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Preface

ost books written for students in the area of power engineering

emphasize either the physics or design of energy conversion

machines, the operation of the power system or (more recently)
power electronics. In each of these cases, the transmission and distribution
system is either neglected or treated relatively simply (e.g., as an inductor in a
one line representation of a balanced system). Some books do discuss the
transmission and distribution system more carefully, such as the
Westinghouse Transmission and Distribution Book, The EPRI AC
Transmission Line Reference Book — 200 kV and Above, and the Southwire
Overhead Conductor Manual. These are now difficult to find or are priced
out of the range of students. There does not appear to be a manuscript that
summarizes what we know about the electromagnetics of the transmission
and distribution system. This text is designed to fill that void.

One text that did inspire this one is entitled, “Transmission and
Distribution of Electrical Energy” authored by the late Walter L. Weeks of
Purdue University. Unfortunately, it was published in 1981, available only
briefly and is now difficult to find. Since this author has not been able to
find anything to replace that text, the present text will cover much of the
same material, but will also extend the theory beyond what was covered by
that excellent book.

There are two purposes for this manuscript. The first is to examine the
electromagnetic theory behind many of the calculations relevant to the design
of high voltage power lines. These include electromagnetic propagation on
wires above the earth, corona onset calculations, electrostatic fields near
insulators and electromagnetic induction effects between high voltage
transmission lines and other systems that share the right of way.  This
portion of the book can be used as the basis for further research in these
areas. Sections of the book that require more advanced theory are indicated
by a € and can be skipped by the reader who is not interested in research.
Following these sections (if necessary) are short introductions that provide a
summary of the ideas introduced in the more advanced section.

The second purpose is to show how the more general theory reduces to
the theory commonly used by practicing engineers. Mastering this material
will result in a better understanding of the limitations of the simplified theory
of transmission lines that is often presented in power systems courses. As an
adjunct to this, some practical aspects of designing high voltage transmission
lines will be discussed. These include discussions of transmission line
ampacity and sag calculations, a general approach to the selection of
insulators and the physics behind switching surges and their consequences.
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Given that the title has the word “overhead” in it, the book’s focus is on
overhead transmission lines.  Nevertheless, there are places where
underground transmission lines will be mentioned to contrast them with
overhead transmission lines. One example would be the significantly
different capacitance per unit length that places severe limits on the length of
underground (but not overhead) alternating current transmission lines.

It is assumed that the reader has had an undergraduate course in
electromagnetic theory although a graduate course in electromagnetic would
provide better preparation. Since some of the techniques introduced in the
book use theory that is beyond that covered in an undergraduate course,
there is a chapter designed to cover some of these more advanced topics as
well as appendices that supplement material in the text as needed.

The fundamental approach taken here is to consider power transmission
lines to be waveguides that direct energy along the wave guiding structure.
This will become evident in the way that the analysis is presented here; it is
valid for all frequencies from 0 (i.e., DC) to neatly optical. Although most
applications for power transmission lines require an understanding of their
behavior at “low frequencies,” there are some special cases for which
transmission lines must be treated at high frequency. The models introduced
in this text are general enough to allow the analysis of transmission lines at
these higher frequencies.

Another (and very important) aspect of the approach to the book is the
assumption that the ultimate measure of a theory’s usefulness is successful
comparison to measurement. Theory is a very valuable tool for providing
insight into the operation of electric power transmission systems and because
it is generally significantly less expensive to perform calculations than to
conduct an experiment. But, if there is no confidence that an experiment
(that can be defined and, in principle conducted) will produce the same
results as the theory predicts, the value of the theory is (at best) severely
diminished and (at worst) negligible. Because of this assumption, a chapter
on measurements has been written and experiments designed to validate
theory are discussed.



On Notation

xplicit field points will generally be indicated by unprimed
rectangular coordinates.  Continuously distributed sources of
electromagnetic fields will be indicated by primed rectangular
coordinates.Discrete sources of electromagnetic fields will generally be
indicated by numerically subscripted rectangular coordinates where “n” in
the number of the source. Given these designations, a z directed line source
(discrete in x and y, but continuous in z) will be indicated by the coordinates.

In the special cases for one or two sources at the same height above the
earth (assumed here in the y = 0 plane), the heights may be indicated as
(single source) and (two sources at equal heights) while the locations along
the x axis are  (two sources with a total separation of d).

Given that many of the operations are conducted in the spatial Fourier
transform domain, the three transform domain coordinates corresponding to
are , and respectively. Since many operations are carried out in the ~domain,
transformed variables in this domain are indicated by a “tilde” above the
variable in addition to the explicit functional dependence upon, for example.
Phasor quantities are indicated by a “hat” above the variable in addition to
the explicit functional dependence upon the radian frequency, for example.
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Chapter 1

Introduction to High Voltage Electric Power
Transmission

1.1 Wireless vs. Wired Power Transmission

Since the topic of this manuscript is power transmission “electromagnetics,”
it is instructive to note that energy can be transported from one location to
another using electromagnetic fields without the use of wires between the
two locations. In fact, small amounts of power are routinely transferred over
long distances from a transmitter to a receiver without the use of wires in all
types of communication systems. The key phrase here is “small amounts”
because in communication systems only a tiny fraction of the power
transmitted is recovered by the receiver. This “inefficiency” is acceptable for
communication systems but not acceptable for the transport of large
amounts of energy. In fact, generally efficiencies on the order of 90% or
better are required for systems designed to transport large amounts of
energy.

It is often pointed out that Nikola Tesla pursued “wireless” power
transmission in the 1890’s. While it is true that Tesla’s plans called for no
human-made or installed wires to be introduced between transmitter and
receiver, his proposals involved using natural conductors (i.e., the earth
and/or the ionized atmosphere) that spanned the distance between the
source and the load (Anderson 1992). Hence, it is not clear whether his
proposals should or should not be propetly referred to as “wireless.”

Recently, there has been renewed interest in wireless power transfer and a
number of devices for this purpose have been introduced into the market
(Karalis et. al. 2008). These systems have, however, been restricted to
relatively short distances and small rates of energy transfer. A good
discussion of wireless power transfer through this “magnetic resonance
coupling” mechanism can be found in a paper by Cannon, Hoburg, Stancil,
and Goldstein (2009). It is shown there that it is very difficult to achieve the
efficiencies generally expected of high voltage overhead transmission lines
(i.e., 90 — 95%) with wireless power transfer systems.

Given the waveguide approach to power transmission lines used in this
text, it is perhaps useful to provide a short comparison between wireless and
wired transmission of energy for long distances. Consider first, wireless
power transmission. The simplest source of electromagnetic fields is an
electric dipole antenna (a short element of length (h) and electric current (I)
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driven by a voltage source at its center) as shown by the arrow in Figure
1.1.1. The electromagnetic fields of this dipole antenna in free space are

Ih .. ]k 1).
H =—e k2204 — Ising 1.1.1
Y Ax [ r rzj ( )
Er _ Jnolh e—Jkof szo +i3 cosé (112)
27K, r r

/A k02 ik 1)
=—]—=—e | ———4+=—"+"—|sInd@ 1.1.3
¢ J47zk0 [ ror? rt (119

Where g, and g, are respectively the permittivity and permeability of free
space, Kk, =\ p,e, =27/ A where w is the radian frequency of the source
and A is its wavelength and Mo = /1o /€0 19 the impedance of free spacel.

load
power density = 1/r?

receiving
antenna

dipole
Fig. 1.1.1. Geometry for explaining energy transfer efficiency in wireless power transfer.

At a distance from the dipole large compared to the wavelength (i.e., the
“far field”), these fields reduce to

H, ;uk—;:hsinee‘jko“ (1.1.4)
jn.k,Ih . i
E, ;—mjﬂ: singe ™" =pH, (1.1.5)

A graphic of the field pattern from this dipole is shown in Figure 1.1.1.

To the right and left of the dipole are circles that indicate (by the distance
from the center of the dipole to the far edge of the circle) the relative “far
tield” amplitude of the electromagnetic fields emitted in that direction (i.e.

! The coordinate system used here for the dipole is a bit nonstandard, but its utility will be
evident later. It is oriented in the x direction and 0 is defined with respect to the x axis.
Further, the magnetic field (in the ¢ direction is in the yz plane with ¢ = 0 along the y axis.
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proportional to sin 6). Thus, it can be observed that a dipole generates
electromagnetic “far” fields in all directions except directly above and below
it and that these fields are greatest to the right and left. It turns out that since
the emitted power is spread out over (almost) all space and since space is
considered lossless, the power density (i.e., watts/m?) must decay inversely
with the area of a sphere (i.e., 4nr’) that is centered on the dipole® in order
that the total power passing through the sphere is constant. Thus, the power
density in any given direction decays algebraically and is proportional to’
1/1%. In some cases, “gain” can be added to these systems to enhance the
amplitude of the power density in certain directions but the decay is still 1/1*
because the power still spreads out in all directions (albeit with a different
spatial distribution). Unfortunately, at low frequencies it is very difficult (if
not impossible) to achieve much gain by modifying the directivity of a
source; doing this requires that the source be comparable in size to a
wavelength (A = 3x10°/f(Hz) where f is the frequency of the source). Hence
this is not an option for power transmission systems that operate at low
frequencies since the wavelength at 60 Hz is 5000 km.

Now, the power emitted in a certain direction can be transferred from the
electromagnetic fields to a “receiving antenna” as also shown in Fig. 1.1.1.
But, the receiving antenna is roughly of the same size as the source dipole
and because of the 1/1” decay and the related fact that its ability to gather
emitted energy is roughly limited to that which it physically intercepts, the
receiving system extracts only a small fraction of the energy emitted by the
source dipole’. More specifically for an electrically short dipole receiving
antenna with an assumed uniform current distribution and oriented as shown
in Fig. 1.1.1, the maximum power that can be received by a receiver that is
conjugate matched to the antenna is equal to

2
—

max =_|E
4R,

i (1.1.6)

inc

where R, is the input resistance’ of the antenna (Weeks, 1968). Using the last
term of (1.1.3) since it is dominant for &y << 1,

B f 272_210—14 I 2h4

P () -

(1.1.7)

2 In the far field, the magnitude of the power density is equal to E oH g - More will be said

about power density in Chapter 3.

3 It turns out that the power density from this dipole decays as 1/12 even when the far field
condition is not satisfied.

4 “Matching” can maximize the amount of energy retrieved, but cannot overcome the fact
that the fields decay as 1/r?

5 The resistance R, is left unspecified here because the interest is only to compare the
wireless and wired cases. More information about can be found in Weeks (1968).
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since 0 = n/2 for the geometry of Fig. 1.1.1 and fis the frequency in Hz. For
typical values of parameters, the power received can be shown to be very
small fraction of the power emitted and not appropriate for power systems
that require efficiencies as close to 100% efficient as possible.

As an aside, it is interesting to note that a method for (reasonably
efficient) wireless energy transport at high frequency has been proposed.
This involves the conversion of power generated by photovoltaic cells in
space to microwave frequencies for transmission to the earth (Flournoy
2011). One of the reasons for using microwave frequencies is that the
wavelength is much smaller and hence a very narrow electromagnetic beam
can be used. The fact that this beam is so narrow significantly improves the
overall efficiency of the system.

There is an alternative to the wireless system shown in Fig. 1.1.1 that is
“wired” and results in a much smaller loss of energy (and hence significantly
greater efficiency). The idea is to use some kind of a structure (e.g., two
wires near the dipole as shown in Fig. 1.1.2) that extends from the dipole to
the place where the energy is transported (i.e., the receiver). If the dipole is
“close” to the wires, it is capacitively coupled to the wires and it turns out
that most of the energy emitted by the dipole is “captured” by the pair of
wires and “guided” to the place where it will be extracted and used (Olsen
and Aburwein, 1980). Such a structure is a called a “waveguide” (or a
transmission line) because even if the pair of wires changes direction, the
energy will still follow the new direction of the wires (hence the word
“waveguide”).  There is no longer the 1/t attenuation because the
electromagnetic fields are confined to the vicinity of the wires. However,
because any material used to make the waveguide is electrically lossy (e.g.,
resistance in a wire) there will be attenuation that (since the loss is
proportional to the incident power) corresponds to exponential decay with a
decay constant . Nevertheless, if the wires are lossless enough, then this
decay can be much less than the geometric loss associated with wireless
transmission and (hence) “wired” transmission is more efficient than wireless
transmission. A more explicit proof of this can be found in Appendix A.

two wire transmission line

capacitive coupling
receiving

dipole
P antenna load

power density = exp(-az)

Fig. 1.1.2. Geometry for explaining energy transfer efficiency in capacitively coupled,
“wired” power transfer.

12



Using the result from A.8 of Appendix A, the incident electric field at a
distance 7 from the source dipole is

240y,

d?In(d/a) (.19

Einc = 770Hinc ==

where 4 is the spacing between the wires and « is the radius of each wire.
Given this result,

2 2 12K4
Pn:“;x'ed(r)=h_| el = 4(12?) ITh™ g-amta)r (1.1.9)
4R, d*In*(d/a)R,
The ratio of P4 to PW** is then
Pwired r ) 2118 .6 olim ;

prirelss(r) -~ 72£2d% In?(d /a)

For realistic distances, this is generally a huge number because Z‘Im(yd }r 1s

generally much less than 1 and indicates that wireless transmission at typical
power transmission frequencies is just not viable.

two wire transmission line

conductive coupling
receiving

antenna

load

z—

power density = exp(-az)

Fig. 1.1.3. Geometry for explaining energy transfer efficiency in conductively coupled,
“wired” power transfer.

At low frequencies, this relatively much more efficient transmission line
system is the reason why most power transmission is “wired” rather than
“wireless.” Note that the system shown in Fig. 1.1.2 can be made even more
efficient if the dipole and receiver are conductively coupled (.e.,
“connected”) to the two wire transmission line as shown in Fig. 1.1.3. This
process eliminates the relatively inefficient low frequency capacitive coupling
and represents a close approximation to a simple realistic low frequency
power line.
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In summary, except for the microwave system discussed above, it does
not appear that wireless transmission of energy will be a major competitor to
power lines for efficient long distance power transfer in the foreseeable
future. For this reason, emphasis will be placed on power transmission lines
for the remainder of the manuscript.

1.2 Power Transmission Line Basics

Introduction

The purpose of this manuscript is to describe techniques to analyze the
electromagnetic fields associated with high voltage overhead power
transmission lines. As a preliminary to this exercise, an introduction is given
here to simple power transmission systems and to some of the reasons why
they are designed and built as they are.

The goals for the transmission system planner are to provide a reliable,
efficient, safe and cost effective source of electric power with known
characteristics (i.e. voltage, amplitude and waveshape) throughout the system.
The system should supply sufficient electric energy to meet the needs of the
public, private and commercial sectors of society and should be as
environmentally benign and aesthetically pleasing as possible with minimal
interaction with other legitimate systems that share the transmission line
right-of-way. The integration of these goals into the design of the system will
be evident in the remainder of this manuscript.

Simple transmiission lines
From the time that electricity was first generated for commercial purposes, it
was necessary to use it at a different location from that where it was
generated. This was done by connecting wires between the generator of
electricity and the device that was using the power (i.e., the load) as shown in
Fig. 1.2.1. For this discussion, the load will be assumed to behave like a pure
resistor; this condition will be relaxed in subsequent sections. This system is a
simple representation of what is called in the power industry a “single phase”
transmission line. In this system there is a single voltage source which
generates a waveform that is sinusoidal in shape with a given “single” phase
angle; hence the name “single phase.”  This characteristic distinguishes this
transmission line from the more complicated multiphase systems (e.g., three
phase transmission lines) that will be discussed later in this chapter and
which contain at least two sinusoidal voltage sources with distinct phase
angles.

The behavior of the transmission system depends not only on the
characteristics of the conductors, but on the nature of the generator and load
as well. More specifically, one important characteristic of the generator is its
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voltage (#,(2)) that can (as mentioned eatlier) be assumed to be sinusoidal in
time and described mathematically in (1.2.1)°.

v, (t)=V, cos(2At + ) (1.2.1)

Here 17}, is the zero to peak amplitude in volts, fis the frequency in Hertz
(Hz) and a is the phase angle in radians (e.g., one time t at which the
maximum voltage occurs is # = -a/(2zf)). Note that the “direct current” case
is the limiting case for which the frequency f— 0 and a = 0 radians. A plot
of a typical sinusoidal voltage is shown in Fig. 1.2.2. Here, I, = 1 kilovolt
(kV), the frequency () is 160 Hz and the phase angle («) is —n/2 radians.

v (t) . o RAR/2 o Velt)

-f+ |g=(t=) transmission Line " Ii, [+

D VA

i S vV ——
RAL/2

generator load

Fig. 1.2.1. Simple generator, load and transmission system.

The choice of frequency does make a difference. For example, it will be
shown later that the power transfer across a short transmission line with
fixed voltages at each end is inversely proportional to frequency. Thus, lower
frequencies are preferred. But the use of too low a frequency causes
unanticipated consequences such as flickering of lights and a requirement for
more, heavy magnetic material in devices such as transformers. Through the
early days of electric power systems, a variety of frequencies between 16 2/3
Hz and 133 1/3 Hz were used although eventually the frequency for
alternating current (AC) systems (i.e., those that use sinusoidally time-varying
voltages and currents) was standardized on either 50 or 60 Hz in different
parts of the world (Electrical Science 2009). Direct current (DC) systems
are still used in some circumstances and (as mentioned above) can be
represented by (1.2.1) with /= 0 and a = 0.

® A sinusoid has the property that its wave shape is unaltered if used in a power system that
generally contains “reactive” elements such as lumped capacitors, lumped inductances and
distributed parameter transmission lines.
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| \_/

t (msec)

vg(t) (kv)

Fig. 1.2.2. Generator voltage with I/, = 1kV, f= 160 Hz and a = -n/2

To this day, voltage levels for different parts of the power system are less
standardized. In fact, significantly different voltage levels are used both in the
transmission (i.e.,, generally higher than approximately 80 kV) and
distribution (i.e., generally lower than approximately 50 kV) portions of the
system in different parts of the world.  Transmission lines with voltages
between these two levels are often referred to as sub-transmission.

For the case of sinusoidal voltages,

Y
vV, o= (1.2.3)

rms \/E

In most power systems analysis, the time varying voltage is represented as a
“phasor” quantity with an amplitude (usually, but not always the rms voltage)
and a phase expressed in degrees or radians. Such a voltage (with phase
expressed in radians) is written as

V=V_el (1.2.4)

where the carat ” indicates a phasor quantity and a is given in radians. The
phase in degrees = 180o/n. A similar result can be found for sinusoidally
time varying currents.

The time varying voltage can be recovered from the phasor voltage (i.e.

1.2.4) using
V(t) = \/zvrms Re(e j(272ft+0t))
= V2V, Re(cos(27ft + )+ jsin(2Aft + ) (1.2.5)

rms

=2V, cos 2t + )
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where Re() means “real part of” and Euler’s identity (i.e., ¢ = cos(a) + jsin(a))
can be used to convert the exponential to explicit sinusoidal or co-sinusoidal
form. Note that the last expression in (1.2.5) is identical to (1.2.1). For
completeness, the current at any point in the system can be represented as

i(t)=+21,,, cos(27t +a) (1.2.6)

where L is the rms amplitude of the current and « is the phase angle in
radians’.

The wires in Fig. 1.2.1 are called the transmission line and the most
relevant parameters here are the voltage (z,(?)) between the wires at the
generator, the current (7(#)) that travels from the generator down one wire
through the load and returns on the other wire, the voltage (z(2)) between the
wires at the load and the current (i(#)) through the “load®.” The resistance of
each wire is (R4¢/2) where R/2 is the resistance per unit length of each wire
and Al is the length of the transmission line. Note that for this simple
example, the effects of capacitance and inductance have been ignored in
order that some fundamental characteristics of power transmission systems
not be obfuscated by too much complexity. These will be introduced later.

The reason for the use of higher voltage levels

One of the issues that arose early in the age of electric power is that of
increasing the efficiency of transmitting power from generator to load. The
imperfect efficiency is primarily due to the fact that some power is lost as
heat in the wires during the process of moving it from one place to another.
This issue can be studied in the following way using the assumptions

V. =V

grms frms (i'e'a low IOSS) and | =~ |

grms = |y (L€, capacitive effects ignoted).
Using the circuit in Fig. 1.2.1, the average power lost (Psy) in the process of

transmitting power from the generator to the load is’

P =2|2 RM/Z—%RMIZ
| =— (1.2.7)

ost = grms
grms

As a fraction of the transmitted power (i.e., (1.2.7) divided by P,,), the power
loss can be written as

2P
Rt YV (1.2.8)
P

gavg grms

7 Since the load is assumed to be resistive, the phase angle of the current is the same as that
of the voltage. This will not be true in general.

8 Since capacitive effects have been ignored, the generator current and the load current will
be identical

9 Note that the “2” in this result is because there is loss in each of the two conductors.
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Hence, for a given transmitted power (P,,), the fractional power lost (i.e.,
Piy / Py can be reduced by either reducing the electrical resistance of the
conductors or increasing the voltage between the wires. Consider first,
reducing the resistance. The resistance per unit length of a wire of circular
cross section at very low frequencies is

R/2=-"L (1.2.9)

2

where g is the resistivity of the conductor material and « is the radius of the
wire. The resistivity ¢ can only be changed by using a different material for
the wire and (given the common materials available) cannot be changed very
much. Further, if the material is changed, the goal would more likely be to
reduce wire weight for mechanical reasons or cost (such as replacing copper
with aluminum as has been done historically) and this might actually increase
the resistivity. Increasing the radius “4” is possible, but there is a limit to
how much this can be done because both wire weight and cost are
proportional to the cross sectional area of the wire (and hence to ). Thus,
the better of these two candidates for reducing relative losses (and hence
improving efficiency) is to increase the voltage between the wires.

transformer ; ;
transmission Line Re\{’,}\/z ranstormer
A A A"
A%
higher Voltage RAR/2
generator o

Fig. 1.2.3. The use of transformers to increase the voltage on a transmission line.

In this context, it is interesting to note that in the earliest part of the
“electrical age,” there was a well-known and well publicized argument over
the appropriateness of using direct current (DC) or alternating current (AC)
systems for distributing electrical energy (McNichol 2006). Over time the
clear winner was AC because it was much easier to change voltage levels on
different parts of the system (in order to reduce losses) using transformers
than with any technique that could be used for DC systems'”. It should be
noted that the physical basis for transformers is magnetic induction based on
Faraday’s law that requires a time varying magnetic field. Hence transformers

10 At present, power electronics has made it more feasible to change voltage levels at DC.
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do not work for DC systems. For an AC system, transformers are used as
shown in Fig. 1.2.3"".

As discussed above, these higher voltages were desirable because
transmission lines operate more efficiently at higher voltages. Cleatrly, for a
fixed power flow, the higher the voltage, the smaller the losses as a fraction
of the power flow. The resulting economic benefits are clear.

As a side note (and as will be demonstrated in more detail later), it is
known that the resistance of typical power line conductors increases with
frequency due to the “skin effect.” This factor would tend to favor DC over
AC systems. But, the reduced resistive losses for DC transmission are usually
(but not always) offset by the energy lost in converting from AC to DC and
vice versa unless the transmission lines are very long and the cost of these
voltage conversions can be averaged over a large distance.

Also as mentioned above, it was necessary to introduce a transformer that
raises the voltage to a higher level to implement these higher voltage
transmission lines'?. Of course, these also introduce some losses into the
system, but usually at an acceptable level. As a final note, even though higher
voltages were recognized to result in more efficient transmission systems,
there are upper limits to voltages used in power equipment at the generator
and load due to insulation limitations and safety issues.

More realistic transmission line model

transmission Line
RO®/2 LA®/2 Ve(t)

o)
CAelz_L

LAR/2

vg(:)

ig(t)

generator
load

Fig. 1.2.4. A more appropriate model for an AC transmission line system

While the simple model for the transmission line used to this point (i.e., wires
with resistance and a purely resistive load) is adequate for illustrating the

11 Note that it is necessary to have a transformer because neither generators not loads can
operate at arbitrary large voltages. Transformers also introduce additional losses into the
system and have power capacity limits.

12 On real power systems, there are more than two voltage levels for a number of reasons.
Portions of the system that operate at voltages greater than about 80,000 volts are called
transmission lines while those at less than this are called distribution lines.
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points that have been made, it is overly simplistic for the AC systems that are
most commonly used. There are two fundamental reasons for this. First,
the current at the generator will not in general be the same as the current at
the load due to currents that flow through capacitance between the wires.
Second, the resistance of the transmission line conductors will be augmented
by a series inductive reactance that causes additional voltage drops between
the two ends of the transmission line. If the transmission line is electrically
short, these effects can be represented by lumped impedances as illustrated
here in Fig 1.2.4. More specifically, R, C and L."” represent the resistance,
capacitance and inductance per unit length respectively while Afis the length
of the transmission line. If the transmission line is longer, then they must be
treated as distributed parameters (Weeks 1981). More will be said about this
topic later. Finally, the assumption made eatlier that the load is purely
resistive will be relaxed here. In general, it will have a resistive and a reactive
part.

Fig. 1.2.4 illustrates a more reasonable lumped circuit model for the
transmission line. It consists of distributed capacitance between the wires
and distributed inductance along the transmission line in addition to the
distributed wire resistance modelled earlier. One consequence of allowing
these reactive elements in the transmission line model as well as the load is
that voltages and currents, in addition to having different amplitudes
throughout the system also have different phases. One specific consequence
of this is that voltages across and currents through any circuit element in the
system will, in general, have different amplitudes and phases. This can be
illustrated in as shown in Fig. 1.2.5.

ig(t)

Voltage (kV ), Current (kA)

8 8
-1
t (msec)
Fig. 1.2.5. Load voltage and current with peak values V w = \EV s = 10 kV and

1, =~/21

o =5kA. /=160 Hz, a = 0 and 0 = n/4. The current “leads” the voltage by n/4

radians or 45 degrees.

/rms

13 These parameters combine the effects of both wires
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More specifically, the sinusoidal voltage across and current through a load
can be written respectively as'*

v, (t) =2V, cos(24t) (1.2.10)

and

i,(t)=+/21,,, cos(2Aft +6) (1.2.11)

where it has been assumed that the phase angles of the voltage and current
are zero and 0 radians respectively and that both are written in terms of their
rms amplitudes. Note that if the angle 0 is a positive number, the current
is said to “lead” the voltage because the current peak occurs before the
voltage peak as shown in Fig. 1.2.5. Similarly, if the angle 0 is a negative
number, the current is said to “lag” the voltage.

The importance of reactive elements

A cursory examination of Fig. 1.2.4 does not reveal the full significance of
the inductive and capacitive elements yet. Hence, this topic will be examined
here more carefully in the frequency domain.

Inductance

A “very short” transmission line is shown in Fig. 1.2.6. Typically, the
capacitance can be neglected in this case since its impedance is inversely
proportional to the line length AL and the inductive impedance® is large
compared to the series resistance of the transmission line connecting two
voltage generators (usually called generator busses).

R transmission line a
Va (@) =126, Le ng((l’) =V,20,

oLt o YY)

generator #1
generator #2

Fig. 1.2.6. Two generator busses connected by a short transmission line.

14 The phase angle of the voltage across the load end is not equal to the phase angle of the
generator. Without loss of generality, « in (1.2.1) is set equal to 0 to get (1.2.10).
15 Note in this case that the inductances in both wires of the transmission line shown in Fig.

1.2.4 have been combined into one and placed into the upper wite. This will not affect the
results here.
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Clearly, if there is current through the transmission line, there will be a
voltage drop across the transmission line. One consequence of this is that
both the amplitude and phase of the generator and load voltages are
different. It will be shown later that since the voltage drop is proportional to
the current, the current and hence the power (since it is proportional to
current) that can flow from one generator to another is limited. This is,
perhaps the most significant effect of the inductive reactance. More will be
said about this shortly when power flow is quantified.

Capacitance

Consider next a short “open circuited” transmission line connected to a
voltage generator as shown in Fig. 1.2.7. In this case, relatively little current
flows and inductive effects can be neglected. It would be tempting to simply
say that the current entering this transmission line was zero because the
transmission line is open circuited. But, if this assumption is made, an
important characteristic of these transmission lines will be missed. It is more
appropriate in this case to consider the “hidden” capacitance per unit length
of the transmission line as illustrated in Fig. 1.2.8.

Ve(w) ()

-t ey 0000000000

generator
load

Fig. 1.2.7. A short, “open circuited” transmission line connected to a generator.

generator
load

Fig. 1.2.8. A short, “open circuited” transmission line of length Al connected to a generator
with “hidden” capacitance shown.
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generator

generator

generator

generator

generator

Fig. 1.2.9. Sequence of open circuited transmission lines with increasing capacitive current
illustrated by the size of the red arrow a) thin widely spaced short wires, b) thick widely
spaced short wires, ¢) thick widely spaced long wires, d) thick, closely spaced long wires, ¢)
coaxial, closely spaced long wires with a solid dielectric.

For AC systems, the current flowing into the transmission line is
Iy ()= JacALV, () (1.2.12)

where ¢ and Al are the capacitance per unit length and length of the
transmission line respectively.

Now, in many cases for traditionally designed overhead transmission lines,
this current is small enough to be neglected. But, the issue is important
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enough in some cases that a further examination will be given here. Consider
the sequence of transmission lines shown in Fig. 1.2.9. In each, the
amplitude of the current that flows from line to line is indicated by the size
of the red arrow.

As shown in Fig. 1.2.9a, electrically short (typically less than 100 km)
traditionally designed transmission lines have very small capacitive current,
but if the length is increased, the capacitive current increases as shown in Fig.
1.2.9b. If “thin” wires are replaced by thicker wires (such as conductor
bundles) as shown in Fig. 1.2.9¢, the capacitive current increases. Closer
spacing (such as for compact lines) results in a further increase in capacitive
current as illustrated in Fig. 1.2.9d. Finally, as shown in Fig. 1.2.9¢, the use of
a coaxial geometry with inner and outer conductors separated by a solid
dielectric (such as for an underground cable) results in an even larger
capacitive current.

It is illustrative to consider the capacitance per unit length of a typical
underground cable used for power transmission. It would be

2rs. €,
cC=————— F/m (1.2.13)
In(b/a)
where ¢, is the relative dielectric constant of the dielectric insulation and a
and b are the inner and outer radii of the cable respectively. For typical

parameter values (i.e., & =3, b/a = 4), ¢ = 0.12uF /Km. Using this value for
the capacitance per unit length, the magnitude of the generator current is

I g‘/(j\ig ‘M): 27fc = 0.045 Amps/ (km — kV) (1.2.14)

For short, low voltage cables this current is relatively small (e.g., 4.5 A for
a 10 kV, 10 km cable). However, for long, high voltage cables the current
can be significant (e.g., 450 A for a 100 kV, 100 km cable). This current is
comparable to the total current carried by the cables to the load. Capacitive
currents this large present a serious problem for the power system in part
because they result in losses even under no load conditions.

These capacitive currents and the associated losses are a significant part of
the reason why it is reasonable to use short low voltage underground cables
for residential distribution but not to replace long high voltage overhead
transmission lines. In fact, whenever long high voltage underground cables
are needed (such as for undersea applications), they are operated at DC to
eliminate capacitive currents.
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1.3 Complex Power Flow in Simple Transmission
Systems

Introduction
Using 1.2.10 and 1.2.11, the time averaged power'® absorbed by a load is

defined as

2z

=V, Tcos(a)t)cos(a)t +0)t
T 0

T

Jv (), (t)

0

o
—
|

=2y, I

frms © /rms
2

[cos@ + cos(2at + 6) [t (1.3.1)

_@
27

=V, |, cos@

frms © /rms

AT

/rms © /rms

[cosO(1+ cos(2at)) + sin@sin(2at )t

o= [} o=z}

whete T'= 27/ w is the petiod of the voltage and current.

p(t) _ /\ / .
Peavg |

40—

/‘
P

power (kilovolt - amperes)

8 8
20—
. -30
time (msec)
Fig. 1.3.1. Plots of p¢(#) and ¢¢(?) for the parameters of Fig. 1.2.5
Before moving on, it is instructive to plot the parameter
5,(t)=p, (t)+a,(t)=v, 1), t) (1.3.2)

16 Averaged over one period of the sinusoidal waveform
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for the assumed sinusoidal voltages and currents in (1.3.1).

Here, from (1.3.1)

P, )=V, | e [0SO+ cOS(200t ) )] (1.3.3)

frms © /rms

and

qé(t)zvlfrms Iérms [SineSin(Za)t)] (134>

p,(t) and q, (t)correspond to the first and second terms in the integrand for

the last integral of (1.3.1). These two terms are plotted in Fig. 1.3.1 for the
same parameters as given in Fig. 1.2.5.
It is clear that p,(t)>0 and the dark blue horizontal line in Fig. 1.3.1

corresponds to the time averaged power absorbed by the load. This term
represents the time varying real power absorbed by the load with an average
value of V, I,..C0S6 as shown in the light blue line. But another

frms © frms

important component of the power is the time varying termg, (t). This term
is in quadrature with p((t) and is alternatively positive and negative with a

time average of zero. It represents energy that is alternatively being stored in
and returned from the reactive (i.e., inductive and capacitive energy storing)
parts of the load. While its time average is zero, it is an important component
of the electrical activity within the system. For positive values of 0, its peak
amplitude multiplied by the time varying term is'’

g, (t) = —Qsin(2at) (1.3.5)
where

Q=-V, sl )yms SING (1.3.6)

turns out to be an important parameter for power load flow studies. Hence
to fully capture the electrical response of the load in phasor analysis, it will
become necessary to define “complex power” as described next and to use
the imaginary part (i.e., {J) to characterize the energy storage capacity of a
load.

It is very useful at this point to consider the power calculation using
phasors. To this end, the phasor versions of (1.2.10) and (1.2.11) are
respectively

A

V, =V, (1.3.7)

17 The minus sign is used to be consistent with the definition of Q in the phasor analysis
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and

A

[ =1

el (1.3.8)

frms

If (1.3.7) is multiplied by the complex conjugate (denoted by the
superscript “*”) of (1.3.8), the following result is obtained.

S =Pay +1Q, :vf IA; :Vnmslérmseijg (1.3.9)
=V 11ms | 1rms (COSO — jSiNO) =|S|(cosO — jsino)

where S is defined as the “complex power” and its magnitude

is defined as the “apparent power.” Clearly, the real part of

/rms frms

S|=V
(1.3.9) is equal to the time averaged power absorbed by the load. Hence

ReAIA*) V,ime | yrms COSO (1.3.10)

frms © frms

P

lavg

But, there is additional information in (1.3.9) that will be useful for the
analysis of power systems. More specifically,

;=MW 17)= V| SING (13.11)

where Q is called the “reactive power.” This is the term described above as
the peak value of “out of phase power” defined in the last section.

To illustrate how this concept can be useful, consider a load that is a
capacitor. In this case, for the voltage across the load given by (1.3.7), the
current through the capacitor is

I, = jaCV s = C‘)C\//rmsew2 (1.3.12)

frms

and the “reactive power” is

Q = ImV, 7 )= Im(wCV 2, (cos(z/2)— jsin(z/2)))=—aCV

oms (1.3.13)

Since QQ is a measure of the reactive power “absorbed” by the load and is
a negative number, it is said that a capacitor “supplies” reactive power to
a network. Similarly, an inductor absorbs reactive power from a
network.

Complex: power is conserved

If radiation is ignored, the sum of the complex power supplied by the
independent sources (all at the same frequency) in a power network equals
the sum of the complex power absorbed by all other branches of the
network (Bergen, 1986). This property is a direct result of Poynting’s
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theorem that will be introduced in Chapter 3. One implication of this
property is that if reactive power is absorbed somewhere in the system, then
it must have been generated somewhere else in the system. In some cases,
reactive power is purposely generated close to where it is absorbed in order
to avoid losses and voltage differences due to the flow of reactive power.
This can be done by installing devices such as capacitor banks and static
voltage ampere reactive (VAR) compensators.

Power factor
A final concept related to this is “power factor” which is defined as the ratio
between real power and the apparent power in a circuit element.

p
Power factor = v o1 (1.3.14)

/rms © /rms

Power factors are usually stated as "leading" or "lagging" to indicate the
positive or negative sign of Q respectively (i.e., the sign of the phase angle of
current with respect to voltage). A capacitor has a “leading” power factor and
an inductor a “lagging” power factor.

Why introduce the concept of “complex power?”

It is, in principle, possible to solve for the currents and voltages in any power
system network in the same way that circuits are analyzed in textbooks used
for linear circuit analysis courses (or distributed parameter analysis if
necessary). Techniques that could be used for this include mesh and nodal
analysis with subsequent solution of large sets of linear equations for the
currents or voltages respectively. However, quantities in a power system that
are easily specified do not easily lend themselves to such analysis nor does
the analysis provide as much insight as alternative techniques. More
specifically, it is much more meaningful to specify complex power either
supplied by a generator or absorbed by a load' and/or phasor voltage at a
generator terminal than load impedance, and source voltage or current. As a
result, an alternative set of equations known as “power flow” equations are
set up and solved. While these equations are more amenable to the type of
data available and result in more insight, they are nonlinear equations that are
(in general) solved iteratively.

18 Part of the reason that complex power is specified is that there are voltage regulators on
the distribution side of the power system that adjust the transformer ratio up and down in
order to keep the distribution voltage constant as the transmission bus voltage changes.
Hence, as long as the number of devices connected to the power system is the same, the
complex power required stays constant as the transmission bus voltage changes. Another is
that the object of the system is to deliver power, hence this is the desired variable. For this
reason, system planners (who use load flow studies) specify increases in required load (i.e.,
power) than current.
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A simple example using these equations is given here. Consider the
power system shown in Fig. 1.3.2 that consists of a single generator of
known phasor voltage V connected through a transmission line (modeled as

a pi network with admittances Y, Yy and Yy ) to a load which absorbs a
specified amount of power S, The derivation begins with the writing of
Kirchoff’s current law at each node (usually called a bus in power engineering
terminology). The results are

[, =YV, +Y,V,-V,) (1.3.15)
and
[, ==YV, -Y, WV, -V,) (1.3.16)
Ve (w) I (w) transmission line (@) V(w)
oty  — —
Yee
Sg m— Yee Yer — G,
— — _
S T
S o
: 8
Q
[>T4]

Fig. 1.3.2. Simple power system to be modeled with power flow equations.

The power supplied by the generator and by the load are respectively

. An . LA 2 A Aa
S, =P, +iQ, =V,i7 =(v, +Yg[}vg‘ A% (1.3.17)
and

- 2o * * ~ 12 \I\7*
S, =P, +]Q,=V,I, :_(Ya +Yg( ¢ +Yg€v€vg (1.3.18)

If it is now assumed that the generator voltage is known (and typically set
to 1 for per-unit analysis) and the (complex) power (§¢) “absorbed” by the
load is known, then (1.3.17) and (1.3.18) form a set of nonlinear equations

that can be solved for the voltage at the load (V,(w)) and the generator

complex power (5,)". These equations are:

19 The assumption that the generator bus voltage is known but the power is not is equivalent
to assuming that this generator bus is a “swing bus” (Bergen, 1986). This type of bus is
required in order that the total complex power of the system be conserved.
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Sg = Pg + JQQ = (Yg*g +Yg’;’)_Yg*g\7;(a)) (1.319)
and
. N A 2 A
S, =P, +1Q, = —(YM +Y,, ((co)( +YV, (@) (1.3.20)

But, it should be noted that a natural consequence of using these
equations is that the power is assumed complex and hence includes both real
and reactive power.

Clearly, this methodology can be (and has been) extended to the case for
which there are multiple generator and load busses™. This extension can be
found in many power system analysis texts (Bergen, 1980).

It turns out that reactive power is important for several reasons. One is
that losses in the system occur whether the power transmitted is real or
reactive. Since real power is the only kind that can result in real work, it is
necessary to minimize reactive power in order to minimize losses. In
addition, the flow of reactive power is associated with differences in voltages
at different parts of the system (as will be shown here and again later in
Chapter 4). Hence, minimizing reactive power flow generally results in more
uniform distribution of voltage throughout the power system.

Power flow excample (short transmission line- generators at each end)

Consider again the simple power system shown in Fig. 1.2.6. The power that
flows from Generator 1 to Generator 2 (S12) can be found using (1.3.18) with
Se, 1y Veand Yy replaced by iz, 1y, 172 and jwl AL respectively. The result
is

VoV Vo)) NaaVee|
P, =Re(S,,)=Re gz—(jgal;LMQZ) :’V;lxzz‘sm(el—ﬁz) (1.3.21)

and
\79 2 (Vg*l _\79*2 )J

le = Im(812): Im[ — joLAS

(1.3.22)

_ M(I\fgl‘cos(ﬁl — 02)_N92‘)

LAY

In most cases the phase angles of the voltages at the two ends are not too
different (i.e., |6, — 6,| <<1). Asa result, (1.2.41) and (1.2.42) can be written

20 Other generator buses have the property that real power and voltage magnitude are
specified.
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in a form that provides insight into the relationship between voltage and
power in a power system. They are:

P, = %(@ -0,) (1.3.23)
and
Q= ngZL ([\/g1 92 (1.3.24)

Clearly, the flow of real power between two generator busses is related to
the phase angle of the voltages at the two busses. Since there are limitations
on the voltage angle difference related to system stability (to be discussed
further in Chapters 4 and 8), the inductance of a short transmission line
limits the amount of power that can be transferred from one end of the
transmission line to the other. But, in addition, it should be clear that the
flow of reactive power results in differences between the amplitudes of the
two bus voltages. Because it is important to keep the voltages in a power
system as uniform as possible, it is clear that attention needs to be paid to
reactive power flow. In summary, real power flow is related to
differences in voltage phase angles while reactive power flow is related
to differences in voltage amplitude.

Power flow example (short transmission line — passive load)

In this section, the power flow equations given in (1.3.19) and (1.3.20) will be
applied to a simple, but well-known problem in electrical engineering circuits;
that of calculating the power transferred to a load from a voltage source
behind fixed impedance®. The difference is that the terminology and
approach used will be that of a load flow program. The problem is illustrated
in Fig. 1.3.3. Here the generator bus has a sinusoidal voltage with fixed rms
amplitude (here set equal to 1) and is connected to a very simple electrically
short transmission line modelled as a series inductor. The transmission line
is, in turn, connected to a load that could be considered as a simple
impedance, but that is instead characterized by specified real and reactive
powers rather than a specified impedance value. Hence the complex power
S, in (1.3.19) becomes P, + jQ,.

