 
that the number of equations is proportional to the area of the rectangle 
rather than the perimeter.   

Another issue with field based methods such as the finite difference 
method, is that there is an additional error in calculating the electric field.  
More specifically, to calculate the electric field from knowledge of the 
potential requires a numerical derivative.  This process can introduce 
significant error.  On the other hand, surface based methods such as the 
boundary element method calculate surface charge from which the electric 
field can be obtained without differentiation.         
 

The Monte Carlo method 
At first, the Monte Carlo method appears to be completely unrelated to the 
finite difference method, but it is related by the fact that in an electrostatic 
field the potential at the center of a sphere can be written as the average of 
the potential over the surface of the sphere (Pickles, 1977; Beasley et. al. 
1979). In two dimensions, this is equivalent to the following mathematical 
statement,  
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where (x,y) is at the center of a circle of radius “a” , C is the perimeter of the 
circle and the entire circle is within a Laplacian field.   

It is useful to note that (6.3.13) is a specific example of (6.3.14) in two 
dimensions. But, before making the connection, consider the same geometry 
as in Fig 6.3.4, but where the top side is assigned the value 1 and the 
remaining sides assigned the value 0.  In a moment, the meanings of these 
will be described.  This geometry is shown in Fig. 6.3.5.  

Consider next a “random walk” beginning at (x,y).  Each step of the 
random walk is of length ∆ and each step is in one of four directions; each 
with equal probability.  These are up, right, down and left. The random walk 
shown in Fig. 6.3.5 eventually ends on the top surface. At the end of any 
walk that ends on the top, the number one is assigned to it and added to a 
sum.  If, on the other hand, the walk ends on one of the other surfaces, it is 
assigned a zero and also added to the sum (of course, the sum is not changed 
by the addition of zero).  After a large number of random walks, this sum 
(divided by the number of random walks) is an estimate of the probability 
that a random walk will end on the top surface.  The larger the number of 
random walks, the more accurate the estimate.   

 
 

Fig. 6.3.5  A random walk from (x,y) to the top surface. 

 
Now, there is another (and apparently completely different) way of 

calculating the probability that a random walk ends on the top surface.  
Consider the probability that a random walk starting at (x,y) ends up at (x+∆, 
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y) after the first step. Since by symmetry, it is equally probable that the walk 
will proceed in any one of the four directions, it can be said that  
 

 
4

1
,,  yxyxP                                 (6.3.15) 

 
This notation is read as, the probability that the random walk which starts 

at (x,y) proceeds to (x+∆, y) at the next step of the walk.  Since there are only 
four initial steps that can be taken, and it is assumed that each step of the 
random walk is selected in a way that is independent of the others, it is 
possible to write an expression for the probability that the random walk ends 
on the top as  

(6.3.16) 
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This equation is read, “the probability that the random walk eventually 

hits the top is equal to the probability that it first goes to the right (i.e., ¼) 
and then goes to the top from there plus the probability that it first goes to 
the left (i.e., ¼) etc.”  This equation holds for every starting point within the 
region.   

What is interesting is that (6.3.16) has exactly the same form as (6.3.13).  
Hence, it is possible to calculate Ptop(x,y) by solving asset of linear equations. 
But, of course, this requires that one solve for all of the probabilities 
simultaneously.  This may be wasted effort if it is only desired to know the 
potential at one or a few points.  To understand this is to discover the power 
of the Monte Carlo method.   To estimate Ptop(x,y) using random walks, it is 
only necessary to calculate this probability at one point.   

It can be shown that the error in the estimate of Ptop(x,y) is proportional 

to N/1 where N is the number of random walks.  Thus, time can be traded 

for accuracy.   
Without going into details, it can be said that there are numerous ways to 

accelerate the random walk process including the so-called “floating random 
walk” method. These have been built in to programs to estimate potential in 
very complicated three-dimensional geometries.  The method has been found 
to be useful when it is only necessary to find a reasonable estimate of the 
potential or electric field at a small number of points.   
 

The finite element method ◄ 

As with the earlier summaries, the purpose of this discussion of the finite 
element method is not to replace the voluminous literature on this method 
(Zienkiewicz, 1971).  Rather, it is to give an intuitive introduction to the 
method using the relatively simple problem shown in Fig. 6.2.11 of this 
chapter as context.    
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The finite element method for electrostatics usually involves a variational 
method (Zienkiewicz, 1971; Schwab 1988).  This means that a “functional” is 
considered, where a functional is a function of a function (i.e., F(f(x)). Often 
it can be shown that a functional is minimized when the function is the 
solution of a differential equation such as Laplace’s equation. The functional 
usually used for identifying solutions to electrostatic problems is the potential 
energy stored in the field.  This functional (in two dimensions to be 
consistent with the other numerical methods introduced here) is  
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                           (6.3.17) 

 

where A is the area of interest and 
2

0 ),(
2

1
yxE  is the energy density at any 

point within the area of interest.  When subjected to appropriate boundary 
conditions, minimizing this energy has been shown to be equivalent to 
solving Laplace’s equation (Stratton. 1941).    

Since  E  where ψ is a scalar potential,  
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At this point, the strategy is as follows: 

 
1. The area of interest is discretized into individual “elements” 
2. The potential (i.e., ψ) within each sub-area is approximated by a 

relatively simple function 
3. A set of “element” equations is developed that forms a “system” of 

linear equations 
4. A “system matrix” is assembled 
5. Boundary conditions are introduced and the solution to the set of 

linear equations is found.    
 

Discretization is generally done by subdividing the region into Ne 
elements of variable size and shape; usually triangles in two dimensions as 
shown in Fig. 6.3.6.   The potential within the region is defined at the vertices 
of each triangle shown as the points in Fig. 6.36.  The total number of points 
is Np = Na + Nb where Na is the number of points for which the potential is 
unknown and Nb is the number of points on the boundary with known 
potential.    
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Fig. 6.3.6  Rectangular region discretized for application of the finite element method. 

 
The functional in (6.3.18) is for the entire region of interest, but, of 

course, it is also possible to write the value of this functional for any of the 
elements within the region.  For the nth element with area ∆An, the functional 
becomes  
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Over each element, the unknown potential is approximated by function 

that is characterized by unknown constants where the linear approximation is 
the simplest and is shown in (6.3.20) 
 

  yaxaayx
nA 321,                            (6.3.20) 

 
where the constants a1, a2 and a3 are unknown constants.  The constants can 
be determined in terms of the unknown potentials at the three vertices (i,j,k) 
of each triangle as: 
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                         (6.3.21) 

 
The set of equations (6.3.21) can be solved for the unknown coefficients 

in terms of the potentials at the locations of the vertices.                                                
 

 kjikjikjim yyyxxxfa ,,,,,,,,    m = 1, 2, 3         (6.3.22) 

 
Given these, it is possible to write an approximate expression for the 

potential within any particular element ∆A as 
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where ΔAn is the area of this nth triangular element.  The other functions

 yxN jn ,  and  yxN kn ,  can be obtained by cyclically permuting the indices.   

To set up the equations using the variational approach, the partial 
derivatives of the approximate potential functions in each sub-area with 
respect to x and y are taken.  The result is  
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These derivatives can be substituted into (6.3.18) to get the functional for 

the total area.  This result is    
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Given (6.3.25), and after performing the integrations, (6.3.26) can be 

written as  
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where most of the bij’s  are equal to zero since they are only non-zero for 
adjacent points within the area.   

To find the minimum energy of the functional, (6.3.27) can be 
differentiated with respect to each potential and the derivative then set to 
zero58.   
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The result is  
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which is a set of linear equations in i  where iiii bp 0  and 

ijbp ijij  ,2/0 that can be written in matrix form as  

 

   0P                                       (6.3.30) 

 

where  P is called the “permittivity” matrix and    is the matrix of 

potentials. As mentioned earlier, however, this equation is not useful in this 
form because (while it is square) it involves equations developed assuming 
that the known boundary potentials can be varied.  In addition, it can be 
shown to be a singular matrix (Schwab, 1988).   

This issue can be resolved by partitioning the matrix into sub matrices 
that relate separately to the unknown potential within area A and the known 
boundary potentials.  The result is 
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Since the boundary potentials are known, the top equations can be 

rewritten as  
 

                                                           
58 At this point, the derivative is taken with respect to all potentials included the known 
boundary potentials.  Later the equations developed using these derivatives will be ignored 
since these potentials are known  
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      0 BABAAA PP                           (6.3.34) 

 
Finally,  

 

     BABAAA PP                                (6.3.35) 

 
This set of linear equations can be solved for the unknown potentials 

either by matrix solutions technique designed for sparse matrices or (often) 
by an iterative technique.   
  
 

6.4 Problems 
 

P6.1. For a material with a dielectric constant r  = 3, find 

  
a. The capacitance per unit area for a parallel plate capacitor with a plate 

spacing of 1 mm.   
b. The capacitance per unit length for a coaxial capacitor with dimensions a1 

= 2 mm and a2 = 1 mm. 
c. The capacitance of a spherical capacitor with a1 = 15 cm and a2 = 10 cm.  

What happens to the capacitance if  r  = 1 and a1 → ∞ ?  This is the self 

capacitance of a spherical electrode in free space and is often useful in 
electromagnetic compatibility calculations.   

 
P6.2. A conductor with a voltage V = 1 kV is located in free space at a 
distance yq = 1 meter above an interface.   
 

a) Find the line charge per unit length  assuming that the medium below 
the interface is a perfect conductor.   

 
b) For the medium in a), use image theory to calculate the vertical electric 

field 
yE at (x,y) = (0,0).  Refer to Section 5.4 for background on the fields of 

line charges.   
 
c) If the perfect conductor is replaced with a dielectric with relative dielectric 

constant r  = 2, but eh charge density of the line charge remains the same as 

in a), calculate the vertical electric field 
yE at (x,y) = (0,δ) as δ → 0. Then 

calculate 
yE in the lower dielectric medium at (x,y) = (0,-δ) as δ → 0. Are the 

relevant boundary conditions satisfied?   
 

P6.3. Calculate the electric fields xE and 
yE in the geometry of Fig. 6.2.9 at 

the given locations for the parameters V0 = 100 kV and h = 1 meter. 
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a. For  (x,y) = (- 2, 0) meters calculate 
yE .  Assume that the field point is 

far enough into the capacitor for the parallel plate approximation to be 
valid.   

 

b. For  (x,y) = (- h/π + δ, h) meters use (6.2.73) to calculate xE  where δ 

<< h.  Compare this result with the result of part a).    
 
P6.4. Determine an expression for F in (6.2.32).   
 
P6.5. A small house is modeled as a hemispherical igloo (i.e., Using image 
theory, this is equivalent to half of the spherical shell shown in Fig. 6.2.7).   
 
a. Starting with (6.2.30) and (6.2.33), show that the shielding factor (SF) for 

r < a1 (defined as E/E0) is  
 

SF =  
 

  



rrr

r





ˆ21ˆ2ˆ9

1ˆ9
 where  /11  

 
b. Note that in this form, it is more clear that the shielding factor → 1 if the 

thickness of the wall becomes zero. 
 
c. Determine the 60 Hz electric field shielding factor for a house 

constructed of Douglas Fir with a 25% moisture content ( r̂ ≈ 2.0 - j 

4.3), radius 5 meters and a thickness of 0.2 meters.    
 
P6.6. Consider a 2-dimension problem. A rectangular region has a width w = 
4 and a height h = 8. The potentials on the four boundaries of the region 
have been specified as that V = V0 at the top boundary and V = 0 at the 
other three (left, right and bottom) boundaries. Let the lower left corner of 
the region to be the origin of the coordinates, the bottom boundary to be on 
x-axis and the left side boundary on y-axis, as shown in Fig. P.6.6.1  
 
The region is divided into a grid with step size of 1. Set three observation 
points on the grid at (2, 6), (2, 4), and (2, 2), whose potentials are assumed to 
be V1, V2, and V3, respectively. In this problem, four different methods will 
be applied to investigate the potentials at the observation points.  
 
a. Use the infinite series method of (6.2.91) and (6.2.90) to find the exact 
solution to the potential at the three points, (x, y) = (2,2), (2,4) and (2,6) (i.e., 
V1 , V2 and V3) in the region. Write a program (in any language you prefer) 
to calculate these potentials.  If you wish, calculate the potential over the 
whole region and plot constant voltage contours for your results.  
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Fig. P6.6.1.  A rectangular region with specified potentials on the boundaries 
 

b. Apply the Monte Carlo method to find the potentials on the three 
observation points. Use at least ten random walks for each point if you do 
the calculation by hand. If you do not have a random number generator, you 
may generate random numbers using a 6 sided die and throwing it again if 
either the 5 or 6 come up.  If you do this using a computer program, you can 
use a finer grid to do the simulation if you wish. 
 
c. Use the grid with larger step size (step size of 2) shown in Fig. P.6.6.2. 
Apply the finite difference method to calculate V1, V2, and V3. 
d) Apply the charge simulation method to set up equations for finding V1, 
V2, and V3 (it is not necessary to solve these equations). Assume there is one 
equivalent line charge (with unknown line charge density) outside the center 
of each boundary where the distance between the line charge and its 
corresponding boundary is d, as shown in Fig. P.6.6.3. Assume d = 0.5 if you 

solve the problem by hand. Note that by symmetry, RL   .  The equations 

can be found by matching boundary conditions at the center of each surface.  

It is only necessary to set up three equations  since  RL   .   
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Fig. P6.6.2.  Larger step size grid for finite difference method 

 
Fig. P6.6.3.  Model for charge simulation method 
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Chapter VII 
Propagation on an Infinitely Long Multiconductor 

Transmission Line above Homogeneous Earth 
 
 
 

7.1 The Balanced Two Wire Line – Arbitrary 
Frequency 
 

Introduction 
A study of the case for two conductors adds some complexity to the 
problem because there are two unknown currents.  As a result, there are not 
only “spectral” modes (i.e., transmission line, surface attached and radiation 
modes) similar to those discussed in Chapter 4 for the single wire line, but 
“geometric” modes or “components” that relate to the relative currents on 
each conductor of the transmission system. Here, care will be taken to be 
clear about which category (i.e., spectral modes or geometric 
modes/components) is the subject of the discussion.   

 
 

Fig. 7.1.1.  Cross sectional geometry of a two wire transmission 

 
The technique for solving for the propagation of currents on a single 

conductor can be readily extended to the case for multiple wires.  Here, the 
case for two wires at identical heights above the earth is given because the 
additional steps in the process can be presented without obscuring the results 
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with excessive complication. Consider the case shown in Fig. 7.1.1 for two 
infinitely long parallel conductors at a height h above the earth and separated 
by a distance d, constructed of the same material and with the same radius, a.   
It has been assumed that there is an external source as shown in the figure 
and that each conductor is driven by a sinusoidal voltage source (different for 
each conductor but not shown in the figure) at z = 0.  More about the case 
for external sources has been given by Olsen and Aburwein (1980) and by 
Wait (1977).    

The method by which this problem can be solved is identical to that for 
the single wire case except that there is an additional source of field (i.e., the 
second conductor).  Hence, there will be two coupled equations (one for 
each conductor boundary condition) rather than a single one as in Chapter 4.  
These equations will be expressed here in matrix form.   

As with the general solution presented in Chapter 4, the solution to these 
equations is formally valid at any frequency for which the conductor radius a 
is small compared to other dimensions and the wavelength at the frequency 
of interest, for which the earth is represented by electrical constants 
appropriate to the frequency and for which the conductor is appropriately 

modeled by its conductance w . As a result, the solution can be used to 

solve antenna problems at high frequency as well as power line propagation 
problems at low frequency.  These two extremes are not separate issues and 
it is sometimes important that this not be forgotten.  In fact, there are certain 
cases (such as for calculating electromagnetic interference from corona) for 
which general theory is needed even for analysis of power transmission lines.    

Just as for Chapter 4, however, it is recognized that the interest of many 
readers is restricted to the behavior of power lines at lower frequencies (i.e., 
generally below 1 MHz). Thus, there is no need for these readers to spend a 
great deal of effort to understand the remainder of this first section of the 
chapter. Rather, these readers can skip topics marked with a ◄ here and in 
the table of contents and proceed to Section 7.2 where a special introduction 
is written for readers who have skipped earlier sections.    

In the Section 7.2 systematic mathematical approximations to the exact 
solution will be made with care taken to list exactly the conditions under 
which each approximation is valid.  These approximations include those that 
lead to equivalent transmission line theory. Following this is a section on 
mode coupling through reflection and non-symmetric transmission lines for 
which symmetric excitation do not produce symmetric currents. Finally, the 
theory is extended to transmission lines with an arbitrary number of 
conductors that may include shield wires.   
 

Derivation for the general frequency case ◄ 
Using the previously derived result for the axially directed electric field of a 
conductor from (4.4.56), (4.4.50) and (4.4.19) two equations in the spatial 
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Fourier transform domain for the unknown currents on the two conductors 
can be obtained as59  
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where  ,,,0
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field of the external source at each conductor.  
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2V̂ represent the 

voltage at z = 0 of the source in series with each conductor.   
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and 

                                                           
59 Note that the physical dimensions of Eez and V are both “volts” in the Fourier transform 
domain.  
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Equations (7.1.1) and (7.1.2) can be written more compactly as  
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where (given symmetry and reciprocity) 
iweziwez ZGZG  2211 ~~

and 

2112 ~~
ezez GG  .  