2L If the fixed impedance is a resistor, the load is a resistor, and the goal is to determine the
maximum power transferred to the load, this is the problem used to prove the maximum
power transfer theorem.
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transmission line
de, = jwl.ge A'e

generator

Fig. 1.3.3. Determining the power flow to an arbitrary load through a short transmission line

Using these assumptions and equating real and imaginary parts separately, the
nonlinear power flow equation (1.3.20) reduces to

Ly, AP, =V, (1.3.25)

and

A 2 A
wl-ngQﬁ’Vg\ =V, (1.3.26)

where V, =V, + jV,,. If (1.3.25) and (1.3.26) are each squared and added,

the result is

(1.3.27)
. |4 .12
= (oL AP, F + N, +20L,AQ V| +(0hyArQ, f
This can be put in standard quadratic form as
4 A 12
V| +(@oLyam, -1, [ +(eL,arf (P2 +Q7) (1.3.28)
(1.3.28) can be solved using the standard quadratic formula as

252

o 1-20L,AQ, £ 1- 4l ALQ, — 4wl Alf P
[\/5 = ; (1.3.29)

This is the formula for a parabola, but this may be made more clear by
considering the standard parabolic form
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(y—y) =-2p(x—x) (1.3.30)
where the nose of the parabola is at (X', y'), the parabola opening faces

toward negative x and its directrix is at (X'—p/ 2). In this form, (1.3.28)
becomes

y

and the coordinates of the “nose” of the parabola ( in the coordinates

(pﬁZ’Mr)are at

2 (1— 2oL, ALQ, )T i —(a)L AK{PZ ~ (1— 4a)Lg(MQk)
gl [

_ . Y ] (1.3.31)

{(1— 4ol ALQ, ) (1_ 2oLy, ALQ, )] ' (1.3.32)

4oL, acf 2
~ 12
Further, the points of intersection with the r\/(‘ axis (l.e. P7=0)are

> (1-20L,A0Q,) 1-40L,AQ,

- + 1.3.33
> > (1.3.33)

v,

At this point, the special case Q, =0 will be considered. In this case, the

nose of the parabola is at

L 2 (1.3.34)
e -

. . . . o 2 . ~ 2 .
and the points of intersection with the r\//‘ axis are r\//‘ = 1and 0. If (as is

usually done) the parabola is plotted in the coordinates (P/,MU (.e., the

square root of each coordinate) then it looks like shown in Fig. 1.3.4.

The first thing to notice is that the power absorbed by the load has a
maximum value. This result (P, ) = 1/(2wleA) is consistent with the fact
that a voltage source in series with fixed impedance can only deliver a finite
amount of power. Second, because (1.3.28) is nonlinear, there are in some
cases (i.e., P, <1/(2wl,Al)) multiple solutions for load voltage given load

power and in other cases no solutions (i.e., P, >1/(2al,Af)). In the case for

multiple solutions, the solution relevant to the problem under consideration
must be selected carefully to be consistent with the physics of the problem.
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Third, if it is assumed that the correct solution is the one for which the load
voltage V, :\7g =1when Pr = 0, then it is clear that as the power absorbed

by the load is increased, the load voltage decreases. This is consistent with
the general property that power flow in transmission systems results in (or
from) differences in source and load voltage that the power system designer
should control. Fourth, in this simple model, if the power demanded by the
load (e.g., the load resistance is reduced below R, =l ,,Al) is increased

beyond its maximum possible value, the actual power will decrease and the
solution for the voltage will revert to the lower portion of the curve. Under
these conditions, the voltage can be said to “collapse” to a very small value.
While the behavior of a real power system is much more complicated due to
stability issues, the existence of (for example) protection systems and the fact
that “voltage collapse” is not entirely well defined, situations have occurred
for which the system voltage is not stable. These situations are referred to as
voltage collapses and have led to widespread system blackouts.

load voltage decreases
with increasing power

Ve
\ maximum power output
\ | Pemax |= 1/(2wLBE A'B)
Ve=V,=1
12 multiple

solutions

power “absorbed” by load (P,)
Fig. 1.3.4. Solving the load flow problem for a generator and resistive load connected by an

inductive transmission line

To complete this derivation, the complex power supplied by the generator
will be computed using (1.3.19) for the special case P, :l/(ZngkAﬂ). In

this case V,, =-V,, =1/2 and (1.3.19) becomes

i . 1 .
- 1-(W/2+/2)=—— (- 1335
] ng[M( (1/2+j12) 2ngéM( ) (1.3.35)

where the complex power absorbed by the transmission line is
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Complex power is conserved because the real plus reactive power
supplied by the generator is equal to the real power absorbed by the load plus
the reactive power absorbed by the transmission line.

Finally, it is worth noting that this circuit is similar to the one used in
circuits courses to prove the “maximum power transfer” theorem.
Conclusions should not be made about power systems based on that model
because “maximum power transfer” is generally not the optimum condition
for operating a power system. Rather it is more correct to either maximize
the efficiency of the system which is done by minimizing the losses within
the system or to achieve an acceptable degree of voltage uniformity over the
system.

“Thinking” Reactive Power

To illustrate the utility of thinking in terms of complex power, the results in
Fig. 1.3.4 will be extended to the case for which a portion of the load is
characterized by reactive power, Q. This may be accomplished in a variety of
ways. First, it could be that the load is simply reactive. Second, it could be
that either a “shunt” inductor or capacitor is placed in parallel with the load
for some purpose (e.g., to cause an increase or reduction in voltage). Third,
this reactance could be a model for the natural capacitance of a transmission
line long enough to require parallel capacitances to approptiately model it*.

Again, the coordinates of the “nose” of the parabola in (P“’M‘)

coordinates atre at

J1-40l,ANQ, J1-2al,AlQ,
20l Al J2

(1.3.37)

If 4ol ,AlQ, <<1, then after using a one term Taylor series to expand

the square roots above, these coordinates become

1 1 wl,AQ,

wa YR (239

22 15 this case, the capacitance of the transmission line on the generator end has no influence
on the fixed generator voltage although reactive power must be absorbed somewhere in the
system to match the amount supplied by this capacitance.
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power “absorbed” by load (P,)

Fig. 1.3.5. Effect of injecting or absorbing reactive power at the load

If the reactive element is capacitive (i.e. Q, <0), then the nose of the

curve is moved to the right by an amount Q, which means that more power
is available at the load. This is illustrated in Fig. 1.3.5. Using the same Taylor

series approximation, the points of intersection with the M axis (i.e. P,=0)

v,

Clearly, “injecting reactive power” at the load has an impact on the
voltage there. If, for example, the voltage at the load is too small, a shunt
capacitor can be added to increase the voltage to a desired level. If, on the

are

"20 and 1-20l,A0Q, (1.3.39)

other hand, P,is small and the voltage is too high due to the capacitance of

the line (i.e., the Ferranti effect), then a shunt inductor (i.e. a shunt reactor)
can be added to reduce the voltage to an appropriate level. The Ferranti
effect will be discussed further in Chapter 4. A photograph of s shunt
reactor will be given in Chapter 2 and shunt capacitors and inductors (i.e.,
shunt reactors) will be analyzed in Chapter 4.

36



1.4 Unbalanced Single Phase Transmission Lines
with Reactive Effects

Introduction

The simple transmission line models considered earlier are useful for
illustrating properties of transmission lines such as the origin of transmission
line losses, the reason why power systems are more efficient if they utilize
higher transmission voltages and the importance of reactive elements.
However, a more sophisticated model must be used to illustrate issues related
to the fact that power transmission lines are operated in the presence of the
earth and often have parts that are connected to earth. A model of a single
phase transmission line above earth with one wire grounded is shown in Fig.
1.4.1.

In this figure, one of the wires is connected to earth at each end of the
transmission line. This connection allows some of the current to flow in the
earth so that in addition to unequal voltages at the ends, the wire currents
will no longer generally be equal and opposite. In addition, there may be
capacitances between the wires and other objects such as the earth that are
not shown in the figure and that can result in further current imbalances.
Finally, the circuit parameters that define the transmission line (i.e. R, L. and
Q) are affected by the presence of the earth. This subject will be considered
in Chapter 4. Details of the connections to the earth will be considered in
Chapter 13.

transmission line
Vg(w) |g(w) R L2 w VE(w)

+

generator
load

Fig. 1.4.1. Model of a short single phase power transmission line with earth connections
shown

The importance of grounding

Current paths and current continuity (hidden paths)

Having observed that currents through “hidden capacitances” can be
important, it is useful to consider the set of all possible paths for current. In
Fig. 1.4.2, several current “paths” are indicated that may not have been

37



obvious initially. These include capacitive paths between conductors and
between conductors and ground. In addition, current may flow from the
generator and/or load to the earth. In some cases, the generator and/or load
are bonded to their housing which is, in turn grounded. In others the
generator and/or load are intentionally insulated from the housing and hence
the ground. But, if this is the situation, there is still capacitive coupling from
the generator and/or load to the housing and ground. The only difference is
that the connection to ground is now of much higher impedance. In either
case there are ground currents as shown in the figure.

Once all current paths have been identified “current continuity” can be
invoked. This restriction is a direct result of Maxwell’s equations as will be
shown in Chapter 3. As an example, the current continuity calculation must
be applied to all currents flowing in and out of the generator in Fig. 1.4.2.
Clearly, in this figure some current flows as displacement or ‘capacitive”
current through “hidden” circuit elements to earth or other conductors that
are not explicitly part of the circuit diagram as it returns to the generator as
shown. Other current may flow in the earth through either intentional or
unintentional grounds.

the sum of all currents some flows through
entering the generator “hidden” circuit elements
must be zero R/2AL

some flows
- l through

i(t)
3 ” the load

L/2AL
lg(t) ] R2AC 1 A

generator
load

Fig. 1.4.2. Current paths and current continuity

On the definition of voltage with respect to ground (there must be a
reference point)

Before moving to a consideration of grounding systems, it is useful to
point out that whenever a voltage is given (especially with respect to ground),
its description should include the two points between which it is defined.
One should never say, “the voltage at point A is” because the reference
location is then ambiguous. Rather, the voltage should be described as the
“voltage between A and B” or “voltage at A with respect to B” as shown in
Fig. 1.4.3. It may seem that this is not a problem, but it becomes an issue
especially in describing grounding conditions as shown in Chapter 13.
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R/2AL L/2AL

generator
load

Fig. 1.4.3. Correct method for defining a voltage
Impact of imperfect ground (the earth is NOT an equipotential)

R/2AL L/2AL

generator
load

Fig. 1.4.4. Tllustration of why the earth is NOT an equipotential

Having defined voltage carefully, it is important to remember that the
earth is NOT an equipotential surface. In fact, it cannot be an equipotential
surface because, if current flows through the earth and the earth is not a
perfect conductor, then there must be voltage between different points on
the earth as shown in Fig. 1.4.4 (i.e., I"(w) is NOT equal to zero if there is
current flowing in the earth) between points A and B.

Grounded vs. ungrounded systems (there is no such thing as an
ungrounded system)

An important topic to consider is, “why power systems are ‘grounded’.” To
begin the answer to this question, it should be noted that actually all power
systems are grounded (whether explicitly as shown in Figs. 1.2.9 and 1.2.16 -
17 or not as discussed eatrlier). A system that is not explicitly grounded is
illustrated in Fig. 1.4.5.
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transmission line

generator
load

Fig. 1.4.5. Illustration of how “isolated” electrical systems are “grounded” through
capacitance to earth through the generator and load cases.

As shown in this figure, even if an attempt is made to isolate the power
system from the earth, there is a path for currents to the earth through the
hidden capacitances between (for example) the generator and its housing
which may sit on the earth. Hence no electrical system is ungrounded.
Rather, the only question to ask is whether the system is grounded through a
high impedance (as shown in Fig. 1.4.5) or a low impedance explicit ground
(as shown in Fig. 1.4.1). The difference between these two types of grounds
can be dramatic especially during fault (i.e., unintentional grounding of some
point in the power system) conditions as will be illustrated next.

Z

C

g -

L]
“remote earth”

Fig. 1.4.6. A simple power system used for calculating neutral to ground voltage under
normal operating conditions

This point about the impact of grounding impedance is important enough
that a more detailed explanation is warranted. Fig. 1.4.6 shows a very simple
power system which consists of a voltage generator, a two wire (i.e., a phase
and a neutral conductor) transmission line with a series impedance Z. for
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each conductor and a load Ry at the end. The neutral conductor is grounded
at each end through equal impedances Z,. In this configuration the system is

in normal operation. It can be shown that if |Zc| << ‘Zg ‘, R, (a reasonable

assumption for normal operation)

Mg

where V, is the voltage from the neutral conductor to a point on the earth

=NZ /(2R )<<V (1.4.1)

“far” from the ground connection called “remote earth.”
Hence, under normal conditions and independent of whether the

grounding impedance is high or low as long as,

between the generator neutral and remote earth (i.e., center of the power line
— more will be said about “remote earth” in Chapter 13) is very small
compared to source voltage and the issues related to personnel safety or
neutral conductor insulation breakdown would be minimal.

If, however, this system is analyzed under fault conditions, a different
situation exists. Consider the situation shown in Fig. 1.4.7a. Here, the phase
conductor is inadvertently grounded (for simplicity through an impedance to
ground of Z;) and the neutral to remote earth ground voltage is calculated. If

Zc| << ‘Zg‘, R, the voltage

it is assumed that |ZC| << ‘Zg‘, Rl_,‘Zf

, then Z, can be ignored in Fig. 1.4.7a

resulting in the circuit shown in Fig. 1.4.7b. In this case, the voltage between
neutral and ground can be written as

V| =Nz, 1z, +22, ) (14.2)

Z
+ +
v \ Ri
- I n +

Zs
Zg Zg % Vng ZE
g-“remote earth” g-“remote earth”
T |
@ (b)

Fig. 1.4.7. A simple power system used for calculating neutral to ground voltage under fault
conditions with a low impedance ground

If ‘ z,/ 2‘ << ‘ Z .|, the neutral to ground voltage is relatively low and issues

related to personnel safety or neutral conductor insulation breakdown would
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be minimal. The case for a high impedance ground is significantly different,

however. 1If, |Z, /2‘ >>‘Zf , then

’Vng

This means that this “ungrounded” (ie., high impedance grounded)
systems may experience neutral to ground voltages that could be hazardous
to personnel and/or high enough to damage the insulation on the neutral
conductor. This exercise illustrates why intentional grounding is important
for most transmission systems.

= V| (1.4.3)

Thevenin Equivalent Circuits (they are hand))

As an aside, Thevenin equivalent circuits are very handy for analyzing electric
power transmission systems (assuming that linearity can be assumed). Fig.
1.4.8 shows how a complicated power transmission system can be
represented as a simple Thevenin equivalent circuit.

Here, the Thevenin equivalent can be used to determine the effect of the
entire system on a device (or person) connected between terminals A and B.
Later in the text, methods for determining the parameters of the Thevenin
equivalent will be discussed.

R/2AL L/2AL

generator
load

+

vg(t)

Fig. 1.4.8. Replacing an entire transmission system at terminals A and B by a Thevenin
equivalent circuit
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1.5 Why is Three Phase Power Used?

An early development in power systems related to improving efficiency was
the advent of three phase transmission lines. To understand why, consider
the superposition of three separate “single phase” systems with equal loads as
shown in Fig. 1.5.1. For simplicity, the loads will be assumed to be
resistances and inductive/capacitive effects are ignored. Here the voltage

sources V,,V, and V. represent the generator for each circuit, RAZ/2is the

resistance of each wire where R/2 is the resistance per unit length and AL is

the wire length and “R;” represents the resistance of the load for each circuit.
Each of the circuits has a loss

2(RACI2)V,
P(fost(n) = (151)
(R, +2RA(/2)
where n = a, b or ¢ for a total loss of
poys - SRANV, (1.5.2)

=t (R, +2RAL/2)

s

RAE/2

“ =

Return Cu rient Wires RA®/2

——/\W
RM'/Z\/V\N i‘ " \/V\N\ >
Sa.

-~

+ @ + RA®/ L R,
AN /§ MA

RAE/2

RAG/2

MWW

Fig. 1.5.1. Superposition of three identical single phase circuits

In each of the three circuits the current (expressed as a phasor) is equal to
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A Y
I = i 1.5.3
" (R, +2RA(/2) (>3

where n is a, b or c. The collective current in the set of three return current
wires is

.V, 4V, +V,
[ = (1.5.4)
(R_+2RA¢/2)

If \7a +\7b +\7C =0, then the total current through the three wires is zero.

Given this, if the ends of the wires are connected together there is no net
voltage drop across this set of wires because there is no total current. Since
there is no current through this set of “return current” wires they could be
eliminated as shown in Fig. 1.5.2”. The effect of this is to eliminate the need
for these three wires and hence their cost. In addition, the resistive losses in
these three wires are eliminated and, hence, the efficiency of the system is
approximately doubled since there is loss in only three wires rather than six.
The loss in the three-phase case is

W

RAR/2

o =

RAR/2

MW

Fig. 1.5.2. Three phase system “wye” connected system with return (neutral) wires
eliminated

3

2 This type of connection is called a “wye” connection because the generator and load
connections look like the letter Y. Another common connection for generator and load is
the delta or A connection for which the connections look like a A and there is no return
wire.
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== ' n 1.5.5
(R +RAl/2) (123

Such a system is constructed generally using
V, =Vel® V, =Ve ¥y —veli* (1.5.6)

so that \7a —i—\ib +\7C =0. There are other reasons why three phase systems are

used including the fact that three-phase connected generators and motors
have a constant power output in time and the fact that three phase
components such as transformers can be constructed more economically
than three single phase components. Further, these advantages are not
limited to three phase systems. But, this subject is beyond the scope of this
discussion (Bergen 1980).

W

RAR/2

N

RAE/2

Fig. 1.5.3. Three-phase grounded “wye” connected system

Practical three-phase systems are grounded to the earth at the center of
each ““wye” as shown in Fig 1.5.3. This kind of a connection is used because
the power system is almost never completely balanced (especially during
unbalanced fault conditions) and grounding in this way carries unbalanced
currents to ground and hence, enhances safety and system recovery.
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As a final note, transmission lines (e.g., a 500 kV transmission line) are
usually identified by their line to line voltage. The relationship between line
to line and line to ground voltage is

i - .

The reason for the square root of 3 term can be illustrated by referring to
the phasor diagram of the voltages associated with a three phase system in
Fig. 1.5.4. Here the three phase voltages in (1.5.6) are plotted. The line to
line voltage between phases A and B which is the phasor difference between

(1.5.7)

\7a and \7b is also shown

Voo =V,-V
V. 28 a~ Vp .
’
/
/’ Vi
/
/
/
y
Vv,
Vy |Vee|=V3|Va|

Fig. 1.5.4. Phasor diagram of the voltages on a three phase system

1.6 On Increasing the Capacity of Power
Transmission Lines

Introduction

It is known that the power transferred through a power transmission line is
proportional to some current and some voltage. FEarlier in this chapter, it
was shown that in order to realize efficient power transmission over long
distances, the voltage of a transmission line should be increased rather than
its current. It is also generally true, that higher voltage transmission lines
have greater capacity for transferring electric power. Hence, the most
important approach to increasing the power capacity of transmission lines is
that of developing techniques for building transmission lines at higher
voltages. This will be covered in the next section. Following that will be a
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brief introduction to techniques for increasing the capacity of transmission
lines to handle electric current.

Voltage limitations on high voltage transmission systems and their solutions
In the twentieth century as electric power became more ubiquitous, a trend
continued towards the use of even higher voltages for power transmission
over long distances, again because of the desire to improve the efficiency of
power transfer and to transfer more power. Before, these higher voltage lines
could be used practically however, it was necessary to solve problems related
to the use of high voltage on these transmission lines. To be complete, there
is a short section about techniques that have been used to increase the
current handling capacity of high voltage transmission lines.

cap and pin insulator

P —— Socket Cap
Cotter Key Z—Eg
Cement / ’ ) Zinc Sleeve
Porcelain
Shell B

Ball Pin

+——— grading ring

(a) (b)

Fig. 1.6.1. a) Single cap and pin insulator b) String of cap and pin Insulators used on a high
voltage transmission line. The hardware at the bottom end is a pair of grading rings that will
be discussed in more detail later. (photo courtesy R. Aho - BPA)

The two most important of these solutions were the development of
insulators appropriate for high voltage applications and the design of
conductors and hardware suitable for managing corona effects on power
lines (Maruvada 2000). The key development in insulation design was the
development of the cap and pin suspension insulator which is further
discussed by Mills (1979) and Creager and Justin (1927) and shown in Fig.
1.6.1. The individual unit is shown in Fig. 1.6.1a while a sting of units is
shown in Fig. 1.6.1b. Also visible near the end of the string of insulators is a
“ring” structure often called either a “grading” ring or a “corona” ring. The
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primary purpose of this hardware is to distribute the power frequency electric
field near the conductor end of the insulator more evenly (i.e., to “grade” it)
so that the insulation strength is more nearly proportional to the number of
insulator units in the string. A positive side effect (and part of the solution to
t¥he corona issue) is that these rings can also act to reduce corona (i.e., partial
electric discharge in air near high voltage conductors and hardware). Corona
occurs because the electric field near these conductors is large enough to
cause ionization of the air and results in power loss as well as audible and
electromagnetic noise (see Figs. 1.6.2 and 1.6.3). More information about this
can be found in Chapters 8 and 9. Another aspect of the solution to the
corona problem was the development of “bundled” conductors as will be
visible in the photographs of power line conductors in the next section.
While some aspects of corona will be covered in this manuscript the subject
is covered more completely in (Maruvada, 2000). A negative side effect of
grading rings is that they reduce the insulation strength for impulsive voltages
(EPRI 1982).

Fig. 1.6.2. The white spots at the tips of the attachment hardware are corona discharges.
(courtesy B. Clairmont — EPRI)

Fig. 1.6.3. The white spots are corona discharges randomly located along a conductor
energized to high voltage
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To be complete, it should be noted that there are also limitations on the
current carrying capacity of these transmission lines such as excessive
conductor sag and temperature. These will be discussed in more detail later
in Chapter 8.

Current limitations on high voltage transmission systems and their solutions
While voltage issues were the primary limitation on the development of high
voltage transmission lines, increasing current limits can be another way to
increase the power handling capability of high voltage transmission lines.
Many of these issues will be covered in much more detail in Chapter 8.
However a short summary is included here. The primary issue that limits
current carried by high voltage power lines is that the current causes heating
of the conductors and if excessive, this in turn leads to stretching and hence
unsafe sagging of conductors and shorter lives for conductors and other
components such as splices. This issue can be mitigated primarily in two
ways. First, reducing the resistance of the conductors by using conductors
with larger diameters results in less heat dissipation and a higher current
capacity. Second, the use of different materials for conductor core strength
material results in reduced stretching for a given temperature. Other
remedies include closer monitoring of weather conditions to determine
conditions under which higher currents can be tolerated without violating
standards on maximum sag. Having said this, the power handling capacity of
very long high voltage overhead transmission lines is often limited by other
issues such as system stability. In these cases, replacement of conductors
does not result in increased current capacity since the current can never get
large enough to be of concern without violating other limits such as those
related to stability.

1.7 Alternative Transmission Line Systems

Introduction

As mentioned eatlier, there are many types of high voltage transmission lines.
Some are modifications of the standard single circuit three phase
transmission line such as “double circuit,” “compact,” “low sag conducting,”
“high surge impedance loading” and “low reactance” each designed to
mitigate against some disadvantage of conventional high voltage transmission
lines. Each of these will be considered in some detail later in this manuscript.
However, there are other designs that are more radical than those just
mentioned. Two of these are introduced in the following sections and will be
discussed further in Chapter 8.

49



High voltage direct current (H1DC)

= ‘v/‘v/mmmvmv; ¢

B/

Fig. 1.7.1. Transmission line structure for the HVDC Pacific Intertie. (courtesy R. Aho,
BPA)

It was mentioned earlier that during the beginnings of electric power, direct
current (DC) systems were one of the competing technologies for power
transmission (Bahrman 2008). Alternating current (AC) systems prevailed
primarily because transformers made it relatively easy to change from one
voltage level to another in order to reduce energy losses associated with
transmission. However, as also mentioned earlier, the electrical resistance of
a conductor at DC is lower than that of the same conductor at AC. Hence,
even through the cost (both in terms of dollars and losses) of converting AC
to DC and vice versa is high, economics may favor DC lines if the line is
long enough. Since the 1950’s some long DC transmission lines have been
constructed such as the Dalles, OR to Los Angeles, CA Pacific Intertie
shown in Fig. 1.7.1. The fact that there are only two power carrying
conductors should be noted. The other two conductors are shield wires.

For overhead transmission lines, HVDC has the advantages of lower line
losses due to a smaller resistance per unit length and the removal of stability
related load limits for long transmission lines (and hence larger power
transfer on a given corridor). In addition, while cables are not the specific
subject of this manuscript, DC technology is exclusively used for long
underwater cables due to the large capacitive currents that flow in unloaded

AC cables.
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High phase order transmission

Fig. 1.7.2. Experimental six-phase power system tower. (Courtesy J. R. Stewart)
Three phase transmission lines are not the only transmission lines that have
been studied and or constructed in the past. In fact high phase order (e.g., six
or twelve phase) transmission lines have been considered as an alternative
(Grant and Stewart 1984). While it is difficult to determine exactly what is
the best way to compare these to traditional three phase transmission lines
(e.g., voltage, number of phases, conductor size, right of way width,
environmental criteria, and phase spacing), the principal advantages of high
phase order lines are: a) They can provide the same power transfer (thermal
or surge impedance) capability as three phase lines, on a smaller right of way,
for the same electric field and audible noise criteria, with smaller structures
and reduced overall cost and b) They can provide higher power transfer-on a
given right of way than three phase, for the same electric field and noise
criteria. A photograph of a six phase line can be found in Fig. 1.7.2.

1.8 Conclusion

It should be clear that the design of high voltage, overhead power lines is a
complicated process. In the following chapter, an overview of real high
voltage overhead power lines will be given in order that the reader
understand the hardware that is used to build these lines. At the end of the
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discussion is a list of simplifying physical assumptions that must be made
before realistic mathematical models of the electromagnetic fields of these
power lines can be developed.

1.9 Problems

P1.1. Of the three following possibilities, what is the fundamental reason
why wireless power transmission is not generally used for transporting bulk
power?

a. Not as efficient as wired transmission

b. More expensive than wire transmission

c. Frequency spectrum not available for wireless transmission

P1.2. Assume a simplistic model for an antenna that radiates power equally in

. . . .. gen
all directions. Hence the radiated power density is P,y = P Watts/m?.,
ar

If, equally simplistically, it can be assumed that a receiving antenna captures
an amount of power (P,) equal to the incident power density multiplied by

the area of the receiving antenna, calculate the efficiency (i.e., —— X100 %)
gen
of a wireless power transmission system for a receiving antenna with an area
of 100 m” over a distance of 1000 meters. Compate this to the efficiency of
a 1000 meter long “wired” system that connects a 10 kV rms 60 Hz voltage
source to a purely resistive 1 Mw load with copper wire of 5 mm diameter
(assume no skin effect). At room temperature, the resistivity of copper is
1.68 x107* Q-m. Hint: use the power flow equation 1.3.17 with V,assumed

to be real because the load power is real and there are no reactive elements.

P1.3. How much weight can you save if you replace a copper conductor with
an aluminum conductor of the same total dc resistance and length? (The
density of copper and aluminum are 8960 kg/m3 and 2700 kg/m’
respectively. At room temperature, the resistivity of copper and aluminum
are 1.68 X107 Q-m and 2.82 X107® Q-m, respectively.)

P1.4. Calculate the RMS value of the square and triangular waves shown in
Figure P1.9.4

P1.5. You are given the phasor voltage\; =120e777/° | If the frequency is 60
Hz, calculate the voltage in the time domain.

P1.6. Why are 50/60 Hz the most common frequencies for power systems
around the world?

52



T/2 T T/2 T

Fig. P1.4. Square and Triangular Waves

P1.7. You are given a simple single phase transmission line of length 100 km

and made of aluminum wire with a radius of 1.0 cm. The resistivity of

aluminum at room temperature is 2.82 x107% Q-m. Assume that inductive

effects can be neglected and that there is no skin effect.

a. What is the resistance of each wire?

b. If the voltage of the generator is 10 kV and the power absorbed by the
load (purely resistive) is 1 MW, what is the efficiency of the system?

c. Repeat for a generator voltage of 100 kV.

d. Hint: start with the power flow equation 1.3.17.

P1.8. Historically, what fundamental advantage did AC have that resulted in a
mostly AC transmission and distribution system rather than a DC one?

P1.10. You are given that the inductance per unit length of a two wire 100
kV, 100 km AC transmission line is

L= ] |n(9) Henries/m
/4 a

where d is the spacing between the wires and a is the wire radius. Assuming
that d = 3 m, a = 2 cm and the frequency is 60 Hz, show that resistive effects
can be ignored compared to the inductive effects if the wires are made of
aluminum. Find conditions for which capacitive effects can also be ignored
given

TE,
2)
In| —
a

P1.11. Suppose S, (t)=p,(t)+q,(t)=v,(t)i,(t) and
53
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v, (t) =2V, cos(2ft) i,(t)=+/21,,, cos(2t +0)
What is the most important distinguishing characteristic between p[(t) and

q,(t)?

P1.12 Is the current (green) in Fig. P1.12 leading or lagging the voltage
(blue)? By how much?
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Fig. P1.12. Voltage across and current through a load.

P1.13. Assuming that complex power is conserved, what is the reactive
power supplied to (or by) each of the circuit elements (including the
generator) in the following circuit. V, = 100 kV and P¢ + jQ¢ = 1 MW + j
0.2 kVAr.

V, —— C=0.54F P +jQ

Fig. P1.13. Power System for problem P1.13

P1.14. Using the power flow equation, 1.3.23, the fact that the total
inductance of a short transmission line is 0.2 H and the fact that the voltage
at generator 2 is 100kV, how much reactive power (in kVAr) can flow across
the transmission line with less than a 10% voltage drop between generator
and load? What can be done to reduce this voltage drop?
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P1.15. Given the list below, identify which are the valid attributes of power
flow equations?

Nonlinear

Linear

Multiple solutions

Unique solutions

o o e

P1.16. If positive reactive power is injected into a power network, what
happens at (and near) that point ?

a. voltage increases

b. voltage decreases

c. phase changes

d. the system is more efficient

P1.17. In a simple two bus power system with bus voltages V,e'% and V,e1%

connected by a transmission line that can be modelled as an inductor, the real
and reactive power flows follow which of the following

2 P, oc(6,-6,) Qo=
b. B, (91 _82) Qp (91 _92)
c. P, [\/l|—|V2| le o (‘91 _‘92)
d

P. OC[\/1|_IV2| Qi °C|V1|_[V2|

P1.18. Explain why the earth cannot be considered an equipotential surface.

P1.19. Which of the following is an appropriate way to define a voltage?
Indicate all that apply.

a. The voltage at point A is ...

b. The voltage between points A and Bis ....

c. 'The voltage at A with respect to Bis .....

d. all of the above

2r7e, &,
In(b/a)

F/m. The outer and inner radii of the cable atre b = 10 cm and a = 2 cm

P1.20. You are given a cable with capacitance per unit length C =

while the relative dielectric constant of the dielectric is &, =3.0. Calculate
the reactive power supplied to the system by a 10 km long, 230 kV single
phase cable. Assume that the frequency of operation is 60 Hz. Compare this
to a similar cable that is 1 km long and is operated at 13.8 kV.

P1.21. What is the maximum power that can be supplied to the load by the
system shown below in Fig. P1.21 if the load is resistive (i.e., Q¢ = 0)?
Explain what happens to the maximum power output if Q¢ is added. Note
that Q¢ can be positive or negative.
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P1.22. What is the primary reason that three phase systems are used? Is this
property unique to three phase systems? What about systems that are n x 3
phase?

Transmission Line

Generator

bus Zgl? = JngfAz

Fig. P1.21. Simple Power System

P1.23. Show that the power output (in time) for a balanced three phase
system in Fig. P1.26 is independent of time. Show that this does not happen
for a two phase system.

AW

RAG/2

RAL/2

MW

Fig. P1.23. Balanced Three Phase Power System

P1.24. Under what conditions is it possible to eliminate the neutral conductor
of a'Y connected 3 phase system?
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P1.25. What are the key problems that have placed limits the amount of
power that can be carried by a high voltage transmission line?
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Chapter 11

Real High Voltage Overhead Transmission Lines
and Physical Approximations Prior to Analysis

2.1 Introduction

In this chapter, a description of real high voltage overhead power
transmission lines and their associated components will be given. Special
attention will be paid to the differences between these and the idealized
transmission lines that are usually analyzed. For example, in most cases, the
fact that power line conductors sag between towers is ignored and the towers
used to suspend the conductors above ground are ignored. Hence, it is
important to understand the differences between the electrical behavior of
real high voltage overhead power transmission lines and the idealizations that
are mathematically analyzed and, even more important, to understand when
these differences result in significant inaccuracies. Later in this chapter, the
issue of inaccuracies introduced by these approximations as well as some
ideas for overcoming these inaccuracies (when necessary) will be discussed.

2.2 Brief Description of Real High Voltage Overhead
Power Transmission Lines

Transmission vs. distribution

On power systems the higher voltage overhead power lines are usually
referred to as “transmission lines” and the lower voltage power lines referred
to as “distribution lines.” The transition between these two is usually
between 50 kV and 80 kV. In this manuscript, emphasis will be placed on the
higher voltage overhead “transmission lines.” An example of a three phase
high voltage alternating current (AC) overhead transmission line is shown is
Fig. 2.2.1. It is clear from this photograph that transmission line
components include conductors, towers, insulators and other hardware.
These and more will be discussed in the following sections.

Conductors, conductor bundles, and shield wires

Early lower voltage power transmission lines used solid (usually copper)
conductors. Copper was initially selected because of its relatively low
resistivity compared to other common conducting materials. But, eventually
there was an almost complete switch to the use of aluminum conductor
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because, while its resistivity is nearly 60% higher than copper, its density is
only 30% that of copper. Hence for a given weight per unit length
(according to (1.2.9)) the resistance per unit length of aluminum conductor is
roughly half that of a copper conductor. As the diameter of conductors was
made larger, most conductors were constructed from “strands” of wire for
mechanical reasons (primarily flexibility) as shown schematically in Fig. 2.2.2.
This is still the case today.

Fig. 2.2.1. A typical high voltage transmission line on steel towers. (courtesy BPA)

Aluminum

Fig. 2.2.2. An example cross section of a stranded all aluminum conductor (AAC) with 7
strands

In addition to resistance per unit length, two other important design
criteria for conductors are their mechanical and thermal properties. The
mechanical properties are important because conductors must be strong
enough to suspend their own weight over long spans between towers as well
as to sustain forces due to high winds that cause additional stress on the
conductor. In cold climates, accumulated ice and snow augments the
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conductor weight (see Section 2.4). All of these factors must be accounted
for in the design. The thermal properties are important since the power
dissipated in the conductor’s resistance by the large currents that pass
through them is converted into heat that raises the temperature of the
conductors. This, in turn, causes two problems. First, most conductors
expand in length as temperature rises. This causes the conductors to sag and,
if large enough, to cause flashovers to objects under the line and/or
potentially unsafe conditions for humans under the line. Ultimately this
problem limits the power flow on many (but not all) transmission lines™.
Second, the material properties of the conductor may be changed
permanently by the heating. Aluminum, for example, can be annealed and (as
a result) may lose its strength over time if it becomes too hot for too long a
time (Thrash, et. al. 2007).

Aluminum

Steel

Fig. 2.2.3. An aluminum conductor steel reinforced (ACSR) conductor

It was recognized early that (for typical power line conductors cartrying
AC current) the current flows mostly near the outside surface (or “skin”) of
the conductor (This effect is called the skin effect and will be discussed in
Chapter 4 and Appendix B). Thus, it is possible to use a strong, but higher
resistance material in the “core” of the conductor and a lower resistance
material with less desirable mechanical properties on the outside without
significantly sacrificing either the mechanical or electrical properties of the
conductor. Such a conductor is shown schematically in Fig. 2.2.3. This
conductor uses a steel inner core for strength and an aluminum outer shell
for low resistance. Such a conductor is called an aluminum conductor steel
reinforced (ACSR) conductor.

A photograph of the cross-section of an ACSR conductor with many
strands is shown in Fig. 2.2.4. In this photo, the smaller diameter darker
colored strands near the center are steel for strength and the larger diameter
lighter colored strands are aluminum for lower resistance. More recently,
conductors with different core material to reduce sag have been developed.

2% Other factors that limit power flow are system stability (generally for long lines) and
voltage regulation (generally for lines of medium length) (Maruvada ,2000).
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Fig. 2.2.4. Cross sectional view of a stranded aluminum conductor steel reinforced (ACSR)
conductor (courtesy R. Aho, BPA). Note that the rubber coating is here only for the purpose
of holding the sample together. Conductors in service will generally not have this coating.

o\
2a, d\
o

Fig. 2.2.5. Cross-sectional view of a three subconductor bundle

The higher the voltage, the more likely that a single conductor will be
replaced by a “conductor bundle” as shown in Figs. 2.2.5 and 2.2.6. These
bundles consist of several parallel subconductors (each of which is stranded)
and are used (as will be illustrated later in the manuscript) to control corona
by reducing the electric field at its surface compared to that for a single
conductor of the same weight per unit length. The use of bundles also
reduces the inductance per unit length of a transmission line and sometimes
is the primary reason why they are incorporated into a design.

Although not evident from Fig. 2.2.6, conductor bundles always involve
some spacer hardware to maintain the designed spacing between
subconductors at all points between towers, especially during wind. One
example of spacer hardware for a four conductor bundle is shown in Fig.
2.2.7.

Fig. 2.2.6. A three conductor bundle on a 500 kV line

In many locations around the world, lightning is a significant cause of
transmission line outages. In these cases, utilities often install “overhead
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shield wires” above the phase conductors as shown in Fig. 2.2.8 that are
usually (but not always) connected to ground at each tower (Eriksson 1987).
In some cases a small gap between shield wire and ground is purposely used
to reduce losses during normal operating conditions but to allow the higher
voltages during faults and lightning strikes to flashover the gap and hence
ground the shield wire during these conditions. The purpose of these shield
wires is to divert lightning away from the phase conductors and to ground it
through the towers and their grounding systems to reduce the probability of
a flashover to a phase conductor and a subsequent outage. They also
conduct fault current during system faults and are useful for detecting faults.
At power frequencies, they are often included in an analysis of the electric
field near power lines (they are assumed to have a potential of 0 at power
frequency because of grounding at each tower and the fact that the spacing
between towers is a small fraction of a wavelength®), but ignored for
magnetic field calculations because relatively little current is induced on these
wires under normal operating conditions. At significantly higher frequencies,
such simple analysis may not be possible because the spacing between towers
becomes a significant fraction of a wavelength. In fact, at some frequencies
in the hundreds of kilohertz to low Megahertz range, sections of grounded
shield wire may become resonant and have a noticeable effect on the
electromagnetic fields from broadcast stations (Madge and Jones, 1980).

Fig. 2.2.7. Typical spacer hardware on a four conductor 765 kV bundle. (courtesy J.R.
Stewart)

Finally, there are a number of different ways that the phase conductors
can be configured in space. The specific configuration shown in Fig. 2.2.1 is
a “single circuit” (i.e., a single set of three phase conductors) “delta”
configured line because the phase conductors are arranged in a A
arrangement (in the cross section of the transmission line) with two phases at
one lower height and one centered above them. But, the phase conductors
could also be arranged in a “horizontal” configuration (i.e., all at the same
height above the ground) as illustrated later in Fig. 2.2.10 or as a “vertical”
configuration for which each conductor is at the same horizontal location
but one above the other at different heights. It is also common to see two

% Wavelength (V) is defined as 300,000 km divided by the frequency in Hertz. At 60 Hz, the
wavelength is 5,000 km and much larger than typical spacing between towers.
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circuits on a single tower (i.c., a “double circuit” configuration) as shown in
Fig. 2.2.9. The reasons for the different configurations include (but are not
restricted to) maximizing the power transfer through a fixed right-of-way,
balancing currents, minimizing the cost of construction, reducing the line
inductance and aesthetics.

Fig. 2.2.8. Overhead shield wires visible at the tops of the two poles. (courtesy J.R. Stewart)

Fig. 2.2.9. Double circuit transmission line. (courtesy R. Aho, BPA)

Towers

In order to operate at high voltages, transmission line conductors must be
supported in space and effectively isolated from the earth and the public so
that very little or none of the current can “leak” into the earth and that
electrical safety standards for the public are satisfied. This is accomplished
by using towers such as the one shown in Fig. 2.2.1 to suspend the
conductors above the earth. These towers can be constructed of steel (as
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shown in Fig. 2.2.1), wood (as shown in Fig. 2.2.10), concrete or other
material. The conductors are suspended in the air with insulators that are
mechanically strong but which have very high electrical resistance. The
towers and their foundations must be strong enough to both suspend the
conductors in air as well as to avoid failure in the harshest of environmental
conditions (e.g., rain, snow, conductor ice and wind during hurricanes or
tornados) during the expected lifetime of the tower. This civil engineering
problem is an entire field in itself and is discussed extensively in standards
(IEEE 2001, ASCE 1991).

Fig. 2.2.11. A dead end tower that is stronger and does not allow conductor movement
parallel to the transmission line direction
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Since this manuscript is designed primarily for electrical engineers, it
should be mentioned that there will always be conflicts between the design
requirements of the civil engineers who design towers and the electrical
engineers who design the insulators and the conductors. Compromises are
often necessary. Finally, it should be mentioned that transmission line towers
are grounded to provide protection of the system during faults and lightning.
More will be said about this in Chapter 13.

Different kinds of towers are used along a transmission line in part
because transmission lines are designed in sections with each end terminated
by a structure that does not allow movement of the conductors parallel to the
direction of the line (i.e., mechanical ends of the line section). Mechanically
separate sections such as these are terminated by “dead-end” towers at the
ends as shown in Fig. 2.2.11. Generally, these dead end towers will be
stronger and the insulators positioned horizontally as shown in the figure.
Between the dead end structures, the towers are typically “suspension”
towers such as shown in Fig. 2.2.10 that allow movement of the conductors
both parallel to and perpendicular to the transmission line direction.
Suspension towers are used when possible because they are less expensive.
However, they cannot be used for arbitrarily long sections of the
transmission line because the mechanical failure of one suspension tower can
cause adjacent towers to fail as well in what is called a “cascading failure.”
The use of dead-end towers tends to limit the extent of cascading failures
(CIGRE 2012).

Fig. 2.2.12. Transmission line tower with line post insulators. These do not allow movement
of the conductors in any direction. Hence, clearances between conductors and the tower
can be smaller.

Another type of tower (a Vee string tower) is illustrated in Fig. 2.2.1 for
which the conductors can move parallel to but not perpendicular to the
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direction of the transmission line. Finally, some towers use “post” insulators
as shown in Fig. 2.2.12 that do not allow either horizontal or vertical
movement at the structure. Such restrictions on conductor movement
generally allow smaller clearances between conductors and towers, but
generate stricter mechanical requirements for the insulators.

Insulators and insulator contamination

Some towers (e.g., wooden towers) provide partial electrical insulation of the
conductors from the earth, but even these must be augmented by devices
called insulators that provide the bulk of the electrical insulation. Suspension
insulators such as the ones that connect tower to conductor as shown in
Figs. 2.2.13 are designed for this purpose. These are referred to as
“suspension” insulators because they are suspended vertically and carry the
weight of the conductor directly but do not provide mechanical support in
any other direction. Care must be taken in the design so that insulator
characteristics and clearances between conductors and conductors at other
voltages or grounded structures are sufficient to withstand voltage surges and
lightning even during wind conditions®™ as well as to provide sufficient
working space and protection of the public (EPRI 1982; Kuffel and Zaengl
1984).

suspension
insulator . .
vibration
damper
grading
ring .
suspension
clamp

Fig. 2.2.13. Close-up of a suspension insulator with a grading ring and suspension clamp at
its bottom. Also shown on the conductor at short distances in both directions away from
the attachment point are vibration dampers

2% Wind is accounted for differently for power frequency and switching surge voltages. In the
former, the maximum expected swing is used while in the latter, statistical calculations are
done since the probability of a simultaneous switching surge and maximum wind swing is
very small.

67



Historically, insulators have been constructed from glass or porcelain, but
in earlier days, the designs for such insulators were not sufficient to
withstand the desired higher voltages. As discussed in Chapter 1, a
fundamental improvement that allowed higher voltages to be used was the
cap and pin suspension insulator that allowed individual insulators to be
“stacked” together to be able to withstand higher voltages. More recently,
polymer insulators have been used and other materials have been considered,
but issues about brittle fracture and lack of live-line work methods have
caused some utilities to return to porcelain cap and pin suspension insulators.
Again, insulation is an area of engineering in itself and has been covered
extensively in (EPRI 1982, RUS-USDA 2005). One of the most important
topics covered in these references is that overhead transmission lines are
exposed to the environment. As a result, insulators can become
contaminated with, for example, salt from the sea, chemicals from industrial
effluents and automobile exhaust. When combined with water, these
contaminants can form conducting layers on the insulators. Hence, (over
time) the insulator’s capability to provide the necessary insulation level can be
compromised. In fact, it has been shown that insulators (usually due to
contamination) are responsible for nearly 70% of the line outages and over
50% of the line maintenance costs (Gorur, 2012). For this reason, insulators
are often selected while taking into account the particular environment in
which they will be used. In some cases special insulators with semi-
conducting coatings designed to be heated by leakage current and keep the
insulators dry (and hence reduce the problem of insulator caused outages) are
used. In some cases, insulators in severely contaminated environments are
periodically washed.

Another issue to note with transmission line insulators is that they may
incorporate additional hardware such as the grading rings shown in Fig.
2.1.13 near the bottom of the insulator. The purpose of this grading ring is
to more evenly distribute the electric field along the length of the insulator
and hence produce an insulation strength that is more nearly proportional to
the number of insulator discs in the string. A positive side effect of this is
that the electric field is reduced near places where it otherwise may be strong
enough to produce corona. A negative side effect is that the critical
flashover voltage during fault events may be reduced. The other hardware
shown in Figure 2.2.13 on the conductor a short distance away from the
insulator is a vibration damper designed to reduce Aeolian vibration.

Conductor sag, direction changes and transpositions

Another characteristic of real overhead transmission lines is that the power
line conductors are not horizontal (i.e., they sag under their own weight
between towers) as shown in Fig. 2.2.14.  This sag is an important design
consideration for utilities because the amount of sag is dependent on
conductor temperature which (in turn) depends on weather conditions and
the amount of current flowing on the line. In fact, there is usually a
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maximum allowed conductor sag because of public safety issues and this can,
in turn, limit the maximum power flow for that transmission line. The
conductor sag also raises questions about the accuracy of electromagnetic
tield calculations that are based on the assumption of horizontal conductors.

An introduction to methods used to calculate sag will be given later in
Chapter 8 (House and Tuttle, 1959).

Fig. 2.2.14. A sagging conductor. (courtesy BPA)

Fig. 2.2.15. A “heavy angle” structure at a change in the transmission line direction.
(courtesy J.R. Stewart)

Also, as mentioned eatlier, transmission lines are constructed in sections
with “heavy angle” or “dead-end” towers at the ends of each section. One
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reason for this is to allow transmission lines to change direction as illustrated
in Fig. 2.2.157. It is clear from this figure, that special mechanical design is
needed for these structures to ensure mechanical stability. Again, changes in
direction such as this beg questions about the accuracy of electromagnetic
tield calculations that assume infinitely long horizontal parallel conductors.

y

Fig. 2.2.16. A transposition tower designed to reposition the phase conductors on the
transmission line in order to balance the currents on long transmission lines (courtesy R.

Aho BPA)

Another type of tower that is occasionally seen on long high voltage
transmission lines is a “transposition” tower such as the one shown in Fig.
2.2.16. Here, the positions of the three phase conductors with respect to
earth are shifted in order to preserve the balance (i.c., relative magnitude and
specified 120 degree separation of electrical phasing) of the phase conductor
currents as much as possible. Here, the red arrowed line traces the
repositioning of an upper phase conductor to the lower position on the
tower. It will be shown in Chapter 7 that current balance is lost due to the
lack of symmetry of the transmission line conductor configuration and
occurs both at the beginning of and continuously along the transmission line.

Terrain, vegetation and river crossings
A further complication is that transmission lines pass through terrain that is
not horizontal as illustrated in Fig. 2.2.17. Such realities not only create
problems for transmission line designers, but also generate questions about

2T Others are the end of the line, at major crossings such as rivers and at periodic intervals
for long lines
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the accuracy of electromagnetic field calculations based on the assumption of
a horizontal homogeneous earth.

Fig. 2.2.17. An example of a transmission passing through hilly territory

Fig. 2.2.18. Flashover to vegetation from a power line. Although this photo is from a lower
voltage distribution line, it illustrates the point that vegetation can cause faults. (courtesy C.
Gellings, EPRI)

It is clear in Fig. 2.2.15 that vegetation often grows under transmission
lines. Since living vegetation is a reasonably good conductor, it may (given
enough time) grow close enough to one or more conductors to cause an arc
to ground (i.e., a flashover). Fig. 2.2.18 is a photo of a flashover between
vegetation and a power line conductor. Although this particular photo was
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taken of a lower voltage distribution line, the same phenomenon occurs on
higher voltage transmission lines and has (historically) been responsible for
flashovers that have led to system failures. Another related issue is the
relatively high electric fields at the tips of vegetation near a high voltage
transmission line. These higher electric fields can result in corona from tips
of vegetation. For these reasons, utilities have aggressive programs to
monitor and control vegetation under transmission lines.

Finally, another feature of transmission line construction is crossings of
long distances such as rivers that often require special towers on either side
due to the length of the spans. One example is shown in Fig. 2.2.19.

Fig. 2.2.19. River crossing that requires special towers for long spans. (courtesy R. Aho,
BPA)

Hardware monnted on a conductor

Many different pieces of hardware are found on transmission line structures
and conductors. This topic will be introduced here because these may (in
some cases) cause corona and, if so, it may be necessary to either calculate
electric fields in their vicinity while developing designs to reduce corona or
to do special laboratory testing to evaluate corona performance (Kuffel, et.
al. 2001).

The first type of hardware to be discussed here is the hardware used to
attach conductors to insulators. Varieties of such hardware can be found in
Figs. 2.2.11 and 2.2.13. A view from underneath of the kind of hardware
sometimes used at a dead-end tower is shown in Fig. 2.2.20. Somewhat
unusual in this photo is the “barrel shaped” object in the upper left-hand
corner which is a “wave trap” for a power line carrier communication
system. Signals from these systems are used to monitor and control
substations from a remote location. Wave traps are signal blocking devices
installed in series with one or more of the phases on the transmission line at
a tap point to prevent the signal from following the tap line.
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Fig. 2.2.20. Transmission Line Hardware. (courtesy R. Aho, BPA)

In Fig. 2.2.21, a close up view of a conductor suspension clamp is shown.
Along with the clamp is a section of “armor rod” that surrounds the
conductor and is often used to provide mechanical support for the
conductor at tower attachment points as shown.

Fig. 2.2.21. A suspension clamp and armor rod used to connect a conductor to a suspension
insulator. (courtesy R. Aho, BPA)

Another type of hardware is a splice between sections of conductors that
are placed during construction when the conductor on one reel ends and
must be connected to the conductor on a new reel of conductor to form a
continuous conductor. These are also inserted when the conductor has
broken for some reason and the break has been repaired with one or more
splices. A close-up view of a splice on a transmission line is shown in Fig.
2.2.22. Generally, splices do not have a large effect on the electric fields of
the conductor, but they may have a relatively large resistance if the contact is
not good enough and hence, becomes excessively heated.
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Fig. 2.2.22. A splice on a transmission line conductor. (courtesy J.R. Stewart)

Fig. 2.2.23. Marker ball on power line conductor near an airport.

Near airports or along long river or valley crossings, there is a concern
that power line conductors may not be visible to pilots. In order to ensure
that the power lines are visible, marker balls are often placed on the
conductors. An example is shown in Fig. 2.2.23.

Marker balls are also often used when power lines cross large distances
such as over a river where conductors are high and may not be as visible as
illustrated in Fig. 2.2.20. Clearly, the marker ball is more visible from a
distance than the conductors. As with other hardware on the transmission
line, care must be taken to design these so that the effect of corona is
minimized.

Power line conductors often experience wind-induced conductor motion
such as Aecolian vibration, swinging or “galloping” that can limit the
petformance and/or lifetime of the transmission line. A variety of devices
have been installed on transmission line conductors to reduce the motion
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and hence to minimize its effects on transmission line performance. One
example is the damper to reduce Aeolian vibration shown on the conductor a
short distance away from the insulator in Fig. 2.2.13. Other devices have
been developed to reduce galloping (Akagi et. al. 2002).

Finally, another form of hardware found on power lines is environmental
control hardware. For example, the “cover” placed over the insulator
junction in Fig. 2.2.24 is designed to protect birds from exposure to
potentially lethal voltages and currents. Other examples of similar hardware
can be found on transmission line systems.

Fig. 2.2.24. Bird control hardware. (courtesy A. Stewart, EDM Intl.)

Grounding of towers

In order to protect the power system and surrounding areas from excessive
voltages during faults and lightning strikes, grounds are often provided at
towers (IEEE 2000). These are designed to have a low enough resistance to
ground that unbalanced currents occurring during faults and currents due to
lightning strikes do not cause hazardous voltages to which personnel near the
tower are exposed. This is important since the lightning trip out rate is very
sensitive to grounding resistance. Although these grounds are generally
mostly below the ground and hence, not visible, connections to them are.
These include (if the towers are not metallic) the wires that connect shield
wires (if any) to the bottom of the structure as well as the connections from
this wire to the buried ground. An example of a connection to ground is
shown in Fig. 2.2.25. An example of a grounding system to which the
ground wire in Fig. 2.2.25 might be connected is shown with a top schematic
view of a tower and ground in Fig. 2.2.26. The mesh at each tower leg is
below the ground and consists of fat stranded wire often augmented by
vertical ground rods.
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Fig. 2.2.25. Wire connection to tower ground. (courtesy N. Mullen, BPA)

Fig. 2.2.26. Schematic view (from above) of a tower and grounding system that consists of 4
metallic meshes below ground, one connected to each leg of the tower.

Lumped parameter devices along or at the ends of the transmission line

Introduction

Another issue along transmission lines is that there may be lumped parameter
devices along it or at its ends that are needed to increase power transfer or to
ensure efficient and/or reliable operation of the transmission system. More
specific information will be given about several of these devices in Chapter 4
after some foundational theory is introduced. Here, a brief introduction to
each will be given.

Series capacitors

One example of a lumped parameter device is a series capacitor as shown in
Fig. 2.2.27. These capacitors are placed there because the amount of power
that can be transmitted through an electrically short power transmission line
is limited by the inductive reactance of the line and this reactance is
proportional to the length of the line. The reactance of the series capacitors
is designed to (at least partially) cancel the inductive reactance and hence
increase the power handling capability of the line. They also can be used to
compensate for voltage variations along the line during light loading
conditions.

76



Fig 2.2.27. Series capacitors along a 500 kV transmission line. (courtesy J. Hildreth, BPA)

Surge arresters

Another device that can be found either along its length or at the ends of a
transmission line is a surge or lightning arrester such as shown in Figs. 2.2.28
(line arrester) and 2.2.29 (substation arrester). These are nonlinear devices
designed to limit the overvoltages on power lines during transients due to
lightning strikes and switching events. Surge arresters in substations are
nearly universal, but many utilities choose not to use line arresters since they
may not be needed or due to maintenance and/or economic issues.

Fig. 2.2.28. Three line surge arresters installed along a transmission line, each connected
from an individual phase to ground. http://www.liveline.co.za/high-voltage-surge.php

Note one disc missing on the leftmost insulator
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Fig. 2.2.29. Three single phase surge arresters installed in a substation. (courtesy of BPA)

Shunt reactors

Fig. 2.2.30. A three phase shunt reactor installed in a substation. (courtesy BPA)

Another device that is relevant to the operation of high voltage transmission
line is a shunt reactor as shown in Fig. 2.2.30. These can be used to
compensate the capacitive reactive power of (especially long higher voltage)
transmission lines (especially during lightly loaded conditions), reduce
system-frequency overvoltages when a sudden load drop occurs or there is
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no load and to improve the stability and efficiency of the energy
transmission.

Circuit breakers

Another device that is found at the ends of high voltage transmission line is a
circuit breaker as shown in Fig. 2.2.31._These are used to separate the line
from the remainder of the transmission system during maintenance or to
clear faults. Operation of these devices is controlled by relays designed to
detect faults and to proscribe appropriate action.

Fig. 2.2.31. A three phase circuit breaker installed in a substation.

Transformers

The final device illustrated here in Fig 2.2.32 is a three phase power
transformer. As mentioned earlier, the purpose of these is to change the
voltage level of whatever is connected to each end of a transmission line
(e.g., a generator, another transmission line or the distribution system) to the
desired voltage level for transmission line. The purpose is to transmit power
more efficiently over long distances by using the highest reasonable
transmission line voltage.

Fig. 2.2.32. Three phase 230 kV — 115 kV power transformer. (courtesy BPA)
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2.3 Services that Share the Right of Way

Introduction

Given the increasing density of both population and buildings, long
uninterrupted corridors of land are not as readily available as they once were.
Because of this, other services that need these corridors (e.g., railroads,
pipelines and optical communication systems) often share or request to share
a right-of-way with a power transmission line. When this happens, there is
always a question about the compatibility between these systems that is
related to the electromagnetic field environment of the power line.

Railroads

The railroad/power line corridor shown in Fig. 2.3.1 is an example
(AAR/EEI 1977;IEC 2003) of a railroad and high voltage transmission line
that share a right-of-way. In cases like this, the potential exists for
interference between the power line and the railroad crossing guard system
shown due to inductive coupling with the track signaling circuit as well as
other signaling and communication systems. In addition, there will be
concerns about personnel safety both during normal operation and during
fault conditions. More about these issues can be found in Chapter 10.

Fig. 2.3.1. A railroad and a power line that share a corridor. (courtesy B. Cramer)
Pipelines

A second service that commonly shares power line rights-of-way is pipelines
(usually underground) as shown in Fig. 2.3.2 (Bonds 1999; CEA 1994). In
cases such as this, there are concerns that voltages induced on the pipeline
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can cause electrical shock hazards, ignition of gas in case of leaks, corrosion
at locations for which the pipeline is above ground or damage to insulating
flanges designed to electrically isolate sections for cathodic protection. Such
interference can occur because while the pipelines are buried, the earth is
transparent to the transmission line’s magnetic fields. More about these
issues can be found in Chapter 10.

Fig. 2.3.2. Although not evident because most pipelines are buried, there is a buried pipeline
to the left of the transmission line in this photo. (courtesy, J. Dabkowski)

Optical fiber communication

Fig. 2.3.3. Optical fibers inside of an optical ground wire (OPGW).
http://www.aflglobal.com/Products/Fiber-Optic-Cable/OPGW /HexaCore-

Cable/HexaCore-Optical-Ground-Wire-(OPGW).aspx

In recent years, many utilities have installed optical fiber communication
systems on their transmission systems. In some cases, optical fibers are
placed within shield or “ground” wires. Such shield wires are called optical
ground wires (OPGW). Lightning and large fault currents are the biggest
threats to these (Austin 1984; Zischank and Weisinger 1997).
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A photo of an OPGW cable is shown in Fig. 2.3.3. Here it is shown that
the fibers are placed at the center of the cable and hence designed to be
protected from lightning by the outside wires. Despite this design, lightning
strokes with the right characteristics can damage these shield wires.

Another type of system is an “all dielectric self-supporting” (ADSS) cable
that is generally suspended somewhere beneath the phase conductors such as
shown in Fig. 2.3.4 (the cable that turns in this figure is ADSS). Threats to
these include dry band arcing and corona on attachment hardware (Carter
and Waldron 1992; Tuominen and Olsen 2000). The former is controlled by
careful placement of the cable and the latter by devices placed on the cable
such as the “corona coil” shown in Fig. 2.3.5. Again, the issue of
compatibility between high voltage transmission lines and ADSS cable is
considered in more detail in Chapter 10.

Fig. 2.3.4. An ADSS communications cable below three phase conductors. It is the second
conductor from the bottom in the figure (i.e., the one that changes direction).

tip of armor rod

Fig. 2.3.5. A “corona coil” placed on an ADSS cable to reduce corona activity near the tip
of the armor rod.

Wireless commmunication
Another service that is more commonly found to share transmission line
facilities is wireless communications base stations such as the one shown in
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Fig. 2.3.6. Such locations are desirable for wireless companies since they can
install antennas on existing towers. Here, several antennas have been placed
on a transmission line tower and the RF electronics and switching equipment
is placed in a small building at the base of the tower. It has been shown that
the power frequency electromagnetic fields can interfere with the operation
of instruments used to measure the radio frequency (RF) fields and that
common grounding systems can cause unintended voltage pulses on
distribution systems during faults (Olsen and Yamazaki 2005).

= antennas

AM broadcast
antennas

Fig. 2.3.7. Transmission line with nearby AM transmitting antennas in background.
(courtesy T. Osborn, BPA)

AM broadcast stations such as the one shown in the background of Fig.
2.3.7 radiate electromagnetic fields that can interact with the transmission
line system. One consequence is that re-radiated electromagnetic fields from
the transmission system can cause deviations in the legally required radiation
pattern of the broadcast antenna (Madge and Jones 1986). Another is that
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the radiated fields can cause significant high radio frequency (RF) voltages on
transmission line conductors especially when they are being installed.
Without some care taken in work practices, these can lead to RF burns to
exposed workers (Olsen et. al. 2011).

Distribution underbuild

Fig. 2.3.8. Distribution underbuild.

Next, it is often true that distribution lines share towers with transmission
lines as shown in Fig. 2.3.8. This is often called, “distribution underbuild.”
In these cases, care must be taken that the National Electric Safety Code is

satisfied and that excessive voltages are not induced on the distribution lines
during faults (IEEE 2002).

Human occupancy

Fig. 2.3.9. (a) Power line over a parking lot. (b) warning sign. (courtesy M. Tuominen,
BPA)

84



Fig. 2.3.10. Non permitted structure constructed near transmission line. (courtesy R. Aho)

Power lines often are constructed near other facilities and can cause potential
safety issues. One example is a power line constructed over a parking lot as
shown in Fig. 2.3.9a. Here, the electric fields from the power line cause
voltages to be induced on the cars and, hence shocks to people when they
touch the cars (EPRI 1982). This must be managed as (for example)
indicated by the warning sign illustrated in Fig. 2.3.9b. Another is the
occasional construction of non-permitted structures such as the playhouse
shown in Fig. 2.3.10%. Clearly, these are of concern to electric utilities and
can present true safety hazards.

Other compatibility issues

Finally, while not explicitly covered here, there are issues with a variety of
other systems that share the right-of-way. These include irrigation systems,
GPS navigation devices using VLF augmentation and broadband over the

power line (BPL) communication issues (Olsen and Heins 1998; Silva and
Whitney 2002; Tengdin 1987; Tesche, et. al. 2003, Galli et. al. 2011).

2.4 Environmental Issues

Introduction

All of the above photographs and nearly all of the discussion relate to power
transmission lines in reasonably good weather conditions. But, power lines
are outdoors and hence subject to a wide variety of weather conditions.
These cause everything from ice on conductors that leads to excessive sag,
corona in rain and snow that generates electromagnetic interference, to
resistive leakage on insulators caused by contamination plus moisture that

28 This structure was later removed at the request of the local utility
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can lead to failure, to lightning strikes that may cause line failure to icing of
conductors that can cause excessive sag. These issues and many others must
be accounted for in designing power transmission lines.

Lce and snow

Fig. 2.4.1. Iced insulators after a snowstorm resulting in tower failure. (courtesy BPA)

Examples of power lines in ice and snow are shown in Figs. 2.4.1. — 2.4.2 It
is clear from Fig. 2.4.1 that snow can cause tower failure as well as insulator
failure during melting and from Fig. 2.4.2 that ice loading on conductors can
cause excessive sagging of conductors.

Fig. 2.4.2. Iced conductors in a winter storm that caused conductors to sag. (courtesy BPA)
Rain

In rain, water drops form on conductors and hydrophobic insulators such as
the one shown Fig. 2.4.3. On conductors, these drops lead to a significant
increase in corona activity and hence to electromagnetic interference and
audible noise as shown in Fig. 2.4.4. Water on contaminated insulators can
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lead to flashover and insulator failure. (RUS — USDA, 2005). In addition,
water on non-ceramic insulators can cause material degradation and

premature failure (Phillips et. al., 1999).

Fig. 2.4.4. Corona discharge on a rain droplet on an energized transmission line conductor
(courtesy EPRI)

Lightning

Lightning strikes to transmission lines and currents induced by nearby
lightning such as that shown in Fig. 2.4.5 are common. If transmission lines
are not propetly designed these strikes and induced currents can lead to trip
out of the transmission line as well as cause safety hazards to personnel who
are near transmission line towers. More about how lightning models can be
used to calculate lightning induced currents on transmission lines and how
injected lightning currents propagate on transmission lines can be found in
Chapter 7.
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Fig. 2.4.5. Lightning near a transmission line.
ts3.mm.bing.net/th?id=H.4580600666718958&pid=1.7&w=121&h=138&c=

Wind

Fig. 2.4.6. Conductor galloping in wind http://i.ytimg.com/vi/IfhfsjFG0jo/0.jpg

During windy conditions, Aeolian vibrations, galloping and conductor
swinging can occur. An example of galloping in wind is shown in Fig. 2.4.6.
Aecolian vibrations are caused by the interaction of aerodynamic forces
generated as the wind blows across the conductor with the conductot's
natural mechanical vibration frequency (Lu et. al. 2007). This wind induced
vibration can cause cracks on the conductors due to fatigue particularly
where the conductors are fastened to the insulators by means of clamps.
This kind of vibration can be minimized by the use of dampers clamped to
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the conductor as shown in Fig. 2.2.13. When the conductor vibrates, the
weights dissipate the vibrational energy. Gallop vibrations are low frequency,
high amplitude vibrations and can result in breaking of the conductor or
flashover if the conductors come too close to each other during oscillations
(Fu, 2012). Swinging is the result of steady forces on the conductors that
push them in the direction of the wind. The major impact of this
phenomenon is to require larger clearances between the conductor and either
towers or other conducting structures (IEEE 2002).

Fire

Fire near a power line such as shown in Fig. 2.4.7 can affect its performance
since fire causes a significant amount of ionized particles in the air that affect
its conductivity and hence its ability to withstand the high electric fields in its
vicinity (Fonseca et. al. 1990).

-

Fig. 2.4.7. A fire near a high voltage transmission line. (courtesy of BPA)

In addition to the direct effect of fires on high voltage transmission, it is
known that under certain environmental conditions (e.g., moisture after
prolonged dry spell) fires can be started on wood poles that support high
voltage transmission lines (Lusk and Mak, 1970).

Geomagnetic indnced currents

Quasi-DC electric currents are created in the ionosphere by solar activity in
space. During severe solar weather, these currents can be large enough to
cause visible colored light (aurora borealis) such as shown in Fig. 2.4.8 and
(more importantly for power engineers) can cause induced currents in power
lines that can (among other things) cause transformer cores to saturate and
generate unwanted harmonics on the system. Further information about
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these currents along with a method for calculating them can be found in
Chapter 7.

Fig. 2.4.8. Aurora near power line. http://images.nationalgeographic.com/wpf/media-
live /photos/000/244/cache/northern-lights-solar-flare-power-line 24418 600x450.jpg

Landslides, earthquakes, volcanoes, and windblown material

Landslides and Earthquakes can have a dramatic effect on transmission and
distribution lines. As indicated in Figs. 2.4.9 and 2.4.10, towers may collapse
resulting in line outages.

Fig. 2.4.9. Landslide damage to a power line. The Exponent Telegram
http://www.theet.com Staff photo by Darlene J. Swiger
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Damage to transmission
towers in the Wenchua EQ
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Fig. 2.4.10. Earthquake damage to transmission line towers.
http://www.hindawi.com/journals/mpe/2013/829415/fig1

The fall of volcanic ash as illustrated in Fig. 2.4.11 can also have a negative
impact on the operation of overhead transmission lines (Wardman et. al.,
2012). More specifically, it may (in the presence of moisture such as rain)
lead to insulator flashover, as well as to increased corona activity (e.g.,
audible noise and radio interference and mechanical damage to moving
parts).

Fig. 2.4.11. Volcanic ash that can impact the operation of high voltage transmission lines.
http://skywalker.cochise.edu/wellerr/students/Los-Alamos/earthquake files/image001.gif
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In addition to volcanic ash, a variety of other solid material can be carried
by the wind. This can include dust that is either conductive by itself or
conductive when wet.  An example of windblown material (e,
tumbleweeds) common in the western United States in a substation is shown
in Fig. 2.4.12. Other examples could be sand and dust (Yu et. al. 2000).

Fig. 2.4.12. Windblown tumbleweeds in a substation. (Courtesy of BPA)

2.5 Rationale for Physical Assumptions and the
“Gold Standard”

It should be clear at this point that real power lines are quite complicated
structures. Hence, before reasonably simple mathematical models can be
developed, simplifying physical assumptions must be made. That is the
subject of this section.

As mentioned briefly in the Foreword to this text, mathematical
analysis of physical systems is useful for one of two reasons:

e To provide insight into the dependence of measurable quantities of
interest on certain parameters (e.g., the fact that the 60 Hz electric
tield usually decays laterally away from a power line as the inverse of
the distance squared can easily be understood by appealing to
mathematical analysis)

e To eliminate the need for setting up and performing (often very
time consuming and expensive) experiments.

However, as also mentioned in the Foreword, no theory is useful at all
unless it is validated well enough for the user to have confidence that it can
be used to predict the results of some experiment that is well specified and
can (in principle) be performed.  Hence, ultimately, measurements are
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usually the “gold standard” by which any theory is validated. It is, of course,
recognized that no measurement is completely accurate and that this issue
should be noted and used in the determination about whether measurement
and theory agree. Also, in some cases, “gold standard” could refer to an
exact closed form solution to a canonical problem.

The overall purpose of this text, then, is to introduce mathematical
analysis techniques to study the electrical design and operation of high
voltage overhead transmission lines. Of specific interest is the calculation of
measurable quantities used to characterize overhead transmission lines such
as the distribution of voltage and current along the lines as well as the
electromagnetic fields associated with them. These can be used, for example,
to determine how the power flow along a specific transmission line can be
maximized, or to determine if the operation of a transmission line is
compatible with another system that occupies the right-of-way. The
mathematical analysis is used to develop appropriate relationships between
these measurable quantities and specified physical parameters (e.g.,
conductor locations and sizes, materials used and earth electrical properties).
Each of these measurable quantities is then used to characterize the
operation of these transmission lines.

The first purpose of this portion of the chapter is to summarize the
characteristics of real transmission lines that were discussed in more detail
earlier. This is done in Section 2.6. Given the fact that the geometries and
other relevant electrical properties of real transmission lines are very
complicated, it should be clear that numerous physical approximations to
real transmission lines must be made before an “idealized” problem is
realized for which realistic mathematical analysis can be attempted. This
leads, then, to the second purpose of this portion of the chapter; to identify
the physical approximations that are usually made to the real physical
problem prior to mathematical analysis of idealized problems. This is done
in Section 2.7.

It will be shown in subsequent chapters that, in many cases, exact closed
form solutions for the measurable quantities associated with these idealized
problems can be found. However, it is also shown that simple (and often
sufficiently accurate) approximate solutions for these same variables can be
found. In developing these approximate solutions, it is usually possible (as
will be done in this text) to identify conditions under which the simple
approximate solutions to the idealized physical problem are valid.

It is, however, usually not as easy to characterize the differences between
solutions for the real and idealized high voltage overhead transmission lines.
When attempted, it is usually done in one of two ways. First, in some cases,
the idealized problem can be modified in some way (e.g., use of a two layer
earth rather than a single layer earth) that still allows for an exact solution. A
comparison of the solutions to the original (i.e., “idealized) and modified
problems can be used to determine the conditions under which the
simplified geometry is acceptable. In this case, the modified problem is the
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“gold standard.” If not acceptable, the solutions to the modified problem
can be used to provide more accurate solutions. Several examples of such
modified problems are given in this chapter. A second method is to compare
theoretical solutions to careful measurements made on the original system
for which physical approximations have (obviously) not been made. In this
case, measurements are the “gold standard.”

As much as is practical, care will be taken in this text to quantify the range
of errors that have been introduced by making both physical and
mathematical approximations. It is important to understand when the
differences between real and idealized transmission lines either are not
important or result in significant inaccuracies for calculations using idealized
transmission lines. Some initial comments on this topic are given in Section
2.8.

Next, a survey of some techniques that have been used in the past to relax
the physical assumptions made in the initial canonical problem described in
Section 2.7 is given in Section 2.9. Solutions to these problems can be used in
two ways. First, and as mentioned earlier, by comparing solutions of
physically modified problems with those of unmodified problems, it may be
possible to validate the former. For example, it can be shown (in most cases)
by using the solutions to single conductor over a two layered earth that the
60 Hz. electric field just above the earth’s surface is essentially insensitive to
the specific assumed vertical distribution of earth conductivity. Hence, a
single layered earth model is adequate. In fact, it is quite accurate in this case
to assume that the earth is perfectly conducting. Second, if it is shown that
the modified problem produces significantly different results than the
unmodified problem, it should be clear that the solution to the modified
problem should be used. For example, it can be shown that a two layer earth
model is necessary for many calculations of subsurface electric field that
relate to substation grounding problems (Meliopoulos, Webb and Joy, 1981).

Finally, a number of simple techniques are described that can be used to
estimate when solutions for idealized transmission lines are satisfactory.
Last, a summary of “rules of thumb” often used for identifying parameters to
be used in simple models of transmission lines is given.

2.6 Brief Review of Real Overhead Power
Transmission Line Construction

Most real power transmission lines consist of multiple parallel “phase”
conductors (that may consist of two or more subconductors) energized to
the rated line voltage and (in many but not all cases) periodically grounded
shield wires above the phase conductors. The phase conductors (or
subconductors) usually consist of many “strands” of wire wound together in
a cable and hence do not have a smooth surface. The (usually three or more)
phase conductors and shield wires (collectively called a power transmission
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line) are located above the earth. Each transmission line extends over a finite
distance between two end points (usually substations). In nearly all cases,
the horizontal orientation (e.g., east, south etc.) and the elevation of the
power line is not the same all along the entire distance. In addition, the
orientation with respect to the vertical also changes along its length since the
terrain over which the line passes can be hilly or even mountainous. Finally,
vegetation above the earth may be important. It may interfere with the
operation of the transmission line as it grows taller and/or may also influence
the electric fields near the earth’s surface.

The electrical properties of the earth below the transmission line are
usually inhomogeneous both as a function of depth as well as position along
the length of the transmission line (e.g., the permeability and conductivity of
the earth vary with soil type as well as between land and water). In some
relatively rare cases (such as near iron ore deposits) the earth may be
magnetic. If the electrical current density induced in the earth by the power
line is large enough (such as near a grounding electrode during a fault), the
earth may also exhibit non-linear properties caused (in part) by excessive
ohmic heating. The author is not aware of any model (relevant to power
lines) in which the earth is (or needs to be) assumed to be anisotropic.

The conductors of the transmission line are suspended in the air by
structures (e.g., towers) that may be constructed of wood, steel or some other
material. Steel towers and shield wires are generally connected to a grounding
electrode. Towers are of several types including the “suspension” towers,
“dead end” towers and transposition towers described eatlier in this chapter.
Insulators are used to mechanically connect to and electrically separate the
phase conductors from the structure (and the earth) while shield wires are
(usually) connected to the structure and to a grounding electrode buried in
the earth. Because the conductors are suspended only at the points where
they are attached to insulators that are in turn connected to towers, they
“sag” between towers. The specific amount of sag can vary quite a bit since
with time since it is a function of the amount of current on the line (through
ohmic heat generation in the conductors) and local weather conditions in
addition to the conductor weight per unit length, the mechanical properties
of the conductor material and the tension to which the conductor is installed.

Located along the power line and connected to it are a variety of pieces of
hardware including insulators and tower attachment hardware, splices
between sections of conductor, devices to control mechanical vibration,
devices to protect animals and birds and devices to provide warning to
airplanes and others of the power line’s existence. These may be
supplemented by lumped elements such as series capacitors and surge
arresters designed to limit the voltage during surges. Also, towers may play
host to devices such as wireless communication antennas or aircraft warning
lights. Finally, the path followed by the transmission line may be shared by
other power lines (on the same or separate structures) or another service
such as a railroad, a pipeline or communication line. In some cases (such as
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optical fiber cables) the transmission line towers may be shared. The
presence of the transmission line and its associated electromagnetic fields
may lead to interference between it and any one of these services.

An example of a transmission line that illustrates several of these
characteristics of real transmission lines is given in Fig. 2.6.1. Shown in this
photograph is a double circuit transmission line with sagging phase
conductors and multiply grounded shield wires that is located over irregular
terrain, that changes direction and is located near another transmission line
on separate structures. Further, there are trees near the right of way that can
affect the electromagnetic fields associated with the transmission line. Steel
towers distort the electric field near them and insulators affect the electric
fields in their vicinity. Finally, in the distance is an AM broadcast antenna
(visible slightly to the left of the closest tower) that may cause significant
radio frequency electromagnetic fields in the vicinity of the transmission line.
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Fig. 2.6.1. Real power line that will shortly be modeled using simplifying physical
assumptions (courtesy R. A. Tell)

In summary, the typical power line is a “messy” system. Mathematical
analysis of the exact system appears to be almost impossible. For this
reason, physical approximations are made and it is important to consider the
consequences of making these approximations. It is probably, for example,
not reasonable in most cases to carry out calculations to four significant
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tigures after the earth has been assumed to be perfectly flat and conductor
sag has been ignored. The use of either mathematical or physical
experiments to either increase confidence in the final results or to “calibrate”
them so that they can be used for calculations on real systems is another
important topic.

2.7 Summary of the Physical Approximations
Generally Made Before Analysis

To analyze typical real transmission lines, numerous physical approximations
must be made before a canonical” mathematical problem can be obtained.
These approximations are:

e The earth is assumed to be flat, homogeneous, linear, isotropic and
(usually) non-magnetic

e Towers and insulators are simply ignored

e Stranded conductors are approximated as smooth homogeneous
conductors and conductor bundles may be approximated as smooth
conductors of some “equivalent radius”

e The phase conductors are assumed to be perfectly horizontal, straight
and infinitely long (i.e., transmission line terminations, transpositions,
conductor sag, changes in direction and altitude changes are ignored).

e The shield wires are often (but not always) ignored.
e All hardware connected to the system is ignored.

e Any systems that share the right-of-way with the transmission line are
ignored.

A diagram of a simple idealized and mathematically tractable power line
for which all of the above approximations have been made is shown in Fig.
2.7.1. This can be contrasted to the real transmission line that is shown in
Fig. 2.6.1. Clearly there are differences between the idealized and real power
lines. Given this, it is important to understand the relationships between the
calculations made using the idealized line and measurements on the real line.

2 Here, canonical is taken to mean a problem for which it is possible to develop a
mathematically exact solution in closed form (i.e., it is not necessary to use a numerical
method to develop the formal solution). Note that it still may be necessary to use numerical
methods to evaluate the formal solution.

97



FL7 7777777777777

g ,0

(@)

81

z

Frr7r 7y
(b)

Fig. 2.7.1. Idealized geometry of a power line used for analysis. (a) cross sectional view, (b)
side view

2.8 Comments on the Validity of Solutions Based on
Simplifying Physical Approximations

Ultimately the reason why a theory is constructed and used to calculate
predictions of voltages, currents, electromagnetic fields etc. is to eliminate (or
severely restrict) the need to conduct an extensive set of (generally very
expensive) measurements. However, as mentioned earlier, unless there is
confidence that 1) there is a well-defined transmission line system on which
measurements could have been done to generate equivalent results and 2) the
calculations are actually “equivalent” to measurements that could have been
done on this system, there is no reason to pursue the theory. It is imperative
that calculations be understood in terms of an experiment that could have
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been done and that there is confidence that the results are the same (within
certain accuracy limits) to those that would have been measured.

Again, the most important test of a theory is the comparison of it to
careful measurements. This is certainly true for the case of calculations based
on power transmission line models similar to those discussed in the last
section. Whether this comparison is successful may depend on the specific
variable calculated, the number and type of additional mathematical
approximations made in obtaining the solution, the range of parameters over
which the variable is computed and the accuracy of the measurement. For
example, if one is only interested in the voltage and current at the ends of a
transmission line at power frequency, the results of making the
approximations in Section 2.7 are generally adequate. The same calculation
method, may, however, not be appropriate for calculating voltage and current
on a dc transmission line (especially in the monopolar mode) because the
portion of the series impedance due to the earth is affected by earth electrical
properties deep in the earth that may not be modeled propetly. In addition,
the simplifying assumptions in Section 2.7 are clearly not good enough for
calculating the electric field near a tower because the tower has a significant
influence on the electric field near it and cannot be neglected.

As mentioned earlier, the idea of a “gold standard” to which all
calculations will be compared is often raised. Sometimes this may refer to a
very carefully controlled and conducted experiment. Other times it may refer
to an exact mathematical solution to a problem for which physical
approximations have been made. In any case, the term “gold standard”
always refers to a solution to a problem that is well defined and for which
there is great confidence in the accuracy of its results. In many cases,
problems are solved that do not have an exact solution, but the gold standard
is used to validate the solution to the more general problem when parameters
are selected for which it is directly comparable to the “gold standard.” For
example, one might compare the results for the magnetic field of a sagging
conductor with those for a perfectly horizontal conductor in the special for
which the sag is assumed to be zero. A successful comparison of these two
solutions is a necessary but not sufficient proof that the general solution is
correct. Nevertheless such comparisons are very useful tools. In summary,
whenever possible a “gold standard” should be used to establish the validity
of a new calculation.

An interesting example of how measurement can guide theory occurs in
the history of radio noise theory development. From the beginning, it was
assumed that the (approximately 1 MHz) electric and magnetic fields
associated with radio noise could be calculated using the same theory as used
to calculate the (nearly static) 60 Hz electric and magnetic fields. One
characteristic of these fields is that they decay as on over the distance squared
laterally away from the transmission line.  Unfortunately, measurements
showed that the radio noise fields decayed at a rate smaller than one over the
distance squared. It was not until a more sophisticated theory that more

99



accurately accounted for the earth’s finite conductivity was used that
comparisons of theoretical and measured lateral radio noise profiles came
into agreement.

2.9 Survey of the Techniques that Extend Solutions
to More General Problems

New research is often suggested by recognizing that approximations made in
existing work restrict the applicability of theory derived using those
approximations. Thus, a new problem is often identified by relaxing one or
more of the assumptions and solving the modified problem. For example,
the conditions under which the use of a single layer earth is satisfactory can
be identified by studying a two layer earth model. The same two layered
earth model can be used in cases for which it is necessary to achieve
reasonable accuracy. In the following subsections, several problems like this
will be described.

Two layered earth
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Fig. 2.9.1. Power line over a two layered earth.

As mentioned briefly above it is usually assumed that the earth is a single
layer homogeneous medium. Whether this is sufficient for any situation may
be studied by considering the two layered earth model shown in Fig. 2.9.1
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(Anderson, 1976). In this figure the homogeneous earth that was earlier
characterized by permittivity and conductivity e and o respectively had been
replaced by an inhomogeneous two layered earth with the first layer of
thickness d characterized by permittivity and conductivity es and o1 over a
second infinitely thick layer of earth characterized by permittivity and
conductivity e and o2  Based on these studies, it can be shown that a single
layer earth model may not be appropriate for problems related to calculating
earth losses or dc transmission or geomagnetic induced currents. In these
cases the problem defined in Fig. 2.7.1a can be used as an alternative to that
shown in Fig. 2.9.1.

Effect of terrain and vegetation on electric field calculations

e o o - perfect
conductor

(b)

Fig. 2.9.2. Calculation of power line electric fields near non horizontal terrain with trees at
the edge of the right of way a) the real transmission line b) the approximate model for
electrostatic calculations.

It has been found that the problem shown in Fig. 2.7.1 cannot be used to
accurately examine the electric fields in space surrounding the power line in
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Fig. 2.9.2a because the land is not horizontal and trees at the edges of the
“right-of-way” can be good conductors at power frequencies. Hence, the flat
earth assumption is not valid. Instead the problem shown in Fig. 2.9.2b
could be used for the purpose of studying the effect of vertical trees at the
edge of the right-of-way (Simpson and Brice, 1987). This problem could be
done using a numerical method to solve electrostatic equations for the
electric field as discussed in Chapter 6. Note that if vegetation can be
assumed of uniform height over the right-of-way, the effect of vegetation
growth over time can be studied by reducing the height of the conductors.

It should be noted that it is not necessary to perform a similar calculation
for magnetic fields. This is because (as will be shown later) the earth (or
vegetation such as trees) has little effect on the magnetic fields of a 50/60 Hz
transmission line and can usually be ignored.

Effect of conductor sag on magnetic fields

There have been instances for which it is important to know the magnetic
field of a sagging conductor more precisely than is available by assuming the
conductors to be purely horizontal and infinitely long. In this case, the
geometry shown in Fig. 2.9.3 can be used to replace the geometry shown in
Fig. 2.7.1b (Mamishev, Nevels and Russell, 1996). The first use of this
problem is to validate the use of horizontal conductors when this is
permissible. For example, the further the calculation or measurement point
is from the transmission line, the more reasonable it is to use infinitely long
horizontal conductors as long as the calculation point is not near to a change
in direction of the transmission line. When more precision is needed, the
method used to solve this problem is to divide the conductors into short
segments and to calculate the total magnetic field by superimposing the
magnetic fields of each of these segments.
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Fig. 2.9.3. Power line with sagging conductors

Electric fields near a bundled conductor

As will be shown later in Chapter 4, a bundled conductor (i.e., two or more
subconductors) is usually approximated as a single equivalent conductor. But
there are times (e.g., calculating the surface electric field needed for
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electromagnetic interference calculations when it is necessary to know the
electric fields on the surface of individual subconductors. In these cases, the
problem shown in Fig. 2.9.4 can be solved (Sarma, M.P. and W.
Janischewskyj 1969).

| N ) o0
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Fig. 2.9.4. A power line with conductor bundles shown explicitly.

Effect of a tower on the electric field

In some cases, it is important to be able to calculate the electric field near a
tower. In that case, a simple model such as that shown in Fig 2.9.5 can be
used (Olsen, 1999). This problem shown is an example of a very crude model
for a tower window, but one that can be solved analytically if the toroid is far
from the earth compared to its diameter. More about this problem can be
found in Chapter 6.

toroid

single phase conductor

77 rrrrrrrrrrrrrrrrrrrrrrrrrry

Fig. 2.9.5. Simple model of a tower window that allows analytic calculation of perturbed
electric fields for a single conductor transmission line above earth
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The effect of tower geometries much more complicated than the one
shown in Fig. 2.9.5 can be analyzed using the numerical electrostatics
techniques described in Chapter 6. An example of a method for determining
the electric field to which the worker on the tower in Fig 2.9.6 is exposed is
given by Olsen et. al. (2007).

< <

Fig. 2.9.6. Tower model used to calculate the electric field to which a worker (shown on the
left side of the tower) is exposed when climbing a tower.

Use of lumped circuits as approximations

EO,I“"D Z
029‘,.;.////////// FLT T
(a)

-8 v, Y zf' )

h I
Eo,uol T z
o, [T T TTITTTT
(b)

Fig. 2.9.7. Insulator supporting a conductor above ground a) explicit insulator b) equivalent
capacitor useful for calculating the currents and voltages along a conductor with multiple
insulators.
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In many cases, hardware of complex geometry is approximated by a circuit
element in order to calculate the current and voltages along a transmission
line. For example, the insulator geometry shown in Fig. 2.9.7a can (for
purposes of calculating its effect on the voltage and current along the
transmission line) be replaced by the capacitor in Fig. 2.9.7b. Using this kind
of an approximation allows more complex problems to be solved.