1~̂
ezE  and 

2~̂
ezE are, respectively, the axial electric fields of the 

external source evaluated at the bottom surfaces of conductor 1 and 2.  
The matrix in (7.1.6) is a 2 x 2 matrix.  It is known that if it has 2 distinct 

eigenvalues, then it has two distinct eigenvectors that are orthogonal with 
respect to it (Wiley 1966).  It is also known that any two element vector (e.g., 

│ I
~̂

│) can be expanded in this set of eigenvectors so that  
 

gmII
~̂~̂

                                         (7.1.7) 

 

where│ gmI
~̂

│is the matrix of “geometric component” amplitudes (often 

referred to in the power engineering literature simply as “mode” amplitudes), 

and  is the a square matrix (by columns) of normalized eigenvectors of the 

square matrix in (7.1.6). Since the matrix in (7.1.6) is symmetric, it can be 
written  

AB

BA
                                        (7.1.8) 

 
The eigenvalues of this matrix (λ)60 are defined by  

 

b

a

b

a

q

q

q

q

AB

BA
                              (7.1.9) 

                                                           
60 Not to be confused with λ, used later to designate “wavelength” 
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where the vectors  ba qqq ,  are its eigenvectors61.  Since (7.1.9) represents 

a homogeneous set of equations, it only has a solution if  
 

0det 








AB

BA
                   .     (7.1.10) 

 
This occurs when the quadratic  

 

  02 222  BAA .                        (7.1.11) 

 
Hence the eigenvalues are  

 
1211

2

1

~~
eziwez GZGBA                        (7.1.12) 

 
The eigenvectors can be found by inserting the eigenvalues into (7.1.9) as 
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 Given that the matrix in (7.1.13) is symmetric its eigenvectors are simply 
 

1

1
11 aq   and 

1

1
22


 aq                      (7.1.14) 

 

where a1 and a2 are arbitrary constants.  1q  represents the common 

component (again often called the “common mode”) which has equal 

currents on each conductor and 2q represents the differential component 

(again often called the “differential mode.)”   
These eigenvectors can be written as a matrix of eigenvectors (by 

columns) that are normalized to a magnitude of 1 as  
 

11
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1


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If the column matrix of conductor currents 1

~̂
I  and 2

~̂
I  is expanded in the 

eigenvectors of the symmetric matrix in (7.1.6), then  

                                                           
61 Not to be confused with q used later to represent charge 
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where 1

~̂
gmI  and 2

~̂
gmI are the “geometric mode” amplitudes.   

If (7.1.16) is substituted into (7.1.6) and the entire equation pre-multiplied 

by the inverse matrix 
1
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But, pre-multiplying and post-multiplying a matrix by a matrix of its 

eigenvectors results in a diagonalized matrix of eigenvalues as follows (Wiley 
1966).   

 (7.1.18) 
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In addition, the right hand side of (7.1.17) becomes 
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so that 
 (7.1.20) 
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Differential and common Modes ◄ 
Since the matrix is diagonalized, the solutions to this equation for the 
component amplitudes can be obtained by simple inspection as  
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From these results, it is trivial to find formal solutions for the actual 

conductor currents by using (7.1.16).  If, for example, the external electric 

fields 
1~̂
ezE  and 

2~̂
ezE  are assumed to be zero, and 

21
ˆˆˆ VVV  , 0
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1 gmI  and 

only the differential geometric mode is excited.  Given this,   
 

121121 ~~
ˆ2~̂~̂

eziwez GZG

V
II


                           (7.1.23) 

 

Similarly (i.e., if, again, the external fields are zero), if 
21

ˆˆˆ VVV  , 

0
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2 gmI  and only the “common” geometric mode is excited.  Given this,  
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In general, however, both geometric modes will be excited but (as will be 

illustrated in the next section) each has a distinct propagation constant and 
the rate at which each geometric mode is attenuated as it propagates along 
the wires will be different.   

It is now possible to calculate the inverse Fourier transform of (7.1.23) to 
calculate the currents in space using the methods of Chapter 4 (i.e., Section 
4.7).  However, because the frequency is still arbitrary, it is a difficult process 

because the singularities of 1211 ~~
eziwez GZG  are (in general) difficult to 

identify and this can obscure the process of finding currents on 
multiconductor transmission lines.  For this reason, the material covered in 
Section 7.2 that includes a derivation of the currents in the space domain will 
be restricted to the low frequency case.    
 
 

7.2 The balanced two wire line – low frequency 
 

Introduction 
It was shown in the last section that a matrix equation can be set up for the 
currents on parallel wires excited by a voltage source inserted in series with 
each wire at z = 0 and an external source of electric field.  This equation is 
repeated here as  
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where  ,,,0
~~~ 2211 hahGGG ezezez   and  ,,,

~~~ 2112 hahdGGG ezezez  . 

Given symmetry and reciprocity, 
iweziwez ZGZG  2211 ~~

 and 2112 ~~
ezez GG  .

1~̂
ezE  

and 
2~̂
ezE  are, respectively, the external axial electric fields of the external 

source  evaluated at the bottom surfaces of conductors 1 and 2.  
 

For the reader who is beginning with this section, (7.1.3) – (7.1.5) are 
repeated here as   

(7.2.2) 
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As was the case in Chapter 4, it is not important for the reader who has 
skipped most of Sections 7.1 to understand the details of (7.2.2) – (7.2.4).  
Rather, it is important only to recognize that they represent an exact closed 
form solution valid at nearly all frequencies and that will be used here to 
develop expressions that are very familiar to power engineers.   
 

The low frequency approximation 
In order to provide a better understanding of the process for finding currents 
on multiple conductor transmission lines, the first case studied will be limited 
to a two-conductor line that has a symmetrical geometry (i.e., Fig. 7.1.1) and 
is operated at “low” frequency.   

At low frequencies, the terms containing the Hankel functions in (7.2.2) 

can be replaced by small argument expansions and are independent of 0k , 
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can be ignored at low frequencies under most circumstances since 

02 kk  .   

Given the small argument expansion for the Hankel function,  
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where γe is Euler’s constant,  the first two terms of (7.2.2) become  
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In addition,  
 

 
   

  

   

 

   










 

 


































































































0 2

12

2

2

1

0

2

0

2

2

2

2

1

0 2121

21

cos
2

cos
2

cos
2~

1

1














 dxxeu
k

j

dxx
kk

euj

dxx
uuuu

euuj
P

hy

hyu

hyu

            (7.2.6) 

where 
2

2

2 ku   , Re(u) ≥ 0 and 1u  over most of the integration62 

since   02/1 kh  . Note that (7.2.6) is essentially a generalization of 

Carson’s integral (i.e., (4.7.5) and (4.7.6)) to arbitrary locations in space.   

                                                           
62 this type of approximation is often called a “quasi-static” approximation.  
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Thus,  
(7.2.7) 
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and  

2

2

2 ku   . 

 
As in Section 7.1, the currents on the conductors can be found by solving 

the following matrix equation 
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To facilitate solution of (7.2.9) at these low frequencies, Gez is cast in the 

following form 
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Where 
 


























































 hyxxJrr

j
hyxxZ c

i ,,/ln
2

,,
2

1

2

1

2

1

0

2

1



       (7.2.11) 

 
is a mutual impedance per unit length and   
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where 









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
 hyxxA ,,

2

1
 is the “potential coefficient” (i.e., the space potential 

at ),( yx  for a line charge with unit amplitude at 













hx ,

2

1
 and above a perfect 

ground plane.   
Using these results in (7.2.9) yields  
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where  
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Terms can be collected and (7.2.13) written as  
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If the notation Z  is interpreted as the matrix of impedance elements in 

(7.2.14) and A  is interpreted as the matrix of potential coefficients, then  

 

YCjAj 



1

                                (7.2.15) 

 

where Y is the admittance matrix for the two conductors which is equal to 

Cj where C is the capacitance matrix for the conductors above a perfect 

earth63.   

If now, (7.2.14) is multiplied by Y  

 

  EVYIZY
~̂ˆ~̂2                                (7.2.16) 

 

                                                           
63 Some elements of │C│ are negative and do not represent physical capacitors.  The 
relationship between │C│ and a network of equivalent capacitors between the conductors 
and the earth is discussed in Problem P7.2 
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where│ I
~̂

│ is the matrix of conductor currents and│ EV
~̂ˆ  │is the matrix of 

conductor source voltages and external fields.   
 

Solving for the modes  
In the balanced symmetrical two conductor case shown in Fig. 7.1.1, ZY  

can be written as  
 

   
    1212111112111112
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YZYZZYZYZZ
ZY

iwiw

iwiw




         (7.2.17) 

 
This matrix has the same form as the matrix in (7.1.6) 

 

AB

BA
                                         (7.2.18) 

 
as (7.1.6) and hence, the properties of this matrix developed earlier can be 
used again here.   

As in Section 7.1, if ZYQ 2
is a 2 x 2 matrix and has 2 distinct 

eigenvalues, then it has two distinct eigenvectors that are orthogonal with 

respect to
2Q  (Wiley 1966).   is the same square matrix (by columns) of 

normalized eigenvectors as shown in (7.1.19)  
 

11

11

2

1


                                (7.2.19) 

 
Further, in this low frequency case, the eigenvalues can be written 

explicitly as64 
 

(7.2.20) 
 

  121112111 YYZZZ iw   and   121112112 YYZZZ iw                  

 

Then, any two component vector (e.g., │ I
~̂

│) can be expanded in this set 
of eigenvectors so that  
 

gmII
~̂~̂

                                          (7.2.21) 

                                                           
64 Again, λ is not to be confused with the wavelength that will be used later. 
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where│ gmI
~̂

│is the matrix of “geometric mode” amplitudes.  Using the 

substitution (7.2.21), (7.2.16) becomes 
 

  EVYIQ cm 
~̂22                            (7.2.22) 

 

Now (as in Section 7.1) it can be shown that  
1

and  

 
221

dQQ 


                                    (7.2.23) 

 

where 
2

dQ  is a diagonal matrix of the eigenvalues of 
2Q .  Hence, 

premultiplying (7.2.22) by 
1

 gives   

 

  EVYIUQ gmd

~̂ˆ~̂ 122 


                   (7.2.24) 

 

where U is the unitary matrix.   

 

Now, for the specific problem being considered here 
2

dQ can be 

calculated in the following way  
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and 

(7.2.26) 
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Thus,  
(7.2.27) 
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Explicit solutions for differential and common modes  
(7.2.27) can easily be solved to obtain 
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(common geometric mode)      
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   (differential geometric mode)    
 

These are the two geometric components of the current (again, often 
simply called “modes” in the power industry). The first is the amplitude of 
the common geometric component (or common mode or ground mode as 
used in power engineering terminology) and the second is the differential 
geometric component mode (or differential mode).   

To complete these expressions for the current, explicit expressions for the 
impedances and admittances will be identified.  Using (7.2.11) as the basis, 
the expression for the impedances in (7.2.28) and (7.2.29) are  

(7.2.30) 
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where    2/1
22

2 dhs   and it has been assumed that a << d.  In each case, 

the log terms can be combined so that  
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(7.2.31) 
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and 

(7.2.32) 
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Calculation of the admittance term (i.e., 1211 YY  ) is a bit more 

complicated because the inverse of the potential coefficient matrix must be 
evaluated first.   
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and its inverse can be shown to be  
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so that  
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and  
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so that (in general)  
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and  
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Finally, the individual conductor currents (in the spatial transform 

domain) can be written as  
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Thus, explicit expressions for the common and differential mode currents 

can be written respectively as 
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These expressions can be transformed into the spatial domain using the 

inverse Fourier transform and same residue theory used in Section 4.7  More 
specifically, following (4.7.22) – (4.7.23)  
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for the common mode and for the differential mode 
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It has been assumed that     0Im,Im dc  . 

 

Special cases  
 
Closely spaced conductors – differential mode 
Consider the case for which the two wires are close to each other compared 
to the height above ground as shown in Fig. 7.2.1. Further, assume that the 
external source amplitude is zero and that the voltage sources are 

21
ˆˆˆ VVV  . In this case, the only currents excited are the differential 

currents given in (7.2.45).   

 
 

Fig. 7.2.1  Two closely spaced conductors over a lossy earth. 
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First, since h >> d, it can be shown that  
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where  
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In this case, the effect of the earth is negligible since the fields associated 

with the conductor currents are confined to points near the conductors. 
Also, the propagation constant is that for a transmission line mode on a pair 
of wires in free space as expected.  Since high voltage transmission line 
conductors are relatively close to each other compared to their height above 
the earth, it can be expected that (at least for modes for which the sum of the 
currents is zero) the effect of the earth is relatively small.  One practical 
consequence of this is that a power transmission line with conductors that 
are far from the earth suffers very little energy loss to the earth if it is driven 
in a balanced fashion so that only the differential component is excited.  The 
only source of loss in (7.2.49) is Ziw, the loss associated with the conductors.   
 
Closely spaced conductors – common mode 
Consider, again, the case for which the two wires are close to each other 
compared to the height above ground as shown in Fig. 7.2.1. Further, assume 
that the external source amplitude is zero and that the voltage sources are V1 
= V = V2. In this case, the only currents excited are the common currents 
given in (7.2.44). 

Again, (7.2.46) and (7.2.47) hold, so the common mode currents are    
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where  
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It is interesting to note that this result has almost the same form as that 

for a single conductor above earth as given in (4.7.20).  The only differences 

are 1) that the radius of the single conductor is replaced by the factor ad  

that is called the geomagnetic mean radius of the pair of conductors and 2) 
the deletion of the factor of 2 in the last term comes from the fact that 
having two wires in parallel decreases the impedance per unit length by a 

factor of 2. The factor ad  will surface again when conductor bundles are 

discussed in Section 7.11.  The attenuation constant for the ground mode 
will generally be much larger than the attenuation constant for the 
transmission line mode because the return current flows in the lossy earth.  
 

Unbalance due to unsymmetrical terminations 
Clearly, there is a transmission line equivalent for each “mode” that can 
propagate on a two conductor transmission line.  These are illustrated in Fig. 

7.2.2 in the case for which there is no external source (i.e., 021  zeze EE ).   

The propagation constants have been given earlier in (7.2.41) and (7.2.43). 
The characteristic impedances for the “common” and “differential 
transmission line modes are defined respectively as  
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and 
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These transmission line modes can become “mixed” in two ways.  First, 

as shown above, a source that is not completely symmetric or anti-symmetric 
will excite both common and differential modes.  Thus, according to Fig. 

7.2.2, if 
21 VV    or 

21 VV  , both common and differential modes will be 

excited and currents will be excited on both equivalent transmission lines.  
Second, if the transmission line is finite in length, then the terminations of 
the transmission line at its ends may (if the load is not perfectly symmetric or 
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anti-symmetric) cause reflections that consist of both modes even if only one 
is incident.  Consider the impedance loading circuit illustrated in Fig. 7.2.3.  
 

 
(a) 
 

 
(b) 

 
Fig.  7.2.2.  Equivalent transmission lines for a symmetric two wire transmission line above 

the earth a) common mode b) differential mode 

 

If symmetry is preserved at the terminations, so that GLGL ZZ 21  , then 

the reflection coefficients for incident common and differential modes 
respectively are   
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If however, GLGL ZZ 21  , the reflected wave is a mixture of common and 

differential modes.  The several pertinent reflection coefficients can be 
derived as follows.   

 

 
 

Fig. 7.2.3.  Loads for a symmetric, two conductor transmission line at z = ℓ. 

 
Assume that the load is located at z = 0 and that the incident differential 

and common mode waves are zj

df
dev

 and czj

cf ev   respectively.  In terms of 

these incident wave amplitudes (i.e. 
dfv and 

cfv ) and appropriate in-mode 

and cross-mode reflection coefficients, the voltages (with respect to perfect 
earth) and currents at z = 0 are 
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     (7.2.56) 

Here note that 
dfv is the voltage between the two conductors and (given 

symmetry) the voltage between conductor 1 and 2 and ground is 2/dfv  and 

2/dfv , respectively, while 
cfv

 
is the voltage to ground of either conductor. 

In addition, the direction of the differential mode current for each conductor 
is opposite and, upon reflection, the current on either conductor changes 
sign.   
   Application of nodal analysis to the system in Fig. 7.2.3 yields another 
relationship between these voltages and currents 
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The unknown reflection coefficients can be found by assuming (in 
succession) that the only incident wave is the differential (common) mode.  
In the first case, 0cfv and equating the second two equations of (7.2.56) to 

the two equations in (7.2.57) and using the first two of (7.2.56) yields 
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These can be rearranged in matrix form to give  
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Equation (7.2.59) can be solved for dd  and dc  with the result   
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Clearly, in general, an incident differential mode wave causes both differential 
and common mode reflected waves.   However, it can be determined by 

inspection that, if GLGL ZZ 21  , addition of the two equations of (7.2.59) 

results in  
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                       (7.2.61) 

 
which (after conversion to impedances) is identical to (7.2.55).     
   In the second case, 0dfv  and equating the second two equations of 

(7.2.56) to the two equations in (7.2.57) and using the first two of (7.2.56) 
yields 
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Again, these can be rearranged in matrix form to give 
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Equation (7.2.63) can be solved for cc  and cd .   
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Again, in general, an incident common mode wave causes both differential 
and common mode reflected waves.   However, it can be determined by 

inspection that, if  GLGL ZZ 21  , addition of the two equations of (7.2.59) 

results in  
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which (after conversion to impedances) is identical to (7.2.54).     
 
 

7.3 Examples of Coupling to Multiconductor 
Transmission Lines  
 

Distant external field high frequency excitation (ightning) 
Lightning strokes generate a significant amount of electromagnetic energy 
that can interact with and disrupt the operation of the electric power 
transmission and distribution system.  In some cases (to be considered in 
more detail later) the lightning stroke current is directly injected into the 
power system.  In others (the subject of this section), the effects are coupled 
to the power system electromagnetically.  Lightning strokes may occur from 
cloud to ground or from cloud to cloud.  While the purpose of this section is 
to develop an electromagnetic coupling model rather than to review specific 
lightning source models, it is appropriate to list a few examples of lightning 
source models.  A comprehensive review of electromagnetic models for 
cloud to ground lightning has been given by Baba and Rakov (2007). Other 
models have been described by Delfino et. al. (2011) and Shoory et. al. 
(2005). Characteristics of Lightning in general as well as specific information 
about cloud to cloud discharges can be found in (Uman, M. A. 2001).     

In all cases, the fundamental element of the lightning model is an 
elementary electric dipole.  Here, this simple model will be used and further 
specialized to one that is vertical and (so that the essential physics will not be 
obscured by the mathematics) located in a vertical plane that contains the 
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center of the power line (i.e., the yz plane in Fig. 7.3.1) to which its energy is 
being coupled.    

Consider again the case for which the two wires are close to each other 
compared to the height above ground as shown in Fig. 7.2.1. Further, assume 
that the voltage sources are zero, but there is an external field source. If the 
external source is distant and the spacing of the wires is small compared to a 

wavelength, then       21 ~̂~̂~̂
zezeze EEE   and only the common mode is 

excited.  Hence, from (7.2.40) and (7.2.46),  
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Again,  zeE
~̂

 represents the spatial Fourier transform with respect to z 

of the incident electric field.   
Using (7.3.1) and the inverse Fourier transform, the current in the space 

domain can be written as 
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As mentioned above, the source is a distant vertical electric dipole source 

with dipole moment (I0ℓ) located in the yz plane at a distance R from the 
origin of coordinates as shown in Fig. 7.3.1.   

If R is large compared to the wavelength (λ) in free space (i.e. , 

)1/20  RRk , the incident electric field in the yz plane as illustrated in 

Fig. 7.3.1 can be written as (Ulaby, 2001)  
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Fig. 7.3.1.  A plane wave traveling in the y z plane and incident on the earth at an angle θi 

 
Near the earth’s surface, this incident field can be approximated as a 

parallel polarized plane wave where “parallel” means that the electric field is 
parallel to the plane of incidence (i.e. the yz plane).  Given this, the total 
incident field is that of the incident plane wave and its reflection that is 
required by the interface boundary conditions.  The magnitude and phase of 
this reflected wave is determined by multiplying the incident wave amplitude 
by a Fresnel reflection coefficient appropriate to the polarization of the 
incident field (Ulaby, 2001)    

In the space domain, the plane wave and its reflection can be written as 
(Ulaby 2001)  
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where the Fresnel reflection coefficient can be written as 
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and  
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Since only the z component is relevant to this derivation, it can be written 

as  
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The spatial Fourier transform of this expression with respect to z (see 

(4.3.1)) is  
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where  q  is the Dirac delta function of argument q.   

Using this result, the final expression for the induced current is  
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This result has an interpretation that may not be obvious initially.  First, 

the current has the same phase dependence with respect to z as that of the 
incident plane wave.  This is to be expected.  However, as θi approaches 90 
degrees (i.e., grazing incidence), the amplitude of the induced current 

becomes quite large.  This occurs because   222
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222
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0 cos  since γc ≈ k0. Hence the current is 

inversely proportional to  icos  until θi is small enough that the term

 2

0

2 kc   can no longer be neglected. This behavior has been noted in the 

literature and is related to the fact that long conductors carrying traveling 
wave currents radiate at grazing angles (Olsen and Usta, 1977; Olsen and 
Aburwein, 1980).    

As mentioned at the beginning of this section, it is beyond the scope of 
this text to describe detailed electromagnetic models of lightning (Baba and 
Rakov 2007).  However, it is useful to summarize here how the work 
described above can be used with lightning models to calculate the currents 
that are induced by lightning on high voltage transmission lines.   

Generally cloud to ground lightning is modeled as a current ),( tzis  that 

travels between ground and cloud (for the return stroke) in a vertical channel 
as illustrated in Fig. 7.3.2.  
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Fig. 7.3.2. A vertical cloud to ground lightning channel of height h carrying a return stroke 

current  with a velocity v from the earth to the cloud. 

 
The current induced on the transmission line due to this current can then 

be calculated by  
 

1) Transforming the current to the frequency domain by taking the 
temporal Fourier transform using (7.3.12)  
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                     (7.3.12) 

2) Decomposing  ,
~

yI s
  into short “dipole” segments along the 

lightning channel shown in Fig. 7.3.2.   

3) Calculating the induced current  ,ˆ zI  from each segment using 

(7.3.8) and (7.3.11) and summing to obtain the total induced current.   
4) Transforming the induced current in the time domain using (7.3.13).   
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Distant external field low frequency excitation (geomagnetic induced currents) 
Electric power transmission systems have been designed to operate reliably 
under well-defined terrestrial weather conditions. However, space weather 
has also been shown to affect the operations of the transmission system 
(NASA 2003).  More specifically, the sun emits a constant stream of charged 
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particles known as the solar wind that takes 4-5 days to reach the earth.  This 
activity is cyclic in time and peaks during a relatively short period of an 11 
year cycle.  The charged particles of the solar wind constitute an electric 
current and interact with the earth’s magnetic field to cause disturbances in 
the earth’s magnetic field called “magnetic storms.” Far from the earth’s 
surface where the earth’s magnetic field is weak, these currents distort the 
earth’s field so that it appears as a paraboloid pointing at the sun.  At closer 
distances where the earth’s field is larger and essentially undistorted, the 
currents enter the ionosphere, flow along the magnetic field lines (in a more 
or less east – west direction) and then exit back out of the ionosphere.  These 
ionospheric currents (called the “auroral electrojet”) are largest in the 
northern regions of the earth and are responsible for the visible and very 
colorful aurora borealis.   But the large quasi-DC (i.e., these currents vary on 
a scale of one to several minutes) electric currents in the ionosphere can also 
cause large unexpected geomagnetically induced currents (GICs) in high 
voltage transmission lines (parallel to the currents) and their grounding 
terminations (IEEE 2013).  Absent sufficient warning and the use of 
appropriate countermeasures, these GICs can cause a severe impact on the 
transmission system (e.g, high harmonic levels due to saturation of 
transformer cores, generator reactive power output swings, voltage dips, 
negative sequence alarms and transformer failures) that can result in severe 
system disturbances.    

In March of 1989 a blackout occurred on the Hydro Quebec transmission 
system that was attributed to the impact of geomagnetic disturbances caused 
by solar storm activity (NERC 1989). This incident and numerous other 
equipment malfunction and/or damage events in both North America and 
Europe demonstrated the need to account for reliability risks due to space 
weather and its resultant geomagnetically induced currents (Elovaara et. al. 
1992).   

 As illustrated in Fig. 7.3.3, the quasi-DC ionospheric currents that cause 
these disturbances are often modeled as high altitude infinitely-long 
horizontal line currents although sometimes as infinitely-long finite-width 
sheet currents or finite length horizontal currents with vertical segments at 
the end to represent the entry and exit of currents from the ionosphere 
(Pirjola and Hakkinen, 1991). The current resides in the ionosphere at a 
height on the order of 100 km.   

More specifically, Fig. 7.3.3 shows a high altitude auroral electrojet current 
modeled as a line current parallel to the z axis that intersects the (x, y) plane 
at (xs, ys). It is assumed that the frequency of the electrojet current is ωs and 
that it propagates with propagation constant γs (shortly the variation of the 
fields in time will be shown explicitly).  Centered at (x, y) = (0, h) is (for 
simplicity) a two conductor power line of length ℓ terminated at each end by 
a balanced transformer with a center tap that is grounded through an 
impedance of ZG2 at z = 0 and ZG1 at z = ℓ.  It will be assumed here that the 
current induced on the two conductors (the same holds for the set of three 
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conductors in a three phase system) are identical and can be replaced by a 
single conductor centered at (0, h).  
 

 
 

Fig. 7.3.3.   High altitude auroral electrojet current above and parallel to a two conductor 
transmission line. 

 
The auroral electrojet current generates an incident z directed electric field 

at a point  hx,  (see Section 5 for its derivation) that can be described as the 

field from the source in free space and a “complex image” that represents the 
effect of the earth65   
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where 

                                                           
65 Note that this is not a divergence-less field as is often used in the GIC literature.  Hence it 
is necessary to identify the vertical electric field that reduces to the quasi-static electric field.  
Its effect will be shown later to cancel out of the final expression so that the result is 
equivalent to that derived under the assumption of a divergence-less current.     
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This interpretation (i.e., source plus “complex image” ) is illustrated in 

Fig. 7.3.4,  Here the line current source is located in free space at (x, y) = (xs, 
ys) and its return current in the same free space at a complex depth ys + α.     
 

 
Fig. 7.3.4.  Geometry for Complex Image formation of the source field 

 
In the formulations used here, it is also necessary to have an expression 

for the vertical electric field which is  
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It is shown in Section 10.3 of this text that for electrically short 

transmission lines (almost always the case at the frequencies of interest here) 
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the vertical electric field in (7.3.15) cancels a portion of the axial electric field 
in (7.3.14) when integrated around the loop.   The remaining part of the axial 
electric field can be identified with inductive coupling between the electrojet 
current and the transmission line.   

It has been assumed in this formulation of the problem that the earth is 
homogeneous and infinite in depth.  This cannot always be assumed because 
the frequency content of auroral electrojet currents is very low (i.e., << 1 
Hz).  For this reason, many calculations of geomagnetically induced currents 
have assumed 4 or more layers for the earth (and also assumed that the 
electrical constants for these layers are known) (Erinmez et. al 2000; Boteler 
and Pirjola 1997). 

This field (called 
ind

ezÊ ) and an approximate form valid for hys , , 

can be written as  
(7.3.16) 
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since h . To show the explicit dependence on frequency and 
conductivity, (7.3.16) can be written (using the approximation for α in 
(7.3.14)) as  
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One thing evident at this point is that (for given values of grounding 

impedance) the currents induced are larger for a region with low conductivity 
(i.e., high resistivity).  

 Without going into details at this point, the current induced on the power 

line by an electrojet current directly above it is proportional to
ind

ezÊ  and the 

length of the transmission line ℓ and inversely proportional to the total quasi-
DC impedance of the transmission line including the grounding 
impedances66.  The result is    

                                                           
66 When the vertical electric field is integrated over the vertical end segments of the 
transmission line, it cancels the quasi-electrostatic portion of the horizontal electric field for 
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where the transfer function  ,'
~

zH  can be written as67  
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Here  sI
~

 is the temporal Fourier transform of the electrojet current, 

 tis , swZ  is the self-impedance per unit length of the two parallel 

conductors, 2h + ℓ is the total length of the transmission line including the 

vertical segments each of length h and the grounding impedances 1GZ  and 

2GZ include the resistance and inductance of the transformer windings (at 

the quasi-DC frequencies of interest here) through which the induced current 
flows. 

Given this result, it is relatively straightforward to see how the time 
domain electric field can be calculated.  The derivation begins with the 
definition of the temporal Fourier transform and its inverse that can be 
found in (7.3.12) and (7.3.13).  Using the convolution identity, the inverse 

Fourier transform of the product     HF
~~

can be written as 

(7.3.20) 
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where the last steps can be taken because h(t) is the response to an impulse at 

t = 0 and hence,   0''  tth  for tt ' .   

For typical geomagnetic source currents, the induced current  ,
~

zIind
 

satisfies the conditions for its inverse transform to exist (Brigham, 1974). 

However, the inverse Fourier transform of  ,'
~

zH  does not exist because 

the function  is not integrable over the infinite range.  To resolve this 

situation, the inverse Fourier transform of the temporal integral of the 
induced current will be found with the final result for the induced current 
being the time derivative of this result.  This can easily be done since the 
following transform exists 

                                                                                                                                                
electrically short transmission lines.  The only remaining term is the “inductive coupling 
term.”  This phenomenon is described more fully in Chapter 10, Section 3.  
 
67 The designation H’ is given to the transfer function because as will be illustrated shortly, 
the inverse transform into the time domain will be done using the integral of H’ in the 
frequency domain.   
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More specifically, the inverse Fourier transform of  
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will be found where  
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It has been assumed that the frequency is low enough that all impedances 

in (7.3.19) are purely resistive. Hence the only frequency dependence is the 

/1  term and A and θA are real constants.  Next, it is known that  
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represents a Fourier transform pair. Hence,  
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where A is the same constant defined above.   
Finally, since the ultimate goal is to calculate the induced current which is 

the time derivative of the result just obtained,  
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Consider next an example of using this result for calculating induced 

currents in a power line.  In this case, the normalized induced current  
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is calculated.  The source current is assumed to be a linearly growing current 
for T0 = 200 seconds that reaches 20 kA and then (unphysically) stops 
abruptly as shown in Fig. 7.3.5  
 

 
Fig. 7.3.5. Auroral Electrojet Source Current 

 
Using integral tables from Gradshteyn and Ryzhik (2007), (7.3.27) can be 

evaluated to give 
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where T0 = 200 seconds.  The normalized current is shown in Fig. 7.3.6.   

 

 
Fig. 7.3.6.  Normalized current induced in a power line by the electroject current shown in 

Fig. 7.3.5. 
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Because of the dispersive nature of the earth, the current increases as the 
square root of time and aside from a (nonphysical) spike due to the assumed 
abrupt current cutoff, decays very slowly towards zero after the source 
current becomes zero.   

With respect to the time variation of the system voltages and currents, this 
geomagnetic induced current causes a nearly constant current (in the 
transformer windings.  This current, in turn, creates a nearly constant flux 
through the cores of the transformers terminating the transmission line.   

Now that the current induced on the transmission line has been found, 
the issue of its effect on the power system and its components will be 
addressed.  More specifically, the effect of this quasi-dc current on the 
transformers that terminate the transmission line will be addressed.   

The relationship between the voltage  tvw  across a transformer’s winding 

terminals and the flux  tc  in its core is (Chapman 2002) 
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Hence, if the system voltage across the winding is  

 

   tVtv mw cos                                   (7.3.30) 

 
The flux passing through the transformer core is sinusoidal and equal to  
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Now, the core of the transformer is generally made of nonlinear material 

so that the relationship between flux (or the magnetic flux density, B) and the 
current flowing in the winding (proportional to the magnetic field intensity, 
H) in the winding is also nonlinear.   A somewhat idealized version of the 
relationship between flux and current is illustrated in Fig. 7.3.7.  

In this case, the relationship between flux (or B) and current (or H) is 

linear (i.e., iw = ϕ/10) as long as the flux is less than 10 (unspecified units). 
However, if the total flux either exceeds 10 or is smaller than -10, the 

increase in iw for a given increase in ϕ is markedly greater (i.e., Δiw = +/- 

5.0ϕ).   
Consider, first the transformer under normal operating conditions for 

which the transformer is approximately linear. In this case, the winding 
current is simply  
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where the constant A is determined by the characteristics of the core.  If 
however, there is a quasi-DC geomagnetically induced flux

gi in the core, 

then the total flux in the core is now  
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Fig. 7.3.7. Idealized transformer flux-current characteristic (no specific units). 

 

 
                              (a)                                                 (b)    

 
Fig. 7.3.8.  a) Transformer core flux components (no specific units) and b) Total transformer 

winding current with and without the geomagnetically induced flux assuming the 
transformer characteristic given in Fig. 7.3.7 (no specific units). 
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The geomagnetically induced core flux
gi , the core flux without any 

geomagnetically induced flux (i.e., 7.3.31) and the total core flux (i.e., 7.3.33) 
are plotted in Fig. 7.3.8a.   While under normal operating conditions, the core 
flux does not enter the saturation region, the total flux (including the 
geomagnetically induced flux) exceeds the level at which the core enters 
saturation at peak flux values (i.e., in this case those for which the total flux 
exceeds 10 units on the scale of Fig. 7.3.8a).   

The transformer winding current is radically different during the half cycle 
for which the geomagnetically induced flux adds to the normal flux due to 
the fact that the transformer core saturates for values of flux greater than 10 
(in this example). This winding current with and without the added quasi-DC 
flux is plotted in Fig. 7.3.8b.  Clearly even small excursions of the total flux 
into the saturation region can cause very large increases in winding current 
for short periods of time during each cycle that can (as mentioned earlier) 
have significant consequences for the operation of the power system (IEEE 
2013).  These include transformer heating (although modeling and experience 
indicate that this is not a large problem), transformer shunt reactive loading 
that can cause voltage stability issues and the introduction of large harmonic 
currents that can lead to unintended relay tripping.     
 

Unbalanced excitation of the transmission line (phase-to-ground fault current 
or lightning injection)  
The purpose of this section is to find the current distribution on a two wire 
symmetric transmission line due to a current injected (or removed) at the 
center of the first conductor as shown in Fig. 7.3.9.  This situation can occur 
when either there is a phase to ground fault or a lightning strike to the 
conductor.   

 
 

Fig. 7.3.9.  A current injected into conductor #1 at z = 0. 
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At low frequencies, this problem can be solved using the existing solution 
for a voltage source on the conductor in the following way.  Consider the set 
of two equal and opposite voltage sources on conductor #1 (with no sources 
on conductor #2) separated by a distance δ as illustrated in Fig. 7.3.9. Notice 
that the total voltage across the pair of sources is zero but there is a 
difference in current at z = 0 that is supplied by an injected current. This is 
characteristic of a current source driving the conductor at z = 0.   