Three dimensional electrostatic fields

Three dimensional methods have been used to evaluate the electrostatic
fields near attachment hardware in order to understand why corona occurs
there.  As described in Chapter 5, these problems are often solved by
defining small region of space and solving electrostatic equations using
numerical methods. This technique is illustrated in Fig 2.9.8. Here, the
space within the shaded region in Fig 2.9.8a is excised and the electric field
found by solving the problem shown in Fig. 2.9.8b. There are (as described
in Chapter 6) several techniques including the boundary element method, the
charge simulation method, the finite difference method, the Monte Carlo
method and the finite element method that have been used for this purpose.

8o, Ho

o, [T
(a)

€, Ho

0y >e° (b)

Fig. 2.9.8. a) original problem b) problem to be solved with electrostatic theory and
numerical methods.
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2.10 “Rules of Thumb” for Minimizing the Effect of
Physical Approximations on Accuracy

Effect of finite length and corners

One of the most useful tools for evaluating the effect of physical
approximations is the expression for the magnetic field of a finite length wire
carrying a current I. Consider the geometry shown in Fig. 2.10.1. Here, the
total length of the current can be written as

1 1
(=r + (2.10.1)
tang, tand,

Y

Fig. 2.10.1. Geometry for calculating the magnetic field from a uniform current of
magnitude I of finite length. For this figure, it is assumed that the calculation point “P” is in
the yz plane.

The magnetic field from this finite length of current (in the yz plane for y
<0)1s

78
B, = ﬁ [cosé, +cosb, | (2.10.2)

X

It should be clear that as 6, and 6, approach 0, (2.10.2) approaches

g, = 4! (2.10.3)
2ar

which is the magnetic field of an infinite line of current. Given this result,

the percentage error in the magnetic field calculation (i.e., by approximating a
finite length wire by an infinitely long wire) is
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E(%)=100[1—0.5(cosé, +cosé, )] (2.10.4)

As an example, the error made if the length of the wire is 20 times the
distance from the wire and the field point is halfway between the ends of the
wire is approximately 0.5%. But, if the field point is at the end of the wire,
the error is about 50%! (2.10.4) can be used to estimate the error made in
magnetic field” calculations near ends of transmission lines.

A similar calculation can be made for wires that turn a 90 degree corner.
Consider the geometry shown in Fig. 2.10.2

Fig. 2.10.2. Geometry for calculating the magnetic field from a uniform current of
magnitude I of finite length along with a second wire at a 90 degree angle. For this figure, it
is assumed that the wires and the calculation point “P” are in the yz plane.

In this case, the magnetic field (By) can be calculated by summing the
contribution from each segment of the wire. The result is

|

B, = &{i [cosd,, +cosb,, |+ l[cosé?lb +C0506,, ]} (2.10.5)
Az |1, b

whete 6, +6, =7/2.

As an example, consider a case for which the field point is midway along
wire “a” in Fig. 2.10.2 at a distance from the wire of r, and that the length of

%0 (2.10.4) is not explicitly for electric field calculations because the charge distribution is not
uniform near the wire’s end, it is reasonable to use it to estimate error for electric field as
long as it is recognized that the estimate is crude.
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each wire is 10 r,. In this case, it can be shown that the error made in
€2

assuming that wire “a” is infinitely long and neglecting the effect of wire “b”
is approximately 10%.

Effect of conductor sag on field measurements

An approximation to the error made by ignoring the effect of sag in
calculating magnetic fields can be estimated by considering the geometry
shown in Fig. 2.10.3. Here a sagging transmission line conductor is
approximated by a set of three finite length current carrying wires. As an
example, suppose that h = 1,/3 and that the length of each wire is 21,. Given
this, it can be shown that the error in approximating the magnetic field of the
system shown in Fig. 2.10.3 at P = 1, can be approximated by 5%.

Fig. 2.10.3. Geometry for calculating the magnetic field from a uniform current of
magnitude I of finite length with additional currents at each end a distance h above the
center wire. For this figure, it is assumed that the wires and the calculation point “P” are in
the yz plane.

Effect of conductor sag on transmission line distributed parameters

The most important parameters used to describe the propagation of power
frequency voltages and currents on high voltage transmission lines are
inductance and capacitance per unit length. It will be shown later in this
manuscript that the inductance per unit length (at least for balanced
transmission line currents) is largely unaffected by the presence of the earth
because (unless the earth is magnetic) it is essentially transparent to magnetic
fields at power frequencies. Hence, it is reasonable to specify the average
height of each transmission line conductor when calculating the inductance
per unit length because the choice has little effect on the inductance
calculation. Capacitance per unit length, however, is dependent on the
conductor height because the earth can be considered a perfect conductor
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for electric field calculations at power frequencies. But, it is found that the
dependence on height appears in logarithmic terms similar to

In(2h/a)

where h is the height of a conductor above earth and a is its radius. For a
typical conductor radius of 1 centimeter and height of 15 meters, a 30%
increase in conductor height causes less than a 4% change in the parameter.
This issue is further minimized by the fact that for balanced voltages, the
proximity of other conductors is more important than the effect of the earth.
Given these observations, it is again, reasonable to use average height of a
transmission line conductor when calculating capacitance per unit length.

The capacitive effect of a tower

In principle, the towers add additional lumped capacitance to the system
parameters. However, it is generally found that (at power frequencies) this
excess capacitance can be ignored. More details about this issue can be
found in Section 6.2.

Rule of thumb for electric field measurements when steel towers exist
Generally, electric field measurements directly under the transmission line are
made as far from a tower as possible and, hence usually at midspan. As a
rule of thumb, it is probably reasonable to make measurements at least 4-5
tower window diameters from the tower if the measurements are to be
compared to calculations that neglect towers. To calculate the electric fields
at midpoint and close to the transmission line, the transmission line
conductors are modeled as infinitely long and located at the minimum
conductor height. In these cases, it is found reasonable to ignore the effect of
the towers. For field points further away from the transmission line, the
assumption that the conductors are at the average height will generally
produce better results.

Rule of thumb for magnetic field measurements

There are fewer problems with comparing calculated and measured magnetic
field results at power frequencies since towers have only a minimal influence
on these magnetic fields. Nevertheless, magnetic field measurements are
usually made near midspan. For field points close to the transmission line,
predictions are more accurate if the conductor height is selected to be the
minimum conductor height. Further from the transmission line, it is
reasonable to use the average conductor height, although calculations further
away from the field point are less sensitive to conductor height than those
close to the transmission line.
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Rule of thumb for electromagnetic interference measurements

Since electromagnetic interference’ (EMI) fields are generated by random
corona pulses with a frequency spectra that extend well above tens of MHz,
this is one of the few problems for which a high voltage transmission line is
“operated” at significantly higher frequencies than those for which it was
designed. At these frequencies, one might easily assume that the results are
more sensitive to physical approximations. In fact, as stated above, the earth
is assumed to be flat and homogeneous, the conductors are assumed to be
infinite and horizontal, conductor sag has been ignored, the corona activity
has been assumed to be nearly uniformly distributed along the conductors,
and that the effect of towers has been ignored. Nevertheless it has been
found that these physical approximations do not lead to predicted EMI levels
that deviate significantly from measured values of EMI at field points
relatively close to the transmission line. For these calculations, it is generally
assumed that the conductors are at their “average height” (Olsen et. al. 1992),
that the measurements are made at midspan and that the terrain is reasonably
flat. In addition, measurements are generally made at a significant distance (5
— 10 km) from a substation in order that reflections from the substation be
attenuated enough to be ignored.

One difference at higher frequencies is important enough to mention. As
50/60 Hz, the earth can be considered a perfect conductor for electric field
calculations and to be transparent for magnetic field calculations. This is no
longer true at EMI frequencies especially for field points that are at least a
significant fraction of a wavelength® away from the transmission line. Here
it is found that the rate of decay of the EMI field away from the transmission
line is affected in a noticeable way by the earth conductivity. In these cases,
simpler models that either ignore the earth or equate it to a perfect conductor
do not produce satisfactory results (Olsen, 1998).

2.11 Problems

P2.1 A balanced two wire transmission line above the earth is shown in Fig.
P2.1. The capacitance per unit length for the balanced (i.e., equal and
opposite) voltage case is

C= _2me Farads/m (P2.1)

(Zhdj
Inf ——
as

3 Historically these fields were called “radio noise” fields.
32 At 1 MHz, the wavelength (A) is 300 meters and a “significant fraction” of a
wavelength might be A/10 = 30 m.
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where $=+/d° +(2h)* . For a = 2 cm, d = 5 meters and h = 10, 20 and 30

meters, calculate the capacitance of these wires above the earth. Assume that
the frequency is 60 Hz and the earth conductivity is assumed to be infinite.
Comment on the difference between these results and then about the effect
of sag and varying earth height along a transmission line path on inductance
per unit length

Yy
l—d/2—1d/2
2a 2a
Conductor #1 Conductor #2

X

TTTTT 7777 T/ T T 77777777

Fig. P2.1. A balanced two conductor transmission line above earth

P2.2. Consider one possible reason for using spacers along the bundled
conductors of a transmission line. In SI units, the magnetic force per unit
length between the two conductors can be calculated using the formula

F= % Newtons/m (P2.2)

where the force pulls the conductors together if I; and I have the same sign.
Cleatly, if the force is large enough, the conductor spacing may not be as
large as the design value. a) Calculate the force between two wires separated
by a distance d = 0.457 meters (18 inches) and carrying identical 500 A
currents. Compare this force with the force of gravity per unit length on the
conductors if the conductors are made of aluminum and have a radius of 2
cm. The density of aluminum is 2700 kg/m® and the acceleration of gravity
is 9.8N/kg. Comment on the relative size of the two forces. b) does
anything change if the currents are each 5000 A during a fault event?

P2.3. a) Calculate the resistance per unit length of the solid conductor shown
below in Fig. P2.3. It has aluminum on the outside and steel on the inside
and the resistivity of these are 2.62 x 10® and 1.0 x 107 Q— m respectively. b)
Using a simplified version of the skin effect, assume that all of the current
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flows in the aluminum, how much would this change the resistance per unit
length?
aluminum

4cm

steel

Fig. P2.3. A solid steel core surrounded by a solid aluminum conductor
P2.4. Why are typical transmission line conductors stranded?

P2.5. What is the purpose for using conductor bundles? Identify the
appropriate reasons from the list below

a. Lower inductance

b. Reduced capacitance

C. Increased corona onset voltage for a given weight per unit length

d. All of the above

P2.6. What is the purpose of installing shield wires? Are they grounded at

each tower?

P2.7. What are the reasons why someone might consider using post
insulators? Select from the following list

a. Reduced weight

b. Reduced conductor movement

C. Reduced phase to phase spacing for a compact line
d. All of the above

P2.8. Why are grading rings used? Identify appropriate reasons from the list
below.
a. Minimization of corona on hardware

Reduction of damage to non-ceramic insulators due to water drop corona

b
c. Results in a more uniform voltage distribution along an insulator string
d. All of the above

P2.9. What can be done in very high contamination areas to improve

insulator performance?

a. Use insulators with resistive coatings that carry current and cause
moisture to dry

b. Periodic washing of insulators

C. Use of different materials that do not attract contamination.

d. All of the above

112



P2.10. What is the purpose of marker balls on transmission line conductors?
P2.11. Identify different types of conductor movement from the list below.
Describe each

a. Aeolian vibration

b. Galloping

c. Swinging

d. Hydrostatic vibration
e. All of the above

P2.12. Why are towers grounded?

P2.13. What are vibration dampers? For what purpose are they installed on
transmission line conductors?

P2.14. What is the difference between a dead end tower and a suspension
tower?

P2.15. You are given a 2 meter long, 3 cm radius cylinder of wet wood with a
conductivity of 107 S/m. Calculate the total resistance of the cylinder.
Calculate how much power is dissipated in this wood if it is placed between
two conductors with a voltage difference of 100 kV. Based on your answer,
what do you think might happen if a tree branch falls across pair of
conductors with a voltage difference of 100 kV rms? Given you answer, why
are electrical utilities concerned about the growth of vegetation near
transmission lines?

P2.16. What can happen when an insulator is exposed to the environment?
How and why does its performance change?

P2.17. Why does conductor sag change with time? Why are there limits to
the amount of sag that can be accepted?

P2.18. Why are transposition towers used on long transmission lines by some
utilities?

P2.19. Name several kinds of hardware used on high voltage overhead
transmission lines. Explain the purpose of each.

P2.20. What is the purpose of installing series capacitors along a high voltage

transmission line? Under what conditions would you expect to find them
used?
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P2.21. What is the purpose of installing shunt reactors along a high voltage
transmission line? Under what conditions would you expect to find them
used.

P2.22. What is the purpose of installing surge arresters either in substations
or along a high voltage transmission line? Under what conditions would you
expect to find them used.

P2.23. Why are most conductors made of a steel core with aluminum outer
strands?

P2.24. In (a) — (e) is a list of services that could share the right-of-way with an
overhead transmission line. In (f) — (n) is a list of compatibility issues which
are possible consequences of sharing the right-of-way with at least one of
these services. Identify which consequences can be identified with which
services.

ADSS optical fiber

Railroads

Pipelines

Wireless communication antennas

AM broadcast towers

Interference with signaling

Dry band arcing

Shocks to personnel

Ignition of gas leaks

Minimize corona on armor rod

Corrosion

RF burns
. Shocks from vehicles

Distortion of radiation patterns

PR T AT PR Mme ap o

P2.25. In (a) — (f) is a list of environmental issues that affect the performance
of an overhead transmission line. In (g) — (1) is a list of consequences which
may accompany at least one of these environmental issues. Identify which
consequences can be identified with which environmental issue.

Ice

Rain

lightning

wind

geomagnetic storms

volcanoes

excessive conductor motion

excessive conductor sag

excessive corona

flashover

o Se@mho oo o
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k. additional contamination
I.  quasi-dc current induction

P2.26. What effect might rain have on a transmission line? How (if at all)
does this affect the design and/or maintenance of the transmission line?

P2.27. What effect might lightning have on a power line? How (if at all) does
this affect the design and/or maintenance of the transmission line?

P2.28. What might a fire under a transmission line cause? Why? How (if at
all) does this affect the design and/or maintenance of the transmission line?

P2.29. Why would a utility be concerned about vegetation management?
How (if at all) does this affect the design and/or maintenance of the
transmission line?

P2.30. What is geomagnetic induced current and under what conditions
might you expect to see its effects? What effects might you expect?

P2.31. What is meant by the term, “gold standard?”
P2.32. Explain why mathematical analysis of transmission lines is used?

P2.33. List the physical approximations that are usually made to high voltage
transmission lines prior to analysis?

P2.34. Describe some methods by which a physical approximation to a
transmission line prior to analysis could be validated?

P2.35. What precautions should one use to be certain that electric field
measurements made under a transmission line can be appropriately
compared to electric field calculations carried out with two dimensional
methods?

P2.36. What are “rules of thumb?”

P2.37. Examine transmission lines in the area where you live. Identify some
of the hardware that is generally ignored in the analysis of propagation
characteristics as presented in this manuscript. What impact might this
hardware have on the propagation analysis if it was not ignored? How do
you think you could account for these effects if necessary?

P2.38. Consider an infinitely long single conductor power line in free space
carrying a current of 1000 Amps as shown in Fig. P2.1.1 below (note that the
infinitely long conductor prior to sag follows the dashed line). a) Calculate
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the magnetic field (B,) a the point P a distance 20 meters below the
conductor. b) To simulate sag, a 20 meter length of the conductor is now
moved 5 meters below the rest of the conductor as shown. For this
configuration, calculate the magnetic field (B) at point P and compare the
results with part a.

Fig. P2.38. A single conductor power line with and without sag,.

P2.39. Evaluate the magnetic field of a 90 degree bend in an infinitely long
single conductor power line carrying a current of 1000 A as shown in Fig.
P2.39? At any distance that is 10 meters from the closest conductor, where is
the magnetic field the largest?
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Fig. P2.39. A single conductor power line with a 90 degree.
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Chapter 111

Brief Overview of Relevant Electromagnetic

Theory

3.1 Maxwell’s Equations

Differential form: - time domain

Electromagnetic theory is based on solutions to Maxwell’s equations, a set of
coupled partial differential equations in the electric and magnetic fields. In
the time domain, these equations can be written (Harrington, 2001)

VXE + % =0, Faraday’s Law (3.1.1)
VxH — %D =J, Ampere’s Law (3.1.2)
VeB =0 (3.1.3)

VeD = p Gauss’ Law (3.1.4)

where VXQ and V Q are the cutl and divergence operator, respectively, that

will be defined more carefully shortly.  These equations are often
supplemented by the continuity equation (i.e., a mathematical statement that
charge is conserved)

Vej=_%P (3.1.5)

It is possible to derive this equation by taking the divergence of (3.1.2),
using the vector identity

VeVxQ =0 (3.1.6)
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which holds for mathematically well behaved (Harrington 1961) vector
fields” and inserting (3.1.4) into the result.

The variables in (3.1.1) — (3.1.4) are all functions of x, y, z and t and are
defined as:

E — Electric field strength (a vector field)
D — Electric flux density (a vector field)
H — Magnetic field strength (a vector field)

B — Magnetic flux density (a vector field)

J — Electric current density (a vector field)
¢ — Electric charge density (a scalar field)

Fully written out, a vector field looks (in rectangular coordinates) like
E(x,y,z,t)=E,(x,y, z,t)a +E (x,y.z,t)a, +E,(x y.zt)a, (317

where the &,a and @,are respectively unit vectors in the x, y and z

directions. It is clear that each vector field contains three unknown scalar
fields and that each of these may independently vary in both space and time.
A scalar field (for example, charge density) can be written as

p(x,y,z,t) (3.1.8)

The curl and divergence operators can be written in rectangular
coordinates respectively as

a, a a
Q)= vx0 =de > 2 O
Curl(Q) = VxQ =ceti = = (3.1.9)
Q. Q Q
and
, =~ =~ 0Q, 9Q, o
Divergence (Q )=V eQ = an + 8yy + 5‘QZZ (3.1.10)

Clearly, the result of a “curl” operation on a vector field is another vector
field while the result of a “divergence” operation on a vector field is a scalar
field. Formulas for these operations in other coordinate systems are available
in most electromagnetic textbooks.

3 Generally this entails conditions on the continuity of the vector function Q and its

derivatives. More specific information can be found in books by Stratton (1941 — Section
8.13) and Dudley (1994).
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It is useful to note (Stratton 1941) that if conservation of charge (i.e.,
(3.1.5)) is assumed then only (3.1.1) and (3.1.2) of Maxwell’s equations are
independent since (3.1.3) and (3.1.4) can be derived from (3.1.1), (3.1.2) and
(3.1.5) if (3.1.6) is invoked. Given the number of unknowns, further
conditions must be imposed before unique solutions to Maxwell’s equations
can be found™. The additional relationships needed to accomplish this relate
to the interaction of electric and magnetic fields with materials on a
macroscopic level and will be discussed in Section 3.2. One important
property of these materials is linearity which will be discussed further in
Section 3.2 and which will be assumed in the following discussion of time
harmonic fields.

Differential form - frequency (phasor) domain

If all materials are linear, then it is possible to assume that all sources (and
hence all fields) vary in time as exp(ja)t) where @ = 2zf is the radian
frequency and fis the frequency in Hertz. If this is done, then Maxwell’s
equations become (Harrington, 2001).

VXE + joB =0, Faraday’s Law (3.1.11)
VxH — joD =3, Ampere’s Law (3.1.12)
VeB =0 (3.1.13)

VeD = p Gauss Law (3.1.14)
Vel=—jwp  Continuity equation (3.1.15)

where it is assumed that the magnitude of the field is its RMS value equal to
the peak value divided by V2 for a sinusoidal field. Thus, for example,

E = E(X, Y, Z,a)) is now a “phasot” quantity indicated by a “carat” (i.e., @)
over the variable from which the time harmonic solution in the time domain
can be found as

E(x,y,z,t)=~2 Re(l?(x, Y, 2z, a))ej“") (3.1.15)

In the time harmonic case, equations (3.1.13) and (3.1.14) can be obtained
from (3.1.11) and (3.1.12) respectively by taking the divergence of each, using
the identity (3.1.6) and then (3.1.15). Thus, only (3.1.11, (3.1.12) and (3.1.15)

3 Conditions for uniqueness will be discussed in Section 3.6
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are needed in the time harmonic case and if the region is sourceless, then
only (3.1.11) and (3.1.12) are needed.

Integral form - time domain
The first Maxwell’s equation can also be written in integral form by
integrating (3.1.1) over some surface “S”

”VXEOd§:—

S

[[Beds, (3.1.17)

S

where it has been assumed that the functions are well behaved enough to
allow the order of the derivative and integral to be interchanged and that dS
is an oriented differential element of the area “S” with its direction normal to
«g 7

Next, Stokes theorem (Stratton 1941)

[[vxQeds =fQedl (3.1.18)

is applied to (3.1.16) where “C” is a contour that forms the boundary of S as
shown in Fig. 3.1.1. The positive side of the surface S (the normal is directed
outward to this side) is related to the positive direction of circulation on
contour C by the right hand rule convention; with fingers following the
direction of C, the thumb points in the direction of the normal to S.

C

Fig. 3.1.1. Definition of Geometry for Stokes Theorem. Note that the positive sense of the
contour C is “counterclockwise’ and the positive side of the surface (shaded) is the top of
the paper. This is consistent with the right hand rule described above.

Using (3.1.18), (3.1.17) becomes

[[Beds, (3.1.19)

S

SRS

§|§0d|_:—
C

which is the integral form of Faraday’s law.
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Similarly (3.1.2) can be integrated and rewritten as

JFodi = ﬁ(h%ﬁj-di 6.1.20)
C S

which is the integral form of Ampere’s law.
Next, if (3.1.4) is integrated over some volume “V” it becomes

w VeDdv= fy pdv (3.1.21)

If next, the divergence law (Balanis 1989)

[[[veQdv=§fQeds (3.1.22)

is applied, then (3.1.21) becomes
ffDeds = [[[ pdv (3.1.23)
s v

which is the integral form of Gauss’ law. Here, S is the closed surface that
surrounds V and dS is the outward normal at any point on S.

Similarly (3.1.3) can be integrated over a volume in space and the
divergence law used to get

ffBeds=0 (3.1.24)
S

Finally, the continuity equation can be integrated over a volume and the
divergence law used to get

{;}5 ods = —%Qj odv (3.1.25)

Integral form - frequency (phasor) domain

Frequency domain forms of Faraday’s law (3.1.19) , Ampere’s law (3.1.20)
and the continuity equation (3.1.25) can be developed by simply substituting
Jo for the time derivative to get respectively

fEedi =—jof[Beds, (3.1.26)
C S
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(3.1.27)

0O ——y
T
[ ]
=3
Il
R w—
[&
_|_
—
)
O
~——
°
o
v

‘Ej’dgz‘gwﬁdv (3.1.28)

Here, the field and source variables become phasors.

3.2 Constitutive Relationships for Dielectric and
Conducting Materials

As mentioned eatlier, before unique solutions to Maxwell’s equations can be
found, it is necessaty to specify relationships between D andE ,B and H

and J andE . These are called constitutive relationships and characterize
the materials in which the fields exist.
In free space, the relationships are simply

D =¢,E (3.2.1)
B =u,H (3.2.2)
J=0 (3.2.3)

where g,and y, are the permittivity (dielectric constant) and permeability of

free space respectively.
In more complex media, it is convenient to augment the electric and

magnetic flux densities by electric polarization IS(E)and magnetization

I\W(ﬁ) vectors respectively. These account for the influence of the materials
and are defined as:

+P(E) (3.2.4)
+M(R)) (3.2.5)

Finally, the electric current J can be separated into an impressed source
current J,and a current that is dependent on the local electric field J (E) as

J=3,+3(E) (3.2.6)

Given (3.2.4) and (3.2.5), Maxwell’s equations can be rewritten as
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— 0B
VXE + ot =0, Faraday’s Law (3.2.7)

VXB — &, % _
a i Ampere’s Law (3.2.8)
ﬂO(J—O < 3(8)+ P v (ﬁ)j
VeB=0 (3.2.9)
VeE =1 (p-V-P(E)) Gauss Law (3.2.10)

&

Written in this way, it is clear that the “material” can be treated as a source
(albeit a dependent source) of electric and magnetic fields. In the next
paragraph, the dependence of these sources on the local electric and
magnetic field will be examined further.

In matter that is “linear™” then it is possible to write the following

relationships between these quantities (Harrington 1961)

D= g|§+51%+52 a(;t'f (3.2.11)

Ezyﬁ+yl%+,uzaazT|:+m (3.2.12)
and B B

\]_=o|§+0'1%+0'28;—5+--- (3.2.13)

where the permittivity (&;), permeability (x;) and conductivity (o)

coefficients are (in general) tensors (indicates an anisotropic material) and
functions of space coordinates (indicates an inhomogeneous material). In
general, the time derivatives must be included because of losses and inertia in
real material (Balanis 1989).

35 Linearity means that if two sets of fields (E, ﬁl) and (sz ﬁz) are separately solutions of

Maxwell’s equations and the constitutive relationships, then so is (El +E,,H, + qz) If a

material is non-linear, the right hand sides of (3.2.1) — (3.2.3) would be non-linear functions
of the field amplitudes. In this text, it is appropriate to model nearly all materials as linear.
One exception is the case for which a very large current is injected into the earth such as in a
grounding system during a fault.
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Since the materials are considered to be linear, (3.2.1) — (3.2.3) can be
simplified in the time harmonic case (i.e.,exp(ja)t)) time variation assumed)

to
D =¢E + joe,E —w?e,E+ =¢(0)E (3.2.14)
B =uH + jouH -0 ,H + = p(0)H (3.2.15)
and
J=0oF + j0o,E —~w*c,E+ =o(0)E (3.2.16)

The terms 8((0), ,u(a)) and O'(a)) are complex functions of w and
represent the frequency dependence of the permittivity, permeability and
conductivity respectively. Recall that each of these could still be a tensor
(anisotropic material) and a function of spatial coordinates (inhomogeneous
material).

Many materials have relatively simple behavior.  They are linear,
homogeneous, isotropic materials. In addition, the higher order coefficients
in (3.2.14) — (3.2.16) are zero. Hence, for such “simple materials” (3.2.14) —
(3.2.106) reduce to

D=¢E =¢,c,E (3.2.17)

B =M =uuH (3.2.18)
and

J=0E (3.2.19)

where &, (relative permittivity or relative dielectric constant), g, (relative

permeability) and o are scalar constants that characterize the material.
Often, in the frequency domain the effects of permittivity and
conductivity are combined since according to (3.1.13)

VXH = josk + ok = (o + joe)E = jo(e — jolw)E  (3.2.20)

where the term (O' + ja)g) is often called the “complex conductivity” of the

material or alternatively the term (8— jO'/a)) is called the “complex
permittivity” of the material.
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3.3 The Wave Equation - Frequency Domain

Consider Faraday’s and Ampere’s laws in the phasor domain as given
respectively by (3.1.11) and (3.1.12). If the “cutl” operation is applied to
Faraday’s law then

VXVXE + joVxB =0 (3.3.1)

If now, it is assumed that B = ,ulj as in (3.2.18) where U represents a

homogeneous medium, and (3.1.12) is substituted into (3.3.1) where D = ¢E
as in (3.2.17), then

VXVXE — 0? ek = — joud (3.3.2)
Now, the vector identity

VXVXE = v(v . E)— V2E (3.3.3)

is applied. If the region of interest has no free charge and & also represents
a homogeneous medium, then (3.1.13) can be used to obtain

V?E + 0’ i€ = joid (3.3.4)

(3.3.4) is the wave equation for the electric field in a homogeneous
medium. If the current is assumed to consist of a source current J, and an

ohmic current characterized by (3.2.3) then (3.3.4) can be written as
V2I§+a)2,u(g— ja/a))éz ja),ujo (3.3.5)

It is interesting to note that (in rectangular coordinates only)

A

V3Q = VZ(QXEX +Q,a, +Q,a, ): avQ,+a,v’Q, +a,v’Q, (3.3.6)
In a similar way, the wave equation for the magnetic field can be found as
VZH + 0’ uls — jo ! o)H =-VxJ, (3.3.7)

where again, (3.3.6) can be used in rectangular coordinates.
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3.4 Boundary Conditions

The boundary conditions discussed below can be derived by applying the
integral forms of Maxwells equations to either a “pillbox” that spans two
different materials (for surface integral) or a rectangular contour that spans
two different materials (for line integral). These derivations are included in
many textbooks such as Balanis (1989).

The general conditions that the electric and magnetic fields must satisfy at
any boundary between two lossy dielectric materials are:

m, »(D, —D, )= p, (surface charge) (3.4.1)
mx(H, — H, )= J, (surface current) (3.4.2)
me(B,-B,)=0 (3.4.3)
mx(E, -E,)=0 (3.4.4)

where the geometry (including the definition of N;) is shown in Fig. 3.4.1.

On boundaries between two lossy dielectrics (with finite conductivity), g, = J;
= 0 (Balanis 1989).

LAY
03, €1, Ky,

Frrrrr

0, & Hy

Fig. 3.4.1. Definition of normal vector for boundary conditions.

At a perfectly conducting boundary (i.e., region 2 in Fig 3.4.1 is a perfect
conductor for which o, — ©)

n, e D, = p, (surface charge) (3.4.5)
m,xH, = J_ (surface current) (3.4.0)
n,eB,=0 (3.4.7)
mxE, =0 (3.4.8)
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3.5 Poynting’s Theorem in the Frequency Domain <

The derivation of Poynting’s Theorem begins with the two Maxwell curl
equations for time harmonic electromagnetic fields from (3.1.11) and (3.1.12)
(Harrington, 2001; Balanis, 1989).

VXE = — jour (3.5.1)

VxH = jo +oE + jaweE (3.5.2)

where ¢, p and o are assumed to be real scalar functions of position and
frequency, the current in (3.5.2) has been separated into an impressed

“source” current (J,) and an ohmic “bulk” current (0E ). The next step is

to dot multiply (3.5.1) by H (where * indicates the complex conjugate) and
the complex conjugate of (3.5.2) by E . The results are

H* e VXE = — jouH e H" (3.5.3)

A

A A A A

EeVxH =EeJ. +0EeE - jiE oE" (3.5.4)

(3.5.3) can now be subtracted from (3.5.4) to get

EOVXﬁ* — ﬁ* OVXE =
A o~ A A A A P (3.5.5)
EeJ +0E®E — jocE oE + joouH o H~
Using the vector identity
Ve (61)(62): 62 'anl —61 'VX62 , (3.5.6)

(3.5.6) becomes

—Ve (Exﬁ*):

2~ o, s oA . 1 =~ =, A oA (357)
Eel,+oEeE +12a)(§,uHOH - gEOEJ

N |-

For time-harmonic fields, this represents the conservation of energy
equation in differential form. Integrating (3.5.7) and applying the divergence
theorem
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f}Qeds =[[[veQav (3.5.8)

\

where V is the volume bounded by the surface S as shown in Fig. 3.5.1 yields

~[[[E s 3;av=§(ExH o s+ [[[ oF « E"dv
\ S \

) ) (3.5.9)
. jzww(%ﬂﬁ.ﬁ*—%gﬁoﬁ*jdv

Fig. 3.5.1. Region V (bounded by the closed surface S) that may contain a continuously
inhomogeneous material (i.e., no discontinuities in material parameters).

Here

P :_j_v[j E e J;dv (3.5.10)

is the complex power supplied to the volume V (Watts)

P ={ (Exﬁ *). ds (3.5.11)
S

is the complex power leaving the volume V through S (Watts)

P, =[] oF o E dv (3.5.12)

is the real power dissipated inside the volume V (Watts)

W= m@ uHeH *jdv (3.5.13)
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is the time averaged magnetic energy stored in V (Joules)

W, = jvﬂ(%gﬁo ﬁ*jdv (3.5.14)

is the time averaged electric energy stored in V (Joules) so that Poynting’s
theorem can be written as

P, =P, +P, + j2oW, -W,) (3.5.15)

where, as stated earlier, it is assumed in (3.5.10) - (3.5.14) that E and H are
written in terms of “RMS” values. This result is a statement of conservation
of energy although the interpretation of specific terms has been a subject of
controversy (Wen et. al 2000). Nevertheless, the interpretation of the term

P = Re{if (Exﬁ*)o d§} Watts (3.5.16)
S

which will be used in this manuscript is clear. It represents the is the time

averaged real power leaving the volume V and passing through the surface S.

3.6 The Uniqueness Theorem — Frequency Domain

<

To understand how boundary conditions interact with Maxwell’s equations, it
is necessary to consider the uniqueness theorem (Harrington 2001; Balanis,
1989). In this section, materials that are linear (because of the time-harmonic
assumption) and isotropic (since based on Poynting’s theorem) but possibly
continuously inhomogeneous in a region V surrounded by a boundary S will
be considered. The volume is shown in Fig. 3.5.1.

Since the problem will be limited to the time harmonic (i.e., exp(jw?)) case,
Poynting’s theorem can be used as the starting point here and is

(3.6.1)
j‘:f ExH " Ods+”j(€o i’; +(o - ja)g)go E’ +(jwy)ﬁo ﬁ*}iv= 0
S \Y

A A

To study uniqueness, it is first assumed that there are two sets of solutions
within V. They are:

(I?a, ﬁa) and (I?b ﬁb)
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Now since it has been assumed that all material within V is linear, the
difference between solution sets “a” and “b” must also be a solution. This
“third” solution is written as

.
where

& -E,-E, and oH=H,—H,.

113 ”

Note that since the source of the and “b” fields is the same,

A A

Joa —Jop =0. If the difference fields are now used in Poynting’s theorem,

then
2 ; 2 A2
ff ExoH onds+m( —Jwg)( +(ja),ui jdv=o (3.6.2)
S
where
2|2 -~ ~ |2 A o~
OE| =0EedsE and oOH| =6H esH .

At this point, it is possible to look for conditions under which the surface
integral in (3.6.2) becomes zero. If these are found, then the volume integral
must also be zero. As long as o # 0, then this implies that E=6H=0
everywhere within the volume V. This implies that if a set of fields (E,H)
satisfies Maxwell’s equations (used in setting up Poynting’s theorem) and
satisfies some conditions on the surface S, then there can be only one
solution throughout V because any two separate solutions must be equal
everywhere within V.

Now, the specific conditions for which the surface integral in (3.6.2) is
equal to zero will be determined. Let NXE, =NXE, on S (i.c., the tangential

component of E is known on the surface S and hence must be the same for
all solutions “a” and “b”). The integrand of the surface integral is

SExoH o ndS (3.6.3)

If the difference fields are written explicitly in terms of tangential and
normal components as

6E = ééat+( Ee ﬁ)ﬁ (3.6.4)
oH =éﬁtat+( L-ﬁ)ﬁ, (3.6.5)



Then (3.6.3) reduces to
OE, XoH, eNdS (3.6.6)

Clearly if either the tangentlal E field or the tangentlal H field is known

everywhere on S then an = I‘IXEb , éE ot éH = 0 on S and the surface

integral in (3.6.2) is zero. Given this, as stated above, the E and H fields
everywhere within V must be unique and uniqueness is proven.

Next, it is useful to expand this theorem to the case for which V is
divided into two parts and the boundary coincides with a step jump in the

values of at least one material parameter. Consider the volume shown below
in Fig. 3.6.1

Fig. 3.6.1. Regions Vi and V> (bounded by S; and S) that each contains a continuously
inhomogeneous material except on S’ where there is a discontinuity in at least one material
parameters.

The approach to the proof here by assuming the following sets of
solutions.

A

Volume 1 - (_la, H.
Volume 2 - (3, F, ) and (€, Fiy )
Again, by linearity,
(él?l, Ll) is a valid solution set in volume 1 and

( E,,oH. 2) is a valid solution set in volume 2.
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If now, Poynting’s theorem is applied in both Volume 1 and Volume 2,
the result is

(3.6.7)
J-J‘éﬁlxéﬁl* s +J‘I8§1X&j1* . ﬁldS"'”J.((O-l - ngljéﬁl 2 + (ja)ﬂ%éﬁl 2Jdvzo
5, d ’
(3.6.8)
”&iXéﬁz* °ﬁ2d5+”5§2><éﬁz* 0n1d5+jjJ£(02 - ngzﬁ&iz 2 +(j0)ﬂz 1&]2 2jdv=0
5, > ‘

Now, given that either AXE or AxH is assumed known on S; and S, the
integrals over S; and S; go to zero as in the first case. To examine the
remaining terms, the two equations will be added to get (noting that
N, =-N,ony)

(3.6.9)

2
jdv=0

2

A

+(jwﬂiXéHi

(o~ Eonti s ] (- o

s’ i=l "y,

Suppose next that on §

Then,
NXJE, = NXJE, and NxdH, = NxoH,

In this case, the integral over S’ portion of (3.6.9) goes to zero and by the
same arguments used previously E and H are unique with V; and V.

Note that the condition imposed on the fields on S’ is the different from
the condition on S; and So. On S it is NOT assumed that AxE or AxH is
known. Rather, it is assumed that the DISCONTINUITY (usually = 0
which means that the component of the field is continuous) of both
AxE and AxH IS KNOWN across S.

In summary, the boundary conditions that result in a unique solution to
Maxwell’s equations are

AXE or AxH is known on S; and S, (3.6.10)

A

ﬁx(ﬁl —E,)and nx|H, - A 2) are known on §’ (3.6.11)
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Infinitely large regions

Suppose that volume V becomes all space. If this happens, then a boundary
condition must be applied at infinity in order to prove uniqueness since it can
be shown that the fields may not go to zero fast enough for the integral on
the infinite surface to be zero. If there is even a small amount of lossy
material filling the space, the fields decay away from the sources (assumed to
be contained in a finite volume) exponentially and the field can be said to be
zero on the infinite interface. Thus, uniqueness conditions are satisfied. If
the region is not lossy, however, then it can be shown that uniqueness holds
if the fields behave as

lim 0 .

r(—‘/’+ jkl//j:O (3.6.12)
r— o

as the infinite surface is approached. Here { is represents the radial variation
of either E or H and k is the propagation constant as the infinite surface is

approached. This condition is called the “radiation condition” (Stratton
1941).

Edge conditions

Before completing the discussion of the uniqueness theorem, it is necessary
to point out that the proof of the uniqueness theorem depends on the
convergence of the two integrals on the right side of (3.6.2). This places
some restrictions on the fields primarily at sharp edges of the geometry.
Fields may diverge, but not so rapidly that the volume integral doesn’t
converge. These additional constraints on the fields are known as “edge
conditions” (Hurd, 1976).

3.7 Electromagnetic Potentials <«

In sourceless space, Maxwell’s equations can be written as

VXE + %3 =0, Faraday’s Law (3.7.1)
VxH — %D =0, Ampere’s Law (3.7.2)
VeB=0 (3.7.3)
VeD =0 Gauss Law (3.7.4)
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According to the Helmholz theorem (Collin, 1991) any well behaved
vector field (Q ) satisfies

e i e N Pt ey

where V is any volume and S is its boundary and |I’ - I"| is the source field

point distance (in rectangular coordinates)

Ir—r|= \/(x— XV +(y-yy +(z-2f

Now, if V is assumed to be all space, then

Q(xy,z) VX{ (IT 4:|er dv } { (I 4Z|rQ dv} (3.76)

all space all space

Next, since Vo B =0 everywhere from (3.7.3) above,

B = VXA where A=A ~Vy 3.7.7)
and
V'xB y
aI-I[J;.[ce 47Z.|r -r | (378)

where ¢ is any scalar field since VX(V 74 ) =0 by vector identity.
Next, using (3.7.1)

VXE + Q(VXK) =0
ot

or

ot

=

VX (E+%J VX(E+%) =0 (3.7.9)

since, again, VX(V((//)) =0.
If, next, the field E + %is inserted into the Helmholz theorem (3.7.6),
then
E+%:—v¢ (3.7.10)
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where

gL
¢ = + at (3.7.11)
V'e (EdraAoJ
dv' 3.7.12
aIT[sJ;.)J;ce 47Z'|r I’| ( )

Again, a@—l’t” can be added because it is known that VX(V(!//)) =0.

Next, from (3.2.4) (for a simple linear medium)

D =¢,E +|5(E):gogrg+l50 (3.7.13)

where D includes the not only the displacement (free space) contribution
and that of the linearly polarizable charges in the dielectric, but also

impressed (i.e., source) polarization Py, the impressed electric dipole

moment per unit volume. Thus™,

D =—gogr(v¢+%JE+ P, (3.7.14)
and if
B = souH
then
_ 1 _
H= VXA
HoHy

Using these results in (3.7.2) and (3.7.4) yields

VxVxA+,uz{ (2@ J ,u% (3.7.15)

ot?
where

&=¢&o&, and 1 = py 1,
and

% Here ¢ has been set to zero without loss of generality. Hence Aand A, are identical
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—g(V2¢+Vo%] VeP, =0 (3.7.16)

At this point, it can be recognized that only VXA has been specified. But,

according to the Helmholz theorem, A'is not fully specified until Ve Ais
specified. Thus, it may be said (for convenience) that

VOK+,U£%:O : (3.7.17)
ot
Hence, (3.7.15) becomes
— — 0’A 0P,
VXVXA — VIV e A )+ ue =u—2
or
= o’A P,

VA — ue =—u—2 3.7.18
HE— = TR ( )

where (only in rectangular coordinates)

viA=(V?A i, +(V2A 8, +(V2A (3.7.19)

This equation defines the “electric vector potential.”

(3.7.16) now reduces to

.
(V2¢_ﬂg thjzév,ao (3.7.20)

By superposition, another solution to the homogeneous Maxwell

equations may be added to Aand ¢. To do this, the following can be
written

D=-VxA" (3.7.21)
B = toH + oM (F) = pto 14, H + p1,M, (3.7.22)
where I\W0 is the magnetic moment per unit volume for simple magnetic

material.
The resulting equation for the “magnetic vector potential” is
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VZA*—pue
with a similar equation for ¢~

. %) 1o
(quﬁ — ue 6:’2 )Z_V'Mo

(3.7.23)

(3.7.24)

Now in the sinusoidal steady state, it is only necessary to solve for A and

A’ since ¢ and ¢” can be derived from them.

Next, the Hertz electric and magnetic potentials (ITand TT respectively)

can be defined. These are:

- or1
A=us
He 5t
and
A = -
5

The wave equations for ITand T~ become

_ °T1 1_
V2T — ue — = o
and
— o°T1 1 —
2
VIl — e =-——M,
Hy
where
¢p=-VeIl and ¢ =-VeIl
Thus,
— — 01 oI”
E=VVell - — VX ——
"o ot
and
_ . o1 oIl
H=VVelIl — +EVX—
He 5 ot

For the time harmonic case
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(3.7.26)

(3.7.27)

(3.7.28)

(3.7.29)

(3.7.30)



V2 + e pell = 1 P, (3.7.31)
&
and

VAT + 0’ e

e M, (3.7.32)

where g=-V eIl and ¢ =-VeIl*. Thus, (3.7.29) and (3.7.30) can be

written as
E =VVeIl—w’usll — jouVxIl (3.7.29)

and

H=VVell —o’uell + joeVxI1 (3.7.30)

3.8 Reciprocity Theory 4

Electromagnetic reciprocity
The study of reciprocity theory begins with Faraday’s and Amperes laws in

time harmonic form from (3.1.11) with B = 4, (ﬁ + I\WO) and (3.1.12) with

D=¢Eand J=oF + jo that are repeated here as (3.8.1) and (3.8.2)
respectively (Harrington, 2001; Balanis, 1989)

A

VXE + jouH = M, (3.8.1)

where M, is an impressed magnetization and

VXH — ja)g(l—_ijﬁ =3, (3.8.2)
Jo

where the source currents are designated as J,and separated from the

~

conduction currents J, = oE and that

§:y(x,y,z)ﬁ, 6:g(x,y,z)ﬁ and JAC:a(x,y,z)E
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These two equations are next applied to a linear and isotropic, but
generally inhomogeneous region in space as shown in Fig. 3.8.1. Each region
in the figure could represent a different material with position dependent
conducting, dielectric and magnetic properties.

Fig. 3.8.1. The inhomogeneous region to which the reciprocity theorem applies.

Next, some distribution of electric and magnetic sources is inserted in the
region as shown in Fig. 3.8.2. Maxwell’s equations in this case become

. =M., (3.8.3)

=3, (3.8.4)

.
a

Fig. 3.8.2 The inhomogeneous region to which the reciprocity theorem applies with
sources and field points.
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Similarly, it is possible to place a different set of sources and field points
in the same region as shown in Fig. 3.8.3.

I

I

Fig. 3.8.3. The inhomogeneous region to which the reciprocity theorem applies with “b”
sources and field points.

Maxwell’s equations in this case become

VXE, + jouH, =M, (3.8.5)
VXH, — joeE, —oE, = J,, (3.8.6)
It is very important to note that, since both sets of sources (i.e., “a” and

“b”) are in the same medium, the terms g, ¢, and ¢ are identical in both sets
of equations. The next step in deriving the reciprocity theorem is to dot

multiply (3.8.3) byH,, (3.8.4) by E,, (3.8.5) by H,and (3.8.6) by E,. The
result is

~ A

H, o VXE, + jouH, o H, = H, o M,,, (3.8.7)

A A

EbOVXHa—ja)gI?bOE —ol?bOEa:I?bojOa, (3.8.8)
o VXE, + jauH, o H, = H, o M, (3.8.9)

E. eVxH, — joE, oE, —oF, oE, =E, ¢J,,, (3.8.10)
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If now, (3.8.7) and (3.8.8) are added together and (3.8.9) and (3.8.10)
subtracted from this result, then

|>

A

. ® VXE,

I

OVXﬁb + Ijb o Vxéa -

T

£ .

Ny
m

X

a a

(3.8.11)

A A

b.MOa_HLa.MOb-'_Eb.jOa_

|

P

I
m

a® ‘]Ob

Note that all of the terms that contain material properties cancel because
the material properties are the same for both the “a” and “b” problems.
Next, by vector identity
(3.8.12)

A A A A A A A

E,eVxH, —E, ¢VxH, +H, ¢ VXE —Haonﬁb:Vo(éaxﬁb—ﬁbeLa)

Hence, if (3.8.11) is integrated over all space and the divergence law (i.e.,
3.1.21) is applied,

jﬂv-(ﬁaxﬁb—ﬁbxﬁa)dh (3.8.13)
all space
J-_”‘ (HLb ® mOa - Ija ® mot; + Eb ® jOa - Ea * job }jv
all space

and

A

ﬁ (I?axﬁb —E,xH, ). d

(2]

A A

. .. L. (3.8.14)
.[.”(Hb.MOa_Ha.MOb+Eb.JOa_E .‘]Ob)jv

all space

where S_is the infinite boundary. If E and H decay rapidly enough that
the integral over S = 0, then (3.8.14) becomes

J.J.J‘(ﬁb.I\ﬁoa_HLa.'\ﬁOb_FEb.‘]LOa_ELa.JLOD v=0 (3.8'15)

all space

In the form that will be used here, M is set equal to zero, so that

III (éb ° 3, fiv= m (Ea o3y, BV (3.8.16)

all space all space
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Clearly, the only places that the integrands are not zero are where the

[

source currents for either problem “4” or “/” are located. For currents that
exist only along a line, (3.8.16) can be rewritten as (Weeks, 1968)

[E, eloudi = [E, oyl (3.8.17)

where “ca” and “cb” represent the lines on which sources I and I, lie.

Application to circuit theory
As an example, consider the environment shown in Fig. 3.8.4 which is
designed to look like that of a simple electrical circuit.

Ry R

Fig. 3.8.4. The environment of a simple electrical circuit.

Ry Rz

Fig. 3.8.5. The environment of a simple electrical circuit with a source at the left terminals.
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As shown in Fig. 3.8.6, a current source placed between the two terminals
on the right hand side of the circuit (problem “b”) causes an electric field
everywhere, but most specifically between the terminals on the left hand side

({92

of the circuit where the problem “a” current was placed earlier.

Fig. 3.8.6. The environment of a simple electrical circuit with a source at the left terminals.

If 3.8.16 is now applied to problems “a” and “b” shown in Figs. 3.8.5 and
3.8.6 respectively, the result is

2 2
[ [Epdl ==V, = I, [ E,dl = =TV, (3.8.18)
1 1

This is the familiar reciprocity theorem from circuit theory, but derived
from electromagnetic theory. Note that there are no frequency restrictions on
this except that the terminals over which the voltage is defined must be close
compared to a wavelength. Further, the only restrictions on the geometry are
that the material be linear and isotropic.

Electrostatic reciprocity

Reciprocity can also be formulated using electrostatic theory (Smythe, 1968).
The geometry that will be assumed is the same as shown in Fig. 3.8.1. The
first “4” problem that will be considered next is shown in Fig. 3.8.7. Here a
charge distribution p, is placed in the region which causes a potential

distribution V,in the region. Similarly, for the “/” problem, a charge
distribution p, is placed in the region which causes a potential distribution

V, in the region. This problem is shown in Fig. 3.8.8.
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Fig. 3.8.7. The inhomogeneous region to which the reciprocity theorem applies with “a”
sources and field points.

a

Fig. 3.8.8. The inhomogencous region to which the reciprocity theorem applies with “a”
sources and field points.

The governing equations for the electrostatics problem above with the “&”
sources are:

VeD, = p, (3.8.19)

and

(3.8.20)

Similarly, the governing equations for the same problem but with the “b”
sources are:

VeD, =p, (3.8.21)

and
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E, =-Vd (3.8.22)

If now, (3.8.19) is multiplied by ¢, , (3.8.21) is multiplied by ¢, and the two

results are subtracted, the following result is obtained
#VeD, ~¢4.VeD, =¢p, —¢.p, (3.8.23)
but, by the vector identity
NV eD=Ve(D)-DeVy (3.8.24)
(3.8.23) can be converted into
Ve(#D.)-Ve($.D,)-D, sV, +D, eV, = dho, 415, (3.829)

Next, (3.8.20) and (3.8.22) can be used along with the relation D=¢Eto
obtain

)+‘9Ea b Eb _gEa b Eb = ¢bpa _¢apb
)= ¢bpa _¢apb

(¢

(¢’" ' (3.8.26)

v.(¢b5a)_v. D,
_a)_v. 5b

where the two center terms cancel because the environment is the same for
the “4” and “/” problems. If, now, (3.8.20) is integrated over a volume V

Iﬂ (Ve (¢,D,)-V(¢,D, )ldv= IJI (b0 —dupp)lv  (38.27)

Finally, an application of the divergence theorem

[[[VeAdv={fAsds (3.8.28)

results in

ﬁ (¢b D, - ¢.D, )' ds = J._U (¢bpa — PPy )dV (3.8.29)

S

If S is expanded to include all space and the surface integral goes to zero,
then

'[U (¢bpa _¢apb )dV: 0 (3830)

which is the desired result.
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3.9 Problems

P3.1. Based on the Maxwell’s equations listed in (3.1.1) — (3.1.4) and the
vector identity of (3.1.6), derive the continuity equation as given by (3.1.5).
(Briefly explain the physical meaning of the continuity equation.)

P3.2. The time-harmonic electric field inside a source-free, homogeneous,
isotropic, and linear medium is given by (in Cartesian Coordinates and
assume the time variation term is ¢*)

el _ A . V4 s
E=3,E, sm(; xyje e (P3.2a)

where Eo, a, and § are all constants. Given the permittivity of the medium, &
(Farads/m), the electric flux density D (Coulombs/m? can be found by

D=¢E (P3.2b)

In the medium, by using the Maxwell’s equations, determine: (a) the electric
charge density g (Coulombs/m’), (b) the magnetic field H (A/m) given that
the permeability of the medium is # (Henties/m) and the magnetic flux
density B = x H.

P3.3. Derive the wave equation for the magnetic field as given by (3.3.0).
Assume the region of interest has, respectively, the permittivity and
permeability of & and p, neither of which is a function of position.

P3.4. Consider an interface between two source-free (no free charges) media,
shown in Fig. P3.4, both of which have finite conductivity. Media 1 and 2 are
characterized by the constitutive parameters ¢, 1, o and &, b, o,
respectively. Show that the tangential electric fields across the interface are
continuous (Ei, = E») by applying the integral form of Faraday’s law given in
(3.1.18). (Note: the “= 0” on the most right hand side of (3.1.16), (3.1.18),
and (3.1.19) should be removed.) Hint: choose a rectangular box as shown in
Fig. 1 and apply Faraday’s law on the box. The integral of the B field can be
reduced to zero if the height A5 of the box is small enough.

Medium 2
Ah
F"*’/ &, Mo, Oy
[} ——
Medium 1 &1, M1, T4

Fig. P3.4. A source-free interface between two media
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P3.5. Suppose there is a current I (A, rms value) flowing through a long
straight resistance cylinder, which has radius of # (m) and conductivity of ¢
(S/m). Choose the axis of the cylinder to be the z-axis and the x-y plan
coincides with one of its cross-sections, as shown in Fig. P3.5 Now only
consider a segment of length I (m) of this cylinder. Assume the current is
evenly distributed over the cross-section of the cylinder. Determine:

a. the electric and magnetic fields on the circumferential surface of the
cylinder and the directions of them; (Hint: the electric field can be

determined by the current density in the cylinder, J_ = oF .)

b. the power dissipated in the cylinder (P, = _III Ee ji *dv);
\

c. the Poynting vector (including the magnitude and direction) and the
power exiting (or entering) the circumferential surface of the cylinder

(P, = f[Extr o ds).

d. Compare the results from (b) and (c).

Fig. P3.5. Resistance cylinder

P3.6. The parameters of a simple circuit are given as shown in Fig. P3.6 (a).
An ammeter is connected in one of the branches. Determine the cutrent, I,
flowing through the ammeter. Then, switch the position of the voltage
source I/, and the ammeter, Fig. P3.6 (b). Calculate the new current in the
meter. Compare the results of the two calculations.
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Fig. P3.6. Simple circuit to demonstrate the reciprocity theorem
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Chapter IV

Propagation on an Infinitely Long Single
Conductor Transmission Line above
Homogeneous Earth

4.1 Introduction

Problem definition

The purpose of this chapter is to review the exact mathematical theory for
the problem illustrated in Fig. 4.1.1.
7

y <—X1—>{ e
yi=h
X
[T rrrrrrrry

(@)

TTTT 7T T7T 77777 7777777777
(b)

Fig. 4.1.1. a) end view and b) side view of the wire of radius “a” and height ““ y1= h” above a
linear, homogeneous isotropic lossy earth where V is a voltage source at its center and E. is
the electric field from an external source.
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More specifically, the electric currents on a single infinitely long horizontal
conductor located above a single-layer, linear, homogeneous, isotropic, lossy
(e, non-zero conductivity) earth caused by a single frequency voltage
source” at its center and/or an electromagnetic field (E,) from an external
source will be found. This problem is the idealized problem described in
Chapter 2, Section 2.3 for a single conductor.

Here, the z-otriented, horizontal conductor has radius a, and is located at a
distance h above the earth and a distance x* from the y axis (Wait 1962;
Kuester et. al. 1978).  Standard International (SI) units are assumed. The
upper half space (i.e.,, y > 0) is free space and is characterized by permittivity
and permeabilitye, =&, and g = p, respectively while the lower half space
(i.e., y <0) is a linear, homogeneous, isotropic lossy material characterized by
conductivity, permittivity and permeability ©,,¢&, =¢€,,6,and  u, =y, 14,
respectively. ¢, and u,, are the relative permittivity and permeability of the
half space respectively. The conductor is assumed to be non-magnetic (i.e.,
U, =H,) and to have a conductivity o,. The dielectric constant of the
conductor is not needed since it is only used to calculate displacement
currents and below optical frequencies these can always be neglected in the
conductor. The conductor is driven by a voltage source of RMS magnitude

V at z = 0 and by an electric field Ee from some external source and it is

assumed that all sources vary in time as exp(ja)t). The external source could

represent a man-made source such as a communications antenna or a natural
source such as lightning or a corona discharge near a conductor.

Problem solution
The method by which the solution is found can be summarized as follows.

First, an unknown current distribution f(z') is assumed to be carried by the
conductor. Second, this cutrrent distribution is divided into infinitesimal
lengths dz and the axially directed electric field éz(z,z')due to the short
current element f(z')dzis formally written (the specific formula for this will
be determined later). Third, this result for EZ(Z,Z')is integrated over the
entire conductor. The result is a formal expression for the axial electric field
EZ (Z)of the entire conductor current. Finally, an integral equation for the

(as yet) unknown current distribution is obtained by setting EZ(Z)pluS the

axial electric field of the external source (if any) equal to the axial electric
field of the source voltage at ¢ = 0 and an impedance boundary condition on
the remainder of the conductor.

37 1t will be assumed that sinusoidal steady state sources and fields are phasors (e.g., A)
with RMS magnitudes and phases measured in radians. Hence the time variation can be

found as a(t)=+/2 Re(Aexp(jcot)).
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The effect of the earth is taken into account when calculating the
electromagnetic field of each short current element and is represented by
Sommerfeld integrals (details are provided later). At lower frequencies, these
integrals will be shown to produce expressions for the external inductance
and capacitance per unit length of an equivalent transmission line for this
system. The impedance boundary condition accounts for the distribution of
current inside the conductor caused by the skin effect. At low frequency,
this will be shown to produce expressions for the internal inductance and
resistance per unit length of an equivalent transmission line. Details of the
solution process are provided in Section 4.2. Once the integral equation has
been set up, it is solved using Fourier Transform theory”. Details of this are
provided in Section 4.3.

Solution validity

The solution is formally valid at any frequency for which the conductor
radius is small compared to a wavelength at the frequency of interest, for
which the earth is represented by electrical constants appropriate to the
frequency and for which the conductor can be represented by a surface
impedance (generally at and below microwave frequencies). As a result, the
solution can be used to study antenna problems at high frequency as well as
power line propagation problems at low frequency. These two extremes are
not separate issues and it is important that this not be forgotten. In fact,
there are certain cases (such as for calculating electromagnetic interference
from corona) for which general theory is needed even for analysis of power
transmission lines.

Readers interested only in low frequency bebavior
Given, however, that the interest of many readers is restricted to the
behavior of power lines at lower frequencies (i.e., generally below 1 MHz),
there is no need for these readers to spend a great deal of effort to
understand the first few sections of this chapter. Rather, these readers can
skip sections marked with a € here and in the table of contents and proceed
to Section 4.7 where a special introduction is written for readers who have
skipped eatlier sections.

In Section 4.7, systematic mathematical approximations to the exact
solution will be made with care taken to list exactly the conditions under
which each approximation is valid. These approximations include those that

38 Tt is useful to note how the uniqueness theorem introduced in Chapter 3 applies to this
problem. More specifically, if a solution to Maxwell’s equations can be found that accounts
for the source term (including the external electric field if any), satisfies the radiation
condition as the distance from the center of conductor, r — % and for which the tangential
electric and magnetic fields are continuous across the air-earth boundary and the air-

conductor boundary, then this solution is the one and only solution to the problem.
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lead in later sections to equivalent transmission line theory, circuit theory and
quasi-static field calculations.

4.2 Setting up an Integral Equation for Conductor
Current with Series Voltage and External Field
Sources 4

Strategy and approximations

The first step in finding the current on the wire shown in Fig 4.1.1 is write
down a formal expression for the electric and magnetic fields of an
infinitesimal element (i.e., length @3 of the wire at (Xl, y, =h, Z') that carries
a current I. This current “element” is called a dipole with moment Idz". The
geometry for this problem is shown in Fig. 4.2.1

Y <—X1—>|
5 —@— 23
yi=h
X
7T rrrrrrrrr7y
@)
Y4—ZI
______ —_— - -y ——— .
Idz
y;=h
E0,"‘L0 7
02'EZ,MZ//////////////////////////
(b)

Fig. 4.2.1. a) end view and b) side view of the dipole height “h” above a lossy linear,
homogeneous isotropic earth.
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The electric and magnetic fields in medium 1 (i.e., y = 0) for the current
element at (Xl, y, =h, Z') can be written down as (Bafios 1960)

Ll _ 1 _ g & i =
E'(X,Y,2) = g5 (x—x,y,h,z—2)I(z')dz' &, + 4.2.1)

gs, (x=x,,y,h,z=2)i(z')dz' &, + gL, (x—x,,y,h,z—2)(z)dz g,

H'(x,y.2) = gh (x—x,,y.h 2= 2)i(2)dz &, +
. . 4.2.2)
gr, (x=x,y,h,z=2)(z')dz' &, + g;,(x— %, y,h,z—2)I(z)dz' &

z

where it is assumed that all of the functions g;; ate selected to satisty the

appropriate boundary conditions at infinity and at the air-earth interface
discussed earlier. Later in this chapter, it will be shown explicitly how this can
be done. Note that the reason why y and h appear separately in (4.2.1) and
(4.2.2) (unlike x-x; and z-2’) is due to the air-earth interface which makes the
region inhomogeneous along any vertical line. Thus, the y variation of the
field is not simply related to the difference y-h.

As mentioned earlier, the current on the wire (| (Z)) is yet unknown and

is the object of the derivations in this section. As discussed earlier, this
current can be found by setting up an integral equation on the surface of the
wire. To do this, it is necessary to match appropriate boundary conditions
on the wire surface. If the wire was perfectly conducting, then it would be
sufficient to set the tangential component of the total electric field equal to
zero on the wire surface (except at the voltage source where an electric field
boundary condition that accounts for the difference in electric potential
across the voltage source can be used). But, there are two problems with this
approach. First, the wires of interest here are not perfect conductors and
second, it is a laborious process to match boundary conditions at all points
along the cross section of the conductor. Here the first of many
approximations in this chapter will be made. More specifically, what is called
the “thin wire” approximation will be made for which it is assumed that the
electric field component along the direction of the wire is equal to the
“intrinsic impedance per unit length” of the wire multiplied by the total
current on the wire at one location on the cross-section of the wire. This
approximation is valid under the condition (Pogorzelski and Chang 1977)

(ij In(z—hj <<1 (4.2.3)
2h a

For the z directed non-magnetic wire considered here, the thin wire
condition can be implemented as
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EX(x +a,h,z)=Z,(0)(2) (4.2.4)

where it has been assumed that the boundary condition is matched on the
side of the wire (i.e., more specifically at (Xl +a, h). In Appendix A, it is
shown that (Weeks 1981)

k.a)J,(k,a)
Z. =R | W= |20 w 425
where
1
Ry = p— (4.2.6)

is the resistance per unit length of the wire at dc (i.e., zero frequency). o, is
the wire conductivity, k, = (- jau,o,)’? and J,(k,a)and J,(k,a) are
Bessel functions of argument ¢, and order zero and one respectively where
the wire has been assumed to be non-magnetic since g, (the wire

permeability) = 4,. Note that displacement currents in the wire can be
neglected (i.e., £y,&,, << 0,/ @). Hence it is not necessary to specity ¢, , the

dielectric constant of the wire. If the frequency is low enough that |/éu,a
| << 1, then

Z, (@) =R, + ja)’g—", k,a <<1 4.2.7)
r

In this case, the current flows uniformly throughout the wire and “dc”
calculations are accurate. The latter term of (4.2.7) represents the internal
inductive reactance of the conductor and is equal to zero when w = 0 as
expected.

If the frequency is high enough that | kna | >> 1, then

N

1/2 ]
Z,, (o) (a’“j 53] k,a>>1 4.2.8)

20, 27a

In this case, the current can be shown to flow primarily near the outside
surface of the wire (i.e., the skin effect) where the thickness of this layer is
roughly one skin depth

(4.2.9)

as shown in Fig. 4.2.2.
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Fig. 4.2.2. Cross section of a round conductor. At high frequency, current flows in the
“skin” (i.e., the shaded region of thickness d) of a round conductor. The impedance per unit
length is inversely proportional to the area 2nad.

As a result, the impedance is significantly larger than it is at lower
frequencies. This is also why the impedance is proportional to the square
root of w. In fact, as a general rule, the smallest intrinsic impedance per unit
length for a round conductor occurs at zero frequency. Since resistive losses
are proportional to the real part of the intrinsic impedance, the smallest
resistive losses are achieved by using the lowest frequency possible. This is
the fundamental reason why dc power lines are more efficient (i.e., smaller
resistive losses per unit length) than ac power lines.  Generally, however,
they are used only for relatively long distances because of the losses in
transforming ac to dc and vice versa at the two ends of the transmission line.

The integral equation

If (as has been assumed) the boundary condition (4.2.4) is applied at the side
of the conductor (i.e., at (X1 +a, h)), then the total electric field (an integral
over all sources plus the external source field) can be equated to the

boundary condition on the surface of the conductor. The result is (Chang
and Olsen 1975; Kuester et. al. 1978)

I a,h,h,z—2')i(z')dz+EL(x, +a,h,z)=
J;Ogez( )( ) e(l ) (4.2‘10)

~V&(z)+2,,1(z), —w<z<o

Here, d(3) is the Dirac delta function which is zero everywhere except at z
= 0 and has the property that any integral which includes z = 0 in its domain
is equal to 1. Thus the term —179(3) represents a voltage source of RMS
amplitude V on the wire at z = 0 since
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_ jé.d‘r - j(—V&(z))dz v “2.11)

where ¢ is an arbitrarily small number.

Equation 4.2.10 is a homogeneous Fredholm integral equation of the first
kind for the current induced on the conductor by the voltage source and
external sources.

4.3 Formal Solution to the Integral Equation for
Conductor Current with Series Voltage and External
Field Sources 4

Explicit expressions for EX (x, +a,h,z)can be (and will be later) found for

sources such as plane waves and isolated dipoles above the earth (Olsen and
Usta 1977; Olsen 1983). If in addition gi.(a, , b, g - ) is known, then it is (in
principle) possible to solve (4.2.10) for the current distribution using
numerical methods. But, this approach gives little insight into the solutions.

Here, a formal solution for the current will be developed that is
straightforward and elegant. It is based on the fact that the integral equation
is valid over the entire range of g values from - to ©. The solution can be
found by taking the spatial Fourier transform of both sides of (4.2.10). This

transform and its inverse (i.e., ﬁ(]/) and F (}/)) used here are defined as

E(H(2)=Flr)= [ f(2p ez @3.1)
E1(E()=f(2)= % [E(Edy 432

The symbol ~ indicates a spatial Fourier transform with respect to the
wire direction z that is dependent on the spatial Fourier transform variable y.

Taking the Fourier transform of (4.2.10) using (4.3.1) and using the
convolution identity

0

F(f(z)H(h(z)= F(»)H(») = I'f“ f(z')h(z - z')dz} (4.3.3)

—00

results in the algebraic equation

A

GLahh i ()+ELl+ahy)=V+Z,i() @4
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where the axial electric field of the wire current is

A

EL (%, +a,h,7)=GL(ahh ) () (4.3.5)

S A

If terms containing I (}/)are gathered, the equation can be solved for r(}/),
resulting in

sV -EL(x,h-a

1 (y)=—; % 7) (4.3.6)
Gez (a’ h,h, 7)_ Ziw

Finally, an explicit expression (i.e., the formal solution to the integral

equation) for the current as a function of position z can be written using the

inverse Fourier transform as

0 —Cl
i(2)= ~1 ¢ V+EL(x, +ah,y)

| -irg 4.3.7
27[—00 Gelz(a’h’h’y)_ziw ! ( )

Clearly, an explicit expression now exists for f(z)if an expression for
éelz (a, h, h, 7/) can be found.

Special case — no external sources

As the next step, it will be assumed that Ezle =0 (ie., no external incident
fields). Hence, (Chang and Olsen 1975)

1 % V .
I(z)=—— - -t 3.
) 2ﬂ(e;<a,h,h,y>—ziw} 7o 3B

00

4.4 The Axial Electric Field of a Propagating
Horizontal Current above Earth <

Introduction
In this section, an explicit expression for the term é:z (a,h,h,y) in (4.3.6)

and (4.3.7) will be found. This term represents the Fourier transform of the
z-directed electric field due to a unit-amplitude impulse (in space) of current
(i.e., an infinitesimal length dipole) at z = z’. Note that the spatial Fourier

transform of an impulse at z = 2’ is simply |~(7/): exp(— J 72) Hence, in the
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transform domain, an infinitesimal cutrrent source at z = z’ becomes a line
source carrying a current of the form exp(— ] 7/2'). The fundamental issue
that complicates the solution to this problem is the fact that the line current
is above the earth and hence that appropriate boundary conditions have to
be satisfied at the air-earth interface. This is done in the spatial Fourier
transform domain as illustrated below.

It has been shown (in Chapter 3) that the electromagnetic field of this
type of source can be derived from a set of electric and magnetic “potentials”
(Wait, 1972). As mentioned in Chapter 3, these potentials are not used
because it is necessary to do so, but rather because it provides a simpler
formulation to the problem which (in turn) leads to a more elegant and
simple representation of the result.

Y . Xl—’|

Y . 2a
y;=h
X
/////////()//////
y
I(z’) = exp(-jyz’)
y1=h
€, Ho 7

TT7 777777777777 77777777777
)

Fig. 4.4.1. a) end view and b) side view of the line current at (le h)above a lossy linear,

0, &

homogeneous isotropic earth carrying a current exp(-jyz’) (i.e., RMS current magnitude = 1).

Here, Hertzian electric and magnetic potentials will be used because it is
possible to represent the entire set of electric and magnetic fields in terms of
an axial (l.e., z directed) Hertzian electric and magnetic potential. The
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“proof” of this is that if TS and 17 are used, then it can be shown possible

to find a solution to Maxwell’s equations that satisfies all required boundary
conditions. By the uniqueness theorem, this must be the solution.
Consider next, the specific problem to be solved as shown in Fig. 4.4.1. This

figure shows a line current of form r(}/) = exp(— j]/Z) above a homogeneous

lossy earth as shown. As mentioned earlier, it is possible to use z directed
electric and magnetic Hertzian potentials to solve for the electromagnetic
fields of this source as shown below.

Sez (a, h, h, 7) for a conductor in free space

Consider first only the source term (i.e., the earth is ignored for the moment).
In this case, it is possible to represent the entire set of fields with a z-directed
Hertzian electric potential. Since the vector potential must have the same z
variation as the source, the wave equation for the potential can be written as

(v 4k by )= —Leate-x)oly-n)  @an
[0)

o

where K, =0\ e, =K, =0y, , €, = &yand it has been assumed that

the z variation of TI_(x,y,2)is € " since (as mentioned above) the source

current has this form.

A couple of comments about the source term in (4.4.1) are in order. Note
first, that in (3.3.27) of Chapter 3, the source term for the electric Hertzian
potential is —Py/e where Py is a “fixed” polarization that can be related to a

current density (again, & =& = &;in this case since the source that is in

Region 1 is assumed to be free space). More specifically,

Py=—= (4.4.2)
. 5 . . . . e_j}’Z
where the line current’s current density (for a current with z variation
can be written as

J=18(x—x,)5(y —he* (4.4.3)

A

and [ is the RMS amplitude of the current. Since r(}/) = exp(— j}/Z') in this
case, the source term in (4.4.1) is

e S(x—x,)5(y —h)e (4.4.4)

e,
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0r 0% o 0% le " i
Now, since VZ = o~ + v + o and gzz ): —y’e " (4.4.1)
Z

can be written as

52 52 2 j
[Coe Dot fiatuyn)= Lot xty-n) e

since the term € is on both sides of the equation and cancels.
To solve (4.4.1), it is first transformed into the (x, &) plane by using the
Fourier transforms

f(x)p" ™ dx (4.4.6)

f(ye¥dy (4.4.7)

I
e | s

in succession. The result is

(a2 =& =12 I, (1, &, ) = ——e 1w (4.4.8)

we,
so that

M, (k& 7)= 449)

wgo(§2 +x 4P —k02)

Using the inverse Fourier transforms corresponding to (4.4.6) and (4.4.7)
(see (4.3.12), it is possible to write a formal solution for the Hertzian
potential in the spatial domain as follows:

e —ix(ex) g i&(y-h)

T, de d 4.
(X y,7)= o wgoﬂ §+1U)(§—ju)§ K (44.10)

where

u =+x2+y2-kZ , Re(u,)=0 (4.4.11)

The £ integration can be easily performed using the theory of residues (see
Appendix B for details) by deforming the £ contour into the lower infinite
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semi-circle. If it is assumed that Re(ul)z 0% so that Im(jul)z 0, and (y-h)
> 0, then the integrand exp(— j&(y - h)) goes exponentially to zero in the
lower infinite semi-circle and the pole that occurs in the lower half plane is at
— ju, (see Fig. 4.4.2).

original contour
\ i

&

. I
\ z?ro at —ju; |
\ Ol /
\ I /
\ [ /
\ /

\ deformed : : ,
\\contour T //
N+ -

\\\ J lf/

Fig. 4.4.2. Location of the pole at —ju; in the complex £ plane.
The residue for the € integration (the portion of (4.4.10) in brackets) is

ﬂe—j’f()‘—xl)e—ul(y—h)

4.4.12
0, (4.4.12)

and the result is

_ J 2 e_ul‘y_h‘e—jk(x_xl)

ﬁez (X y,7)= dx (4.4.13)

drweg, *, u,

Where again, Re(ul)z Oand the absolute value sign has been used to
combine the result with a similar integration for the case (y-h) < 0.

Before proceeding, it is useful to recognize the identity (Abramowitz and
Stegun, 1972)

s oo~y y-h| L —jr(x—%)
e e
J dx (4.4.14)

M (ke =22+ -] )=

7 u,

—0

where Héz)(q) is the Hankel function of the second kind, order zero and

argument ¢. In order to satisfy the radiation condition at infinity,
/

|m((k02 - }/2)1 Z)S O since the asymptotic expansion for the Hankel function

18

3 The choice is arbitrary. But, once made, all other operations must be consistent with this
assumption.
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2 -jlag-jz
)= 2o, e

Given this result, 4.4.13 becomes

I, (x,y,7)= 4(01 H(Z)(k2 2f2[(x - x, ¢ +(y—h¥]"? ) (4.4.15)

imi(k? —yz)llz)é 0

Before proceeding, it is appropriate to illustrate how the result in (4.4.15)
can be checked by integrating the magnetic field derived from (4.4.15)
around a closed contour that just surrounds the current carrying conductor.
Using cylindrical coordinates, the magnetic field can be expressed (for a

current of the form exp(— j;/Z) where this term is suppressed)

I:I¢(r,¢, 7/) = ngovx(ﬁezaz)
2 (4.4.10)

=—jwe 81'[825
0 op ¢

/2
Since I'= [(X =X )2 + (y - h)z_‘[l and for small arguments (Abramowitz
and Stegun 1972)

HO (ke —y2) 7 r)= Z2hin((kz - 2 )2
T

Hence,

A )= "0 2 L i - f e )= 2

dows, 7 OF

So that

§ﬁ jﬁ rdg =1 44.18)
C 0

where C is a contour that encircles the conductor. The result is as expected
since the wire current amplitude was set equal to 1.

G (a,h,h, %) for a conductor above a half-space
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At this point, general expressions for the electric and magnetic fields in terms
of the axial Hertzian potentials can be written (Wait 1972). Again, in all cases
the current is of the form exp(— j}/z)where this term is suppressed.

The electric field related to the Hertzian electric vector potential in
medium “1” is:

£ 2 ﬁi ﬁi
E® (x, y,y/) VXVX(H szx ai, a, _dl, a,
oy ox
= 2 2 A (4.4.19)
=-] dlg a,—|j o, a -a 0°l,, N 0°Tl,,
o T Ty T el Ty
but from the wave equation (4.4.1) away from sources
2 2
‘ Pl 6_ —y?+k?Z |, =0
ox* oy’
and
E*(xy.7)= vaX(ﬁ;a ):
i i N (4.4.20)

The electric field related to the Hertzian magnetic vector potential is:

2 . ~ et orT’
E™(xy,7)=—jou VX =—jou,| —™a - —"a | 4421
(x,y,7)=—jou jops) = & 3| @42

Similarly, the magnetic fields can be found as
H™(x,y,7)= VxVx(H'mZ _Zj

(et il
_”/ axmzax+ ayzay (7/ _k )Hmz z

(4.4.22)

and
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o el

= A o
H(X,y,7)= Jo& VXIT,, =+ jwé, a, ——=a
(% y.7)=] jod| = 3,

(4.4.23)

where & =gy, — jo,/wis the complex dielectric constant” and
kK, = w+/ 4, &, 18 the complex propagation constant of medium “7°. (4.4.19) —
(4.4.23) will be used as the basis for calculating electric and magnetic field

components other than E, in Chapter 5.

Given these results, the boundary conditions on the tangential components of the
electric and magnetic field on a y = constant plane (in this case y = 0) are:

For Ex
iy e, Mhee i, Ma gy, i
4 ox Ho oy v x o oy 4.
For E;
(2 —k2)k, = (2 —k2 )2, (4.4.25)
For Hy
e m + joe e =-] s +joe o, (4.4.26)
4 0 0 ay 7 X 2 ay 4.
and for H,

(72 —kg )Hfm =(72 — k§)r1§u (4.4.27)

where k, = a)\/(/uz )(gogrz —jo,l ).

At this point, forms for the Hertz vector in each region will be set up.
The particular forms will be selected in order to 1) match the source
condition in Region 1 and 2) lead to results that will have simpler algebraic
equations than otherwise might result. In each case, the result will be a
spectral function which (when found and transformed back into the spatial
domain) leads to an exact closed form expression for the respective vector
potential.

It should be noted that there are only “down-going” waves in Region 2

(i.e., only an exp(uzy) term) and (aside from the source term which radiates

in all directions) only “up-going” waves in Region 1 (i.e., only an exp(— u, y)

40 Here, the carat symbol over the dielectric constant £ indicates a complex number, not a
phasor.
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term). These assumptions are consistent with the requirement of the
uniqueness theorem that in “open” regions, there are no sources at infinity.
Appropriate expressions for the (yet unknown) Hertzian potentials are:

it (x y,7) = A e R(':)e‘“l(”“))em de  (4428)
—0 1
I, (x,y,7)= AT M (’()eluj(ym)e_mdzc (4.4.29)
—0 1
fi2 (cy.7)= A JE TR g 4.4.30)
-0 1
ﬁfm (% y,7)= AT e N (’Z)euzyem dx (4.4.31)
—0 1

where A=—j/(4rwe,)and U,is defined as

u, =/ +y* —k? Re(u,)>0 (4.4.32)

Using the boundary conditions in (4.4.24) — 4.4.27), the following
algebraic equations in the unknowns R(x), M(x), T(x) and N(x) can be written

for each boundary condition. This results in four coupled linear equations in
four unknowns that can be solved for R(x), M(x), T(x) and N(x) (Wait 1972).

For E,
Jycll+ R(x))+ anqu,M (i) = T (1) — U, N() — (4.4.33)

For H,
jyM () + we,u, (1- R(x)) = jyaN (x)+ we,u,T (x) (4.4.34)

For E,
(k7 = 72 Ja+ R()= (k2 =7 )T (i) (4.435)

and for H,
(k= 72 M (x) =k - 7* N (x) (4.4.36)

The factor K(p) is defined as
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K(7)—M(K) k=) (4.4.37)

After T(x) and N(x) have been eliminated by inserting (4.4.35). (4.4.36)
and (4.4.37) into (4.4.33) and (44.34), (4.4.33) and (4.4.34) become

jry (L= K()R(x) + o(asguy + Ky )eau, M (1) = = jry (L K (y)) - (4.4.38)
And

jKV(l_ K(V))M (K)_w(goul + K(y)gzuz)R(K):

- a)(goul - K(V)gzuz) 439

These two equations can be rewritten as:

{an alz}{ R(K)}z[ ~ i 1-K(y)) } (4.4.40)

a, Ay M(K) _w(51u1_ K(?’)gzuz)
where
a, =ay = jKV(l_ K(7)) (4.4.41)
a, = a)(/uoul + K(?’)ﬂzuz) (4.4.42)
a,, =—o(s,u, +K(y)s,u,) (4.4.43)

From the second equation in (4.4.40), it is possible to solve for M(x) to
get

M (K) — - a)(goul - K(?;)gZUZ )_ aZIR(K) (4444)

Equation (4.4.44) can be inserted into the first equation in (4.4.40) to get

R(K): - jKV(l_ K(V))azz +Ziza)(5ou1 - K(?’)gzuz) (4.4.45)

where A=a,,a,, —a,,8, . Expanding yields (Wait 1972)

(4.4.46)
R(K)Z szz(l_ K(7))2 + w2(80u1 - K(?’)gzuz)(,uou1 + K(V),Uzuz)
_K27/2(1_ K 7/))2 + a)z(goul + K(K)gzuz)(ﬂoul + K(7)/U2u2)
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From these results, the other unknowns can be written as

M (x) = _allR(K)_ajKV(l_KO/)) (4.4.47)
T(x)=K(y )1+ R(x)) (4.4.48)
N(x) = K(¥)M(x) (4.4.49)

Here, an alternative expression for R(x) is derived (under the condition that
the earth is non-magnetic (ie., 4 =, = ty). Q is defined as Num/Den,

where Num = the numerator of (4.4.46) and Den = the denominator of
(4.4.46). If, in addition, 4, = u, = y,then,

Num = &2y 21— K (7)) + (k2u, —kZ2u, K (7))u, +u,K (7))
Den = —x2y2 (1— K(»))? + (k2u, + k2u,K (»))u, +u,K(»))

Now, Q can be written as

Num _ 14 Num + Den (4.4.50)

Den Den
where

Num + Den = (k2u, —k2u, K (y))u, +u,K (»))+
(keu; +k2u K (7))u +u,K (7))

= 2k2u, (u, +u,(K(»)))
— 2k2u Ju, (k2 = 72)+u, (k2 = 2]
oY1 (kzz _}/2) (4.4.51)

= el (e 0w, (e - u?)]
(k -y )
2

2kiu, 1,
= m[]{' (Ul + uz)_uluz((ul +u2))]
2
k2
B k22 EL:,lZ [(Ul +U2)(K2 _ulu2)]
2

Next, substitute (4.4.37) into Den to get
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(4.4.52)
Den::—KJyz(l—%Egzéégjz+{k§u1+k§u2%2?55%3}{u1+u2(tg::;z)}
=@§%;§ELK5ﬂ@q—7ﬂ?—iﬁ—vﬂﬁé—yﬁ+@§—7ﬂﬂ
+k@q@§_yﬁz+@uﬂ@-qﬂf+@ﬁub+kﬁubﬁé—75%5—%%

Collecting terms
(4.4.53)

[ 22 +kzuz iz - 2 F o+ (27 +kuz ke - 2 F

(k2 -»2f
+(k§u1u2 +kZuu, + Zrczyzxkoz —72sz2 —72)]

Next let
A=—x?y? +kiu?
= —K‘Z(Uf -k + koz)+ kou?
5 SV o 5 (4.4.54)
= (ko -K Xul -K )
= (2 = K2 k2 - »?)
Similarly
B =y +kZu2
AN (4.4.55)

=(K‘2 —kZZXkZ2 —;/2)

Inserting (4.4.54) and (4.4.55) into (4.4.53) and moving the common terms
(k02 —y? szz - ;/2) out of the bracket results in

(4.4.56)

Den =

(—)(Ei jji)[(zcz ks =) e o =)k b, 26777
2
= (koz _}/2)[1(2k22 —kkZ —x?y? +kEy? + ik —KKE — kPP +kEy?

k; =7
+ ((ko2 +k2 )Jlu2 + 2/(2;/2)] [(ul + uz)(kozu2 + kful)]
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:%;%%M@uﬁ—@ﬁ@@%ﬁ—mmqwﬂwﬂ
2

=$?j§w@+@ﬁ+@awﬁwﬂ
2

_ke-y?)
kz-»?)

Finally, using (4.4.50) and (4.4.50)

2k§u1(1<2 —~ uluz)

Rlx)=-1+ 4.4.57
= =, ) 7
It can also be shown (here done backwards) that the factor
2
K- —uu
(éz—lj)) (4.4.58)
oUp +KyU
is equal to
1 2
- ! (4.4.59)

u, +u, (kiu, +k2u,)

This is done by 1) rewriting (4.4.59) with a common denominator and 2)
multiplying numerator and denominator by (u1 —u, ) After writing U, and

U, in terms of their definitions (i.e., 4.4.11 and 4.4.32) and collecting terms,
(4.4.58) can be shown to be equal to (4.4.59). Hence

2kiu 1 i
R =1 071 - 4.4.60
(x) +(k02 _72)Ll+u2 (kju2 +k22u1) ( )

Given this result, it is now possible to find an expression for the total
axially (i.e., z) directed electric field anywhere. Using (4.4.20),

A

GL (=%, yihy) = (7 — KL, (x=x, v, hy)E,  (44.61)

where from (4.4.28),

2 _i 2 faulyl —uy(y+h) | —ix(x—x)
Hlez(x_xmy!h’]/): J (e +R(K)e k
drwe, u,

dx (4.4.62)
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so that
(4.4.63)

é-gz (X - X, Y, h, 7/) _ + 1(72 — kg) < (e’ul‘y*h‘ + R(K,)e—ul(erh)kij(x,xl) ;

drwe, u,

K

where R(x) is given by (4.4.57) or (4.4.60) (Wait 1972).
For the specific point (X, y)= (X1 +a, h) (i.e., at the side surface of the
wire)

G (a,h,h, )= +ilr? -k TRl e (4.4.64)

drwe, u,

It is useful to note that (in some publications) (4.4.64) is written in an
alternative form as

Gi(a.hhy)= el - T(“RK)E " Jeos(xal), (4.4.65)
0

drws, u,

Finally, as discussed in Section 4.3, the electric field of the wire (for an
arbitrary current) can be written explicitly as

A

EL(x +ah,y)=GL(ahh ) (») (4.4.66)

4.5 Exact Modal Equation and General Expression
for Current <«

Introduction
Now that (Selz is known, it is possible to use (4.3.8) to calculate the current

on the wire. This equation is repeated here as (4.5.1)

Iﬂ(z)z—i = v Py @4.5.1)
27 Gl (a,h,hy)-

iw

This integral can be evaluated using the theory of residues for analytic
functions in a manner similar to (4.4.10) (see also Appendix B). In that case
the original contour of integration (i.e., the real y axis from - % to ®) was
deformed into the lower infinite semicircle of the complex plane. This can
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also be done here for z > 0 since e™ — 0 as Im (y) — -0. Since this is true,
this semi-infinite integral is zero and the integral is simply the sum of
residues of the poles of the integrand. More will be said about these for the
case of (4.5.1) shortly.

There is, however, an additional complication in this case. According to
Appendix B, a function of a complex variable is “analytic” in a specific
domain D of the complex plane only if it is “single valued.” This requirement
can be violated if the integrand involves multiple valued functions such as

1/2>.

logarithms (i.e., |n(}/)) or fractional powers (e.g., ¥ In these cases

branch cuts can be drawn between the branch points (they always occur in
pairs — one of which may be at ©). Branch cuts must not be crossed in order
to preserve the single valued property of the integrand. An example of a
function in the complex plane that contains a pair of branch points at 0 and -
joo along with vertical branch cut and a legitimate “deformed” contour of
integration is shown in Fig. 4.5.1. In this case, the original contour must be
deformed around the branch cut as shown in the figure. Thus the new
integration (in addition to any residues that occur between the original and
new contours) must include the integrations along Cx and Cu: as well as
those along Ci; and Cy.