 

 
Fig. 7.3.10.  Voltage sources with equal and opposite amplitudes separated by a distance δ on 

conductor #1 of a symmetric two conductor transmission line. 

 
The current to the right can be calculated by superimposing the current 

from the two sources and assuming that the difference in currents at z = 0 is 
the injected current.  Here, the current for z > 0 will be found; the current 
for z < 0 can be found in a similar way.  

 The fundamental result needed is that for the geometry shown in Fig. 
7.1.1 with the external electric field set equal to zero.  The starting point is 
Equations (7.2.44) and (7.2.45) for the common and differential mode 
currents with the respective propagation constants in (7.2.41) and (7.2.43).   

The total currents for z  > δ/2 on conductors #1 and #2 respectively due 

to a single voltage source of amplitude   2/ˆ V  at z = δ/2 on conductor #1 

is68 
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2
8

ˆ

8

ˆ
ˆ 







  





zj

d

zj

c

dc e
VYYj

e
VYYj

zI   (7.3.35) 

 
Similarly, the currents for z > δ/2 on conductors #1 and #2 respectively 

due to a single voltage source of amplitude   2/ˆ V at z = -δ/2 on 

conductor #1 is 

                                                           
68 Of course this is a low frequency approximation, but should be valid to frequencies up 

to at least 1 MHz.  The solutions for arbitrary frequencies can be found earlier in this 

chapter.   
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 
        2/12112/1211

1
8

ˆ

8

ˆ
ˆ 







  





zj

d

zj

c

dc e
VYYj

e
VYYj

zI   (7.3.36) 

and 

 
        2/12112/1211

1
8

ˆ

8

ˆ
ˆ 







  





zj

d

zj

c

dc e
VYYj

e
VYYj

zI   (7.3.37) 

 
The total current on conductor #1 due to both sources (for z > δ/2) is 

then  

 
 

 

 













 















 











d

jj
zj

c

jj
zj

dd

d

cc

c

ee
eYY

ee
eYY

Vj
zI













2/2/

1211

2/2/

12111
8

ˆ
ˆ

           (7.3.38) 

 
while the total current on conductor #2 from both sources (for z > δ/2) is  
 

 
 

 

 













 















 











d

jj
zj

c

jj
zj

dd

d

cc

c

ee
eYY

ee
eYY

Vj
zI













2/2/

1211

2/2/

12112
8

ˆ
ˆ

.        (7.3.39) 

 

Now, 12/,2/  dc because δ is assumed to be small compared to 

the wavelength of either mode, hence the terms involving δ in (7.3.38) and 
(7.3.39) can be simplified as  
 

 










jj
ee

c

c

c

jj cc










 
 2/sin

2
2/2/

               (7.3.40) 

 
and  

 










jj
ee

d

d

d

jj dd










 
 2/sin

2
2/2/

              (7.3.41) 

 
Hence, (7.3.38) and (7.3.39) become  

 

 
        zjzj dc e

VYY
e

VYY
zI

   





8

ˆ

8

ˆ
ˆ 12111211
1  , z > 0     (7.3.42) 

 
and  
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 
        zjzj dc e

VYY
e

VYY
zI

   





88

ˆ
ˆ 12111211

2 ,   z > 0     (7.3.43) 

 
These can be simplified further to  

 

 
 





























 zjzj dc e
Y

Y
e

Y

YYV
zI



11

12

11

1211
1 11

8

ˆ
ˆ ,   z > 0     (7.3.44) 

and  

 
 





























 zjzj dc e
Y

Y
e

Y

YYV
zI



11

12

11

1211
2 11

8

ˆ
ˆ ,    z > 0    (7.3.45) 

 
Now, from (7.2.35) and (7.2.36) 

 





























a

h

d

s

a

h

j
Y

2
ln

ln
2

ln

2

22

0

11


                         (7.3.46) 

and  

 





























d

s

d

s

a

h

j
Y ln

ln
2

ln

2

22

0

12


 .                        (7.3.47) 

Hence  





















a

h

d

s

Y

Y

2
ln

ln

11

12    .                                   (7.3.48) 

Hence,  
 

 
 






























































































 zjzj dc e

a

h

d

s

e

a

h

d

s

YV
zI



2
ln

ln

1
2

ln

ln

1
8

ˆ
ˆ 11
1 , z > 0 (7.3.49) 

and  
 

 
 






























































































 zjzj dc e

a

h

d

s

e

a

h

d

s

YV
zI



2
ln

ln

1
2

ln

ln

1
8

ˆ
ˆ 11

2 , z> 0 (7.3.50) 
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where from (7.2.41) and (7.2.43)  
 

   
  iw

cc
c ZYY

ad

hs

hahdJhahJ
k 1211

2

0

2

2
ln

,,,,0
1 





























       (7.3.51) 

and 

   
  iw

cc
d ZYY

as

hd

hahdJhahJ
k 1211

2

0

2

2
ln

,,,,0
1 





























 .    (7.3.52) 

 

where    2/1
22

2 dhs  . 

 

Now, c  and d  can be written as 

 

   
22

dcdc
c








                               (7.3.53) 

and 

   
22

dcdc
d








                            (7.3.54) 

 
With these substitutions the currents for z > 0, can be written as  

(7.3.55) 

 
   

       











































































































j

ee

a

h

d

s

j
ee

e
YV

zI

zjzjzjzj

zj

dcdcdcdc

dc

22
ln

ln

2

4

ˆ
ˆ

2222

211
1






                 

and  
(7.3.56) 

 
   

       











































































































22
ln

ln

2

4

ˆ
ˆ

2222

211
2

zjzjzjzj

zj

dcdcdcdc

dc

ee

a

h

d

s

j

ee
j

e
YV

zI





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Finally, using trigonometric substitutions 
(7.3.57) 

 

 
       

































































2
sin

2
ln

ln

2
cos

4

ˆ
ˆ 211
1

z

a

h

d

s

j
z

e
YV

zI dcdc
zj dc 



      

z > 0       
and  

(7.3.58) 
 

 
       

































































2
cos

2
ln

ln

2
sin

4

ˆ
ˆ 211

2

z

a

h

d

s

z
je

YV
zI dcdc

zj dc 


    z > 0      
 

Next,  

    dcdcdc   22                        (7.3.59) 

 

Using the definitions of  c  and d ,  

(7.3.60) 

 

       
iw

cc

dc

ZY

d

s

a

h

ahhahdJdshahJ
k 12

22

2

0

22

2

ln
2

ln

/2ln,,/ln,,0
2 







































 

        

 
Given this, 

 
 dc

iw

o

dc ZY
Qk








 122

2
 .                        (7.3.61) 

where  

       

  

















































d

s

a

h

ahhahdJdshahJ
Q

dc

cc

22 ln
2

ln

/2ln,,/ln,,0



,        (7.3.62) 

   
Hence (for z > 0)  

(7.3.63) 



 

335 

 
   

   

































































































z
ZY

Qk

a

h

d

s

jz
ZY

Qk

e
YV

zI

dc

iw
o

dc

iw
o

zj dc






122122

211
1

sin
2

ln

ln

cos

4

ˆ
ˆ

  

and  
(7.3.64) 

 
   

   

































































































z
ZY

Qk

a

h

d

s

z
ZY

Qkj

e
YV

zI

dc

iw
o

dc

iw
o

zj dc






122122

211
2

cos
2

ln

ln

sin

4

ˆ
ˆ

 

 
The current at z=0 on conductor # 1 is  

 

 
   

2

ˆ

4

ˆ
0ˆ 11

1

 faultIYV
I                           (7.3.65) 

 
Hence (again for z  > 0) (where, again, Q is defined in (7.3.62)) 

 (7.3.66) 

 
   

   




































































































z
ZY
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and  

(7.3.67) 
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Finally, if    12/  zdc   and z > 0,  
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For typical values of parameters, 
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   0ˆ0ˆ
12 II   as expected.   

Before interpreting this result further, it is useful to look more carefully at 

the current at z = 0 by examining the case for  0ˆ
1I and  0ˆ

2I before taking 

the limit as δ → 0.   
These currents can be found by considering the sums (7.3.34) + (7.3.36) 

and (7.3.35) + (7.3.37). Since 2/2/  z  when z = 0,  
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and 
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    (7.3.71) 

 
Clearly, the current at z = 0 is equal to zero on both conductors as it 

should be by symmetry.  But, on conductor #1, the current rises quickly to 
half the fault current on either side of the source area while on conductor #2, 
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the current rises to a fraction    ahdsYY /2ln2//ln2/ 1112  of the fault 

current. 
 

Interpretation of the Result 
An examination of (7.3.68) and (7.3.69) reveals that one term in each 
increases algebraically with z.  Clearly this behavior will be more evident in 

(7.3.69) because    ahds /2ln/ln  .  Hence the linearly increasing term is 

the most important part of (7.3.69) but only a small part of (7.3.68).  
Ultimately, the current will no longer grow either because the argument of 

the sine in (7.3.68) will be large enough that   zdc 2/  is no longer << 1 

or because the exponential decay due to the term   2/exp zj dc    

becomes important.  Nevertheless, this is an unexpected enough result that it 
is worth some additional interpretation.   

As mentioned above, the second term of each current in (7.3.68) and 
(7.3.69) is especially interesting because it grows linearly near the source.  
This behavior can be understood in the following way.  Recall the problem 
of driving a circuit with a voltage source at its natural (i.e., resonant) 
frequency as shown in Fig. 7.3.10.  It is assumed that the source is “turned 
on” at t = 0.  
 

 
 

Fig. 7.3.11 A lossless LC circuit driven at its natural (i.e., resonant) frequency LC10   

 
Clearly, in the steady state, the current that flows in this circuit is 

undefined because the impedance of the LC combination is

  0/ 00  CjLjZ  .  Hence, it is illustrative to study the circuit in the 

time domain for t > 0.  It is well known that the differential equation for the 
current that flows in this circuit is  
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1
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LCdt

tid
                (7.3.72) 

 

The complementary solution  tic  for this equation is of the form  
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     tBtAtic 00 cossin                          (7.3.73) 

 
Given that the source frequency is ω0, the particular solution for this 

equation cannot take the form of either of complementary solutions.  Rather, 
it must be of the form (Ford, 1955) 
 

     tBttAttic 00 cossin                      (7.3.74) 

 
Without going into the details of the solution which would require 

imposition of specific boundary conditions, it is simply worth noting that the 
current in this circuit will increase linearly with time until something about 
the circuit changes (e.g., the source current limit is reached or a circuit 
element becomes nonlinear).   

By analogy to this time domain problem, conductor #2 in Fig. 7.3.7 is 
exposed to an incident field over its length that has natural spatial 

frequencies of   2/dc    and   2/dc   . These are the same as the 

natural spatial frequencies of current on Conductor #2.  Hence it is to be 
expected that the current induced on conductor #2 will have a component 
that is linearly growing along its length (Olsen, 1984).  Of course, the current 
on conductor #2 eventually becomes large enough to influence the current 
on conductor #1 and the process is limited as indicated in (7.3.66) and 
(7.3.67).  In addition it is limited by the exponential decay due to the term 

  2/exp zj dc   .   

 

Transform to the Time Domain 
It is assumed that the source current has been transformed into the 
frequency domain using the Fourier transform 
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Hence, the current on conductors #1 and #2 can be found by evaluating 

the inverse Fourier transforms 
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using (7.3.66) and (7.3.67) as integrands in the respective inverse transforms.  
Given the complexity of (7.3.66) and (7.3.67), these transforms will be 
evaluated using the inverse Fast Fourier Transform (FFT) (Brigham, 1974).   

For “large” values of z,  ,ˆ
1 zI  and  ,ˆ

2 zI  oscillate considerably in the 

ω domain. This behavior causes numerical difficulties for “large” z if the 
inverse FFT is applied directly to (7.3.66) and (7.3.67).   To overcome this 
problem, it is helpful to recall the “time shift” theorem,  
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Hence, if it is possible to separate out (at least most of) this oscillation in 

the form 0tj
e


it is only necessary to compute the inverse FFT of  ,'ˆ zI , 

which is much easier because it does not oscillate rapidly as a function of ω 

as does  ,ˆ zI .   

The factor that contains most of the oscillation behavior of either (7.3.66) 
or (7.3.67) is  

  2/exp zj dc                        .         (7.3.81) 

 

But, for most practical situations, 000 , kkk dc    and most of the 

oscillation and be taken out by separating out the factor  

   czjzjk /expexp 0   where 00/1 c is the speed of light in free 

space.  Hence  
(7.3.82) 
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where 000 / zczt  where the part in brackets oscillates much less 

rapidly than  0exp tj .  Then, if  
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then, 
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To complete this derivation, it is necessary to define a pulse.  A number 

of different pulses could  be used, but here, the one used is  
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which has a Fourier transform  
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Alternative method for very large values of z  
If the method described above for removing the oscillatory term is not 
sufficient, a larger fraction of the oscillation can be eliminated by separating 
the currents into their component modes.  More specifically, from (7.3.49) 
and (7.3.50),   
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where the component modes are  
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and  
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where (7.3.64) has been used.  Similarly,  
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The pulse that will be used to represent the fault current is described in 
(7.3.87) and (7.3.88). From Parseval’s theorem, roughly half the energy of the 
pulse is contained in frequencies below ω = a/2.  Hence, it is reasonable to 
write the first term of (7.3.90) as  

(7.3.93) 
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Most of the integrand’s oscillation is contained in the term 
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which is in the form required to use the time shift theorem.  Hence, a more 
stable form for calculating this component of the current is  
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Similarly,  
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Hence,  
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Note that the speeds of the two modes are approximately  
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and   
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respectively. Generally, the differential mode will be faster since it is not 
slowed down as much by electromagnetic fields in the earth.   
 

Results 
The currents  tzi ,1  and  tzi ,2  were determined for several relevant values 

of z using the geometry of Fig. 7.3.7, the expressions (7.3.85) and ((7.2.86) 
and a fault current  

    t

fault tetUti
6101010
                                   (7.3.100) 

 
which has a (zero to peak) rise time of 1 μsec and a peak amplitude of 3678 
amps at 1 μsec.  The geometric parameters used were a = 1 cm, d = 10 m 
and h = 10 m while the electrical parameters of the wire and earth were 
assumed to be σw = 3.5 x 107 S/m (i.e., aluminum), σ2 = 0.01 S/m and ε2r = 5.   

In each case, the current is plotted with an advance of zkt 00  so that the 

currents plotted for different values of z can easily be shown on the same 
plot.  The inverse FFT used 215 points with a sample rate in time of 
32,768,000 per second.  The frequency spectrum extended from 0 – 16.384 
MHz.  The results are shown in Fig. 7.3.11.   

  A number of things can be observed in these plots.   First consider  ti1 .  

At z = 0, the peak current is 1839 amps as expected since the total fault 
current of 3678 amps splits in half as it enters the conductor.  As expected, 
and as observed for z = 10 km, the current peak decays for larger values of z 
since there is attenuation of both modal currents due to losses in the 
conductor and the earth.  At z = 50 km, it is possible to observe the splitting 
of the differential mode (which occurs first at about 2 μsec since its speed is 
the faster of the two and has a larger peak due to lower earth losses) and the 
common mode (which occurs later at about 20 μsec since its speed is the 
slower of the two and has a smaller peak due to larger earth losses).  Further, 
the common mode is more spread out more due to dispersion (i.e., frequency 
dependent speeds) from the earth.  At z = 100 km, the splitting of the two 
modes is essentially complete. The differential mode current is centered at 
approximately 4 μsec and the total current goes to zero by 20 μsec.  
Following this, the current increases again as the common mode current 
reaches z = 100 km at about 30 μsec.   
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(a) 

 
(b) 

 
Fig. 7.3.12.  Currents (a)  001 , ztzi   and (b)  002 , ztzi   on conductors #1 and #2 

respectively due to the fault current (7.3.95) at z = 0 on conductor #1 for several values of z. 

 

Next consider  ti2 . At z = 0, the peak current is approximately -200 

amps.  This occurs because the excitation amplitudes for the differential and 
common modes are slightly different according to (7.3.79) and (7.3.80).  
Since the differential mode amplitude is larger (and negative for conductor 
#2) and the total current on conductor #2 is the sum of the differential and 
common mode currents, the current is relatively small in the negative 
direction.  Interestingly, the current peak increases for larger values of z (e.g., 
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z = 10 km) since the common mode is delayed by its slower speed and 
attenuated, hence the sum of the two modal currents grows at smaller times 
because there is less cancellation between differential and common modes.  
This growth is consistent with the previous discussion about the current in 
the frequency domain.   The total current actually becomes positive (e.g., z = 
10 km) at later times because the differential mode has now passed while the 
delayed common mode arrives.  Hence the common mode current is 
dominant for later times.  At z = 50 km, the splitting of the negative 
differential mode current (which occurs first at about 2 μsec since its speed is 
the faster of the two and has a larger peak due to lower earth losses) and the 
positive common mode current (which occurs later at about 20 μsec since its 
speed is the slower of the two and has a smaller peak due to larger earth 
losses) becomes more obvious.  Again, the common mode current is more 
spread out due to its larger dispersion.  At z = 100 km, the splitting of the 
two modes is essentially complete. The differential mode current is centered 
around approximately 4 μsec  and the total current goes to zero by 20 μsec.  

It is interesting to note that    titi 12  at short times as it should because 

the differential mode dominates, while    titi 12   at later times because the 

common mode dominates.     
 