Yi
original contou Mnt aty=0
\ ’"'I
| i | v
‘ I c. |
\ I =21
N N
\\ Il :l Branch //
N cut 7
\\\-!L_///

Fig. 4.5.1. The effect of a branch cut on permissible contour deformation.

In the next two sections, the simple poles of the integrand (i.e., simple
zeros of the denominator) as well as the branch points and cuts of the
integrand of (4.5.1) will be identified.

The exact modal equation — Zeros of the denominator
The zeros of the denominator of (4.5.1) can be found by solving

A

Gl (a,hh,y)-2, =0 (4.5.2)
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Using (4.4.60) and (4.4.64), (4.5.2) can be expanded and written as

(4.5.3)
2_k2 s oo jka i =2uih L jra
+ly o){i e g d JE
dwe e U 4 u,
2k2 2\ © 5-2uih 4 ja 2k2 2 £\ © —2uih 4 jxka
- OZ(ijje © di+ 2°7z(lj ° °  dkl-z,=0
iy —koi ) U +u, (;/ —ko) 7 ) kou, +Kkou,

Multiplying through by the initial factor (}/2 - kg) and using the definition of
the Hankel function in (4.4.14), (4.5.3) can be rewritten as
(4.5.4)

(e T (Ey C R N S CN S

4we,
~2kZ2P()+ 2k Q(y)}- Z,, =0
where
j 0 e—2u1hejxa
Ply)=| = || ——d
(j/) (”J_'[o u, +u, )
and

Q) (L)

T _Ookzzul + kgu2

If next, terms multiplied by )7 are separated, then (4.5.4) becomes

(4.5.5)
72{ 4(;0 j[H éz)((koz - f" a)— HY ((k§ 7 (anp + et )+ 2k§Q(7)]}
il bl el ast 2.0

Equation (4.5.5) is the exact modal equation for a thin wire above the
earth. It can be shown that discrete values of y (i.e., ) for which (4.5.5) is
equal to zero represent different modes of current propagation on the
conductor. The currents that correspond to each of these modes vary with
z as

—Jypz
e p

(4.5.6)

The exact modal equation — branch cuts and points
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It can be shown that integrand of (4.5.1) has branch point pairs at
tKky,—Jo and £K,,—joo due to the existence of Hankel functions that

behave as logarithmic functions close to ko and ki (Olsen, R. G. and D. C.
Chang 1974a). The integration along these two branch cuts can be related to
electromagnetic fields that radiate in the free space and the earth respectively.
In addition there is another branch point pair with one branch point between
the ko and k» and its pair at -j©. Integrations along this branch cut can be
related to electromagnetic fields that radiate along the free space-earth
interface. The locations of these three branch cuts are shown in Fig. 4.5.2.

Generalized impedance per unit length parameters for a wire above earth

The modal equation (4.5.5) can be recast in a form that leads naturally to
identification of an equivalent transmission line with impedances and
admittances per unit length. This can be achieved by defining

GL(ahhy)-2, =0=—2(1)+ " 1Y() (4:5.7)
where Z(y) and Y(y) are defined as
(4.5.8)
Z(y)= wf:(’( (( —k? )l ) ((;/ —k? )1 (2h +a)l ))+2P )]+Z
(4.5.9)

)=t k2 7a)-HE e e} (anf a2 ) 2kia)]

It will be evident later that

e Z(y) is the equivalent series transmission line impedance per unit
length, and

e Y(y) is the equivalent shunt transmission line admittance per unit
length.

Given this, the modal equation can be written as

= INZONE) (4510

where in this general case, Z(y) and Y(y) are functions of y.

Although (4.5.8) — (4.5.10) look very much like the formula used for
determining the propagation constant for a distributed parameter
transmission line, the parameters are still complicated functions of the
Fourier transform variable p. In the low frequency case, however, these will
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reduce to a form that is directly interpretable as an equivalent conventional
distributed parameter transmission line with a single set of constant
distributed parameter values. This will be done in the next section.

Given these definitions, 4.5.1 can be reformatted to look like

[ 17 \ -in
I(Z)_ﬂiz(y)wz/Y(y)} dy (4.5.11)

which (given the denominator of the integral) begins to resemble a
transmission line formulation (and this will become even more apparent
later). As mentioned above, however, it is important to note again that Z(y)
and Y/(p) are functions of y and have a fairly complicated set of singularities
to be described further below (Olsen and Chang 1974a; Olsen and Chang
1974b; Olsen et. al. 1978).

General modal solution for the current

As mentioned above, for z > 0, the integral of (4.5.11) can be evaluated by
closing the integration contour in the lower half of the complex y plane. To
keep the integral single-valued (or analytic) within and on the contour, the
integral along the axis is deformed and set equal to the sum of several
integrals each with its own physical significance. There are three types of
these integrals: integrals about the various poles of the denominator of
(4.5.11) (i.e., modal integrals), integrals along the various branch cuts of the
denominator of (4.5.11) (i.e., radiation integrals) and an integral about the
lower, infinitely extended semi-circle. This last contribution is zero by virtue
of the radiation condition and the branch cut definitions, which specify that
the real parts of the various multivalued functions be greater than zero. This
specification defines the proper Riemann sheet. A detailed depiction of the
deformed integration contour is shown in Fig. 4.5.2.

First, and most important (to power engineers) is the pole yq (the

transmission line or quasi-TEM zero) that is bound to the wire (i.e., the fields
decay rapidly away from the wire) and will be seen later to be the dominant
term for most power engineering applications. It is called quasi-TEM
because as the earth conductivity becomes infinite, this mode becomes
equivalent to the TEM mode on a perfectly conducting wire above a

perfectly conducting ground plane. There is a second zero, Jg, that is called

a “surface attached” zero since it relates to a wave that travels along the wire,
but is mostly bound to the interface between the air and the earth and which
becomes less important at low frequencies. In addition, there are three

branch points and associated branch cuts. The first one is at K, and the
integration along its branch cut represents radiation away from the wire in all
directions. The second one is at K,and represents radiation that travels
along the air-earth interface in all directions away from the wire. The third
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occurs at K, and represents radiation away from the wire into the earth. This

integration can usually be ignored for typical earth parameters.

Fig 4.5.2. Spectrum of currents on the wire. The open dots represent zeros of the
denominator and hence modal currents. The closed dots represent branch points of the
denominator.

More specifically, it can be shown that the quasi-TEM modal current

dominates the continuous spectrum currents if: 1) the wire height is small
compared to the free-space wavelength and 2) the earth is a reasonably good
conductor at the frequencies of interest. Since these conditions hold for
many low-frequency systems, the quasi-TEM current can be, and has been
assumed to be the total (or complete) current.
It is a reasonable question to ask whether the entire current can (in all cases)
be represented by these components. One necessary (but not sufficient)
condition for this is that the total current begin to approximate the (known)
current on a wire in free space as the height of the wire above the earth
becomes large compared to a wavelength (Olsen and Chang 1974). The
results of such a calculation are shown in Fig. 4.5.3. More specifically, this
represents an examination of the input conductance (i.e., current at z = 0
divided by the voltage of the source) of the wire. It is shown in Fig. 4.5.3
that the input conductance does (in fact) approach the correct result (i.e., 3.1
milli-siemens) when all terms mentioned above are included. Based on this
result, an argument can be made that all significant spectral components of
the current have been identified.
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Fig. 4.5.3. Input conductance of the infinitely long wire. The individual contributions of
modal and radiation terms are shown. The wire was assumed to be perfectly conducting,

As mentioned above, for small heights the transmission line (or quasi-
TEM) component is dominant which agrees with the common assertion that
the total current can be approximated as simply the quasi-TEM current. It is
this current that will be considered when the low frequency approximation is
discussed later.

4.6 Derivation of the Low-frequency Carson
Approximation

Introduction
It has been shown in Sections 4.2 — 4.5 that an exact closed form solution for
the conductor current can be written as

[ 15 \ -in
I(Z)_Ziz(y)wzl\((y)} W R

For this result
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(4.6.2)

Z(y)=" [(H 7 ((72 k2 f" a)— Héz)((Vz k2 ((2n) +22) ))+ 2P(7)]+ Z,

4

(4.6.3)

Y(y)=-4we, [H éz)((72 —k? )1/2 a)— H ((7,2 —k¢ )1/2 ((Zh)2 +a’ )UZ )+ Zka(y)}l

where Héz)(q) is the Hankel function of the second kind, order zero and

argument ¢ (Abramowitz and Stegun, 1972),

- P0)=(4]fE T

)<, U +u,
and
£\ © —2uh 4 jxa
j e e
=|=||———dx
R e
where
u = k2 +72—k? Re(u,)>0
and
u, =x’ +y*-kZ Re(u,)>0.
Finally,

Ky = o4/ 18, ,

k, = a’\/(,uo)(gogrz — jo, o) =exp(- j”/4)\/ WO, Oy >> WEGE .

It is not important for the reader who has skipped Sections 4.2 — 4.5 to
understand the details of (4.6.1) — (4.6.3). Rather, it is important only to
recognize that this is an exact closed form solution that will be used in the
next subsection to develop expressions that are very familiar to power
engineers.

Approximations

According to Fig. 4.5.2, the “quasi-TEM” or “transmission line” mode is
dominant for wire heights that are a small fraction of a wavelength (A =
3x10°/fin meters where fis the frequency in Hertz). If 0.05 A is used as the
criterion for “small,” then (at 60 Hz) 4 must be less than 250 km. Cleatly,
this condition is satisfied for all practical situations. In fact, if 4 is as much as
30 m, then the approximation that the total current is the “quasi-TEM” or

182



“transmission line” is valid up to approximately 0.5 MHz. In practice, it has
been used to nearly 2 MHz.

When the wire height, 4, is a small fraction of a wavelength and is much
larger than the wire radius and the earth is a reasonably good conductor, then
it can be generally assumed that

ak; —y%|<<1

ki —y%<<1
a<<2h (4.6.4)
lkoh| <<1

kg 7k} <<1

Reduction to the Carson integral
Under these conditions, Q(y) is small compared to A and P(y) where

=l o)l iy 1))

4

since A is independent of ks, Q(y) is proportional to 1/k.* and P(y) is
proportional to 1/ka. (Wait 1972; Olsen and Pankaskie 1983)

Further,

—2”/6 ,q<<1
T

.
ng>(q);1—;1|n(q/2)—

where y. = 0.5772... is Euhlet’s constant. Hence

A = I |r{((2h)2 +a2)“2J jou | (Zhj

27 a 27 a
and
i27 (u, —u,)e™"
P(y)=d2[ it cos(ka)dx
ey ey
0 2u;h
:J—j(’c_ )e cos(xa)dx (4.6.5)
T % kz o

where U=/x* - k22 and #; = » over most of the integration since 1/(2h) >>

ki.
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Low frequency equivalent per-unit length parameters
The result is that Z and Y can be considerably simplified and written as

Z= %{m(zma)_ac(a,h,h)}+ziw (4.6.6)
T

where (in a more general form)
J (Xx=x,v,y,)= %J' (u—x)e ) cos(i(x — x, ))dx (4.6.7)
Kz %

(4.6.7) is the “Carson” integral (Carson 1926)*'. Finally,

Y =27 we,{In(2h/a)}™ = joC (4.6.8)
where
__2me (4.6.9)
In(2h/a) o

Of greatest importance here is that Z and Y are no longer functions of y
and hence, the set of singularities is much simpler than above. It will be
shown later that “C” is the capacitance per unit length for a wire over a
perfectly conducting earth and

L, = ;‘—0 {In(2h/a)-Re(J, (a,h,h))!. (4.6.10)

e
T

which is the external inductance per unit length where
(a,h,h _% [(u=r)e™ cos(xa)dx (4.6.11)
k; 0

More will be said later in Chapter 7 about generalizing (4.6.9) and (4.6.10)
to the case for a conductor bundle. The equivalent “external” resistance due

to losses in the earth (R,) can be written as

R, = 29 1m(3,(a,h,h)) (4.6.12)
2

#1 Note that the method used here to derive Carson’s integral is not the same as used by
Carson in his original paper on this subject. Appendix C has been written to review the
methodology used by Carson in his original paper.
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while the equivalent resistance (R) and internal inductance (L) due to the
conductor are:

R, =Re(Z,,) (4.6.13)
and

L =Im(z,) @ (4.6.14)

Relationship to real conductor specifications

In handbooks used for specifying conductors used for high voltage
transmission lines, the per-unit parameters introduced in the last section are
presented in a different way. The purpose of this section is to relate the
parameters presented here with those used to specify real conductors. Again,
only the electrical properties of these conductors will be emphasized. For a
more exhaustive discussion of conductor specifications, the reader is referred
to (EPRI, 1982) and (Thrash et. al. 2007).

Conductor type and sizing

As mentioned in Chapter 2, transmission line conductors are generally
stranded and constructed of aluminum strands. In many cases, there is a
core of steel strands for strength. Nearly all conductors are 2.5 cm in
diameter or larger. Most are “aluminum conductor steel reinforced” (ACSR)
although there are a variety of other types such as “all aluminum conductor”
(AAC) and “aluminum conductor alloy reinforced” (ACAR). More recently
conductors with cores made of composite materials designed to operate at
higher temperatures have become available.

Transmission line conductors are usually designated in tables by given
names (usually birds such as Chukar or Pheasant). In addition to specifying
the number of strands, the stranding pattern and outer diameter of the
conductor (in millimeters or inches), it is common to specify the total cross
sectional area of aluminum in the conductor since this represents the primary
current carrying area of the conductor”.  The cross sectional area is
presented in either square millimeters or circular mils (the area of a circle that
is 1 millimeter in diameter).

Resistance

In conductor tables, the resistance of the conductor at certain frequencies
and temperatures is given. These will in general differ from the resistance
given by the “internal” conductor resistance in (4.6.12) because the
conductor is stranded rather than solid. The frequency correction is given
because of the skin effect inherent in (4.6.12) and generally leads to higher
resistances at higher frequencies. Since the component of resistance given in
(4.6.11) is related to the overall transmission line geometry and the earth’s

%2 The effect of considering currents in the steel core would reduce the resistance by 1 — 2%.
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electrical properties, it is not considered in conductor tables. Rather, it must
be considered separately when the overall transmission line is designed.

Capacitance
As shown earlier in (4.6.9), the capacitance per unit length of a conductor
over earth (with the earth well approximated as a perfect conductor) is

27
C=—"""2_ F 4.6.15
n@nia) ™" #6.15

Since this is a function of both a conductor parameter (i.e., the radius “a”)
as well as a parameter that represents the overall geometry of the
transmission line (i.e., the conductor height “h”), it is necessary to separate a
portion that can be attributed to the conductor alone. This is done by first
converting the capacitance per unit length into a capacitive reactance per unit
length,

X =1 - In2h/a) o, 4.6.16)
oC  w2re,
This result is then split into two parts as
X, =L _xraxe o NWa) In2n) o
aC w2rs, @2rs,

The first term of (4.6.17) (designated X',), is called the “conductor
& A)s

component” and represents the capacitive reactance “to one meter” (or one

foot if English units are used)”. The second term (designated X'p), is

sometimes tabulated and called the “separation component.” Usually, these
are given in units of Ohms per km or Ohms per mile.

Inductance
As shown earlier in (4.6.10) and (4.6.14), the external and internal
inductances per unit length of a conductor over earth are:

(4.6.18)

L=L, +L, = Im(ZiW)/a)+§—°{ln(2h/a)— Re(J (a,h,h))} H/m.
T

8 Here the actual radius and height are used because the conductor is only a single
conductor. In Chapter 7, this will be generalized to conductor bundles and “geometric mean
radius” (GMR) and “geometric mean distance” (GMD) substituted for “a” and “h”
respectively.
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In conductor tables, this is first converted into inductive reactance by
multiplying by w as shown in (4.6.19)
(4.6.19)

X, =L +L,)=1Im(Z,)+ “;”0 {In(2h/a)-Re(_(a,h,h)} Q/m.
T

The next step is to separate the conductor component in a similar way as
to that done for the capacitance term as shown in (4.6.20)

(4.6.20)

T T

X, =X, +X; = {um(ziwp% In(l/a)} +[“2’i fin(2h)— Re(d.(a,h, h))}}

Q/m.

X, represents the reactance of the conductor to one meter (or one foot

if English units ate used). X, has sometimes been tabulated under the

assumption that the earth is a perfect conductor, but as will be shown in
Chapter 5, while this assumption is acceptable for capacitance, it is not for

inductance. X, is further simplified by selecting a fictitious distance
“GMR?” that is used to combine the two terms together. More specifically

X, = {Im(ziw)+ a;”f’ In(l/a)} = 1n1/GMR)  @.6.21)

T 27

In conductor tables the GMR refers to a radius called the geometric mean
radius of a stranded conductor that is calculated by taking into account the
geometry and material of the strands, the presence or absence of a steel core
and the skin effect. More information about this calculation can be found
in (EPRI, 1982). Typical values of GMR for stranded conductors range from
75% - 80% of the conductor radius.  Usually, these are given in units of
Ohms per km or mile.

Carson full series and first order approximation
Carson developed a full series expression for the integral that is given here in
Appendix D (Carson 1926). If all terms that decay at least as fast as

In(k,r'Xk,r')*are dropped then

kZZr j+0.o77— j%kz(y+ y:) (4.6.22)

e

4 As indicated eatlier with respect to the presentation of capacitive reactance GMR will be
generalized in Chapter 7 for conductor bundles.
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where

r = \/(y +y, ) +(x=x) (4.6.23)

is the distance from the line current’s image at (X, y): (xl,—yl) and it is

assumed that ‘kzl’i‘ < 0.25 where

k, =exp(— jz!4)Jou,o,, 0, > we,s,,. (4.6.24)
In the case for which 2 = 0 and k,h <<1, (4.6.22) reduces to

J.(a,h,h)= |n(j(;—i)J if koh << 1. (4.6.25)
2

This result can be shown to be neatrly equivalent to an alternative
expression for J. developed in Section 5.4 that is interpreted as a complex
image. If this result is used in (4.6.6), the series impedance of a wire above
earth becomes

z-z, +%|n((2/ ik,)/a) (4.6.26)
7T

The last term of this formula has the interpretation of the series
impedance of a wire in the presence of a “complex image” wire at a complex
distance 2/ (jkz) meters below the source where the earth has been replaced
by free space (Wait and Spies 1969). This very simple interpretation will be
revisited later. Before finishing, however, it is interesting to note that the
inductance L in (4.6.10) and (4.6.26) becomes infinite as w — 0 since &2 — 0

as w — 0. Thus, application of (4.6.24) to the “dc” case will require some
additional thought (Bracken, 1982).

Transmission line equivalent
Again, repeating (4.6.1) with Z and Y written explicitly to indicate that after
the “Carson” approximations they are no longer dependent on y

@)= [ =Y birdy =Y [ Y kirdy @2
2w S\ Z+y Y 2w\ v =

where there is a pair of zeros in the denominator at
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y=rn =tjvZY

_ 4 k2 1_Jc(a,h,h) _ j2r06)Z,, 12 (4.6.28)
U in(2h/a) ) In(2nh/a)

It will be assumed® that Im(y;,) <0 which will be seen shortly to allow
the original contour to be deformed in the lower half plane for z > 0. This
zero represents the “quasi-TEM” or “transmission line” mode and can be
represented by an equivalent transmission line with distributed parameters
given by (4.6.6) and (4.6.8). Since this zero in the denominator represents a
simple pole of the integrand, it becomes straightforward to evaluate (4.6.20)
by residue theory. (4.6.26) becomes

|(z)—VY w(( L )je_md}/ (4.6.29)

27 = 7+7TL)(7_7TL

Ifz > 0, then €7 =& 7e” tends to zero for values of y in the lower half
of the complex y plane and the integration along the real axis can be
deformed as shown in Fig. 4.6.4 with the contribution of the infinite lower
semi-circle (i.e., Cx) is equal to zero. The only remaining contribution is that

of the residue of the simple pole at 7, .
The contribution of the pole can be evaluated by using the transformation
y >y +re’’, r<<|yy| where dy= jrde’’. The current becomes

equal to the integral around the pole (i.e., the residue contribution) and is

R VY “ 1 _
1(z)=— gy
( ) 27 _oo((7+7TL)(7_7TL)]e

(4.6.30)
3r/2 Jrejg
= f(7TL) J. io do = 27Z]f(7TL)
-rl2
where
VY
f(y)= e
27[(7+7TL)
so that
I(z)= ZIVY i (4.6.31)
2y7,

#° This is arbitrary, but once the assumption is made all other operations must be consistent
with this assumption.
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Fig. 4.6.4. contour integration for current on the wire

If z < 0, a similar derivation using the same reference direction for the
current yields

I(z)= VY i (4.6.32)
277,

In the following section, this result will be interpreted using an equivalent
distributed parameter transmission line that can be analyzed with all of the
techniques that have been developed for analyzing transmission lines such as
coaxial cable, parallel wire lines or microstrip.

4.7 Equivalent Transmission Line Theory

Approach

The first step in developing an equivalent transmission line theory is to
recognize that, even though the conductor that was analyzed appears to be
open circuited, it is also infinitely long. Hence the input current is not
expected to be zero because the current never reaches the end of the
conductor to “get the information” that the wire is open circuited.

Vv
oy
\_/

8

[T rrrrrrrrrrrrrrrrry

Fig. 4.7.1. The “voltage” in (4.7.23) as a source in series with the conductor.
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The second step is to recognize that while the current I(3) is the current
that would be expected to appear in an equivalent transmission line theory
for the conductor over the earth problem, the voltage V is not. First, the
voltage V is due to a source in series with the conductor as shown in Fig.
4.7.1 rather than a voltage that is defined between two conductors as would
be expected in transmission line theory. Second, V exists only at the origin.
In the next section, the traditional transmission line “voltage” will be derived.

Identification of voltages

To identify a voltage that can be used to interpret (4.6.30) in terms of
equivalent distributed parameter transmission line theory, it is helpful to refer
to the two circuits shown in Fig. 4.7.2. Given that all relevant cross
sectional dimensions of the conductor over earth problem are small
compared to a wavelength at power frequencies, and assuming that
the electric potential at the center between the two voltages sources in
a) is zero by symmetry, the circuit in b) is identical to that of a).
Further, it will be shown in Chapter 5 that (for the low frequencies usually
associated with power transmission lines) the voltage 17, (the conductor to
ground voltage) can be uniquely defined as the potential difference between
the conductor and any point on the earth that is in the same cross sectional

lane.

V/2 V/2 V., =V/2

cg

o~ (2) I(z)

- + i,
v V,
-

(@) (b)

Fig. 4.7.2. a) circuit equivalent to Fig. 4.7.1 b) for the case that all cross sectional dimensions
of the power line are small compared to a wavelength at the operating frequency.

9

Given this equivalence, it is now possible to write (4.6.30) in terms of the
equivalent transmission line driving voltage 17, where the subscript “cg” is
read as “conductor to ground.” Given this, the “voltage” on the equivalent
transmission line is the voltage measured between the conductor and any
point on the earth in the same cross-sectional plane. In terms of this voltage

-jv.Y
1(2) = el girgans 4.7.1)
V1L

where (in addition) 7, has been written as f; — jaq to separate the

propagation from the attenuation as often done in analyzing transmission
lines.
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Characteristic or surge impedance
The voltage along the power line can then be written as

V,(2)=2Zu 1(z) =V e P Pe™ 2> 0 4.7.2)

where (using (4.6.19))

. _ . Z
ZOTL:(_ JY/yTL):l:J}/TL/YZ\/; (4.7.3)

is called the “characteristic impedance” of the transmission line that is often
referred to in the power engineering literature as the “surge impedance.”

V
ey
\_/

8!

-7 Zor, =

Frrrrrr
(@)
\'

(~)
&/

YA
oTL Zatr

)

Fig. 4.7.3. a) Equivalent transmission line for an infinitely long power line. b) Equivalent
input circuit

Given this (as shown in Fig. 4.7.3), an equivalent circuit can be developed
to assist in understanding (4.7.2). The current into the transmission line can
be written as

V Vc
1(z=0)= =2 (4.7.4)
22OTL ZOTL

Now that the voltage and current are defined, an equivalent transmission
line distributed parameter system can be defined as shown in the “T
equivalent” transmission line shown in Fig. 4.7.4 where in the limit, Al — 0.
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Z7e/2 ZAR/[2 ZA8/2 ZAe/2
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YAL YAl

---o ° Y S

Fig. 4.7.4. Distributed parameter equivalent circuit of a power transmission line

Per unit length parameters of the equivalent system
Here, the parameters (i.e., Z and Y) of the distributed system are indicated.
To review

Z=R,+R +jo(L, +L,) (4.7.5)

where K., R;, L.and L, are defined by (4.6.11), (4.6.12), (4.6.10) and (4.6.13)
respectively and

Y = joC (4.7.6)

where C is defined in (4.6.9). In the special case for a perfectly conducting
conductor and earth, the propagation constant y;, and the characteristic

impedance Zy, can be written as

yr =—JNZY 2k, = oy 18, @4.7.7)

[z In(2h/a / In(2h/a
LZor = Y =1 (2 )= a —( ) (4.7.8)
T & 2r

In the approximate forms of (4.7.7) and (4.7.8) both the conductor and
the earth have been represented approximately as perfect conductors. This
results in a propagation constant and characteristic impedance equivalent to
that of a TEM transmission line.

and

Finite length transmission lines

Real power transmission lines are not infinitely long and, hence, it is
important to consider the influence of the “end” (i.e., z = {) of a single wire
power line. To do this, transmission line theory will be revisited (Ramo et. al.
1965). This can be done by assuming that there is a terminating “load
impedance” Z; at a distance € from the source I,as shown in Fig. 4.7.5.
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JAS

Fig. 4.7.5. Simple transmission line model for a “short” power line of length £.

This impedance can be related to a reflection coefficient as

_Lim o 4.7.9)
Z L + ZOTL

Hence, the voltage at some point z along the power line (with respect to
earth) can be written as

V(Z):VJr(e—j}’TL(Z—[) _|_l"e+jYTL(Z—‘~7)) (4710)

where V" and V- = I'V" are the voltage amplitudes of the forward and
reflected waves. Given that the voltage at z = 0 is 7, 1”(g) can now be
written as

V . / i (o
V(Z): (e”?’ﬂ.f +Cgre_iVTL€)(eJyTL(Z[) +Te il ()) 4.7.11)

Similarly, the current distribution can be written as

Vv . .
= ~Jrm(z-1) +iym (z-1)
I(Z)_ ZOTL(eﬂ'yTLfog-i-Fe‘iW)(e ) et [) (4.7.12)

Note that this formulation in terms of forward and reflected waves
is valid no matter what the length of the line. This is important because
for “short” power lines the voltage and current are usually not discussed in
terms of forward and reflected waves. Rather, only voltage and current are
discussed. To understand why, it is useful to examine (4.7.11) and (4.7.12)

under the condition that 7 ¢ <<l using the Taylor approximation
e"=1+q, gq<<1.
Cleatly I(0) = 17, , but from (4.7.11)
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\Y V. Z
V() _ o (+T)=-2 (4.7.13)
1+ JyTL€+F(1_ J7TL£) Z +Zt

12

where (4.7.8) — (4.7.9) have been used to simplify the result. Clearly, this
result is identical to the result obtained from the simplified power line model
shown in Fig. 4.7.5 and justifies this simple model (Weeks 1981). It is also
interesting to note that the simple model is equivalent to taking a single “I”
circuit form Fig. 4.7.4 and assuming that Y¢ is small enough to be ignored.

It is always permissible, however, to describe the voltage distribution on a

short power line as a superposition of forward and reflected traveling waves.
Taking the ratio of (4.7.11) and (4.7.12) at z = 0 yields

(eJrj}/TL[ _ l"e*jYTLé)
W - ZOTL (eﬂ'}’ﬂ_'@ + l"e*jVTL[)

(4.7.14)

If Zy is known and measurements of 17(0) and I(0) (amplitude and

phase) are known, then (4.7.14) can be solved for I" and 17, found from
(4.7.11).  Alternatively, if the forward and reflected wave amplitudes and
phases are known, then the input voltage and current can be found.

4.8 Circuit Equivalents for Short Power Lines

The analysis at the end of Section 4.7 indicates that an electrically short (i.e.,
vl <<1) single conductor power line can be represented by an equivalent

circuit. In this section this result will be generalized somewhat and more
explicit circuits shown for short power lines. The most general circuit used
for power lines is shown in Fig. 4.8.1. This is a pi network that consists of a
series impedance that consists of resistive and inductive components and a
pair of parallel capacitors at either end.

R Le

Sy

— C&/2 Ce/2 ——

Fig. 4.8.1. Simple circuit equivalent for an electrically short power line of length £
The value of each capacitance is
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(074 el
== 4.8.1
2 In(2h/a)’ &84

while the value of the inductor and resistor are respectively

Ll = g‘—"{ln(zh/a)— Re(J,(a,h,h)}+1Im(Z,,)¢1 o 48.2)
T

and

R( = —g‘—o Im(3,(a,h,h))¢ +Re(Z,, ) (4.8.3)
T

RE Le

_\/\N\/\_{YYY\_

Fig. 4.8.2. Simple circuit equivalent for an electrically short power line ignoring capacitance

In many cases, the line is short enough that the capacitors at the end of
the equivalent circuit can be ignored.* In this case, the equivalent circuit can
be simplified to the one shown in Fig. 4.8.2.

Le

[YYY

Fig. 4.8.3. Simple inductor circuit equivalent for an electrically short power line

% Because the capacitance per unit length of an underground cable is generally much larger
than that for overhead lines it is usually not possible to ignore the capacitance for
underground lines. In fact, the capacitance of underground cables is a limiting factor in the
maximum length of underground ac cables because of the shunt current through the
capacitance that is proportional to the length of the cable. Long underwater links are nearly
always dc links because (except for initial transients) the capacitance can be ignored.
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For many power system calculations the circuit of Fig. 4.8.2 is further
simplified by ignoring the resistance per unit length since the impedance of
this element is generally much smaller than that of the inductor at power
frequencies of 50 or 60 Hertz. The resulting circuit is shown in Fig. 4.8.3

4.9 Limiting Case for DC Lines

It is tempting to apply the circuit of either Fig. 4.8.1 or Fig. 4.8.2 to the zero
frequency (i.e., DC) case by simply allowing the frequency to go to zero for
the circuit parameters. It would normally be assumed that (since inductive
reactance is proportional to frequency and capacitive reactance is inversely
proportional to frequency) the equivalent circuit is simply a series resistor
and that its value is equal to (4.8.3). This value would be

R¢ =Ryl =/ll(c,m%) . (4.9.1)

Unfortunately, more care must be used because in (4.6.11) the value of R.
approaches zero as w — 0 (Bracken, 1982). This happens because as the
frequency approaches zero, the skin depth of the earth approaches infinity
and the current in the earth spreads out to an infinite depth. The result is
that the earth resistance is zero despite the finite conductivity of the earth.
This can be resolved by using a more realistic layered model of the earth that
has a lower layer with zero conductivity.

4.10 Lumped Element Devices Along Lines — Line
Compensation

Introduction

In Chapter 1, several lumped devices that are important to the successful
operation of high voltage transmission lines were discussed. These included
series capacitors, shunt reactors and surge arresters. The purpose of this
section is to use the theory that has been developed in this chapter to
examine the reasons why these devices are used and what can be accomplish
by using them. While all of these devices are generally used on three phase
transmission lines, the discussion here will be limited to the single phase case
so that the fundamental ideas why they are used are not obscured by the
relative complexity of three phase systems. Alternatively, the single phase
solution here can be applied directly to balanced three phases systems that
have a single phase equivalent.
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Series compensation — series capacitors
Consider the use of a simple inductor model for a transmission line of
inductance per unit length L. and length Af that is used to connect two
system busses with voltages of V=V, £, and Vo, = V, 26, respectively. A
circuit that shows this arrangement is illustrated in Fig. 4.10.1.

LAe

+ +
Vg1=|Vg1|@1 Vg2= |Vg2|@z

Fig. 4.10.1. Two voltage busses connected by a short transmission line.

It has been shown in Chapter 1 equations (1.3.20) and (1.3.21) that the
real and imaginary power transferred from Bus #1 to Bus #2 are

P, =ReV,I7,)=Re \792_(\?9;1)[229*2) =’VELKZ‘sm(9 —0,) (4.10.1)

(4.10.2)

Q= IV, 152 )= m ng_(\;i)[A\; a)LM(Ivgl‘COS(Q 0,)-V, D

It is interesting to observe that (to first order in (6 — 0), QO is
proportional to the difference in voltages between the busses. As a general
rule, this means that minimizing the flow of reactive power will as a natural
consequence reduce voltage differences within a power network. Hence
controlling reactive power is an important tool for ensuring a high degree of
uniformity in the voltage distribution.

LAg C

+ +
Vgl =|Vg1 |@1 ng = |Vg2 |@2

Fig.4.10.2. Two voltage busses connected by a short transmission line with a series capacitor
inserted along the line.
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Clearly, the real power transferred is limited by the reactance, wl.A¢, of
the transmission line. Given that (as will demonstrated later in Chapter 8) it
is not desirable to use large values of (0; — 0,) it is useful to consider how this
reactance can be reduced. This can be done by inserting a lumped capacitor
of value C in series with the transmission line as shown in Fig. 4.10.2.

In this case, the power transferred from Bus #1 to Bus #2 can easily be
shown to be

o MalVel
P, = Al -1/ (a)C)|SIn(91 -6,) (4.10.3)

If the value of the capacitor’s impedance is smaller than that of the
transmission line’s inductance, then the power flow can be larger for a given
value of (01 — 0,). This process is called series compensation. Of course, care
must be used to select a capacitor that is capable of withstanding both the
voltage across is and the current through it. A more general analysis of this
problem for longer transmission lines can be found in (Weeks 1981).

Voltage regulation — series and shunt reactors

One criteria used to characterize the quality of a power line is changes in the
voltage distribution along its length. More specifically, it is important that
the voltage changes along the line be minimized in order that the power
system performs properly. This is the subject of “voltage regulation.” To
understand why these changes in voltage can occur, consider the model for a
power line of length Al shown in Fig. 4.10.3. In this figure, resistive losses
are neglected, the inductive and capacitive parameters of the transmission
line are I. Henries and C Farads per meter respectively and the line is driven
by a voltage 1, and terminated with a load Z.

Lee08

— o YYY .

A C~) —— CAL/2 CAL/2 —— Z,

Fig. 4.10.3. Power line with load Z¢

Two complementary approaches will be taken to solving this problem.
The first is to use traditional linear circuit theory. The second will be to use
the power flow analysis introduced in Chapter 1.
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Linear circuit theory approach
The voltage across the load can easily be calculated to be

z
V = ‘ v 4104
" Z,l-@’LCAC? 1 2)+ joLAl ® 109

If the line is lightly loaded (i.e., Z, is large enough that the term jwLAZ
can be neglected) then (4.10.4) reduces to

1
(L- w?LCAr? /2)\/g

/

(4.10.5)

It should be clear that the voltage at the load is larger than the input
voltage and that the voltage rise is greater for longer line lengths. On
transmission lines, this phenomenon is known as the “Ferranti effect”
(Ibrahim and Dommel. 2005). Note that if the line is loaded normally (i.e.,

the JWLA( term cannot be neglected), the magnitude of (4.10.4) is

(4.10.6)
1

"I V- wrieac r2) (wearx, (R? + x2) +[oLarr, 1(R? +x2)f

where Ry and X; are respectively the real and imaginary components of the
load impedance. Without going into details, the voltage regulation is much
better in this case because the second term in the denominator adds to the
denominator of (4.10.4) and (at least partially) mitigates the large changes in
voltage along the transmission line during light loading. It is also useful to
note that it is the reactance of the load that is responsible for this additional
term. This is a first suggestion that a lumped element like a shunt reactor to
be discussed shortly may be used in the same way.

LAE Cseries

..NYY\H.

v, C~> —— CA%/2 CAL/2 —— Ze

Fig. 4.10.4. The use of a series capacitor (reactor) to reduce voltage increases during light
loads.
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Fundamentally, there are two methods that have been used to compensate
for this problem. The first is to use a capacitor in series with the inductance
to reduce the voltage drop across the inductor as shown in Fig. 4.10.4.

Given the insertion of this series capacitor, L. can be replaced with the

term L —1/ (a)zCseries) in (4.10.4) and the voltage across the load becomes

- Z,
vV, = z,0—o?(L-1/{0*C_,. )JoAr? 12)+ J.COLMVQ (4.10.7)

For large values of Z, (i.e., light loading) this becomes

V, = [ ! V, (4.10.8)

1- (L -1/(0*Cy,. ICAL? 12)

It should be clear that the value of Cg,, can be selected to reduce the

difference in voltage between the source and load ends of the transmission
line and hence improve voltage regulation.

Another method to compensate for the Ferranti effect is to use an
inductor in parallel with the load (i.e., a shunt reactor as shown in red) as
illustrated in Fig. 4.10.5

LAL
oo YYYL_4
+
v, <~) ——CA&/2 CAR/2 —— L Z,
—e ®

Fig. 4.10.5. Transmission line with a shunt reactor across the load.

Given the insertion of this shunt reactor, C can be replaced with the term

12-1)
12

o lo'ca,,,
w*CAIL

shunt

in (4.10.4) and the voltage across the load becomes
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Z,

2 o
Zé(l— GJZC[(CO CAELSh””t /2 1)jLA€2 /2] + ja)LAE

V, = V, (4.10.9)

@’CAIL, |2

shunt

For large values of Z, (i.e., light loading) this becomes

V, = L vV, (4.10.10)
L Le (@’CAlLy,, 12-1) A% /2
@°CAlLy,, 12

It should be clear that if Ly, can be selected to reduce the difference in

voltage between the source and load ends of the transmission line and again
to improve the voltage regulation.

Power flow approach
In Chapter 1, the power flow equations have been set up and solved for the
situation illustrated in Fig. 4.10.6 with AQ¢ =0.

transmission line

generatOI’ .
de = JngE A'Ev

Pe+]Q

o=
)
&

Fig. 4.10.6. Determining the power flow to an arbitrary load through a short transmission
line.

While the transmission line model shown in Fig. 4.10.6 is not identical to
the one shown in Fig. 4.10.3, the results for the analysis of power flow to the
load and load voltage will be applicable for the following reasons. First, the
“generator” power in Fig. 4.10.6 can be considered to be the combination of
that from the actual generator as well as the reactive power from the parallel
capacitor CAL/2 in Fig. 4.10.3. The voltage across this combination remains
I, Second, the reactive power supplied by the capacitor CAL/2 in parallel

with the load can be combined with that of the load. Hence P, + jQ,
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includes the actual load plus the reactive power injected into the system by
CAL/2. Given these assumptions, it is possible to apply results for the
system of Fig. 1.1.3 of Chapter 1 to that of Fig. 4.10.6 with AQ¢ = 0.

Using the standard assumption that the magnitude of the generator
voltage is equal to 1, an expression for the voltage magnitude across the load
was found in (1.3.28) which is repeated here as.

2 1-20L, AMQ, +[1-4al, AIQ, — 4alL,, ALf P?
- 2

(4.10.11)

v,

It is assumed here that Q,includes the reactive power supplied by the

parallel capacitance of the transmission line, CAL/2. Note that for most
situations the physical solution of (4.10.11) corresponds to the + sign in the
equation. This assumption will be made here. The effect of adding a shunt
capacitor or inductor (reactor) across the load (AQqin Fig. 4.10.6), the value

of Q,will be changed to

Q' =Q, +AQ, (4.10.12)

To evaluate the effect of adding a shunt capacitor or inductor, the load
voltage (4.10.11) will be expanded in a first order Taylor series with respect

to Q', around its value for S, =P, + jQ,. An implicit derivative can be
found by taking the derivative of both sides of (4.10.11) as

dQ, (4.10.13)

1

~20L,Al+ % - 4oL, ArQ, — 4oL, A0F P2 ) 2( 40l A)

65, 5

If, next it is assumed that the system is lightly loaded and hence

40y, ALQ, +4(L, ALF P

<<1,

the square root term in (4.10.13) can be represented as the first two terms of
a Taylor series. The result is

(4.10.14)
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N,(s,) d’\;Q ) =~ 20l , AL —20L, AL+ 200, ALQ, +2(wL, ACF P?)
YA

— (4oL, A0fL+ 0L, A0Q, + (oL, ACF P?)
Given this result, the voltage after augmenting Q', by AQ, is

(4.10.15)

V,(S, +jAQ, | =, (s f)(+drv XAQ/

dQ,
= M (s, X _(C()LQ—M(1+ oLy ALQ, + C’)L Af )AQ/

Vi(s.)

Cleatly, if a shunt capacitor is added at the load, the voltage at the load is
increased since AQ,is a negative number. This would provide additional

support to the voltage. Similarly, if a shunt inductor (reactor) is added at the
load, the load voltage is decreased. This could be used to counteract the
Ferranti effect as described above. Finally, the increase or decrease in voltage
can be written as

(4.10.16)

=7 r\(/iQ/ )( AQ, =~ %QLFCDLWAKD/ +\ol, Alf )AQ”

The calculation can be completed by recognizing that (according to
(1.3.12), the “reactive powet” supplied by a shunt capacitor of value C F/m
1s

AQq, = —aCV 2

rms

(4.10.17)

Similatly, the “reactive power” absorbed by a shunt inductor of value L
H/mis
A V2
AQL[ = Im(\//lé‘ ): -
ol (4.10.18)

In this section, two examples have been given about how the voltage
distribution along the power line can be affected by adjusting the value of
cither a series capacitor or a shunt inductor.. Further studies of this idea for
longer transmission lines can be found in Weeks (1981).

Nonlinear elements - surge arresters
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As mentioned is Chapter 1, nonlinear lumped element devices called “surge
arresters” are used on the power system to suppress surges that occur during
switching operations. In order to understand how these elements work
without obscuring the result in too much mathematics, it is appropriate to
consider transmission lines under DC excitation. To this end, consider the
problem illustrated in Fig. 4.10.7. This system consists of a DC source of
voltage 17, and internal resistance K. that drives a two wire lossless
transmission line of length € with propagation velocity ¢ (the speed of light in
free space) and surge (or characteristic) impedance Z. The transmission line
is terminated in a resistor of value R A circuit breaker disconnects the load
at time t = 0.

circuit breaker
in opensatt=0

transmission line
surge impedance=Z7,

substation z=0

Fig. 4.10.7. Simple dc transmission line with a circuit breaker opening at t = 0.