 

7.4 The Unbalanced Two Wire Line – Low 
Frequency 

 
The results given in the last section are specific to the case for which the 
transmission line is symmetric with respect to the ground.  For the more 
general case, an anti-symmetrical excitation (i.e., V2 = -V1) will not produce 
anti-symmetric currents.  To illustrate how this happens, consider the 
problem solved here.   
 

Derivation 
Consider the case shown in Fig. 7.4.1.  Here the two conductors are no 
longer at equal heights above the earth69.   

Again, (7.2.14) applies 
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                     (7.4.1) 

 

Hence, the matrices Z   and A  are no longer symmetric as it was the case 

in Section 7.2.  This difference, while seemingly subtle, has some important 
consequences.   

                                                           
69 Again, for simplicity here, the conductor loss Ziw = 0 
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Again Z  is the impedance matrix for this set of conductors and A  is the 

matrix of potential coefficients.  
 

YCjAj 



1

                                    (7.4.2) 

 

where Y is the admittance matrix for the two conductors in the 

configuration of Fig. 7.4.1 and is equal to Cj where C is the capacitance 

matrix for this configuration.   
 

 
 

Fig. 7.4.1.  An unbalanced two wire transmission line above the earth. 

 
But in this case Z11 ≠ Z22 , Y11 ≠ Y22.  Instead, (with reference to 7.2.11 

and 7.2.12) 
 

     
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If, as before, (7.4.1) is pre-multiplied by Y  

 

  VYIZY ˆ~̂2                                    (7.4.3) 

 

where │ I
~̂

│is the matrix of conductor currents and│V̂ │is the matrix of 
conductor source voltages.   
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Again, if ZYQ 2
is a 2 x 2 matrix and has 2 distinct eigenvalues, then 

it has two distinct eigenvectors that are orthogonal with respect to 
2Q .  

Any two component vector (e.g., │ I
~̂

│) can be expanded in this set of 
eigenvectors so that  

 

gmII
~̂~̂

                                          (7.4.4) 

 

where│ gmI
~̂

│is the matrix of “component” amplitudes, and  is a square 

matrix (by columns) of normalized eigenvectors of ZYQ 2
.  The 

difference for the case of vertically oriented conductors is that the impedance 
and admittance matrices are no longer symmetric.  The eigenvectors and 
eigenvalues can be found in the following way from the definition of 

eigenvectors.  More specifically the eigenvalues of 
2Q can be found from  

 

  0det 22  UQQ ss                          (7.4.5) 

  

where 
2

sQ and s are the matrix and its eigenvalues for the symmetric case 

considered in Section 7.2, 
2Q and  are the differences between the 

matrix and eigenvalues respectively for the symmetric and unsymmetric 
cases.   

Given that the matrix is a 2 x 2 matrix, the determinant can be written 
explicitly as  

(7.4.6) 
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where    02
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2
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2

11  ssss QQQQ  since this is for the symmetrical 

case.  (7.4.6)  can be expanded in a quadratic expression in the variable ∆λ as 
 

(7.4.7) 
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(7.4.7) can be expanded and solved explicitly for i as  
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cb
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To first order (i.e., ignoring (∆λ)2, 
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The eigenvectors can be derived from this result by first writing 

(7.4.10) 
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where 1122 YYY  , 1122 ZZZ  . 

 

Now, the eigenvectors for the case 0 ZY  (since the matrix is 
symmetric) are  
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Hence, (for the eigenvector #1 case) 

(7.4.12) 
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which can be solved for 11 and 12  since 1122 YYY  , 1122 ZZZ 

are known, and 1s  (the eigenvalue #1 in the symmetric case) is equal to 

  12111211 YYZZ   and 1 is the difference between the symmetric and 

unsymmetric case eigenvalues for  i = 1.   
Once the normalized eigenvectors are known, it is possible to solve for 

the modal currents from   
 

  VYIUQ gmd
ˆ~̂ 122 

                          (7.4.13) 

 

where U is the unitary matrix, 
2

dQ is the diagonalized version of 
2Q  and 

   
221

dQQ 
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                                    (7.4.14) 

 

Here  is the normalized matrix (by columns) of the eigenvectors in this 

case and
1

  is its inverse.  Since both 
2

dQ  and U  are diagonal matrices 

(7.4.13) can be solved as individual equations to yield.  
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and  
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A numerical study of (7.4.15) and (7.4.16) shows that these modes are no 

longer purely common or differential.  This has consequences for the balance 
of transmission line currents as discussed in the next section.  
 

Comment about balance 
At this point, it is very important to point out a difference between the 
“unsymmetric” geometry case and the “symmetric” geometry case discussed 
in Section 7.2.  In the symmetric geometry case an anti-symmetric source 

(i.e., 
21

ˆˆ VV  ) excited only the component associated with the (1,-1) 

eigenvector and since the other component was never excited, only the anti-
symmetric component will exist at arbitrary distances along the transmission 

line Thus, if 
21

ˆˆ VV  , 
21

~̂~̂
II   for all values of z70. This will generally not be  

  

                                                           
70 Another reason for unbalanced currents is that the loads on each phase are not equal 
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the case for conductor configurations that are non-symmetric such as the 
one shown in Fig. 7.4.1.  In these “unsymmetric” cases, an anti-symmetric 

excitation (i.e., 
21

ˆˆ VV  ) will excite BOTH components.  One result is that 

the currents at the input are no longer equal and opposite (i.e., 
21

~̂~̂
II  ).  In 

addition, because each component is attenuated at a different rate because 
each has its own (and generally different) propagation constant, the ratio of 
the currents at arbitrary distances down the transmission line will be different 
than at the input and (in general) will become even less balanced.  Finally, as 
discussed in Section 7.2, non-symmetrical termination impedances (or 
junctions along the transmission line) can cause further unbalance in the 
currents.   
 
 

7.5 The general multiconductor case – low frequency 
 

Derivation 
The solution for propagation of currents on a general number NC 
ungrounded conductors above earth as shown in Fig. 7.5.1 will be 
summarized in this section.  Only a summary will be given because even in 
the low frequency case, the solution is rather complex.   

 
 

Fig. 7.5.1.  Geometry for propagation on NC conductors above earth.   

 
Following the mathematical formulation of Section 7.2 but for NC 

conductors 
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where Z  and A  are NC x NC matrices of impedance and potential 

coefficients respectively,  I
~̂

is an NC  x 1 column matrix of wire currents 

and V̂  is an NC  x 1 column matrix of voltage generators in series with the 

conductors at z = 0.   
Here  
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is a mutual impedance per unit length.  The potential coefficients are   
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As before, the admittance per unit length matrix Y  is related to the 

matrix of potential coefficients as 
 

YAj 
1

                                        (7.5.5) 

 

where Y is an NC x NC matrix.   

To solve for the currents, (7.5.1) is first pre-multiplied by Y to get  

 

    VYIUQ ˆ~̂22                                (7.5.6) 

 

where ZYQ 2
 is an NC x NC matrix and U  is an NC x NC unit matrix. 

If it has NC distinct eigenvalues, then it has NC distinct eigenvectors that are 
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orthogonal with respect to
2Q  and any n component vector (e.g.,  I

~̂
) can 

be expanded in this set of eigenvectors so that  
 

    gmII
~̂~̂

                                        (7.5.7) 

 

where  gmI
~̂

 is an NC x 1 column matrix of component amplitudes and 

is an NC x NC matrix of normalized eigenvectors arranged by columns.  Now, 

because  is a unitary matrix, it has the property that its inverse is equal to 

the complex conjugate of its transpose (i.e., its associate) so that 
 

*1 T
 


                                            (7.5.8) 

 

Further, because the eigenvectors are orthogonal with respect to 
2Q  
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where 
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dQ is a diagonal matrix with elements equal to the eigenvalues of 
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If (7.5.6) is pre-multiplied by 
1

 and the above mentioned properties of 

 are used,  

    VYIUQ gmd
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                          (7.5.11) 

 
The current component amplitudes can easily be determined from this 

equation.  More specifically, since  
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is a diagonal matrix, its inverse may be obtained by inverting each term of the 
matrix.  The result is 
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The individual conductor currents can then be found from (7.5.7).   

Currents in the space domain can be found using the inverse Fourier 
transform as illustrated in Section 4.6.  More specifically, for 
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Hence,  
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The effect of shield wires 
The derivation presented above can be applied to transmission lines that 
have grounded shield wires by modifying the impedance and admittance 

matrices Z   and Y in the following way.  

  
The impedance matrix  
Consider a transmission line with NC phase conductors and Nsh shield wires.  
According to (7.5.1) its impedance matrix satisfies the following equation for 
γ ≈ 0 so that the effects of capacitance can be neglected.71 

                                                           
71 This corresponds to the case for which the current does not vary in the space domain.  An 
alternative derivation can be done in the space domain using a short segment of transmission 
line (Anderson, 1973) 
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where 
 

ppZ is the (NC x NC) impedance matrix for the phase conductors only 

ggZ is the (Nsh x Nsh) impedance matrix for the shield wires only 

T

gppg ZZ   (by reciprocity) is the (Nsh x NC) matrix of mutual 

impedances between  phase conductors and shield wires 

│ pI
~̂
│is the 1 x NC matrix of phase conductor currents 

│ gI
~̂
│is the 1 x Nsh matrix of shield wire currents 

│V̂ │ is the 1 x NC matrix of voltage sources in series with the phase 
conductors.   As shown in Section 4.7, this corresponds to a line – 

ground voltages of 2/V̂ . 

0 is the 1 x Nsh matrix of voltage generator amplitudes in series with the 

shield wires that are assumed to be zero. 
 

The bottom set of equations of (7.5.15) can be separately solved to get  
 

pgpggg IZZI
~̂~̂ 1

                                 (7.5.16) 

 
It is possible, then, to substitute (7.5.16) into the top set of equations of 

(7.5.15) to get  

  VIZZZZ pgpggpgpp
ˆ~̂1




                   (7.5.17) 

 
Hence the impedance matrix for an NC conductor power line (with Nsh 

non-excited shield wires) can be written in terms of the phase currents only 
as (Anderson, 1973).  
 

gpggpgpppp ZZZZZ
1

'


                    (7.5.18) 

 
The admittance matrix 
In the electrostatic case, the potential matrix (i.e., the inverse of the 
admittance matrix divided by jω – see (7.5.5) ) for a transmission line with NC 
phase conductors and Nsh shield wires satisfies the following equation.    
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
                              (7.5.19) 

where  
 

ppA is the (NC x NC) potential matrix for the phase conductors only 

ggA is the (Nsh x Nsh) potential matrix for the shield wires conductors 

only 
T

gppg AA   (by reciprocity) is the (Nsh x NC) matrix of mutual 

potentials between phase conductors and shield wires 

│ p̂
~ │is the 1 x NC matrix of phase conductor line charge densities  

zIj  /)/(   

│ g̂
~ │is the 1 x Nsh matrix of shield wire line charge densities 

│ pV̂ │is the 1 x NC matrix of phase conductor voltages (i.e. voltages with 

respect to ground) 

0 is the 1 x Nsh matrix of shield wire voltages with respect to ground 

since they are assumed periodically grounded with spacing much less 
than a wavelength72 

 
In a similar way to the derivation for the impedance matrix, the bottom 

set of equations for (7.5.19) can be solved to get  
 

pgpggg AA  ~̂~̂ 1

                          (7.5.20) 

 
It is possible, then, to substitute (7.5.20) into the top set of equations of 

(7.5.19) to get 
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
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                    (7.5.21) 

 
Hence the potential matrix for an NC conductor power line (with Nsh 

grounded shield wires) can be written in terms of the phase line current 
densities only as  

gpggpgpppp AAAAA
1

'


                         (7.5.22) 

 

                                                           
72 If the frequency is in the Megahertz range (such as for radio noise), this approximation is 
no longer generally valid. 
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Hence,  
 

ppppppp VCVA ˆˆ~̂ '
1

' 


                           (7.5.23) 

and  
''

pppp CjY                                     (7.5.24) 

 
Thus, as long at the shield wires are periodically grounded with spacing 

significantly smaller than a wavelength, the matrices 
'

ppZ   and 
'

ppY in 

(7.5.18) and (7.5.24) respectively can be substituted for the impedance and 

admittance matrices Z   and Y  in (7.5.1) to analyze high voltage 

transmission lines with shield wires.    
 

Example results and interpretation  
An example three phase transmission line for which individual phase 
conductor currents will be computed is shown in Fig. 7.5.2.  For all results, 
the voltage V in series with each conductor is 100 kV which (since the line to 
ground voltage, Vℓg, is V/2) results in a line-to line voltage Vℓℓ of 86.6 kV.  
The phasing of the line is as shown in the Figure with phases A, B and C 
equal to  0, -120 and 120 degrees respectively.   
 

 
 

Fig. 7.5.2. The “generic” transmission line used for calculation of phase currents.  For all 
examples given here, a = 0.01 meters and the earth relative dielectric constant εr2 equals 5. 
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The “base case” is a horizontal transmission line with y1 = y3 , d/2 and y2 
equal to 15, 5 and 15 meters respectively above an earth with conductivity σ2 
= 0.01 S/m . The results for this “base case” are shown in Fig. 7.5.3.  At the 
input of the transmission line, the amplitudes of the three phase currents 
range from 123 to 134 amps, a spread of nearly 10% of the average input 
current.   This spread in values occurs because the simple symmetry evident 
in the two conductor transmission line in Fig. 7.1.1 is complicated by the 
addition of a third conductor. However, while it is not surprising that the 
Phase A (i.e., center) current is different for the others, geometric symmetry 
and the fact that the voltages on phases B and C in the phasor domain have 
some symmetry, one might expect that the currents in phases B and C would 
have equal magnitudes. This issue will be examined in the next paragraphs.   

 
Fig. 7.5.3.  Individual Phase Currents for the Case y1 = y3 = 15, d/2 = 5, y2 = 0 meters, σ2 = 

0.01 S/m. 

 
The vector of line to ground phasor voltages for each of the cases 

examined can be split into real and imaginary parts as shown in (7.5.25). 
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It can be shown that the currents induced on the conductors by the real 

and imaginary parts of the line to ground voltage vector symmetric and anti-
symmetric respectively.  Hence, in each individual case, the currents on 
phases B and C have identical magnitudes.   

The asymmetry in the current magnitudes for the sum of these currents 
results from the fact that the conductors and the earth are lossy and, hence, 
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the phases of the currents are no longer 0, -120 and 120 degrees respectively.  
Rather, they can be written (with the phase term “j” separated from the 

currents due to giV ) as  
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If these currents are added, the results for phase currents B and C are  
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Clearly, if the currents in (7.5.26) had no imaginary parts, then the 

magnitudes of the phase B and C currents would be the same.  However, 
since there is loss in the conductors and the earth, these imaginary parts are 
not zero and  
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 (7.5.28) 

 
The last term of cross products is the term responsible for the fact that 

the phase B and C current magnitudes are not equal.  
It is also clear from Fig. 7.5.3 that all currents decay as a function of 

distance along the transmission line because of losses in both the conductors 
and the earth. This is to be expected due to the fact that according to (7.5.14) 
each geometric mode decays exponentially with z, albeit with a different 
propagation constant Qdnn.  For this transmission line, the current decay is  
somewhat more than 10% after 1000 km and appears to be a linear decay 

because   1Im zQdnn  and   zQee dnn

zQjzjQ dnndnn Im1
)Re(


 . Finally, the 

current balance changes as the distance along the transmission line is 
increased.  This is because each of the different modes of propagation has a 
different attenuation constant so that each current decays at a somewhat 
different rate.      Thus, the ratio of the different current amplitudes will 
change with distance.   

In the next sequence of figures, one parameter will be varied in each to 
illustrate its effect on the current excitation and propagation process.  The 
first of these is shown in Fig. 7.5.4 in which the earth conductivity is changed 
to 0.001.  It is clear from this figure that the change in the currents is 
minimal.  In Fig. 7.5.5, y2 is increased to 23.67 so that the transmission line 
becomes a “delta” configured transmission line.  Two things can be noted 
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here.  First, Phase currents B and C are essentially the same.  It turns out that 
they are not identical, but the cross terms in (7.5.28) nearly cancel out.  
Second, the current magnitudes are more nearly the same.  This is 
characteristic of transmission lines that have more symmetry such as the 
delta configuration.  It is clear, however, that the balance changes with 
distance as with the horizontal configuration.     

 

 
Fig. 7.5.4.  Individual Phase Currents for an earth of lower conductivity (y1 = y3 = 15, d/2 = 

5, y2  = 15 meters, σ2 = 0.001 S/m) 

 
Fig. 7.5.5.  Individual Phase Currents for a delta configured transmission line (y1 = y3 = 15, 

d/2 = 5, y2  = 23.67 meters, σ2 = 0.01 S/m) 

 
In the next case, shown in Fig. 7.5.6, the height of the horizontal 

transmission line is decreased from 15 to 10 meters.  This change appears to 
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have little effect on the currents induced or their rate of decay with distance.  
The final case is shown in Fig. 7.5.7.  Here, the spacing between the phase 
conductors has been increased to 10 meters.  One consequence is that the 
current induced on the transmission line is smaller.  This reflects the fact that 
the inductance per unit length of this line is larger and, hence the surge 
impedance is higher.  It can also be observed that the rate of decay for all 
three currents is roughly the same.   

 

 
Fig. 7.5.6.  Individual Phase Currents for a horizontal transmission line with a reduced height 

of 10 meters (y1 = y3 = 10, d/2 = 5, y2  = 10 meters, σ2 = 0.01 S/m). 