Prior to t = 0, the operation of the transmission line can be described by
dc circuit theory so that

V.R
V,, =V =—3="‘_ 4.10.19
/0 in0 (Rs T R() ( )
and
V
l, =1, =—3—" 4.10.20
00 in0 (Rs n R/) ( )

The subscript “0” means the initial condition before t = 0. In terms of
transmission line theory, it can be shown that the voltage and current on the
line prior to t = 0 can be written as

Vi =Vio =Vio +V,o =V, (1+T,) (4.10.21)

where V., is the constant amplitude of a forward traveling wave?,

V,, =TV, is the amplitude of the reflected wave and

47 Since the voltage source is constant in this case, traveling waves can be written in terms of
the unit step function as U(t+/-z/c). It is assumed in (4.10.19) that enough time has passed
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= —C; (4.10.22)

is the reflection coefficient of the load where Z. is the transmission line’s

c
surge (or characteristic) impedance. In a similar manner, the current can be
written

Vv
Lo = 1o =g+ 1,0 =1 fo(1—rw)=%(1—rw) (4.10.23)

[

From this information,

R, +Z,
VfO :VinO (Z—F\)() (41024)
and
V. =TV,,=V LZC) (4.10.25)
ro fo in0 2R( . s

Now, at t = 0%, the forward traveling voltage and current do not change
because they were generated at the source and hence cannot change until
enough time has passed to allow a wave to travel to the source and back
again to the load. The reflected traveling voltage and current can, however,
change because they are generated at the load. They must change to reflect
the changing conditions at the load (i.e. the total load current |, must
instantaneously change from the value in (4.10.20) to zero since the circuit
breaker has opened and the resistance of the load in now infinite (i.e., an
open circuit). Here, to get a somewhat more general solution, the load
resistance will be assumed to change to R,". The total voltage and current at
z = L after t = 0 and until t = 2€/c (because no changes take place at the
load until a wave has time to travel to the source are back again to the load).

V, =V, +V, =V, 1+T,) 0=t <20/c (4.10.26)
and

V
I/,1:|fo+|r1:%<l_rf1) , 0=t =20/c (4.10.27)

c

for all the traveling waves to have completed their travel across the transmission line (i.e.,
steady state conditions). Hence the term U(t+/-z/c) = 1 and does not appear explicitly in
(4.10.19).
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where the minus sign in the expression for current occurs because a wave
traveling in the —z direction must have voltage and current related by a minus
sign. The subscript “1” indicates the time after the first bounce at the load,
but before the second. Since the ratio of total voltage to total current at the

load must be R,", (4.10.26) and (4.10.27) can be solved for I',; The result is
- —C; (4.10.28)

From this result, it is possible to easily calculate the load voltage and
current as

R,+Z, (R
V, =V +V,, =V, (1+T})=V,, RZ'+ZC R_f/] , 0<t <20/c (4.10.29)
and
V, (R, +Z,
=1+, :R_f:’ Ri'+ZC 0<t <20/c  (410.30)

Clearly, the voltage across the load can be significantly higher than the
voltage prior to switching. In the case for which R,'— 00, the voltage across

the load is a factor of (R AL, )/ R, greater than the voltage before switching.

Voltages this much higher than operating voltages might lead to flashovers
and (if the voltage is not suppressed) enough air insulation must provided to
withstand them. Note that the condition described above lasts only until the
reflected wave has a chance to travel back to the source, reflect and return to
the load (i.e., for a time equal to 2//C where c is the speed of light). For a
150 km transmission line, this time is 1 mS, more than long enough for an
arc to occut.

It is useful to specifically continue this process for one more bounce to
examine what happens when the reflected wave reaches the source at t =
€/c. In this case, the reflected wave must be constant during this event and a
new forward wave with voltage amplitude V,, is generated. The condition

that must be satisfied at the source is

Vi, =V, +V, )=V, —I,,R, =V, —%(vfz—v,l) (4.10.31)

in2"' ‘s
c

Equation (4.10.31) can be solved for V,,to get
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V,, = Ve -V, Z. =R | (4.10.32)
@1+R./Z,) Z, +R,

The current is then

|, =—. (4.10.33)

This reflection process proceeds through an infinite number of cycles, but
eventually, the voltage at the load (now an open circuit) will be equal to V..
An example is shown in Fig. 4.10.8. Here V. = 100 kV, R, = 30 Q, R; =70
QR — o0, £ =100 km and Z. = 400 Q.

Cleatly, the load voltage begins at 80 kV and increases dramatically (to
approximately 480 kV) during this transition from the initial state to the final
state at 100 kV, This is generally not an acceptable situation the cost of
insulation (primarily air clearances as discussed in Chapter 8) required to
prevent failure of the transmission line during this condition is unacceptable.

600

500

400

300

200

100 “Unuﬂu 1unu"v"\- AL

0

voltage across load

100
200 +—4

-300

t (mS)

Fig. 4.10.8. The load voltage at the end of a 100 km transmission line with a 70 € load
switched out at t = 0.

To resolve this problem, surge arresters can be placed at the load. These
are non-linear devices that limit voltage swings to more reasonable levels. A
fairly typical, (but idealized) surge arrester voltage current characteristic for
use in the 100 kV range is shown in Fig. 4.10.9.
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Fig. 4.10.9. Typical surge arrester characteristics.

For this particular surge arrester, the voltage (0 — 120 kV) is linear with
current from 0 amps until 10 mA (it appears nonlinear due to the logarithmic
scale). In this normal operating range, the current (hence the losses during
normal operation) is small. Beyond 120 kV (and 0.01 A or 10 mA), however,
the voltage increases only logarithmically with current. Effectively, this limits
the voltage that can appear across the arrester.

Mathematically, this device’s characteristics can be written as

v Ve | _R | o<l

sa I Isa = sao "sa !
sao

<0.01A

sa —

(4.10.34)

sa —

I
V., =V, +AV,, |0910£| = j , 1,>001A

sao

If these VI characteristics are used in (4.10.26) — (4.10.27) instead of R¢’
and the equations solved iteratively since the device is nonlinear, then it is
possible to calculate the reflected wave from the surge arrester. A system
that includes the surge arrester (shown in red) is illustrated in Fig. 4.10.10.
For the arrester in this example, Vo = 120 kV, I, = 0.01 A and AV, = 20
kV. The response of the system to the opening circuit breaker is shown (in
red) in Fig. 4.10.11 along with the response of the system without the surge
arrester that was shown in Fig. 4.10.8.
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circuit breaker
in opensatt=0

transmission line

surge impedance =27, Re

arrester

substation z=0 z=% load

Fig. 4.10.10. simple dc transmission line with a circuit breaker opening at t = 0 and a surge
arrester.

It is immediately clear that the surge arrester has had a significant impact
on the system response. More specifically, the peak voltage has been
reduced from approximately 480 kV to approximately 160 kV. This is a
significant reduction and generally will justify the use of a surge arrester on
economic grounds.
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-100
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-300
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Fig. 4.10.11. Response of the system in Fig. 4.10.10 with (red) and without (blue) the surge
arrester

This is, however, not done without penalty. During the initial reflections,
not only is the voltage larger than the operating voltage, but the current as
well.  Hence, the surge arrester absorbs a considerable amount of energy
during the surge and, hence, must be designed to withstand this overvoltage
condition. Given this result, it is evident that a transmission line should be
protected against voltages that are significantly larger than the operating
voltage.  The specific amount depends on the system in which the
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transmission line is operated and should be investigated before the line is
designed.

Natural surge arresters — earth and conductor losses and corona

In the model used in the last section to study switching surges, it was
assumed that the transmission line was lossless. The attenuation of voltage
and current waves traveling from one end of the transmission line to the
other due to earth and phase conductor resistive losses were neglected. This
attenuation can be relatively easily taken into account (albeit at some
increased degree of complexity) and leads to smaller overvoltages than
predicted by the lossless theory presented here. While the effect of these
losses are well understood, there is another important (and much more
complicated) phenomenon that must be considered when calculating the
effects of voltage surges on high voltage overhead transmission lines
(Wagner and Lloyd. 1955). This phenomenon is corona on the phase
conductors that occurs when voltage is large enough that the electric field at
the surface of the conductors exceeds some corona onset value. More about
corona onset and other corona effects will be presented in Chapter 9. Here
it will simply be stated that corona has an important influence in attenuating
dynamic overvoltages and should therefore be modeled when studying the
dynamic overvoltage stresses on a transmission line. Several models have
been presented in the literature and while they are not perfect, they produce
reasonable results when incorporated into programs designed to calculate
transients on high voltage transmission lines (Suliciu, M.M. and I. Suliciu, I.
1981; Maruvada, et. al. 1989).

4.11 Problems

P4.1. The surface impedance of a conductor can be calculated by (4.2.5) of
the text book. In this equation, the Bessel function of the first kind and order
zero and one, [y and /i will be used. In fact, Bessel functions can be
approximated by some simpler formulas when the arguments are either very
small or very large. For small arguments |q| <<,

Jo(a)=1

and

J(a)=q/2

For large arguments |q| >> 1,

Jo<q>~J%cos<q—m4)
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and

J1<q>~J%cos<q—3n/4>

Assume a long conductor wire has the radius of 0.01m and conductivity
of 3.5%10’S/m. Its surface impedance is going to be calculated by different
formulas. Let the frequency vary in this manner: from 10 to 90Hz with a
10Hz step and from 100 to 10,000Hz with a 100Hz step (the frequency array
will be like [10, 20, 30, ..., 90, 100, 200, ..., 10,000], the total number of
frequency points is 109). The permeability is z = 4rx10"H/m.

a. Calculate the surface impedance Z,, using the exact formula (4.2.5) and the
small- and large-argument approximations of Bessel functions given before.
Compare your results, plot the three curves in one figure, and make brief
comments. The MATLAB functions to calculate Jo(x) and Ji(x) are
“besselj(0,x)” and “besselj(1,x)”, respectively.

b. Calculate the surface impedance Z, using the approximations given in
(4.2.6) and (4.2.7). Compare your results with those got in (a) using the small-
and large-argument approximations of Bessel functions, respectively.
Compare, plot, and make comments on the results.

P4.2. Suppose that a conductor wire, radius 0.0lm and conductivity
3.5%10’S/m, is placed horizontally over the ground at a height of 10m, as
shown in Fig. P4.2. The permittivity, permeability, and conductivity of the
ground are & = 5& (g0 = 8.85X10"°F/m), 1o = uo =  4nx10"H/m, and o
= 0.01S/m, respectively. Let the frequency vary between 10Hz to 10,000Hz.

Conductor wire
— o]

10m

Ground

Fig. P4.2. A horizontal conductor wire above ground

a. Calculate the approximation of Carson’s integral by using (4.7.14) and
(4.7.15), respectively. Compare and plot the results.
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b. Calculate the equivalent resistances due to the earth and the conductor by
using (4.7.11) and (4.7.12), respectively. Which resistance dominates?

c. Use any integration softwate/tools or write your own codes (in any
language you prefer) to numerically evaluate the exact Carson’s integral given
by (4.7.7). Compare the results with that obtained in part (a) and plot the
three curves in one figure.

P4.3. Use the same model and parameters given in Problem 8 except that
now only consider the frequency at 60Hz.

a.) Calculate the transmission line propagation constants formulated by
(4.7.18) and qualitatively indicate the position of the two roots in the
complex plane. In fact, these two values are the poles of the integrand in
(4.7.17).

b. According to the Cauchy integral theorem
(http:/ /en.wikipedia.org/wiki/Cauchy_integral theorem) the integration in
(4.7.17)

|(Z)=—i :rw Lz e_jﬂdj/
2=\ Z+y° 1Y

can be evaluated by deforming the integral contour from the real axis (Cge) to
the infinite lower semi-circle (Cx), as shown in Fig. P4.3.

The contour Cx is formed by 5 parts, Cui to Cews. Part Co and Cus are the
infinite semi-circle. Part Cws to Cwy are presented to exclude the pole, pri),
out of the area enclosed by Cge and Cx. Cxp and Cey are the vertical branches
extending to infinity. Cw; is a circular contour encompassing the pole.
Assume g > 0. Show that the integration in (4.7.17) equals to the integral only
along the contour Cw; (Hint-1),

Im(y)
Cre Re(y)
-0 i > C ! 400
uo3 ’
\ -~
Vs —H®)
c.\ v il /7‘ Cus
\ Co2alc,, ,
Ce :T !
N o -

Fig. P4.3 Deformation of the integral contour for (4.7.17)
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1 = \Y i 1 \Y i
2)=-=] |5y By =— | | 55 By
2r Z+ylY 2r s \Z+y° 1Y

Then, evaluate the integration by using the residue theorem (Hint-2).

Hint-1: you need to show that the integrals along the other four parts (Co,
Cxs and Cuxz, Cuy) have zero contributions. Note that Cuz and Ces are in
opposite directions.

Hint-2: the residue theorem: the integral for a complex variable function f4)
over an enclosed contour can be evaluated by its residues,

§ (404 =27 Y Res(f(4))

C l:lpi

where 4, is the /" pole of f}). If ) only has simple pole (first order pole) 4,
and can be written as

f(A) =% and h'(1)#0

the residue of f{1) at A = 4, can be determined by Res(T(4) = M .
A=, h (1)

P4.4. The cross-linked Polyethylene (XLLPE) coaxial cable is very commonly
used in high-voltage transmission systems. However, high voltage cables are
usually only used for short-range cases because of their much higher
capacitances compared to overhead transmission lines used in the same
voltage range. A typical 138kV XLPE coaxial cable, shown in Fig. P4.4, may
have parameters as 4 = 0.02m, D = 0.07m, and & = 2.5, which are the
diameter of the core conductor, diameter of the outer covering conductor,
and permittivity (dielectric constant) of the XLPE filling, respectively.

Conductor

XLPE filling
=25

Fig. P4.4 Cross-sectional view of an XLPE cable
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a. Calculate the per unit length capacitance of the cable.
-11
- 5.56x10 "¢, (F/m)
In(D/d)

b. The single-wire overhead transmission line given in Problem 8 (radius
0.01m and 10m above the ground) can be used in the voltage range around
138kV. So, it is reasonable to compare its capacitance to the XLPE cable’s.
Calculate the per unit length capacitance and capacitive reactance (Xc =
1/(«Cm)) of the overhead line. Compate its capacitance to that of the XLLPE
cable.

c. Ignore the effect of the earth (Carson’s term = 0). Calculate the per unit
length inductance and inductive reactance (Xi. = wlg) of the overhead
line. In practice, the shunt capacitance is usually ignored. Based on your
results, is it reasonable to do that?

P4.5. Consider a simple two-bus power system. Two generator buses, at
voltage V,Z08, and V,Z0,, are connected by a transmission line,
characterized by its inductive reactance X (L2), Fig. P4.5 (a). The resistance
and shunt capacitance of the line have been ignored. To improve the power
transfer capability of the transmission line, a capacitance, with reactance X,
is connected in series with the line, Fig. P4.5 (b).

a. Determine the power transferred through the line before and after adding
the series capacitance.

b. Assume the voltages at bus 1 and 2, respectively, are V, £, =10£0° (kV)

andV, /8, =10.5£-12°(kV). The transmission line is 30 miles long with a
pet-unit length reactance of 0.5 /mile. The value of the seties capacitance is
chosen by its portion to the transmission line’s reactance, Xc = £X. When £
=0, 0.2 and 0.4, determine the value of the series capacitance (in Farads) and
the power transferred by the line.

Bus 1 Bus 2

11401

V.2,

(b)

Fig. P4.5 Two-bus power system (a) without series capacitance, (b) with series capacitance
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P4.6. A single-phase voltage source Vg =100£0° (V) (at 60Hz) is providing

power to the load Z;. = Ry + jX1. = 30 + /50(€2) through a 50km long single-
wire transmission line, Fig. P4.6.

o ° Single-wire line
+ 50km T ° Radi
transmission line 1ac.|#s
@ J= =
Po) O

Fig. P4.6. System model for voltage regulation problem

The line conductor is 1cm in radius and 8m above the ground. Ignore the
resistance and shunt capacitance of the line. Calculate the voltage on the line
at 10km and 25km away from the source and the voltage at the load end.

P4.7 Show that at 60 Hz, the surface impedance of an “a” = 1 cm copper
wire cannot be represented by either (4.2.7) or (4.2.8) but rather must be
evaluated by the more complicated (4.2.5).
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Chapter V

EFlectromagnetic Fields Surrounding an Infinitely
Long Single Conductor Transmission Line above
Homogeneous Earth

5.1 Introduction

In this chapter, expressions for the electromagnetic fields of the single wire
power line described in Chapter 4 will be derived. More specifically, the
electric and magnetic fields associated with an infinitely long z-oriented
horizontal wire of radius a located at a distance h above a lossy earth and a
distance x’ from the y axis will be developed. The geometry for this problem
is shown in Fig. 5.1.1.

Vol
5 —@«— 2a
y;=h
X
[T 17777777777
(a)
Y
I(z) = exp(-jyz’)
y1=h
Eo,“o z
02'Ez,uzf/////////////////////////
(b)

Fig. 5.1.1. a) end view and b) side view of the line current at (x’,h) above a lossy linear,
homogeneous isotropic earth carrying a current of | (z') = exp(— j yz‘).
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In this figure, the upper half space (ie., y > 0) is free space and is
characterized by permittivity and permeability & =&, and g =y,

respectively while the lower half space (i.e., y < 0) is a linear, homogeneous
isotropic lossy material characterized by conductivity, permittivity and

permeability 0,,&, = &,,&, and t, = i, pyrespectively. It is assumed here
that the wire is carrying a current I~(7)=exp(— jyz). The electric and
magnetic fields associated with this current (where the explicit z variation
exp(— jﬂ)is suppressed) are labeled here as

G, (electric field in medium n; the subscript “i” denotes the specific vector component)

G, (magnetic field in medium n; the subscript

@
1

denotes the specific vector component)

The ith electric and magnetic field component for general currents in the
spatial Fourier transform domain can be found by multiplying these

functions by the spatially transformed current T(;/) as follows

() (5.1.1)
HM =G (y) (5.1.2)

These electric and magnetic fields can be found from (4.4.19) — (4.4.23).
To use these results requires first that expressions for the z components of
the Hertz Potential coefficients be found. This will be done in the next
section.

5.2 Hertz Potential Coefficients Above and in the
Earth «

Expressions for the z components of the electric and magnetic Hertz
Potentials are found in (4.4.28) — (4.4.31). In Section 4.4, an explicit
expression for the reflection coefficient R(I() was found so that GelZ could

be calculated. It is not possible, however, to write explicit expressions for
tield components unless the remaining coefficients in (4.4.28) — (4.4.31),

M (K), T(K') and N(K) are found first. This will be done next.

Above the earth

To calculate the remaining components of the electric and magnetic fields
above the earth (i.e., region 1), it is necessary to find an expression for M (K)
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From (4.4.47), using (4.4.41), (4.4.42) and the assumption 4, = t, = U,

O S

Equation (4.4.60) is repeated here as

2kiu 1 7’
R =-1 01 - 5.2.2
() +(k§ —]/2)|:U1+U2 (kozu2 +k22u1)} 622

These two results can be combined to obtain

C —ig-K() 2k, [ 1 P
()= wﬂO(ul"’ K(?/)uz)(koz _72)[111 +U, (kgu2 +k22u1)} (5:2.3)

This expression can be simplified by using the definitions of U, U,and

K(}/) in (4.4.11), (4.4.32) and (4.4.37), respectively and combining the two

terms in the square brackets using a common denominator. The result of
this is

=2kl (k2 K2, 1
M)~ opoks —7°) {(u1+u2)(k§uz+k§ul)} - 629

Expanding the term in square brackets in a partial fraction expansion
simplifies (5.2.4) to

_—j2mkg 1 ko
M(K)_ a)ﬂo(koz _72){@11"'“2) (k()2u2 +k22U1J ' 523

This result (i.e., 5.2.5) can now be used with (4.4.20) — (4.4.23), (4.4.28) and
(4.4.29) to find expressions for all field components in the upper medium
(i.e., Medium 1).

In the earth
To calculate the remaining components of the electric and magnetic fields in
the earth (i.e., region 2), it is necessary to find expressions for T(K) and N(K)

From (4.4.35) — (4.4.36),

(k2 = ? Ja+ R(x) = (k2 =72 )T (x) (52.6)
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(k2 = 7* M (x) = (k2 72 N(x) (5.2)

where the factor K(y) is defined as
(5.2.8)

Given that R(K)and M (K') are known as (5.2.2) and (5.2.5) these results

2k, 1 ?
T(K): K(V)(l"' R(K)): (kz _uyz)|:u u N (kzu 7/+k2u J (5.2.9)
and
_ _ —i2xks 1 Kk

These last two results can now be used with (4.4.20) — (4.4.23), (4.4.30)
and (4.4.31) to find expressions for all field components in the earth (i.e.,
Medium 2).

5.3 General Expressions for the Electric and
Magnetic Fields at Arbitrary Frequency <

As shown in Chapter 4, formal expressions for the electric and magnetic
fields in terms of the z-directed Hertzian potentials at arbitrary frequencies
can be found. These are given in (4.4.19) — (4.4.23).

Fields above the earth
In the upper half space (i.e., Region 1), the expressions for the z directed
Hertzian potentials are,

o [ =t y-h| —uy(y+h) |- ix(x=x)
m = A e+ R(’C)S ; dxc (5.3.1)
1

and

dxc (5.3.2)

where A= —j/(4nwe,) and U, is defined as
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U, = K2 +72—k? . (5.3.3)

In general, (i.e., including magnetic) media the coefficient R(») is (from
(4.4.40))

R _ szz(l_ K(7))2 +a)2(50u0_K(7)52u2)(/‘0u0 +K(7’)ﬂ2u2) 3
)= R K + ety + Ko et = K ()

A simpler expression for non-magnetic media is (from (4.4.60))

2kzu 1 7’
R(x)=-1 SR — 5.3.5
() i (k2 —7/2)Ll+u2 (k2u, +k§u1)} 39)

M(x) was shown as (5.2.4). Given these results, expressions for all field
components in the upper medium (i.e., Medium 1) can be found. The
results are:

= o, . oI,
G, (x=x,y,h,y)=~]y o Jaro Y (5.3.6)
= o, . oI,
Gely(x_xl’y’h'y):_JyW_'_ JCU/JOF (537)
GL(x=x, Y,h,y) = —K2 )T, (5.3.8)
~ . aH]- . aHl
G (X=X, y,h,v)=—jyr —= + jog, —™ 5.3.9
hx( 1Y 7) 17 ox Joe, Py (5.3.9)
~ 1 aH]r-ﬂZ H al_[]r-nz
Gﬁy(x—xpy,hw):—w Py — Jwe, o (5.3.10)
Gl (x =%, y.hy)= (2 — k2T, (53.11)

Repeating the result from Chapter 4, the axial electric field at any point in
space is stated since that will be useful later. From (5.3.1) and (5.3.8)

(5.3.12)

é;z (X XLy, h, }/) - J(ko2 . 7/2) B (e—UJY—h\ + R(K‘)e_u1(y+h)>-}_j’((x_x1)

dx
drowes, u,

where R(K) is given by (5.3.5) so that
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- _ k2 2} = [ aruly-h -y (y+h)
G (x-x, y.hy)= I =7*) { e

drwe, u; u;
o (5.3.13)
Qe 1 o I g
=) Lo, ki, <)
' u, +u, oUy KUy
But, from (4.4.14)
(2 .22 ] e Ul Mg ixln) 2 2\
H >((k0 i r)=—f dre, Im(kZ -52)'"* <0 (5314
T, u,
/
where r:[(x_xl)z +(y_h)2]1 2
so that
(5.3.15)

GL(x=x,y,h7)= ‘i {(kg—y)[ (k2 2 j )»H (k2 22 )]

1

0

2 © 1,2
N 2Jk0 j 1 e_ul(Y+h)e_jK(X_xl)dK B ZJkO J‘ }/2 e—ul(y+h)e—jrc(x—x1)dK_
T 2 u +u, x| (k2u, +k2u,)

where ' = [(X—Xl)2 +(y+ h)z]llz.

Next, general expressions will be found for the transverse electric and
horizontal magnetic fields will be found. From (5.3.6) - (5.3.7) and (5.3.9) —

(5.3.10), it is clear that the transverse derivatives of I, and II_, are

needed. These are

- ) —U|y-h —uy (y+
aHiz _ -] i J. e [y —€ (y+h) e—jx(x—xl)dK_
oX  4rws, | OX °) u,

2k02 2 T 1 _ 72 —uy (y+h) 4= jx(x=x)
+(k02 —y?)ox J;((u1+u2) (k2u, +k22ul)je ° dx

- {@a_ax[Hga((k;_yzy'w«ks—m“ri)]

drwe,

B 2Jk2 T 7/2’(1-]1 e—ul(y+h)e—jx(x—xl) de
A, +u, (kju2 +k2u, ) u,

Similarly,

(5.3.16)
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(5.3.17)

P —_J'{%j%[lqu)((kg PR (ke -y

S T 02 Y22 o-u(yeh) g i(x-x,) i
(k(f—?’z) (u1+u ) (k02u2+k22u1) U,

The derivatives of the magnetic potentials can be found from (5.3.2) and
(5.2.4) as

(5.3.18)
Hl - i k2 —Ug(y+h) q = ix(x—x)
0 mz _ 27/ - QJ‘K 1 - 0 : e e dK
OX 27r(k0 -y )axfw (u +u2) (k0u2+k2u1) u,
ks ettt
K
mkz—)f Go) o) .
and
(5.3.19)
81'[}“2 _7/ o % k2 e—ul(y+h)e—j;<(x_x1) ]
oy 5'[0 (u, +u, (k§u2+k22ul) u, K
% 1 k02 e_ul(y+h)e_j’((x_x1) d
- K
ﬂkz_)[o (u+u,) (klu, +k2u,) u,
Using (4.6.6) then
Gt - J?/{ [ ( R yH (kz e )]
dowe, | OX
L2 0 KU o-ta(y+h)g-ir(x-x) (5.3.20)
_[ : dx
4 (k u, +k2u ) u,
and
(5.3.21)

é-ely _tr %[H(()Z)((ko2 —;/z)mr} Héz)((ko2 —72)”2ri)]

dws,,

+ you, T uf—x?  uly? -k e il grintx) »
T2 =) v ) u, ) n
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_tir 5[H (k2 Zf’zr}Héz)((ké—rZ)Mri)]

46080
Yo, j 1 K4y o~ (y+h)gix(xn) i
2 I\ (u+u,) (Gu, k)]

Clearly, if Kk, = K, the integrals in the last two equations become the

negative of the second Hankel function term leaving only the source term as
should occur. It will also be shown later that these results reduce to the well
know wire above a perfectly conducting earth case for conditions that are
commonly satisfied for electric power transmission lines at 60 Hz.

Similar calculations using (5.3.9) and (5.3.10) for G1 and Ghy yield

_ (5.3.22)
G =22l —rp ehmelic—rye]

) 1 ]g K2u? - 2k’ ) k2 (U12 _KZ) e tu(y+h)g=ix(xx) de
27k —7?) 2 (u+u,) (K, +k2u,) u,

00

32 bl -yl e

o 2 kz k2 2 —uy (y+h) 54— jx(x=x)
_i K 04 5 o/ 5 € € dx
27 3 (U +u,)  (k2u, +k2u,) u,

and

(5.3.23)
T AT S Tl (R )

. —ty (y+h) 4= jx(x-x)
N i u,x e e dx
27 9\ (U, +u,) U,

Clearly, if Kk, = K, the integrals in the last two equations become the

negative of the second Hankel function term leaving only the source term as
should occur. It will be shown later that these results reduce to the case for
which the earth is essentially transparent for conditions normally satisfied for
power transmission lines at 60 Hz.

To find expressions for the electric and magnetic field components in the
space domain, it is necessary to multiply the appropriate component by the
Fourier Transform of the current and take the inverse Fourier transform.
Several examples of this will be given later.
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Fields in the earth

The Hertzian electric and magnetic vector potentials in the earth are:

2 —Uh q Uy o= X
sz(x,y)=AJ'T(’()e ue ® dx (5.3.24)
1
Ush Uzy —jrx
12, (x, y) = Aj (e : ° dx (5.3.25)
1
where
T
and

u, =(1(2 +y? —kzz)llz.

Inserting (5.2.9) and (5.2.10) into (5.3.24) and (5.3.25) results in

(5.3.26)
ik? ® 2
2 (x,y)= 4m;02(|i?°_yz)ﬂu1 iuz _ (k§u2y+ k;uje“me“zye—mdx
(5.3.27)
— T 2 .
2,(x,y)= 47z(k2227_/ 7 )ﬂ ul(u1K+ u,) Ul(kéu’zki kzzul)}e“lhe“zye‘“‘xd,c

The electric fields in the earth have previously been defined in (4.4.19)
and (4.4.21) as

= H2 o1’

Ga(x=x,y.h,7)= = (5.3.28)
oy

~ sz H anﬁ'll

G5 (x=x,y,h7)= By ~ (5.3.29)

G2 (x=x,yhy)= (7 —k3 )Hez (5.3.30)

Substituting (5.3.26) and (5.3.27) into (5.3.38) yields

J?’ko e hgtzYa- ix(x=x)

62 T A ’h’
«x=x,y.h.7)= 2rwe, °, (koUz+sz1)

de  (5.3.31)
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Similarly

h
le —Uyl Uzye jo(x=x)

G2 (x=x,,y.h, Ao dx 5.3.32
y( 1Y 7/) 272'6080_'[0 (kou2 +k2ul) ( )
Finally,
(5.3.33)
~ —jks % 1 7? -
G2 (x—x.,y.h )= —3% _ “uhgUay g k() g
ez( 1 y 7) 272'(080 _[O Ul +U2 (k02u2 N kzzul):|e K

The derivation of the magnetic fields will be left as a homework problem.
They can be obtained either by using (4.4.22), (4.4.23), (5.3.26) and (5.3.27)
directly or by application of Maxwell’s equations to (5.3.31) — (5.3.33).

5.4 Low Frequency Approximations for the Electric
and Magnetic Fields

The electric field above the earth

For readers who have skipped Sections 5.2 and 5.3, only the results from that
section will be noted here. Expressions for the axial and transverse electric
fields above the earth are given in (5.3.15) and (5.3.20) — (5.3.21) respectively
while expressions for the transverse magnetic fields above the earth are
found in (5.3.22) — (5.3.23). In the earth, expressions for the axial and
transverse electric fields are found in (5.3.31) - (5.3.33). It should be
emphasized that these expressions hold for all frequencies as long as the
conductor radius is small compared to a wavelength and that electrical
parameters for the earth appropriate to the frequency of interest are used.
Here, much simpler approximations that are appropriate for low frequencies
will be derived from these results.
First, for small arguments, it has been shown that

H(()Z)(Q)El—%m(q/Z)—ZJ—Ze, q<<1 (5.4.1)

and further the last integral in (5.3.15) can be neglected for typical earths at
low frequencies so that

(5.4.2)

i 2 2 el (y+h) 4= jx(x=x)
{2j(k2 *)in [r ] 2 jk I e dx}
doe, | r T u, +u,

00

Ga, (x=x, Y, hy)=
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where
= (= )+ (y =) f “and v = {(x=x, " + (y+h)

But, as shown in (4.6.5) the integral P(}/) can be approximated at low

frequencies for typical values of earth conductivity to be

i22e 0™ cosa(x — x
J K( l)dK
U, +U,

oo —u(y+h) - jr(x=x)
e €
P()=2 |
T

dix =

u, +U, Ty

_2 . ) (5.4.3)
S ;zkjf !(u — k)™ cosk(x - x, Jdi = 71 J.(x=x,y,h)

where

I (x=x,y,y,)= k%j u—x)e % cog(i(x — x, ))dx (5.4.4)

20
and
u= (K‘Z _k22)1/2.
Thus finally, for low frequencies®
(5.4.5)

GL(x—x,y,hy)= ﬁ{ 2 |n(rr ]+k {In(r—ri]—\]c(x—xl, y,h)}

- 2 i H i
2rwe, r 27 r

This result can be written in more familiar form (using insight from (4.6.6

— 4.6.8) and assuming an arbitrary current r(}/)) as
(5.4.6)

Ezl(x—xl,y,h,y):é (x=x;, y,h, 7’)'~( )= (Y(x+yh)+z(x_xl'y’h)ﬁ(7)

If y is set equal to zero as in the quasi-static approximation of Wait and Spies (1969) and ]
is approximated by the first term of (4.6.22), then this expression is equivalent to the
complex image formulation for the magnetic field introduced later in this section
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where

(5.4.7)

and

27 r

Z(x—xl,y,h):M{In[r—ij—Jc(x—xpy,h)} (5.4.8)

The case for calculation of the vertical electric field at low frequencies is

significantly different. For EZ the Hankel functions in (5.3.15) were
multiplied by the factor (ko2 —y? ) Since y =K, for power applications at low
frequencies, (ko2 —7/2) is small and the term 2kZ2P(y)cannot be ignored

even though |k2| >> |k0| and 2k P(}/) is proportional t01/|k2|. However,

for Ey the Hankel function terms are not small and the infinite integral can

be ignored compared to them. If again, the Hankel functions are replaced

by small argument expansions (i.e., (5.4.1)), since (k02 - 7/2)1/2 rl << 1, the
expression for the vertical electric field reduces to
~ 0 /2 2
GL=_7 —[In(kz— 2 r)—ln(kz— 2 r')]
ey 272'0)80 ay ( 0 Y )1 ( 0 e )1
(5.4.9)

y {(( (y=h) _ (y+h) }

27w, x—xl)2+(y—h)2) ((x—x1)2+(y+h)2)

Cleatly, this is the electric field of the current source above a “perfectly
conducting earth” and is the approximation commonly used for power
engineering calculations at typical power frequencies. This should be no

surprise since >>1 at low frequencies for typical earths and the earth

W€ &,
can be treated as a perfect conductor.

A

The electric field for an arbitrary current | (}/) can be written as

E; (x=x,y,0,7) =G} (x=x, ) () (.4.10)

In a manner similar to that above, it can be shown that
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Gl ~_7 (X_Xl) _ (X_Xl) (5.4.11)

* 2rnwe, ((x—xl)2+(y—h)2) ((X—X1)2+(Y+h)2)

and

EL(x =%, y,h,7) = Gh (x=x, v, )T (#) (5.4.12)

Electric fields in the space domain

To recover the electric fields in the space domain, it is necessary to perform
the inverse Fourier transform with respect to y in order to see the explicit z
dependence. The simplest way to do this is to assume that the current in the
space domain is an exponential function of z (as in Section 4.8) that has the
form in the y domain

_ ijOyTL
(7+7TL)(7_7TL)

(5.4.13)

-_D
aw
=
~

where y; =% ]JvZY as in Section 4.6 and Z and Y are defined in (4.6.6)

and (4.6.8) respectively. (5.4.13) corresponds to a current in the space domain
of

[(z) = T,e*m? (5.4.14)

[T3K13

where the “+” sign corresponds to z < 0 and the “-“ sign to z > 0.
Given this result and applying it to (5.4.6), (5.4.10) and (5.4.12) results in

(5.4.15)
2jloym
7+7TL)(7_7TL)

2

Ei(x—xl,y,h,y)z—[mﬂ(x—xpy,h)j(

(5.4.16)

.7 &( (y=h) (y+h) }( il

2rrwe, Xl) (y h)) ((X—X1)2+(y+h)2) 7+7TL>(7_7TL)

Ej(x—x%, y,h,7)

(5.4.17)

Ei(X—Xpy’h,}/)E ! [(( (x-x,) (x=x,) :I( 2jf07TL

27 0e, X, )" +(y- h)) ((X—X1)2+(y+h)2) v+ lr-r)

After transformation to the space domain, these fields are
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2
EX(x—x,y,hz)= (mjtﬂx—xl,y,h)}ﬂ)e”mz (5.4.18)
11 Y

¢ <

where again, the “+” sign corresponds to z < 0 and the “-“ sign to z > 0.

] (5.4.19)
21 X— X 7)=~ JAr (y_h) _ (y+h) ptim?
EY( o )_ 2n e, _((X_X1)2+(y_h)2) ((X_Xl) (y"'h) JI
(5.4.20)
210y _x 7)1 | (X_Xl) _ (X_Xl) [ gtz
(=%, )_sz)go_((x—xl)2+(y—h)2) ((x—xl)2+(y+h)2)]IO

Given that a derivative with respect to z (for z > 0) corresponds to a
factor — ]yy,, the z component of the field can be recast in a different form

that will be useful later as
(5.4.21)

EX(x-x.,y,h z)= —ag\iw(x —x, v e —Z (x—x,, y, hy T eI
z

where

V. (x=x.,y,h)=Zlo In(r—] (5.4.22)
r

2rwe,

is the space potential due to the wire above the earth and for convenience
from (5.4.8) and (5.4.4)

2(- %, y.h)= ’g’“{ln[f—i]—axx—xl,y,hﬂ

T r

J.(x=x,v.y,) —%j (u—x)e ) cos(w(x — x, ))dx
2 0

Egquivalence to electrostatic fields

Equations (5.4.19), (5.4.20) and the first part of (5.4.21) are identical to what
would be obtained from electrostatic theory. This can be understood more
clearly by using the one dimensional current continuity relationship

ol(z)

— " —jop,(2) (5.4.23)
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where p,(z)= p,e " is the line charge density along the conductor. Since
i(z)= T e ¥, using (5.4.23) results in

A

. |
p, =1L (5.4.24)

@

and (for example) the vertical electric field becomes

. P y=h)  (y+h)

27, | (x=x ) +(y=h)*) ((x=x)? +(y+h)?

This result is identical to that which would be obtained by calculating the

) e (5.4.25)

electric field of a line charge with line charge density p, over a perfectly

conducting half space. At the surface of the earth (i.e., y = 0)

A — 5 2h .
El~ P e i 5.4.26
y = 27, ((X—X1)2+h2) ( )

Since the tangential component of electric field is zero at a perfect
conductor, this is the total electric field at the earth’s surface. It must be
vertical because components tangential to the earth must be zero because the
earth is approximated as a perfect conductor.

Equation (5.3.12) can be related to line voltage rather than line charge
amplitude by calculating the voltage of the line relative to the earth (V) as
follows.

V, =V(x,h—-a)-V(x,0)=

E, (y)dy

o'—.l

s hal g . R oh (5.4.27)
_ Py __P <n
“2re, | Ly—h)* <y+h>}dy 2, '”[ a
Given this result,
sV, (y-h) (y+h) } :
El = - e it (5.4.28)
' .n(ZhJ[(( X +(y=hf) ((x=x)+(y+h)*)
a

For completeness, the horizontal component of the electric field at low
frequencies is
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= i ) G

The electric field at a point on the earth’s surface just below the
conductor (ie., ) X=X,y =0 is

1 B 2VW
y 2h
h In(j
a
Using the same result for vertical electric field, it is possible to calculate

the electric field at the surface of the conductor (i.e., X=X,y =h—-a). The
result is

E

1

A (5.4.30)

1 _Vw
y 2h
aln| —
a
Cleatly, the electric field at the surface of the conductor is a factor 4/2a
greater than the electric field at the surface of the earth. This is almost
always significantly greater since » >> a. Note that these results are extended

to the multiconductor case in Chapter 7.
For completeness, the space potential can be found to be:

. v, ((xx1>2+<y+h>2T’ZJ s
V(XY,2)= In — e (5.4.32)
.(Zhj [((xmu(yhf)f

For a point on the wire (e, X=X,y=h-a), V(x,h—a,z)=V, as

expected.

E

1N

g e (5.4.31)

Alternative low frequency expression for E. — the complex image model
Consider first, the general expression for axial electric field from (5.3.13)

Es(x=%,y,0,7)=Gg (x=x, y.h.7)I () (5.4.33)

where
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~ 1 k2 _ 2] eful‘yfh‘ e*”l()’*h)
Giz(x_xl1y!h’7): J4(7;w87 ) { u - u
0 1 1

2k2 —u (y+h) 2 )
+ 2 2 - 2 z 2 e_JK(X_Xl)dK
(k0 - ) u, +u, (k0u2+k2u1)

If, as above, the last integral is ignored for typical earths at low
frequencies, and the identity

(5.4.34)

© e*”l‘ y-h| e*jK(X*)‘l)

H‘Z)(kz )1 [x x, )2 +(y - h)]l ) lJ' drx (5.4.35)

T u,

—00

Im(ko2 —y? )1/2 <0

is used for all of the first two integrals except the part of the second term
multiplied by k?, then (5.4.34) becomes

(5.4.36)

Gl (x=x,y.h,y)= 4y—2[H ] (R S Ml (e )|
a),uo [H(z)(kz )1 )

ij‘ —u1y+he jr(x— xl dx
7Z-oo u; u1+u2

- st -y

4(080

—%[Hc?”((ké )

_J J *Ul()’*h)e*j’f(x*xl)d’(
U1 +U,
where

rz[(x—xl)er(y—h)z]U2 , r‘:[(x—xl)zjt(y+h)2]1/2 (5.4.37)

. . ~ 2 2 12
Next, recognizing that for low frequencies, U, = U= (K -k, )1 and
U; =k over most of the integration path since £o(y+ 5) << 7 and, hence the
integral does not converge until x >> 4k,
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u—u, xK-u

I

e (5.4.38)
U +uU, x+u

2
where a = P and the final step has been shown by Wait and Spies (1969).
2

Using this result in (5.4.36) gives

(5.4.39)
s bl Pk opo
0
i Uy (y+h+e) o - r(x-x,)
‘%[Héz)((ké—ﬁ)“zr)—iie : uf ' dk}
2
:42/)80[H(gZ)((kOZ_72)1/2I’)—H(§2)((k5—72)1/2ri)]
_wIZO[HéZ)((kOZ_72)1/2r)—H(§2)((k[)2_72)1/2((y+h+a)2+(X_X1)2)1/2)
ol X, —— y o X —
— ® o .
vi=h y:=h
X X
[T T 777777777777 I’ ——te—
h+a
o ]

complex image

Fig. 5.4.1. Geometry for Complex Image formation
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Since the approximations made limit this result to low frequencies, it is
appropriate to use the small argument expansion for the Hankel functions to
get (for the electric field)*”

(5.4.40)
Ex(x—x.,y,h7)=GL (x—x., y,h )l ()

{L.H jary | (y+haf +<xx1>2T“}m>

2w, 2r r

where

2 +ijz
oy =25
& . O
k|l2(1-j 22
0{80( Jwgz]}

J2

(O-zluoa’)ll2

and

6:

The physical interpretation of (5.3.40) is shown in Fig. 5.4.1. The second
term of (5.4.40) is a “complex image” of the line current where /+a is the
complex depth of the image and ¢ is the “skin depth” of the earth. At 60 Hz,
typical magnitudes for a are on the order of 1000 meters.

Following (5.4.13) — (5.4.20), the field in the space domain is

EL (0. 2)=F | 6L (- b T )
(5.4.41)

. N 12
— 172 In r_ _ Jwﬂo In ((y+ h‘|‘0{)2 +(X_X1)2)L roeinTLZ
2rwe, \ 1 2r r

The magnetic field above the earth— the complex image model

It is also important to calculate the magnetic field above the earth since it is
not as clear at the beginning what will happen at low frequencies. One issue
is that the earth is assumed to be non-magnetic. Hence, one would expect
that the earth would be “transparent” at w = 0 (and hence perhaps at very
low frequencies). But, the earth is also a good conductor and it is possible
that the source’s magnetic fields would be modified by magnetically induced
eddy currents due to the time rate of change of the magnetic field in the
earth. It turns out that this is an issue that needs to be considered. To see
this, consider the horizontal magnetic field.

%9 See the comment about (5.4.5) on setting y = 0 in this expression.
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(5.4.42)
Ga (X=X, y.h,7)= %%[Héz)((ké —72)1/2# H(()Z)((koz —72T/2r‘)]

0 2 k2 kZ 2 *Ul(erh) *J-K(Xfxl)
_i K U > o/ 5 € € dx
27 4 (U, +u,)  (ku, +k2u,) u,

In order to proceed, it is appropriate to combine all terms of (5.4.42) that
account for the influence of the earth (i.e., all terms except for the source
term). This can be done (as was done in the last section on the axial electric
field) by replacing the second Hankel function by its integral representation
and combining all three integrands into one. The result is

G-,y 7)= D Ll -2 )
(5.4.43)

K
4 oy
) dx

1 = 2k2 2 e—ul(y+h)e—jx(x—xl)
+— _[ u, — ( 2 14 2
4rr - (ul+u2) (k2u, +k2u,) u,

Clearly, if £ — £ the integrand of the integral becomes zero leaving only
the source term as should occur.