 

 
Fig. 7.5.7.  Individual Phase Currents for a horizontal transmission line with an increased 

phase spacing of 10 meters (y1 = y3 = 10, d/2 = 10, y2  = 10 meters, σ2 = 0.01 S/m). 
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On the need for transposition 
It was shown in section 7.4 that currents induced on transmission lines with 
unbalanced geometries with respect to the earth will generally exhibit unequal 
phase current magnitudes.  This result was reinforced for the specific case for 
three phase transmission lines by the results shown in Figures 7.5.3 – 7.5.7.  
These results also illustrated the fact is that even if the excitation is balanced, 
the currents are generally unbalanced at the input and naturally become more 
unbalanced as they propagate down the line.  For this reason, (at least some) 
utilities will “transpose” their power line conductors (i.e., change the 
positions of each conductor with respect to the earth at various distances 
along the power line).  Such a tower is shown in Fig. 2.2.16.   

While the issue of current unbalance is a real one, most analysis of power 
flow on transmission lines is carried out using analysis that assumes balanced 
currents.  This is the subject covered in the next several sections.  Later, this 
simplified theory for propagation using the approximate positive sequence 
component (and its single transmission line equivalent) will be compared to 
the complete theory developed in Sections 7.4 and 7.5. The comparison will 
shed light on both the amplitude of the individual phase currents compared 
to the “balanced” current as well as the change in unbalance with distance 
from the source along the transmission line.    
 
 

7.6 Symmetrical Components   
 
While the method described in Section 7.5 works in general for an arbitrary 
power line, it is complex and does not lead to much insight into the 
propagation process or answer the question about the conditions under 
which such a complex analysis is necessary.  So, here, the process will be 
examined a bit further in the very important three-phase case.   

If the results from Section 7.5 are written explicitly for the three 
conductor case, the result is 
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where (as before) Zij = Zji by reciprocity. 

Again  
 

CjYAj  
1

                                   (7.6.2) 
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(the admittance per unit length matrix for the conductors over earth).   

Multiplying (7.6.1) by Y  and then expanding the unknown current in the 

eigenvectors of ZYQ 2
 yields 

 

 

  VYIUQ

VYIUZY

cd

c

ˆ~̂

ˆ~̂

122

121













                       (7.6.3) 

 
These equations could be solved for the natural modes as previously, but 

here it will be assumed (without justification at this time) that  
 

jiZZandjiZZ jiijjjii  3,1,  

 

jiAAandjiAA jiijjjii  3,1,  

 
These approximations are justified if the power line conductors are 

symmetrically located with respect to each other and very far from the earth.   
The approximations are also justified if a non-symmetric line is regularly 
transposed.  But, also, it can be shown to be quite reasonable at 60 Hz for 
any realistic power line as will be demonstrated later in this chapter.   
Using this symmetry approximation  
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so that  

SMM

MSM

MMS

QZY  2                                  (7.6.5) 

 
Note that for a lossless earth, Y and Z are imaginary and hence the values 

of the matrix elements are negative.  This is the reason for the “-“ sign.   
In (7.6.5)     

            

mmss YZYZS 2  and smmsmm YZYZYZM           (7.6.6) 
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Next, it will be shown that the eigenvectors and eigenvalues of 
2Q are 

respectively:   
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and  
 

             S+2M                          S-M                              S-M               (7.6.8) 
 

To prove this, consider that  
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for the first eigenvector.  For the second, 
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    (7.6.10) 

 
The third proof is similar to the second.   
This result means simply that the “components” for the symmetric case 

are simply the traditional symmetrical components that are commonly used 
in power systems analysis.  These are the positive, negative and zero 
sequence components respectively.   

To solve for the currents it is necessary to know the matrix of 
eigenvectors (arranged by columns) and its inverse.  They are respectively 
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and 
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These two matrices can be used to diagonalize 
2Q  using the identity, 

221

dQQ 


 .    Carrying out the calculations results in  
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A similar calculation for VY ˆ1
 yields 
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Given these results, (7.6.3) becomes explicitly 
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This is simple to solve because each equation is independent of the 

others.  For example, the positive, negative and zero sequence currents are 
respectively  
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7.7 Per-Unit Length Parameters for an “Equivalent 
Symmetric” Transmission Line 
 

Simplified method 
The easiest way to calculate the “equivalent symmetric” parameters of a 
transmission line that is not long enough to become very unbalanced (or a 
transposed line) is to simply replace each diagonal (off-diagonal) element in 
the Z and Y matrices (i.e., (7.5.2) – (7.5.4) for transmission lines without 
shield wires with (7.5.18) and (7.5.22) for transmission lines with shield wires) 
with the average of the diagonal (off-diagonal) elements (Weeks, 1968).  
Using this method for a three phase transmission line,  
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Given this result, the positive and negative sequence impedance and 

admittance values (as shown in (7.6.16) are respectively  
 

msneqposmsnegpos YYYYZZZZ  ,,,                  (7.7.2) 

 
and the zero sequence impedance and admittance values are   
 

mszeromszero YYYZZZ 2,2                       (7.7.3) 

 

More accurate method 
A more common method for calculating the equivalent symmetric 
parameters begins by recognizing that a purely symmetric transmission line 
has impedance and admittance matrices  that look like (7.6.4) or 
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One property of this a matrix with this type of symmetry is that post-

multiplying by   (a matrix of eigenvectors by columns) and pre-multiplying 

by 
1

  where  
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yields the diagonalized matrices,  
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where, as in Section 7.5, the positive and negative sequence impedance and 
admittance values are  
 

msneqposmsnegpos YYYYZZZZ  ,,,                 (7.7.9) 

 
and the zero sequence impedance and admittance values are   
 

mszeromszero YYYZZZ 2,2                    (7.7.10) 

 
Using the same procedure for a transmission line that does not have 

perfect symmetry, but is close enough to symmetric, approximations to its 
equivalent “symmetric component” impedance” and admittance are:  
 



 

366 

 

ms

ms

ms

ms

ms

ms

ppppd

ZZ

ZZ

ZZ

ZZ

ZZ

ZZ

ZZ


















00

00

0022

3231

2321

1312

'1'









(7.7.11) 

 
and 
                                                

ms

ms

ms

ms

ms

ms

ppppd

YY

YY

YY

ZY

YY

YY

YY


















00

00

0022

3231

2321

1312

'1'









      (7.7.12) 

 

where 
'

ppZ and 
'

ppY can be found from (7.5.18) and (7.5.22) respectively73.  

Note that since  does not represent the eigenvectors of 
'

ppZ or 
'

ppY  , the 

matrices are not perfectly diagonalized.  But, since the off-diagonal terms are 
assumed to be “small,” they have been neglected in the final result. In 
(7.7.11) and (7.7.12), Zs – Zm and Ys – Ym are the equivalent positive sequence 
impedance and admittance respectively.   

Another approximate (but commonly used) method for calculating the 
positive sequence impedance and admittance can be found in Section 3.3 of 
EPRI (1982) or 2.4 of EPRI (2005).   In this method, values of these 
parameters are derived using the geometric mean distance (GMD) of the 
transmission line conductors as well as the geometric mean radius of the 
phase conductor bundle.   
 

Impedance per-unit length of a symmetrical transmission line  
Consider the symmetrical transmission line above earth as illustrated in Fig. 
7.7.1a. The impedance matrix for this power line is found from (7.5.1) – 
(7.5.3) as 
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  (7.7.13) 

 

                                                           
73 If the transmission line has shield wires, it is first necessary to do a network reduction on 
the 3+Ns x 3+Ns Z and Y matrices (where Ns is the number of shield wires and potential of 
each shield wire is assumed to be zero) to get an equivalent 3 x 3 system.   
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where by symmetry 342312 sss   and the Carson integral has been 

approximated by (4.7.16) to be  
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Hence,  

  2/2/ln 2  jk                                  (7.7.15) 

 
is independent of the geometry. 

 
Fig. 7.7.1.  A symmetrical three phase transmission line above earth. a)  earth included b) 

earth neglected 

 
If, next, (7.7.13) is matrix multiplied by a set of positive sequence currents 

then  

     
     
     

  
  
   3/2

12

3/2

12

12

0

3/2

3/2

1212

1212

1212

0

/ln

/ln

/ln

2

lnlnln

lnlnln

lnlnln

2























j

j

j

j

Ieas

Ieas

Ias
j

Ie

Ie

I

ass

sas

ssa
j



















           (7.7.16) 

  
where the effect of the earth can now be neglected as illustrated in Fig. 
7.7.1b.  From this result, the zero sequence impedance for this balanced 
symmetrical transmission line can be written as  
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This result is identical to that derived in many textbooks using the theory 

of flux linkages (Bergen, 1986).  A practical consequence of this is that a 
reduction in impedance can be had by either reducing the spacing between 
phases (i.e., a compact line) or increasing the conductor (or bundle) diameter.   
 
 

7.8 Currents in the Space Domain 
 
From 4.7.9, the inverse Fourier transform for calculating the current in the 
space domain can be written as  
 

(7.8.2) 
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Since Zs, Zm, Ys and Ym are independent of γ, the only singularity of the 

denominator of (7.8.2) is the pair of zeros at 
  

  msmsP YYZZj                               (7.8.3) 

 
where it will be assumed that Im(γP) ≥ 0.  This zero represents the 
propagation constant of the positive sequence component.  Since this zero in 
the denominator represents a simple pole of the integrand, it becomes 
straightforward to evaluate (7.8.2) by residue theory.  Following (4.7.17) – 
(4.7.21), (7.8.2) becomes   
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where    msmsCP YYZZZ  /  is the positive sequence characteristic 

impedance.   
Other components can be obtained in a similar manner.  
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7.9 The Single Line Approximation and Calculation 
of the Individual Currents 
 
It is usually assumed for power flow calculations that the only component on 
the transmission line is the positive sequence voltage and current.  If it is 
assumed that the transmission line is excited by a positive sequence voltage 
as in (7.9.1)  
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where V̂ is the phase to ground voltage magnitude, then only the positive 
sequence current is excited and  
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Further, it is now possible to determine the individual currents from 

(7.4.4) 
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and (7.6.11)  
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so that (since all other components are zero)  
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Given the definition of γP  in (7.8.3), (7.9.5) can be written as  
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where 
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is the positive sequence characteristic impedance (often called “surge 
impedance”) of the transmission line.  The reason for the factor of 2 in the 
denominator can be understood in the same way at in Chapter 4 where the 
voltage source in series with the line can be related to the “phase-to-ground” 
voltage Vpg as shown in Fig. 7.9.1 
 

 
 
Fig. 7.9.1. a) circuit equivalent to a series source of voltage V b) equivalent phase to ground 
sources for the case that all cross sectional dimensions of the power line are small compared 

to a wavelength at the operating frequency. 

 
Given this result, the current for z > 0 can be written as 
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Other components of the current can be obtained in s similar manner. 

More specifically,  
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(7.9.8) and (7.9.9) are the basis for treating three phase systems carrying a 

balanced three phase positive sequence current as an equivalent single 
conductor line.  
 
 

7.10 Comparison of the single line and general 
methods for calculating phase currents  
 
In this section, a comparison will be made between the general results of 
Section 7.5 for currents induced on a transmission line and the simple 
approximations that have been made in the previous sections.  More 
specifically, the magnitude of the individual positive sequence phase currents 
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of (7.9.8) where Vpg = V1/2 using the simplified impedance and admittance 
parameters from (7.7.1) will be plotted in addition to the individual currents.   
 

 
Fig. 7.10.1 Horizontal line of Fig. 7.5.3 with positive sequence current (y1 = y3 = 15, d/2 = 

5, y2 = 15 meters, σ2 = 0.01 S/m) 

 
In Fig. 7.10.1, the magnitude of the positive sequence currents is plotted 

for the horizontal configured transmission line base case along with the 
individual phase currents.  As expected, the positive sequence current has a 
value at z = 0 that is roughly equal to the average of the three individual 
phase currents.  In addition, the rate of decay is roughly the average for the 
three currents.  Also, as expected, the current imbalance that varies with 
distance, is not captured by the positive sequence current.   

 

 
Fig. 7.10.2 Delta configured transmission line of Fig. 7.5.5 with positive sequence current (y1 

= y3 = 15, d/2 = 5, y2  = 23.67 meters, σ2 = 0.01 S/m) 
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In Fig. 7.10.2, the magnitude of the positive sequence currents is plotted 
for the delta configured transmission line along with the individual phase 
currents.  In this case, the agreement is much better because the individual 
currents are significantly closer.  Nevertheless the current imbalance is, again, 
not captured.   
 

7.11 Extension to conductor bundles 
 

Introduction 
A short introduction to the idea of a conductor bundle was given earlier in 
Section 7. 2.  Here this idea will be examined more carefully in the case for 
two subconductors and then generalized to the case for an arbitrary number 
of subconductors.  The effect of using conductor bundles on line parameters 
will then be discussed.   
 

Two subconductors  
Suppose that rather than a single wire above the earth, there are two parallel 
wires, each driven by an identical voltage source at z = 0, placed a distance d 
apart and at the same height, h, above a homogeneous earth (Olsen and 
Aburwein 1980).  It is assumed here that h >> d >> a and that d << λ. A 
cross sectional view of this problem is illustrated in Fig. 7.11.1.   

 
 

Fig. 7.11.1. Cross sectional view of a two conductor bundle.  Each wire is driven by a 
sinusoidal voltage source with magnitude V at z = 0. 

 
By symmetry, the current in each wire is the same.  Hence, following 

(4.3.4) with Ezs =  0 and assuming that the total axial electric field (due to 

both sources) is zero at  
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Note that only one equation is necessary here because (by symmetry) the 

electric field will automatically be zero at    ahxyx  ,, 2 .  Given this, 

(7.11.1) can be solved for the total current (i.e.,  I
~̂

2 ) on the bundle.  The 

result is  
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Now, from (4.4.64)  
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where  
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is the “source” term and  
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is the earth “reflection” term.   

Now, since  h >> d >> a,  ,,,0
~
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ez   is substantially different from 
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(7.11.2) can be written approximately as  
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Further, since  
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where γe is Euhler’s constant,  (7.11.6) can be written  

(7.11.7) 
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and, by combining the log terms,    

(7.11.8) 
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The term      2/1
2/12/122 adada  , a << d is called the “effective 

radius” of the conductor and can be used to write the final result for the total 
current as (Weeks 1981) 

 

 
   2/,,,

~
~̂

2/1

iwez

total
ZhhadG

V
I







                      (7.11.9) 

 
This is exactly the same result as for a single wire except that the radius of 

the single conductor is replaced by the geometric mean radius of the bundle 
and the internal impedance per unit length of the conductor is halved.   
 

Arbitrary number of subconductors 
It was shown above that two conductors held at the same potential and 
driven by the same voltage can be combined into an “equivalent” single 
“bundled” conductor with an equivalent radius.  Here this result will be 
generalized to an N conductor “symmetric” bundle (i.e., even values of N). It 
will be assumed that the bundle dimensions are small compared to either the 
distance to the nearest other phase or shield conductor and the earth. Such a 
problem is shown in Fig. 7.11.2 
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Fig. 7.11.2. Cross sectional view of an N conductor symmetric bundle of bundle diameter db , 

bundle radius br and subconductor spacing s centered at  11,yx .  Each subconductor is of 

radius asub and is driven by a sinusoidal voltage source with magnitude V at z = 0. 

 
Assuming again that a << db , equation (7.11.8) can be generalized to the 

N conductor bundle shown in Fig. 7.11.2 and is given as (7.11.10) below 
(EPRI 1982)  

(7.11.10) 
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where the “effective radius” is  
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The relationship between the “bundle radius” and the “subconductor 
spacing” is  
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The appropriate surface impedance to use for a conductor bundle is 
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where iwZ  is the surface impedance for an individual subconductor.   
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Again, this is exactly the same result as for a single wire case except that 

the radius of the single conductor is replaced by the effective radius of the 
bundle and the internal impedance per unit length of any subconductor is 
divided by N.   
 

Effect of bundling on line parameters 
Recall that the distributed capacitance and external inductance for a single 
conductor transmission line from (5.5.1) and (5.5.6) are respectively 
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respectively, where a is the conductor radius.  Hence, replacing the conductor 

radius a with the effective bundle radius 
effa  (which is generally much larger 

than a even if the sub conductor radius is smaller than the original 
conductor) has the effect of increasing the capacitance per unit length of the 
equivalent power transmission line, and reducing the inductance per unit 
length of the equivalent transmission line.  Since the inductance and 
capacitance are respectively proportional to and inversely proportional to the 
factor ln(●/a), these changes occur logarithmically.  According to (4.2.5) – 
(4.2.7), the behavior of the resistance is a bit more complicated.  More 
specifically, since the resistance of a subconductor is proportional to 
something between a and a2,   the total resistance of the bundle will be 
proportional to a factor between a/N and a2/N where N is the number of 
subconductors. Thus, again, the resistance of the bundle is generally reduced 
compared to the original conductor even if the subconductor radius is 
smaller than the original conductor radius.   
 
 

7.12 Problems  
 
P7.1  Derive (7.2.14) starting with (7.2.9) – (7.2.10)  
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P7.2  a) Find an explicit expression for Y and C  in (7.2.15) in terms of the 

individual elements of A  as defined in (7.2.12) and (7.2.14).  Note that some 

elements of C are negative, but this does not imply negative equivalent 

capacitances as shown in part b.  
 
b) Consider Figure P 7.2 in which the cross section of a two conductor 
horizontal transmission line is shown along with a network of capacitors that 
accounts for the capacitive currents between conductors and between 
conductors and the earth.   Using  
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and the successive assumptions V1 = V2 and V1 = -V2 , find explicit 
expressions for C1g = C2g and C12.  Show that each of these has a positive 
value.   
 

 
 
Fig. P7.2 Two conductors above earth with an array of capacitors used to calculate capacitive 

currents between conductors and between the conductors and the earth. 

 

P7.3  Using (7.2.19), show explicitly that  ZYQ
121 

 in (7.2.23) 

is a diagonal matrix and equal to (7.2.26) where ZY  can be found in 

(7.2.17).  Essentially this problem asks you to follow steps (7.2.25) through 
(7.2.26).   
 

P7.4 Using (7.2.33) and (7.2.34) show explicitly that UAA 
1

 , the unit 

matrix.   
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P7.5 Using the approximation for the Carson integral  
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where the last two terms can be ignored, calculate values of  c and d .  The 

formulas for these two propagation constants can be found in (7.2.41) and 
(7.2.43).  Assume aluminum conductors (i.e., σw = 3.5 x 107 S/m) and the 
parameters f = 60 Hz, a = 0.01 m, h = 10 m, d = 5 m and σ2 = 0.01 S/m.   
 
P7.6 Using the parameters of problem P7.5 except for the frequency, 
evaluate the attenuation constant (i.e., the imaginary part of the propagation 

constant) for c and d  for the frequencies 100 Hz, 1 kHz, 10 kHz and 100 

kHz.  Does the loss from the conductors or the earth contribute the largest 
part of the attenuation?   
 
P7.7 Assuming that conductors and the earth are both perfect conductors, 

calculate the characteristic impedances OCZ  and ODZ  in (7.2.52) and (7.2.53) 

for  a pair conductors spaced 5 meters apart and located 10 meters above the 

earth.  How do they compare?  If GLZ 1  = 1000 Ω and 212 LGL ZZ  → ∞ , 

calculate the reflection coefficients ccdcdd  ,,  and cd .   

 

P7.8  Given the propagation constant 2

c  in (7.3.3) and using the first term 

of the approximate Carson integral given in problem P7.5, show that the 
factor 

 
  

 zI
k

k

ci

i ˆ
sin

cos
222

0

2

0 



 

 
in (7.3.11) has a maximum value for some value of θi near π/2.  For this 
calculation, assume that Ziw = 0, that the frequency is 10 kHz and that σ2 = 
0.01 S/m, d = 5 meters, h = 10 meters and a = 0.01 meters.  What does this 
result mean for induced currents on power lines from a lightning field at 
grazing incidence?   
 
P7.9 A quasi-DC current of 100 A at a frequency of 0.01 Hz is  induced in a 
300 km long transmission line 20 meters above the earth by a parallel 
electroject current that is 100 km directly above the transmission line.  The 
earth conductivity is 0.01 S/m, the transmission line’s quasi-DC resistance is 
5 Ω and the quasi-DC grounding impedance of each transformer is 5Ω.  
Using (7.3.18) and (7.3.19), determine the magnitude (i.e., not the phase) of 
the electrojet current. 
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P7.10 Assuming that    2cos AA , and    attti  exp where a = 

0.01/sec, find the geomagnetic induced current on a transmission line using 
(7.3.26) reproduced below.   
 

 
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 
 '

'

'

2

cos
dt

tt

tiA
ti sA

ind



 

 
Use whatever numerical technique you have available.  Note that the 
singularity at t = t’ is integrable.   
 
P7.11 For the transformer characteristics given in Fig. 7.3.7. and the flux 
given in  

   tt  sin102  

 
where f = 60  Hz and ω = 2πf, plot the transformer current.  Comment on 
the harmonic content of this current.   
 
P7.12 Suppose you have a single wire transmission line 10 meters above 
earth with a single shield wire 2 meters above it.  Write down the full 

impedances matrix as in (7.5.12) as well as its reduced form 
'

ppZ that 

accounts for the shield wire.  Also, write down the full admittance matrix as 

in (7.5.16) as well as its reduced form 
'

ppA  that accounts for the shield wire.  

Assume that the earth has a conductivity of 0.01 S/m, that the frequency is 
60 Hz and that you can use the first term of the simplified Carson equation 
in P7.5.    Also assume that a1 = ag = 0.01 meters.   
 
P7.13 Calculate the per-unit length impedance and admittance parameters 
(i.e., Zpos, Zneg, Zzero, Ypos, Yneg and Yzero) for an equivalent symmetric transmission 
line using the “simplified” and “more accurate” methods discussed in Section 
7.6.  Assume that the transmission line is a horizontal line at a height of 15 
meters above ground and that the phase-phase spacing is 5 meters and that 
the radius of the conductor is 0.01 meters. Assume that the earth has a 
conductivity of 0.01 S/m, that the frequency is 60 Hz and that you can use 
the simplified Carson equation in P 7.5.    
 
P7.14 Calculate the geometric mean radius for a four conductor bundle in a 
square configuration with a subconductor radius of 0.01 meters and a spacing 
of 0.5 meters.   
 
P7.15 The geometries of a single-conductor power line and a bundle-
conductor power line are shown in Fig. P7.15.1. The single conductor is 
solid, 1.75 centimeters in radius, and 14 meters above the ground.  The four 
solid subconductors, each with radius of 1.75 centimeters and bundle 
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spacing, s of 45.72 centimeters, in the bundle are uniformly distributed on a 
circle contour. The center of the circle is 14 meters above the ground.   
 

 
 

Fig. P7.15.1  Geometries of a single-conductor and a bundle-conductor power line 

 
Find the effective radius of the conductor bundle.  With the given 
information above and ignoring the effect due to the earth, calculate the per-
unit length capacitance c and external inductance le of the single-conductor 
line and the bundle-conductor line. Compare the product of the capacitance 
and inductance (c×l) for the two lines.  
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Appendix A 
Wireless vs. Wired Transmission 

 
 
It is shown in (7.2.45) that the differential mode current induced on two 
wires above the earth by either voltage sources or external fields is  
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It is now assumed that 1) the voltage sources are set to zero, 2) the source 

of external fields is an electric dipole located between the two wires and 
oriented so that it points from one wire to another as shown in Fig. A.1 and 
that the earth is far enough away to be neglected.    
 

 
Fig. A.1 Two parallel wires in free space excited by a dipole between them 

 
The result is shown in (A.2) – (A.3).   
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where 

  iwd ZYYk 1211

2

0

2                                 (A.3) 

 
and  
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Note that the common mode is not excited in this case because the 

excitation field has odd symmetry with respect to the x axis.   

Further, at high enough frequencies that 1akw
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From (9.4.2), and assuming that   1
2/122

0  dk  , the z component of 

the dipole fields in the spatial Fourier transform domain (i.e., as a function of  
γ) is    
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Hence, the induced current on each wire equals  
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At large values of z, the magnetic field between the wires (at (x,y,z) = 

(0.0.z)) is  
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This compares to the magnetic field from the dipole without wires which 

is  
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Hence, (for  zk0  <<1 as is typical for 50/60 Hz) the ratio of the “guided” 

field to the free space field is  
 



 

385 

 
 

zj

y
de

add

z
zH




/ln

8
,0,0ˆ

2

2

                             (A.11) 

 

Since   1Im zp  , it is clear that for even moderate distances from the 

source, the “guided” field is significantly larger than the ‘free space” field.   
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Appendix B 
Round Wire Impedance (Skin Effect) 

 
 
 
Consider a solid round wire of radius “a” and conductivity σw as shown in 
Fig. B.1.   

 
 

Fig. B.1.  Solid Round conductor of radius a and conductivity σw . 

 
The goal of this section is to determine the distribution of current flowing 

along z throughout the cross section of the conductor.  The starting point 
will be Maxwell’s equations in time harmonic form (with J = σwE ) or  
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In most metals σ is on the order of 107 S/m and hence, unless the radian 

frequency is on the order of 1014 Rad/s, 1


 w  and Maxwell’s equations 

reduce to  
 

JHx                                              (B.3) 
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HjJx w                                     (B.4) 

 
where the substitution J = σE has been made because the ultimate goal is to 
find the distribution of current.  Taking the curl of (B.4), substituting (B.3) 
and using the vector identity 
 

  JJJxx 2                             (B.5) 

 

where 
2 is the Laplacian operator results in  
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If it is assumed that σ is constant throughout the conductor.   

Now, if it is assumed that the only component of current is in the z direction, 
then in cylindrical coordinates,  
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The first simplification that can be made is that  
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since it is assumed that the current distribution is independent of the angle ϕ.   
The remaining equation can be solved by a method called “Separation of 
Variables.”  In this method, it is assumed that the unknown can be written as 
a product of a function of ρ only (R(ρ)) and a function of z only (Z(z)) so 
that  
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The justification for this assumption will come later.  (B.7) can then be 

written as (after it has been divided by      zZRJ z  , as  
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Since the first two terms are a function of ρ only and the last a function of 

z only and the sum is a constant, each term must be a constant (a separation 
constant) that will be called here κ2.  Given this,  
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The solution to the first equation is  
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Since it will be show in Chapter 1 that currents that travel on power lines 

travel approximately as    
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where 
000 k and the fields inside the conductor must travel with the 

same factor, (B.12) can now be written  
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given the same assumption on frequency made between (B.1) and (B.3) (i.e., 

  1/ 0  w ).   

(B.15) can now be rewritten as  
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This differential equation is known as Bessel’s equation and is known to 

have a solution of the form  
 

      ww jBYjAJR 
00

            (B.16) 

 
where J0(x) is known as the Bessel function of first kind and order 0 and 
Y0(x) is known as the Bessel function of second kind and order 0.  Now, 
Y0(x) cannot be a part of a physical solution because it is known to have a 
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singularity at x = 0 and the current density does not have a singularity there.  
Thus, the constant B = 0 and  
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The total current flowing on the conductor (I) is equal to  
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where ww jk  .   

The last integral in (B.18) can be evaluated as follows 
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where J1(x) is known as the Bessel function of first kind and order 1.  The 

current  zI  can then be written as  
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Using this result, it is possible to write the constant A in terms of the 

current and thus 
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Hence,  
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Given this result, the surface impedance iwZ  can be written as  
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Where ww jk  .   This can also be written in terms of the dc 

resistance per unit length of the wire as 
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Appendix C 
Essentials of Complex Variable Theory 

 
 
 
It is appropriate here to provide some background about complex variables 
since relatively few of the readers of the text will have had a course in this 
area.   

Consider the xy plane shown in Fig. C.1 below 

 
 

Fig. C.1 – the xy plane 

 
It is possible to write an expression for a complex valued function of x 

and y as  

),(),(),( yxjvyxuyxw                                        (C.1) 

 
A point in the (x,y) plane can be described as  

 
jyxz                                                      (C.2) 

 
where z is a “complex variable.”   (C.2) describes the values of x and y and 
can be used to find the value of the function w(x,y).  To carry out this 
process in general, the “complex conjugate” of z (i.e., z  ) can be defined as  
 

jyxz                                                      (C.3) 

 

so that  zzx 
2

1
   and  zz

j
y 




2
. 

Thus, in general  
 

           2/,2/2/,2/, zzjzzjvzzjzzuyxw           (C.4) 

( , ) 
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Now, it is clear that certain functions w(x,y) can be written as a function 
of z alone (i.e., if x and y combine in just the right way). But that other 
functions w(x.y)  cannot be written in this way.  For example,  

 

      2222 2, zjyxxyjyxyxw                        (C.5) 
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                       (C.6) 

However, 
 

      
    zzzzzz

zzjjzzyjxyxw


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322

2/22/424,
                (C.7) 

 
Functions which can be written as a function of z alone will be called analytic 
functions and will be shown to have the property that the methods of 
differential calculus for functions of a single real variable can be used.  Prior 
to showing this, a few definitions will be given.  
 

Continuity 
A function f is continuous at a point z0 if all of these following conditions are 
met.   

 zf
zz 0

lim


 exists                                           (C.8) 

 

 0zf   exists                                             (C.9) 

 

   0
0

lim zfzf
zz




                                     (C.10) 

 
A function of a complex variable is said to be continuous in a region R if 

it is continuous at every point in R.  It should be noted that functions of 
both z and its complex conjugate may be continuous.  For example, 

  zzzf , is a continuous function.   

 

Boundedness 
If  zf is continuous in a region R which is closed and bounded, then f is 

“bounded” and  zf reaches a maximum value somewhere in R.  To be 

precise, there exists a positive number M such that   Mzf  for all z in R. 

 

Differentiability 
Let f be a function whose domain of definition contains a neighborhood of a 

point z0.  The derivative of f at z0 is written as  0' zf and defined by 
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             (C.11) 

 

where 0zzz   

If, further    zfzzfw  , then 
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Some examples will now be considered in order to solidify an 

understanding of the difference between analytic and non-analytic functions.  
Consider f(z) = z2. 
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Hence,   zzf 2'  . 

Next consider,   2
, zzzzzf   
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If z = 0, z
z

w





, and 0

dz

dw
.   

If, however, z ≠ 0, then the limit depends upon how Δz goes to zero.  For 
example, if Δz approaches 0 through real values of z (i.e., Δz = Δx) then 

zz  and 
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If Δz approaches 0 through pure imaginary values of z (i.e., Δz = Δy) then 

zz   and 
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Now since by definition any limit is unique, it is clear here that the limit 

does not exist.  Consequently, f’(z) exists only at the origin z = 0.  
The real and imaginary parts of a complex function may have continuous 

partial derivatives of all orders and yet the function may not be differentiable.  
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It is, however, true that the existence of a derivative of a function at a point 
implies the continuity of the function there.  

 

Analytic functions 
If a function is single values and differentiable at every point of a domain D, 
save possibly for a finite number of exceptional points, it can be said that it is 
analytic in D. The exceptional points are called the singular points or 
singularities of the function.  If no point of D is a singularity, then it can be 
said that the function is regular in D.  An entire function is one which is 
regular at each point in the entire complex plane.  Consider next some 
specific examples of functions to examine their properties.   
 

Polynomials  
Consider the function zn where n is an integer.  This function can be shown 
to be regular in every bounded domain.  It can be further shown that if f(z) 
and g(z) are regular, then f(z) + g(z) is regular in the same domain, Thus any 
sum of terms z raised to an integer is a regular function in any bounded 
domain.   

Thus, any polynomial is a regular function in any bounded domain.   
 
For example,  

 

     321 zzzzzzazf   where the zi are constants is regular 

 
The function z-n (where n is an integer) can be shown to be analytic in 

every bounded domain but has one singularity at the origin.  This singularity 
is called a pole of order n.  

The quotient of two polynomials is a rational function.  A rational 
function is an analytic function with singularities at the zeros of the 
denominator.  These singularities are called poles.   
 

Power Series Representation 

Consider the series   





1n

n

n zazf . 

This series converges absolutely when 1lim
/1


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n
n

n
n

za  and diverges when 

1lim
/1


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n
n

n
n

za  by Cauchy’s nth root test.  Thus, if Ra
n

n
n




/1
lim , then the 

series is convergent when Rz   and divergent when Rz  .  R is called the 

radius of convergence.   
It can be shown that the sum of a series with a non-zero radius of 

convergence is an analytic function regular within this circle of convergence.  
The converse can also be shown: that an analytic function regular in the 
neighborhood of a point z0 can be expanded in a power series.   
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Cauchy-Riemann Equations 
Consider a function  
 

     yxjvyxuzf ,,                                      (C.17) 

 
It can be shown that if a function is analytic, then  
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These are the Cauchy-Reimann equations.   
Thus, for a function to be analytic, it is necessary that the four partial 

derivatives exist and that they satisfy the Cauchy-Riemann equations.  For 
sufficient conditions, it can be said that 

 
f(z) is analytic, regular in D, if the function is single valued and if the four partial 

derivatives exist, are continuous and satisfy the Cauchy-Reimann equations at each point 
in D. 

   
If the partial derivatives of (C.18) and (C.19) are taken with respect to x 

and y, respectively then added together, the result is  
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Thus, both the real and the imaginary parts of a regular function satisfy 

Laplaces’ equation.  This property will be used again later.  
One consequence of (C.20) and (C.21) is that a closed line integral of an 

analytic function around any path in the complex plane that does not enclose 
a singularity is zero.  Hence 
 

  
C

zf 0                                          (C.22) 

 
There is another method for determining that a function is analytic.  

Consider the function  
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     yxjvyxuyxw ,,,   
 

In terms of z and z  , w can be written (as earlier)  
 

           2/,2/2/,2/, zzjzzjvzzjzzuyxw        (C.23) 

 
It will now be shown that, if w is analytic, then w will not depend on z .  

To see this, the derivative 
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But, from the definitions 
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since u and v satisfy the Cauchy Riemann equations because w was defined 
as analytic. Thus w must be a function of z alone.   

The way that analytic functions will be used in this context is to begin 
with a function f(x) defined on the real axis.  x will then be replaced with z to 
extend the definition of f(x) to the complex plane.  The resulting function is 
analytic because it is a function of z alone.  Strictly speaking this process has 
pitfalls that can be discussed in the context of analytic continuation, but the 
process works in nearly all cases.   

Consider next some specific examples.   
 

The exponential function 
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It can be shown that the radius of convergence of this series is infinite.  
Hence, the exponential function is an analytic function in any bounded 
domain of the z plane.   
 

Trigonometric and Hyperbolic functions  
Since trigonometric and hyperbolic functions are simply defined as sums of 
exponential functions, the same properties can be attributed to them as the 
above.  Note also that  
 

 sin(jz) = j sinh(z) 

 sinh(jz) = j sin(z) 

 cos(jz) = cosh(z) 

 cosh(jz) = cos(z) 
 

Next, the zeros of sin(z) and cos(z) will be examined.   
 

sin(z) = sin(x+jy) = sin(x) cosh(y) + j cos(x) sinh(y)              (C.27) 
 

(C.27) vanishes if and only if  
 

sin(x) cosh(y) = 0  and  cos(x) sinh(y) = 0 
 
Thus, the zeros of sin(z) are identical with the zeros of sin(x) and occur at  
z = nπ. 
 

The logarithmic function 
If x is real and positive, eu = x has one solution which is called u = ln(x).  
But, the situation is more complicated if x is replaced with the complex 
variable z = x + jy.  Then, u must also be replaced by the complex variable w 
= u +jv resulting in 
 

   zjjvujvu ezzeee arg                           (C.28) 

 
where arg(z) is the angle from the +x axis to the point z in the complex 

plane.  To get equality, both magnitude and phase are equated so that  
 

zeu   and  zu ln  as before 

 

but  zv arg , therefore 

 zjzw arglog                                    (C.29) 

 
There is a serious difficulty with the arg(z) function.  This function must 

either be single valued and hence discontinuous across some angle θ (e.g., if 
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this line of discontinuity is θ =0, then the range of arg(z) is 0 → 2π and it is 
discontinuous across the θ = 0 line) or it is a multivalued function.  In the 
latter case θ continues to increase as θ passes by 2π.  In this latter case, arg(z) 
may take on values θ + 2nπ where n is any integer. 

The only way for w to be a single valued function is to define limits on θ 
and to recognize that w will be discontinuous (and hence non-analytic) along 
the constant θ boundary line.  Each possible range of θ’s which result in 
single valuedness is called a branch or Riemann sheet.  The line of 
discontinuity is called a branch cut.  

An example branch cut for the log function is shown in Fig. C.2. 
 

 
 

Fig. C.2.   Possible branch cut and branch points for the logarithmic function. 
 

In this case the definition of the branch is  -π < θ < π.   
The branch cut is terminated at points called branch points which always 

occur in pairs.  For the log function (and branch shown in Fig. C.2), the 
branch points occur at z = 0 and z = -∞.   

The final result is that if D is any bounded domain in the cut plane so that 
no point of the cut is in D (for continuity) log(z) is single valued and 
continuous (and regular) in D.  It also has the derivative 1/z.   
 

The function z   
Suppose α = p is an integer.  Consider  
 

      pp zzzp  logexplogexp                               (C.30) 

 
Recall that exp(z) is a periodic function since  
 

   znjz exp2exp                                        (C.31) 

 
Thus, if p is an integer 
 

 

-  
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where arg(z) is interpreted as being restricted to a specified branch (e.g., -π 

< θ < π).  Next consider 
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There are several possible values of the function  
 

qkj
q

p

ez /2                                               (C.34) 

 
for values k = 0,1…. q-1.  

The value chosen depends upon which branch is specified.  The branch 
chosen is usually called the principal branch and defines the meaning of zp/q.   

Example:  z1/2 has branch points at 0 and -∞ if the branch cut is placed on 
the negative real axis.  In this case, z1/2 means 

 
  2/arg2/1 zjez                                            (C.35) 

where  -π < arg(z) < π.   
 

Further properties of branch points and cuts 
1. Branch points always occur in pairs and branch lines (i.e., cuts) join 

the branch points 
2. To show the branch point at infinity for the function f(z) = z1/2, use 

the transformation z = 1/ξ. Thus z1/2 becomes ξ-1/2 which is a 
multivalued function of ξ and has a branch point at ξ = 0 (or z → ∞) 

3. Branch cuts are not unique.  They may be chosen in any convenient 
fashion.  For example, for z1/2, either the branch cut in Fig. C.3a or 
Fig. C.3b can be used.   

 
Consider the example, 

 

    2/12 1 zzf                                               (C.36) 

 

This function can be shown to have branch points at 1z . Let 
 jez 1 .  Then  
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                         (a)                                              (b) 

 
Fig. C3 Possible branch cuts for z1/2 a) horizontal to -∞, b) vertical to ∞ 

 
(C.36) is multivalued no matter how small the value of ε.  Note that there 

is no branch point at ∞ since if the transformation z = 1/ξ is used,  
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This represents is simple pole behavior as z → ∞.  As mentioned above, 

the branch cuts are not unique and could be elected in a number of different 
ways.  Two examples are shown in Fig. C.4 below.  

 

 
Fig. C.4 Two possible choices for branch cuts for the function (z2-1)1/2 
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Note that the fact that the branch cuts are arbitrary does not imply that 
there are no good reasons to select branch cuts in a certain way.  For 
example, one way of selecting branch cuts may lead to a simpler result or 
another way might lead one that is easier to interpret physically. 
    

Residue Theory for Calculating Integrals 
Often in work related to transmission lines, integrals will appear that result 
from performing an inverse Fourier transform.  In some cases, these can be 
solved easily by residue theory.  An example is the one shown in (C.39).  The 
denominator of the integrand contains a pair of zeros at +/- γp which 
represent simple poles of the integrand.   The numerator of the integrand is 
assumed to be regular (and hence to have no singularities in the plane except 
possibly at infinity).   
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In this case the pole is chosen to have its imaginary part less than or equal 

to 0 (i.e., Im(γp) = Im(βp –jαp)  ≤ 0 or Re(αp) ≥0)  Note that the opposite 
selection will lead eventually to an identical result.  Since the integrand is 
analytic everywhere except at +/- γp, both its real and imaginary parts satisfy 
Laplaces’ equations according to (C.20) and (C.21).  One consequence of this 
(as illustrated in (C.22)) is that any closed line integral that does not enclose 
singular points is zero.  Hence,  
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for any contour C that does not enclose the singular points at +/- γp .  
Consider the contour C = Co (the original contour of integration) + C∞2 + 
Cb2 + Cp + Cb1 + C∞1 where the entire contour is defined in a clockwise 
direction.  Since this contour does not enclose the pole at γp, the integral 
(C.37) is equal to zero and  
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Note that the contour C∞1 + Cb1 + Cp + Cb2 + C∞2 is now defined in the 

counter clockwise direction and accounted for by a change in sign of the 
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integral.  If z > 0, then   (where γ = γr + jγi) tends to zero 
exponentially for values of γ in the lower half of the complex γ plane (i.e., γi 
≤ 0) and hence the integrations C∞1 and C∞2 are zero. In addition, since the 
integrations Cb1 and Cb2 are along the same line but in opposite directions 
their contributions cancel. The only remaining contribution is the integration 
Cp around the pole at γp (i.e. the residue due to the simple pole at γp).   

 

 
 

Fig. C.5 Deformation of contour leading to a residue integration 

 
Therefore, 
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which is relatively simple to evaluate as follows.   

The contribution of the pole can be evaluated by using the transformation 
  

p

j

p e    ,  

where   djed j .   

The integral around the pole (i.e., the residue) then becomes 
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Note that if Im(γp) ≥ 0, then the pole that is located in the lower half of 

the complex plane occurs at – γp,  the transformation used is  
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and the residue becomes  
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Appendix D 
Carson Integral and Series Derivation 

 
 

D.1 Derivation of the Carson Integral  
 

Problem Definition 
The purpose of this Appendix is to review the methodology by which J. R. 
Carson in 1926 determined approximate expressions for the electric currents 
on and equivalent distributed parameters of an infinitely long horizontal 
conductor located above a single-layer linear, homogeneous, isotropic lossy 
(i.e., non-zero conductivity) earth. Here, the derivation will be repeated in SI 
units: the original was in cgs units.  In addition, the arguments he used as well 
as the justification for the individual steps will be expanded to make the 
derivation easier to follow.  The exact solution to this problem problem was 
discussed in great detail earlier in Chapter 4 and its geometry is shown again 
in Fig. D.1.1.   

 
(a) 

 
(b) 

Fig. D.1.1  a) end view and b) side view of the infinitely long conductor of radius “a” and 
height “h” above a linear, homogeneous isotropic lossy earth.   
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As in Chapter 4, the z-oriented, horizontal conductor has radius a, and is 
located at a distance h above the earth but it is assumed here that it intersects 
the x axis at x’ = 0 (Carson, 1926).   The upper half space (i.e., y > 0) is free 
space and is characterized by permittivity and permeability ε1 = εo and μ1 = μo 
respectively while the lower half space (i.e., y < 0) is assumed to be a linear, 
homogeneous, isotropic lossy earth characterized by conductivity, 
permittivity and permeability σ2, ε2 = ε2rεo and μ2 = μ2rμo respectively. ε2r and μ2r 
are the relative permittivity and permeability of the earth respectively. The 

conductor is assumed to be non-magnetic (i.e., 0 w ) and to have a 

conductivity w . The dielectric constant of the conductor is not needed 

since it is only used to calculate displacement currents and (below optical 
frequencies) these can always be neglected in the conductor.  It is assumed 
that all currents and fields vary in time as exp(jωt).  
 

Problem Solution 
The method by which the solution is found can be summarized as follows.  

First, a propagating current with unknown    zjIzI  expˆˆ  is assumed to 

exist on the conductor.  Given this, all fields have this same variation with z 
and hence can be suppressed; it can be added back by simply multiplying the 

current distribution or appropriate field expression by  zjexp . As the 

derivation proceeds, a number of low frequency approximations will be 
made.  These will be discussed in detail as they are made.   

The first task addressed by Carson was to determine a general expression 
for the z-directed electric field in the earth (i.e., y < 0).  To this end, the form 
of this expression was chosen to be one that is convenient for matching 
boundary conditions on a horizontal plane.  This earth field must satisfy the 
homogeneous wave equation (3.3.4) because there are no primary sources in 
the earth (i.e., sources that do not depend on the electric and magnetic fields 

in the region such as earth currents that are equal to 
22

ˆ
E ).  

Hence 
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where the subscript “2z” means the z component in the earth (i.e.. region 2).  

As mentioned above, the field is assumed to vary as  zjexp , hence the γ 

term in (D.1.1).   

The spatial Fourier transform in the x direction and its inverse (i.e.,  Q
~

and  1Q ) used here are defined as  

       dxexqQxfQ xj 
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                         (D.1.2) 
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  deQxqQQ xj
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1~1
                 (D.1.3) 

The symbol ~ indicates a spatial Fourier transform that is a function of 
the transform variable κ.  If the spatial Fourier transform of (D.1.1) is taken, 
then (for all values of κ) 
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It should be noted here that, given (D.1.2) and the even symmetry of the 

source and fields with respect to x,   ,,ˆ
2 yE z

 must be an even function of 

κ.  This property will be used later.  The question now is, “Can a form be 
found for the y variation of the field that allows (D.1.4) to be satisfied for all 
values of κ?”  This can be done by assuming that 

  

      yjFyE z   exp
~

,,
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2 , y < 0                (D.1.5) 

 

where Im (   ) > 0 in order that the field decay as y → -∞ (i.e., the energy 

contained in the field is finite74).  In order that (D.1.4) be satisfied for all 
values of κ.   

  02

2

222  k                                (D.1.6) 

Hence, 
 

    0
2/12

2

22  k for all  κ   where  Im (   ) > 0 .   (D.1.7) 

 

Given this result, the inverse Fourier transform of    ,,
~̂

2 yE z  can be 

taken using (D.1.3) and  
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As noted earlier, this form has been selected because it is convenient to use 
for matching boundary conditions at the interface y = 0.   Now  
 

                                                           
74 The fact that this is the only possible answer can be determined by referring to the 
uniqueness theorem that is discussed in detail in Chapter 3.  According to that theorem, a 
solution is unique if it satisfies Maxwell’s equations, matches source conditions and satisfies 
certain boundary conditions at interfaces.   
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 202 / r   

 
where it has been assumed that the earth is non-magnetic. In addition, given 
that values of γ will later be found to be relatively close to k0, γ can be 
ignored compared to k2 in (D.1.6).  Hence, after absorbing the factor j into 
ξ(κ) 
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where 

  0Re
2/1
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2   j  

 

If, in addition, it is recognized that    and   ,,ˆ
2 yE z are both even 

function of κ, then the doubly infinite integral can be folded into an infinite 
integral as  
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Since      xjxjx   expexpcos2 , with the exception of the 

constants in front of the integral and inside the square root (a consequence 
of the different unit system used), (D.1.8) is identical to form of Equation (1) 
of Carson’s 1926 paper (Carson, 1926).  

At this point, Carson calculates the magnetic field in the earth.  To this 
end, he used Faraday’s law  

 

,0
ˆˆ

0  HjEx                               (D.1.11) 

 
where it has been assumed that the earth is non-magnetic.  This equation is 
expressed in rectangular coordinates and it is assumed that the electric field 

components xÊ and yÊ are zero at low frequencies.  The latter assumption 

can be made because as ω → 0 they reduced to the electrostatic fields of a 
line source above earth and the earth becomes a perfect conductor. Hence, 
these fields are zero in the earth.  The same is not true for the axial 
component of the electric field because it is generated by the time varying 
magnetic field in the earth.    

Hence,   
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Given this, the magnetic fields in the earth are  
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 (D.1.13) 
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Carson’s next step was to calculate the magnetic fields in the free space 

medium y > 0. The first step in this process was to state  the known 
magnetostatic solution for the magnetic fields of a z directed line source of 

current Î  in free space at (x,y) = (0,h).  These are  
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where θ is defined in Fig. D.2 

 
 

Fig. D.2  Definition of the angle θ (the z direction is out of the page) 
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The total magnetic field for y > 0 is then this source term plus terms due 

to induced currents in the earth.  These can be expressed as  
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1 'ˆˆˆ                                         (D.1.16) 

 

yyy HHH 1
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1 'ˆˆˆ                                         (D.1.17) 

 
The magnetic field in the air due to distributed current sources in the 

earth is assumed to have the form   
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Here, the sign of the exponent is negative in order that the field be 

properly behaved as y → ∞. The relationship between the two field 
components is determined by the fact that the magnetic field in free space 
must satisfy the Maxwell equation  
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Where 
zH 1'

ˆ is assumed to be zero given the nearly uniform z-directed source 

current.   
Now, the source field can be expressed in a form that is useful for 

matching boundary conditions at y = 0.  More specifically, 
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These can be proven by direct integration using the definitions of sin(κx) 

and cos(κx) in terms of exponentials and the result  
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Given these results, the boundary conditions ( n  is a unit vector directed 
into region 1 from region 2.)  

 

  sJHHxn  21
                                 (D.1.24) 

 
 

  021  BBn                                    (D.1.25) 

 
the facts that Js = 0 on a dielectric-dielectric boundary and both materials are 
non-magnetic, both the x and y components of the magnetic field must be 
continuous across the boundary75.  

Hence (equating integrands)  
 

        2/exp
~~2/1

20

2

0

hIFj
j







           (D.1.26) 

 

      2/exp
~~

0

hIF
j








                    (D.1.27) 

 

If (D.1.26) and (D.1.27) are added,  F
~

 can easily be found as   
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  
~

 can easily be found by using (D.1.2.8) in (D.1.2.7) as    
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Aside from constants due to the different unit system, (D.1.28) and 

(D.1.29) are equivalent to (11) and (12) of Carson (1926).  Given this result, 
the electric field in the earth is  

 
 
 

                                                           
75 In this case, the boundary conditions on normal and tangential magnetic field are applied.  
According to the uniqueness theorem, the boundary conditions on tangential electric and 
tangential magnetic fields should be applied.  In this case, it can be shown that matching the 
normal magnetic field boundary condition is equivalent to matching the tangential electric 
field boundary condition.  
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(D.1.30) 
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after multiplying numerator and denominator by the factor 
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From Chapter 5 (5.3.40), the electric field in the earth is (for x’ = 0 and
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where 20
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2  jku  .  

 
The equivalence of (D.1.29) and (D.1.30) is evident.   

The axial electric field in the air can now be found as  
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where  yxA z ,1
 and  yxV ,1

 are the vector and scalar potentials respectively.   

Given this result, the axial electric field at a point (x,y) can be related to 
the field at a point directly below it on the surface at y = 0 as 
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Now,   
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This result can be integrated along a vertical line to get 
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Next, the scalar potential  yxV ,1
 is that of a line charge above a 

perfectly conducting earth. Hence, since by current continuity (3.1.14),  
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where  is the line charge density (the exponential variation of current and 

charge has been suppressed).   
With these results,  
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Consider next, the term  
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This is equal to  
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The terms in (D.1.38) that are independent of y can be gathered together 

as  
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The remaining terms of (D.1.36) are (aside from the scalar potential term) 
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The final term of (D.1.40) can be simplified by multiplying the numerator 

and denominator by the term    
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20

2 j .  This results in  
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The second to last term in (D.1.40) can be simplified by recognizing that  
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Collecting all terms   
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This result is identical to that developed in Chapter 5. To see this, note 

that (5.4.6) is  
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D.2 The Full Carson Series  
 
From Chapter 4, (4.6.7) Carson’s integral (for y’ = h) is given as  
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Here this will be converted to the form that was originally presented by 

Carson and Carson’s full series given.  The first step is to change the 

integration variable by letting 2 os so that  
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where  hyp  20  and  '20 xxq   .   Hence  
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which is the integral from Carson’s equation (29).    

Now, (D.2.3) can be evaluated by first evaluating an integral of the form 
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This can be shown to be equal to  
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where  xK1
 is the Modified Bessel function of the second kind and  xG  is 

the absolutely convergent series 
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Given these results, it is straightforward (though not simple) to develop 

the series that Carson derived for J(p,q).  It is   
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