At low frequencies, several approximations can be made to this result.
First, the Hankel function can be replaced by its small argument expansion as
shown in (5.4.1). Next, it can be assumed that the propagation constant, v,
equals zero. With these approximations and some manipulation of the
integrand,

(5.4.44)
Ga(X=x,,y,h,7)=

__12{1-_”+|n((kor)j+y } 1 [(kz A )+ uluzjeui(wh)eik(xxl) de
2 e

27 Oy 2 a7 (u,+u,) u,

Next, taking the derivative and recognizing that for low frequencies,

2 22 . . .
u, =u= (K - kz)l and U; = K over most of the integration path since
Ko (y + h) <<1land, hence the integral does not converge until » >> &,

(5.4.45)

1 (y-h) 1 u—& | yemisten)
G v ar y | | d
(X X]_ y 7) 272_ (X Xl) (y _ h)2 + 4 _'[O((U + K‘)} € K

As introduced earlier, Wait and Spies (1969) showed that
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e—K{Z
(u+x)
where
2
a= k_ (5.4.40)
2
so that
(5.4.47)
l (y — h) +hta) - jx(x=x,)

G .V, h, (y - vd
(X Xl Y, 7/) 272_ (X X ) (y_h)z 472_ J.e e K
_-1 (y=h)  (y+h+a)

27| (x=x ) +(y=h) (x=x) +(y+h+af
where
o= 2 — = J2setin!
A
& e,
and

J2

0=
(O-zluoa))

Again, (5.4.47) is the “complex image” formation of the line current over
the earth problem where /+a is the complex depth of the image and ¢ is the
“skin depth” of the earth as illustrated in Fig. 5.4.1. Again, at 60 Hz, typical
magnitudes for a are on the order of 1000 meters. Hence, for field points
reasonably close to the power line, the earth appears to be transparent unless
the frequency is increased substantially beyond power frequencies. The
complex image formulation has been used for calculation of power line
magnetic fields (Olsen et. al. 1995).

For completeness, a similar derivation for the y component of the
magnetic field above the earth will be given. The starting point for this
derivation will be (5.3.23) which is repeated here as:

(5.4.48)

Gy, (x= %, y,h,7)= i;[ Ui -2 e @i - )]

i % ~Uy (y+h) g = jx(x-x)
+i u,x e e dic
27 2 (u1+u2) U
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Again, at low frequencies, several approximations can be made to this
result. First, the Hankel function can be replaced by its small argument
expansion as shown in (5.3.1). Next, it can be assumed that the propagation
constant, y, equals zero. With these approximations and some manipulation
of the integrand:

2rox\ 2 &«
i f u-u o ua(y+h)g-ix(x-x) (5.4.49)
Tan I dx
4z —® (ul + uz) u,

Next, taking the derivative and recognizing that for low frequencies,

12
U, =U= (K2 - kzz)1 and U, = & for the term (U, —U, )/(uU, +U, Jover most
of the integration path since £y(y+ ) << 7 and, hence the integral does not
converge until x >> 4y,

. 1 ‘. w0t i)
Gﬁy(x-&,y,hj):(xl) J | K[(M’;)J : dk (5.4.50)
1

27 (x-x P+(y-nf 4z

Finally, using 5.4.46, approximating » by u; in the result and the fact that
multiplication by — jx within the integrand of (5.4.50) is equivalent to taking

the derivative with respect to x, (5.4.50) reduces to,

(5.4.51)
- 1 (x=x,) 1 5 % ulyhalg-is(on)
Gl (x=x,y,hy)=— 1 — d
(X, 3.0.7) 27 (x—x ) +(y—hy T an ox J u, "
1 (X—Xl) _li (2)(k0<(X—X1)2+(y+h+a)2)l/2)

S 2z (x=x ) +(y-h} 4ox °

S Svpmu A C L N AR AL e

1 (x=x) (x=x) }

“or (x=x ) +(y—-h) _(x—xl)2+(y+h+a)2

where o is defined in (5.4.47).
This result is consistent with complex image theory discussed above.

Magnetic fields in the space domain
To recover the magnetic fields in the space domain, it is again necessary to
perform the inverse Fourier transform with respect to y in order to see the
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explicit z dependence. The simplest way to do this is to assume that the
current in the space domain is an exponential function of z (as in Section 4.8)
that has the form in the y domain

2jr07/TL
)= (5.4.52)
( ) (7/+7TL)(7_7/TL)

~

where 7, =% JVZY as in Section 4.6 and Z and Y are defined in (4.6.6)

and (4.6.8) respectively. (5.4.52) corresponds to a current in the space domain
of

I(z)=T,e*im (5.4.53)

[T3K13

where the “+” sign corresponds to z < 0 and the
Now, as with the electric fields,

sign to z > 0.

Hi(x=%, Y, h7)=Gp(x=x, y,h 7)1 () (5.4.54)

and

<

HL(x—x, y.h,7)=Gp, (x—x,, y,h, 7)1 (7) (5.4.55)

Given these and taking the inverse Fourier transform to each using
(5.4.52) results in

(5.4.56)
iy g ) Gehea) o
H Y, — 0 _ I
(xy.2) Zﬂ{(x—xl)2+(y—h)2 (x=x F+(y+h+a) |
and
(5.4.57)

eyl T

y 27| (x=x S +(y=hf  (x=x) +(y+h+a)
where
a= 2 e = 25 7!
Tz
& e,
and

V2

S=— Y&
CH
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Electric fields in the earth

At low frequencies, the x and y components of the electric field in the earth
(e, (5.3.31) and (5.3.32) respectively) can be ignored compared to the z

component (i.c., (5.3.33)) because |K,| >> |Ko|and the integrals in (5.3.31) and
(5.3.32) are proportional to (at least) 1/[K,|).

Hence,
G2 (x—x,y,h,7)= G2 (x~x,y,hy)=0 (5.4.58)

For the z component of the field, the latter integral of (5.3.33) can be
ignored compared to the first for the same reason and

_ Jk02 2 efulheuzye—jk(x—xl)

GZ(x—x,y,hy)= dic,y <0 (5.4.59)

2nwe, *, u, +u,

(5.4.59) can be approximated at low frequencies in a manner similar to
that used in deriving Carson’s integral in (4.6.5). The result becomes

~ 3K Tluy—u,Jetete in)
2rws, -, (ul _u2)(ul + uz)

N;w%T@—%km@ﬂ

dx

éeZZ(X—Xl,y,h,y):

= - 5.4.60
e, Y (kzz . koz ) COS(K(X Xy ))jK ( )
=~ Jﬂa;’?o .([(u —x)e™e cos(x(x — x, )dx

y<0

where U; = K and U, =U =/k* —K? over most of the integration since the
integral converges when #) >> 7 and &b << 1.
Next, if &y << 7, then €” =€" since £ is an important part of u only

when €% =1. Hence

(5.4.61)

G2 (-, yoh )22 [ (a2 cosli—x JHe = 22503, (-, .,
™,y 9 2

y<0
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This result can be further simplified by using the first two dominant terms
of the Carson Series as in (4.6.14). The result is

L

~ S -a)
EZZ(X—XI,y,h,]/):Gezz(X—Xl,y,h,]/)l (7/); 127!;0 In[(Z/(

.
ik,

))Jf(y) (5.4.62)
y<0

This result can be transformed to the space domain by assuming a current
of the form

i(z)=1,e (5.4.62)

that has the Fourier Transform

= = 2jlyx
I(y)= n (5.4.64)
(7/+7/TL)(7_7/TL)
Given this, the axial electric field in the spatial domain becomes
(5.4.65)
= jou r \2jlgm 7 e
E’(x-x,Y,h,z)= 0In( _ j 0/ TL dy
( ' ) 2 (Zl(lkz)) 2m 7w(7/+7TL)(7/_7/TL)
— JCO/JO In r f —irnz
2z (2/(ik,)”

y<0

As a check on this result, it is known from Maxwell’s equations that
(assuming that both FE. and E, are zero in the earth and reinserting the
current into the expression for E.)

e OB, Jowy,  —(y-h) .
_ H = — | m 0 5.4.66
JopH, oy o (y_h)z +(X—X1)2 o€ Y < ( )

or (for a general I (z))

N IA(Z) (y—h)
H —_— — . .
X 27 (y—h)’ +(x—x,) ,y<0 (5.4.67)

This is the correct first order result for the magnetic field in the earth
since the earth is non-magnetic.
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5.5 Capacitance and Inductance Per Unit Length of
a Conductor over Earth

In this section, the capacitance and inductance per unit length will be derived
using earlier results. For capacitance, it is noted from (4.6.9) that the
capacitance per unit length (C) of a wire over the earth is

c_Pr_ 275 (5.5.1)
VW

2h
In| —
a
This result is identical to the result obtained using electrostatic theory.
The derivation of the inductance per unit length requires a bit more

thought. In (4.6.10) it was shown that the external inductance per unit length
was

L, = g’—;{ln(Zh/a)— Re(J, (a,h,h)).. (5.5.2)

But, given the simple one term series approximation for J.

J.(2h,a)=In (;—iz)J (5.5.3)
(5.5.4)
L g‘_;{un(zh/a)_ Re[ln[ ;:: ] } - 2% Relin(2/K, ))- Ina)

But, at the low frequencies for which Carson’s equations are valid,

k, = Jou,o,e """ (5.5.5)

and hence

~ Ho (e Mol 2| Moy G0
=g b ool o) s

where di (the “distance” to the complex image) is equal to

d=—--— (5.5.7)



and it has been assumed (as before) that the earth is non-magnetic.

Y <—X14>{

-+ [ ]

v .
compleximage

Fig. 5.5.1. Geometry for Calculation of the External Inductance of a Wire above Farth

The geometry, then, for calculating the inductance is shown in Fig. 5.5.1.
The inductance per unit length can be calculated by integrating the flux
generated by the current (I) and its return current located a distance (dj)
below over the region between the source conductor and the return
conductor. This flux is

_,Uoldi 1 1 _ M i _ Mol 2
o |l '[m] Y

Since the inductance is defined as the flux linkages per unit length divided
by the loop current, the external inductance is

L, =4 In[#] (5.5.9)

This result is identical to (5.4.6) that was derived from Carson’s one term
series. It should be no surprise that image theory and Carson’s theory are
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connected. It is interesting, however, to also note that the inductance
becomes infinite as w — 0.

5.6 Justification for Electrostatics

It should be clear from above that all of the electric field quantities (i.e.,
capacitance per unit length, and electric field near the conductor and the
earth) could have been calculated using electrostatic theory for nearly all
frequencies of interest to power engineers (i.e., frequencies low enough that £
<< A where € is the largest significant dimension and A is the free space
wavelength). This is despite the fact that the length of the power line has
been assumed to be infinite. This fact suggests that field calculations might
be made using only the local geometry for which ¢ really is << A. For
example, consider the problem shown in Fig. 5.6.1. Here a finite length
horizontal wire is energized to a voltage V. and located above a perfectly
conducting plane.

Rs = IE
| : T
h E ;
€, Ko : i z
029%/////I/////////////////////

Fig. 5.6.1. Geometry illustrating how electrostatics can be used to simulate the fields of an
infinitely long conductor with a finite length conductor

It can be shown that the electric fields in the shaded region of Fig. 5.6.1
are essentially equivalent to the fields near an infinitely long conductor
carrying a propagating current as long as Az , h << { << A. Outside of the
shaded region the two results would not be equivalent due to edge effects
from the ends of the conductor.

The same result holds for problems that contain more geometrically
complex regions such as insulators and hardware such as illustrated in Fig.
5.6.2. Here, a simulated potential transformer is located between the
conductor and the perfectly conducting earth.

Problems such as that shown in Fig. 5.6.2 cannot generally be solved
using closed form techniques such as the ones that have been introduced
earlier in this manuscript. Rather, electrostatic approximations to Maxwell’s
equations are made first so that scalar theory rather than the more complex
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vector theory required for the more general Maxwell’s equations can be used.
Then numerical techniques can be used to solve the problems that are
otherwise intractable. In Chapter 6, several different types of numerical
techniques in electrostatics will be introduced and some comments made on

their utility.

©
<
=

]
|
|

h 1
|
|
|

€, Ho

z

6. Se0 [T T
2

Fig. 5.6.2. More complicated geometry that can be solved using electrostatic techniques.

5.7 Problems

P5.1. (electric field above the earth) A horizontal long conductor, radius @ =
1.5cm and height 4/ = 12m, is placed along the z-direction, as shown in Fig. 1.
The line charge density, g, along the conductor is 1.2x10° C/m. Assume g =

0.

h=12m

y
__D, Conductor
(a=1.5¢cm)
A . B C . X
Ground

Fig. P5.1 Geometry of the model

a. Show that the x-component (E., tangential component) of the electric field
at the ground surface (y = 0) is zero.
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b. Find the decay rate of the y-component (E,, normal component) of the
electric field as a function of x for y = 0 and x >> /. Calculate E, at the
three observation points A, B, and C, whose coordinates are (0, 0), (10, 0),
and (100, 0), respectively.

c. Calculate E, at the point D, (0, » — 4), right on the bottom of the
conductor. What happens to E, if the radius of the conductor is increased to
2a?

P5.2. (magnetic fields above the earth) Consider a single-conductor power
line, radius 2 = 1.5cm and height » = 12m, carrying a current | = |0e—imz , 4S8
shown in Fig. P5.2. pp is the propagation constant and Iy = 330A. The
ground has a dielectric constant o = 5 (its permittivity & = &o&, & =
8.85X10"°F/m) and a conductivity 2 = 0.01S/m. Let the frequency of the
current vary from 10 to 1000Hz. Assume z = o = 4nx10"H/m.

y y
PR . :
Ccinc1:1u50tor ;
(a= 1.5cm) Iy &,z
h=12m
A B
A(B) X (z=0) (z=100km) Z
Ground, o, =0.01 S/im Ground, o, =0.01 S/m

(a) End view (b) Side view

Fig. P5.2 Model of a single conductor power line for magnetic field calculation

Use the version of (5.4.47) that has been transformed into the space
domain as

H1:_I0 (y_h) _ (y+h+a) e*j7TLZ
o2 [(x=xP+(y=h) (x=x)\+(y+h+a)

a. Determine the depth (4 + a) of the complex image (see (5.4.40)) at 60Hz.
Compare the magnitude of (b + a) with .

b. There are two observation points, A and B, on the ground surface. They
are both on the z-axis. A is at the origin, (0, 0, 0), and B is 100 km down the
z-axis, (0, 0, 100,000). Calculate x-component H. of the magnetic field at A
and B over the frequency range 10 to 1000Hz. Plot the magnitude of H. at
each observation point vs. frequency.
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c. How does your result change if x = 100 meters?

(Hint: find the propagation constant pqr. by using (4.6.27) with Zi, = 0. If you
wish, you may use the approximation (4.6.24)

P5.3. (magnetic field in the earth) Derive expressions for the magnetic fields

in the earth from a wire above earth carrying a current r(;/) = eXp(— ] yz)

a. using (4.4.22), (4.4.23). (5.3.26) and (5.3.27) directly
b. by application of Maxwell’s equations to (5.3.31) — (5.3.33)
Show that the two are equivalent.
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Chapter VI

Brief Overview of Numerical Techniques for
Electrostatics

6.1 Introduction

Electrostatics

In the electrostatics case, » = 0 and according to (3.1.10) *

VXE =0 (6.1.1)

According to the Helmholz theorem in (3.7.5), if VXE =0, then it is
possible to write the electric field as

E=-Vy (6.1.2)

where ¢(x,),3) is a scalar potential. TFurther, since according to (3.1.14)

VeD=VeE=0ina homogeneous, sourceless region, ¢ satisfies
Vi =0 (6.1.3)

which is Laplace’s equation.
In rectangular coordinates, Laplaces’ equation is

0 9 &
(8X2 t +azz}//(x, y,z)=0 (6.1.4)

This equation will be given later in other coordinate systems as needed.
In solving electrostatics problems several boundary conditions will be
used. On a conductor,

w(X,y,2)=V, (6.1.5)

0 If w = 0, the RMS value of the field amplitude is the same as the peak value. Therefore,
the electric field amplitude in this purely electrostatic case is the peak (i.e., constant) value
and not a phasor.
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where 73 is a specified boundary potential will be the condition used
here.”! The charge density (o) on the surface of a conductor can be
determined once the potential is known as

ps=—gﬁ~Vy/=—£W=€E~n (6.1.6)
n

where N is the outward normal from the surface and ¢ = g,¢, is the dielectric
constant of the material at the dielectric/conductor boundary. &, is the

permittivity of free space and &, is the relative dielectric constant.

At an interface between two dielectric materials, two continuity boundary
conditions must be used. They are

oy, oy ;
w;=y,; and ‘9iE:5j anj (6.1.7)

where the two sides of the interface are indicated by “i” and “j” and the
dielectric constants of each medium are & and &; respectively.

Electrognasistatics

The terminology “electroquasistatics” is consistent with the definition in
Haus and Melcher (1989). This generalization of electrostatics to non-zero
frequencies is introduced because while the spatial behavior of the dominant
electric fields at power frequencies satisfies Laplace’s equation (6.1.3), the
behavior of materials can be enough different to warrant more care. More
specifically, any conducting material is essentially a perfect conductor at DC
because charges have the time to relax to their natural positions such that the
electric field inside the material is zero. Only if a material is pure dielectric
can it be characterized at zero frequency by its dielectric constant alone. For
time varying fields, on the other hand, electric current flow (both conduction
current and displacement or “capacitive” current) must be taken into
account. More specifically, (assuming sinusoidal steady state at a radian
frequency w) the fields must satisfy

VXE =0 6.1.8)

and

5 This is the Dirichlet condition. Tt is also possible to use a Neuman condition in which
case the derivative of the potential normal to the surface is used (Stratton 1941). If some
combination of these boundary conditions is used on the entire boundary of the problem,
the uniqueness theorem for electrostatics can be used to state that if a solution is found that
satisfies both LaPlace’s equation and these boundary conditions, it is the only solution
possible.
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A A

VxH = ja)€0€,|§+j= ja)go(gr - jng = jwe, € E (6.1.9)
@

A

where H is the magnetic field intensity, the term jwe,&,E represents

displacement currents and the term J = o represents conduction currents™.

Note that the source current J s has been assumed to be zero. The carat over

the electric and magnetic fields now indicates that they are both phasors
(with  RMS amplitudes) while the “carat” over the dielectric constant
indicates that it represents a “complex relative dielectric constant,”
g, —Jolw, which includes both conduction and displacement currents.
The most relevant fact here is that (6.1.9) can be used to determine whether a
material behaves more like a conductor or more like an insulator.
For the problems discussed here, there are no free charge sources within

the materials (i.e., all charges exist on the surfaces) so that

VeD=VeE =0 (6.1.10)
and, again the potential satisfies Laplace’s equation
Vi =0 (6.1.11)

In this case, the potential is a phasor and has an RMS amplitude. For the
problems considered here, the magnetic field in (6.1.9) can generally be
neglected. More detailed information about the wvalidity of this
electroquasistatic approximation is available in Haus and Melcher (1989).

Finally, again

E=-Vy 6.1.12)

The boundary conditions that will be used here are generalizations of
(6.1.5) — (6.1.7) where the dielectric constants in (6.1.7) are replaced with the
complex dielectric constants.

There are many closed form solutions to Laplace’s equation for very
simple geometries that are well known and introduced in undergraduate
electromagnetics courses (e.g., point charge source, line charge source,
coaxial cable, infinite parallel plate capacitor). These are useful for both
understanding the nature of solutions to Laplace’s equation and as limiting
cases to check the accuracy of numerical solutions. Many examples of
problems with more complex geometries that still have analytical closed form

52 Here the carat symbol of the dielectric constant € indicates a complex number rather than
a phasor.
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solutions can be found in the literature (Schwab 1998). Several will be
introduced here. However, for most complicated geometries, it is necessary
to use numerical methods to solve Laplace’s equation. In the final section of
this chapter, short introductions to several numerical methods for solving
Laplace’s equation subject to simple boundary conditions will be given along
with references for further study.

6.2 Analytical Solutions

Simple shapes (parallel planes, coaxial cylinders, sphere)

The simplest geometry in which to solve Laplace’s equation is that of parallel

conducting planes as shown in Fig. 6.2.1. Note that this is a one dimensional

problem™ given the symmetry in the x and z directions. Given this, it can be

assumed that the solution to Laplace’s equation does not vary with x or z.
Hence (6.1.4) expressed in rectangular coordinates can be written as

82 82 62 ) 62 .
Y
perfect conductor V=V, volts
€, Ko h
V=0 volts X

perfect conductor

Fig. 6.2.1 The parallel plate geometry (the coordinate z is directed into the page).

Integrating this equation twice with respect to y yields

w(y)= Ay +B (6.2.2)

The application of the V = 0 boundary condition at y = 0 requires that B
= 0. The remaining V = 100 volt boundary condition at y = h requires that
A =100/h. The final result is

5 Often one or two dimensional problems are useful approximations to real three
dimensional problems in local regions for which the geometry is approximately one or two
dimensional.
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. Voy
v (y)=== (6:2.3)
The electric field can be determined using (6.1.12) and is

. ;v
Ey==—§31=-£- (6.2.4)
oy h

Then, using (6.1.6) (generalized to time varying fields), the charge density
on the top plate can be determined to be

. . A — \Y
p5=80Eyon=gOEy0(—ay)=gor° (6.2.5)

Finally, the capacitance per unit area of this parallel plate capacitor can be
found as

ﬁs ‘90
C,.=—~=— 6.2.6
" yh) h oo

Another simple geometry in which Laplace’s equation can easily be solved
is that of coaxial conducting cylinders as shown in Fig. 6.2.2.

V=V,

P

Fig. 6.2.2 The coaxial cylinder geometry (the coordinate z is directed into the page).

Since by symmetry it can be assumed that the solution to Laplace’s
equation does not vary with @or z, (6.1.3) expressed in cylindrical
coordinates can be written as
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6.2.7)

1o( o), 1o o (7)==~ p2 |i(p)=0

Multiplying (6.2.7) by o and integrating with respect to o yields

(p i]z&(p) =A (62.8)

Dividing by p and integrating again with respect to p yields
. do
l//(p) = A.[? = Aln(p)+ B (6.2.9)

Matching the boundary condition at ¢ = > yields
B=-Aln(a,) (6.2.10)

Finally, matching the boundary condition at p = ; yields
. In(p/a
Fp)=Vo Me12) g < pa, (6.2.11)

As before, it is possible to calculate the electric field as

e _ v __ Vo
7 op pina/a,)

(6.2.12)

The corresponding charge per unit length on the inner conductor
(identical to that on the outer conductor) for this coaxial geometry is

A A N,
0, = 27ma,6,E N =2m,s,E ea, =¢ : 6.2.13
P 260k, 260k, ®4, °In(a1/a2) ( )
Finally, the capacitance per unit length for this coaxial capacitor is
C— P, 27 6.2.14)

= yla) Tina/a,)
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A final simple example is that of a spherical capacitor as shown in Fig.
6.2.3

V=0

AR X
%

Fig. 6.2.3 The sphere geometry.

Since it can be assumed that the solution to Laplace’s equation does not
vary with 0 or ¢ (6.1.3) expressed in spherical coordinates can be written as

(6.2.15)

10 0 1 1 0% ).
[_ZG_[r 8_j+r 2sin(6) 8«9( e )_) r?sin?(0) a(pz}’[/(r’e'm
e [ O

Multiplying (6.2.15) by * and integrating yields

2 0 )~y
(r arj;y(r)_A (6.2.16)

Dividing by t* and integrating again yields
dr A
=A|l—=—+B 6.2.17
I r’ r ( )

Matching the boundary condition that the potential must be = 0 as r — a,
yields

g-_A (6.2.18)
al

Finally, matching the boundary condition at r = a, yields
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A (6.2.19)
a, —a,
Thus,
a,a 1 1
y(r)=V 172 |2 — 6.2.20
w(r) °a1—a2(r al] (6:2.20)
The electric field is
A % V
g -V _ (_Oalaz Jiz 6.2.21)
or a—a,)r

The total charge on the inner sphere (same as on the outer sphere) is
& —a

n - V,a,a
psphere = 4”8‘580 E r (a2 ) = 4'72-‘90 (M] (6222)

Finally, the capacitance of the spherical capacitor is

ﬁs here a,a
Copnere = v (pa )2472'80(& = ; J (6.2.23)
2 1 2

A useful special case is the capacitance of an isolated sphere that is the
limit as a; — 0. Itis

ﬁ sphere
C _ p

isolated sphere — | 4
Vi(a,)

=4rg,a, (6.2.24)

Note that for all of these capacitances (i.e., parallel plate, coaxial and
sphere), the capacitance for the case with free space replaced by a a dielectric
material can be solved by multiplying the solution by e;.

Imaging in conductors and dielectrics

A very convenient tool for electroquasistatics is image theory. This is
illustrated by considering a point charge at a distance y, above a perfectly
conducting plane as illustrated in Fig. 6.2.4°*. It can be shown that the
electric fields in the region y > 0 can be computed by replacing the conductor
with a point charge of equal and opposite sign at y = - y,. More specifically,
this can be shown by calculating the tangential electric field at y = 0 from the

54 By superposition of charges along the line (x, y) = (0,yq) with -00 < z < ©, the image
theory results for a point charge can be extended to a line charge with line charge density p¢ .
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charge and its image and demonstrating that it is zero as required for a
perfect conductor. By the uniqueness theorem, then, (since all necessary
boundary conditions are satisfied) this is the only solution.

q

€0 X EN .
(177 7rrrrrrrrrrl “"“E- ——————————————————
perfect conductor 0
Yq
image
R ®

Fig. 6.2.4. Replacing a flat perfectly conducting interface with an image charge. The result is
valid for y > 0.

Y Y
- —@— 2a _ ® g
q
Yq - "
€ X & )
[TTTTTTTTTTTTTT] N
dielectric material — €, €0

image
® q(ep—¢,))/(ep+¢,)

Fig. 6.2.5. Replacing a flat dielectric-dielectric interface with an image charge. The result is
valid for y > 0. The material can be a pure dielectric as shown or a lossy material with a

complex dielectric constant, 8Oé‘r =&,6, — Jol(we,).
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A similar result can be obtained for a charge in the presence of an infinite
dielectric half space as illustrated in Fig. 6.2.5. The only difference is that the
image now has a value that depends upon the dielectric constant.

The image charge is (for general lossy material)

Yo" g (6.2.25)
.)
A similar result can be found that is valid for y < 0. This is illustrated in

Fig. 6.2.6.

image
—@®— 23

o
q T 2qg,/(gq + €,)

€o X l £, «
7777777777777 s
dielectric material — ¢, £,

Fig. 6.2.6. Replacing a flat dielectric-dielectric interface with an image charge. The result is
valid for y < 0. Again, the material can be a pure dielectric as shown or a lossy material with

a complex dielecttic constant, Soér =&EyE, — jO'/(a)EO) .
The image charge for general lossy material is

2¢,
— 6.2.26
(50 +&, ) ( )

Again, this result can be proven by showing that the tangential electric
tield just above y = 0 in region 1 is identical to the tangential electric field just
below y = 0 in region 2. By the uniqueness theorem, then, (since all
necessary boundary conditions are satisfied) this is the only solution.

Spherical shell for quasi-electrostatic shielding

Consider the shell structure that is shown in Fig. 6.2.7. The shell is of inner
and outer radius a, and ai, (i.e., a thickness (a;-a;)) and a complex relative
dielectric constant&,. The shell is immersed in a uniform vertical electric

field of amplitude éo .
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Given the symmetry, the solution for the potential must be independent
of ¢. Given this, Laplace’s equation (from 6.2.15) reduces to

19(,0 1 (o @)ooy
[FE[r arJ+rzsin(e)ae[gm(e)aen'”(rﬁ) o622

Using separation of variables (Smythe 1968), it can be shown that a
general solution to (6.2.27) is of the form (This result can be verified by
direct substitution of (6.2.28) into (6.2.27).)

zZ g

Fig. 6.2.7 A thin spherical shell immersed in a uniform electric field.
w(r.0)=(Br+C/r?)cos(6) (6.2.28)

Given this, solutions to Laplace’s equation that are valid in each region of
the problem are:

yw(r,0)= Arcosg(9), r<a,
—(Br+C/r?)cos(0), a <r<a, (6.2.29)
—(Dr+F/r?)cos(), a,<r

Note that in the region,I £ a,, the term proportional to 7/r is dropped
because it would result in a nonphysical singularity at » = 0. The constants A
— IF are to be determined by applying boundary conditions in (6.1.7) that are
generalized to the electroquasistatics case. To do this, it is necessary to
calculate the normal derivative of the potential (i.e., the electric field). This is
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E =—Viy =—A@, cosd—a,sind)=—Aa,,
= —(B—2C/r3)cose a, +(B +C/r3)sin6 a,, a <r<a, (6.2.30)
=—(D—2F/r3)c059§R+(D+F/r3)sin0§9, a, <r

r<a

To match the field for r» >> a4,
D=-E, (6.2.31)

Applying the boundary conditions at a; and a results in

a’ -a’ -1 0]||A 0
3 ~1/B| |-E,a;
0 & i (6.2.32)
a, —é¢&a 2 0fC 0
0 ‘é:r ; - 2‘g‘r 2||F - éoag
These equations can be solved for A to get
-9¢,E
A=— el (6.2.33)
(2+& Y1+28,)-20-¢, )6
where
3
s=3 (6.2.34)
a;

Note that as @; — a;, A — -Ey as it should because for § =7, no shell
exists. Using (6.2.32) and (6.2.33),

B_ 1+ 2:9r A _ ~3(1+ 24, )E, 2 6235)
3¢, (2+& \1+28,)-20-2 )05

If a; — 0, the field inside the shell should reduce to that which is inside a
solid dielectric sphere immersed in a uniform electric field. For this case,
(e, a; =0,6— 0)”

-3E
B= 0 (6.2.36)
(2+&)

Hence the electric field in the center of the homogeneous sphere is

%5 In this case, C must equal zero. If not, then there would be a singularity in the electric
field at R = 0.
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36, 4

. 3B
(2+&,) "

(6.2.37)

This result is in agreement with that of (Zahn, 1979) and has (for
example) been used to estimate the electric field shielding of a house. It is
also interesting to note that the potential outside of the sphere is modified
and can be written once an explicit expression for F is found.

Ring surrounding a conductor 4

In some cases, it is useful to examine the effect of a tower window on the
electrostatic fields of a power line conductor (Olsen 1999). One model that
has been used to do this is shown in Fig. 6.2.8. Here a tower window is
modeled by a conducting toroid of major radius b and minor radius c at zero
potential (Smythe, 1968)*°. The phase conductor is modeled as a hotizontal
cylinder of radius a at a potential ['»in free space.

Y

toroid

phase conductor ring charge

radius=a

toroid V=0

phase conductor

radius=a \

(b)

Fig. 6.2.8 Simple model of a tower window a) end view b) side view.

% In Olsen (1999) a perfectly conducting earth was added. Here, that is neglected in order
to retain perfect symmetry.
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The total scalar electric potential (a phasor) l/?(p,Z), in space is

independent of ¢ and is the superposition of that due to charge on the
toroid plus that due to the charge distribution on the phase conductor. It
will be assumed here that the potential outside the toroid can be
approximated as that of a ring charge of radius 4 in the ¥ = 0 plane and
centered at p = 0 as shown in Fig 6.2.8a. Similarly, it will be assumed that the
potential of the phase conductor charge distribution can be represented as
that of a line charge at the center of the ring. Thus, the total potential is

v(p,2)=y " (p,2)+y"(p,2) (6.2.38)

It is convenient to solve this problem by spatially Fourier transforming
the z dependence of the scalar potential. In the spatial Fourier transform
domain (y) the scalar potential of the ring charge is (for ¢ < 4) (Smythe 1968)

¥ (p,7) = K, (b)) ¢ < (b9 (6:2.39)

where 9Ris the magnitude of the ring charge density, Ip(») and Ky(w) are
respectively Modified Bessel functions of first and second kind of zero order
and argument » (Abramowitz and Stegun 1964), and

p=+/x2+y?.
The Fourier Transform is defined as

ES

W(p,7)= (o, 2)exp(- jrz)dz. (6.2.40)

It has been assumed here that the ring charge density is a constant due to
symmetry.

In a similar way, the Fourier transformed scalar potential of a line charge
parallel to the z axis and passing through (x,y) = (0,0) with an unknown

charge density distribution (], (Z) ,for p>a,is:

¥ (5, 1) = Q, (1)K, (70) (6.2.41)

where SL(y)is the Fourier transform of G, (z). Note that G, (z) is not

constant because of the presence of the tower. The total Fourier
transformed scalar potential is then
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A

(o,7)=P"(p,7)+¥"™ (0, 7) (6.2.42)

The inverse Fourier transform of (6.2.42) represents the total potential
due to the conductor in the presence of a concentric toroidal conductor.
The charge density of the line charge can be found in terms of the ring
charge density by matching the electric potential boundary condition (i.e.,

1/7(2)=VP) at the surface of the wire. Assuming that the wire is thin, it is
reasonable to do this at a single point. Thus,

w(a,z)=y"(a,z)+y"™(a,z)=V, (6.2.43)

Taking the Fourier transform of (6.2.43) yields

S

P(a,7)= 9" (a,7)+ ¥ (a,7)=V,5()

N (6.2.44)
= QgrbK, (7b)| 0(7/‘3)+ Q. (7)Ko (7/‘3) :VP5(7)
where 5(}/) is the Dirac delta function. Hence,
2 bK I .
Q)= KF’&(% - °}£’)°8,;)(7°‘) G (6245)
so that
(6.2.46)
2 K I —1 K VK
‘P(p,;/):quKO(;/b{ .(a) o(?/pK) (y;)(?’a) () N :( ((Jj(/;//)o)g(y),g <o<be

(6.2.46) can now be converted back into the spatial domain by taking the
inverse Fourier transform to get
(6.2.47)

P

A(piz)_ dgrb TKo(?’b)[Ko(Vd)lo(?/p)_IO(j@‘)KO(yp)]eXp(jﬂ)da-l-aZ )

- 2” —0 KO(m)

a<p<bc

where KO(X) = — In(x), X <<land L’Hospital’s rule was used to evaluate the

limit of the ratio of the modified Bessel functions as y — 0. To complete the
solution to the problem, the following boundary condition is applied in order

to determine (.
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w(b-c,0)=0 (6.2.48)

Using this boundary condition, the following simple closed form solution
for the ring charge density can be written as.

. — 27V,

0, G, -0 b ool
) K, (7a)

(6.2.49)

dy

(6.2.49) can be used in (6.2.47) along with the gradient operation to
calculate the z-directed electric field at any point for which o < (b-c). This
axial electric field can now be written as.

(6.2.50)

exp(jyz)dy

¢ (p)e-28)_I0 ORI

oz K,(a)

Iéz(p, Z) is negligible beyond z ~ 4b since the tower window causes the

non-zero axial field. This is approximately the distance beyond which the
tower can be ignored when calculating electric field and for which a two
dimensional approximation to the fields is reasonable.

By calculating the charge distribution on the conductor this result can also
be used to find the excess capacitance due to the tower. If this capacitance is
comparable to the capacitance per unit length of the transmission line
multiplied by the distance between towers, then it would become an
important part of the propagation model for a power line. It usually is not
comparable and hence towers are usually ignored.

Non-infinite parallel plate capacitor 4

Next, consider the case for a two dimensional parallel plate capacitor with
plate spacing of 2/ as shown in Fig. 6.2.9. The capacitor extends to infinity
to the left but ends at x = -4/z. The upper conductor is held at a voltage 1
and the lower at a voltage —I5. Hence the axis y = 0 is at zero potential by
symmetry.

This problem can be solved using conformal mapping methods
(Schinzinger and Laura, 2003). Here, the approach will be to take the known
solution and show that it satisfies the required boundary conditions. To this
end, Vy is set equal to n volts and two functions #(x,y) and #(x,y) are defined
implicitly as
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x(u,v) = (Ej(u +e' cosv) (6.2.51)
T

y(u,v)= (Dj(v +e"sinv) (6.2.52)
T

|<_h/n_.

Vo
I,
=0 { X
h
-00 — l
-V,

Fig. 6.2.9 Semi-infinite parallel plate capacitor with plate spacing of 2h

In the next few steps, it will be shown that (6.2.51) and (6.2.52) are both
solutions to Laplace’s equation in two dimensions. To do this, partial
derivatives can be taken with respect to x and .

8(x) (hj_au (aj . avj }

——=1=|—| —+e cosv—e"| — [sinv (6.2.53)
OX 7 )| OX X

Mzoz(ﬂ a_u+eu(8_u cosv —e" stmv (6.2.54)
oy 7 )| 0y oy oy

@=0=(E @+e”(@ smv+e“(@jcosv (6.2.55)
OX 7T )| OX X OX i

M =1= (D){@ +e" (a—ujsinv +e" [@] cosv (6.2.56)
oy 7 )| oy oy oy ]
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Now, adding (6.2.54) and (6.2.55) gives

(@ + @J(1+ e" cosv)+ (% —~ @]e“ sinv=0 (6.2.57)
oy X ox oy

Subtracting (6.2.56) from (6.2.53) gives

(@_@](14_ e! COSV)—(a—u-l-@jeu sinv=0 (6258)

Multiplying (6.2.57) by a_ov yields
ox oy

2
(5—u _@j(a_u +@j(l+ e" cosv)+ [a_u —@j e'sinv=0 (6.2.59)
oX oy \oy ox ox oy

Further, multiplying (6.2.58) by a + ol yields
oy oOX

2
(8_u _@J(a_u +@j(1+ e" cosv)—(a—u +@j e'sinv=0 (6.2.60)
ox oy oy ox

Next, (6.2.60) can be subtracted from (6.2.59) to get

Ka—u—@J +(8_U+QJ }e”sinv:o (6.2.61)
ox oy oy oX

Each term in the square bracket must be zero since (6.2.61) must be zero
for all values of # and » and because each squared term is positive. Thus,

ou ov

& = @ (6.2.62)
ou ov
5 = —& (6.2.63)

(6.2.62) and (6.2.63) are the Cauchy-Riemann equations that are given in
(C.18) and (C.19) of Appendix C. Given this, it is known that » and » must
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be solutions of Laplace’s equation as shown in (C.20) and (C.21) of
Appendix C. Hence,

2 2
Zx—l:+2y—l::0 or Vu=0 (6.2.64)
2 2
%+%:O or V=0 (6.2.65)
At this point, let
w(x,y)=Vv(x,y)/ = (6.2.66)

where l//(X, y)is the scalar potential in Fig. 6.2.9 and V, and -V are the fixed

potentials on the top and bottom plates respectively .

If ¢ is set to zero in (6.2.66), then » = 0 in (6.2.52) and y = 0 for any value
of u selected. This matches the known potential everywhere along y = 0 in
Fig. 6.2.9. The value of x then becomes

x(u,v)= (E)(u +e') (6.2.67)

T

Thus, every point - 0 < » < © maps into a point on the - 00 < x < % axis
as shown in Fig. 6.2.10.

If now, »is set equal to 7, then (6.2.52) gives y = A, but the value of x now
becomes

X(u,v) = (EJ(U —e") (62.68)

T

so that over the range - 00 <z < 0, x ranges from - % to a maximum value
of —h/ 7 and then returns to - .

A plot of constant potential contour lines of ¢ in (6.2.60) is shown in Fig.
6.2.10 for the top right quadrant of Fig. 6.2.9. It is assumed that the
potential of the top and bottom plates are at the potentials Vo and — Vy
respectively. A cursory examination of the equipotential lines in Fig. 6.2.10
indicates that as the spacing of the lines becomes closer, the closer the field
point is to the edge at (x) = (-b/zh). Of course, the potential must
approach V) in this case since that is the potential assigned to the electrode.
But, the electric field is related to the “change” in potential over some
distance. Given this, a closer examination of the electric field near this edge
is warranted.
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b=075V, /
/ Y =0.2
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1.5 1 0.5 0 0.5 1 1.5 2

Fig. 6.2.10 Equipotential Lines for the top right hand quarter of Fig. 6.2.9.

Near the edge at (x,y) = (-h/mh), it will be assumed that v(x,y)=V, —&

and U(X, y); O where &,0 <<1, (6.2.51) and (6.2.52) can be expanded to
second order using Taylor series to get

ZT”[x(g, S)+hlz]=g?-52 (6.2.69)

ZTﬁ[y(gﬁ)— h]: g0 (6.2.70)

According to (6.2.70), 8 must be equal to 0 along the line Y =N because

the potential ¢ has been assumed to have a first order variation, hence ¢
cannot be zero. Given this result, (6.2.69) can be solved to get

&= IZT”[X +h/z]'?. (6.2.71)

w(x,h)= \i(n - \/% [x(¢,0)+h/ ﬂ]llzJ (6.2.72)

T

Hence,

Finally,

E.(x)= —it//(x.y) =V, ‘/ﬁ[x +h/z]*"? (6.2.73)

OX

This result indicates that the electric field near this sharp edge is
unbounded and is the reason why sharp edges are avoided near high voltage
components. It is also useful to note here the comments on edge conditions

269



in the subsection entitled, “edge conditions” at the end of Section 3.6 on the
uniqueness theorem. It is situations such as the one here that are relevant to
the subject of edge conditions.

The equipotential lines in Fig. 6.2.10 define the shapes for Rogowski
electrodes that are used in high voltage components to obtain constant
normal electric field over the surface of the electrode (Trinh, 1980). This type
of electrode is useful for minimizing the effect of corona.

Although the solution to the semi-infinite parallel plate capacitor problem
is useful for illustrating the edge effect, it still represents a non-physical
problem due to its infinite size. The solution for a square plate capacitor is
only available via numerical computation, but it is useful for a number of
reasons including the calibration of electric field meters and references will
be given here to this work. More specifically, further work on this problem
can found in Shih et. al. (1977), Thatcher (1976) and IEEE (2008).

Separation of variables — infinite series solution to Laplace’s equation in a

two dimensional rectangular box
The last problem to be considered in this section is that of finding an “exact”
solution of Laplace’s equation within the two dimensional rectangular region
shown in Fig. 6.2.11. Part of the purpose for this exercise is to describe the
method of separation of variables, a powerful tool that can be used to solve
problems in several coordinate systems. Another part is the fact that the
exact solution developed here can be used to check the numerical results that
have been determined using the methods developed in the next section.
Starting with the two dimensional Laplace’s equation in rectangular
coordinates,

%
(8)(_2 + W}//(X, y)=0 (6.2.74)

It is assumed that the potential (//(X, y) can be written as an infinite sum
of functions

w(xy)= iwn (%) (6:2.75)

where the functions v/, (X, y) are also solutions of Laplace’s equation. Next,

it is assumed that each function v, (X, y) can be factored into a product of

two functions, one a function of x only and the other a function of y only.
This property can be written as

va (% y) =X, (x), (y) (6.2.76)
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(x,y)
[ ]

=0 X=a

Fig. 6.2.11. Rectangular box of dimensions « and & with 1) = 0 on the right, left and bottom
sides and ¢ = 17, on the top side.

Note that it may not be completely clear at this point why this assumption
can be made. However, given that the requirements of the uniqueness
theorem can be satisfied by the solution that results, the assumption can be
justified a posteriori.

Given this assumption, Laplace’s equation can be written as

82;(an(x) + Xn(X)aZY” (y) =0 (6.2.77)

Y, (y) Y

Dividing both sides of (6.2.77) by X, (X)Y, (y)results in

1 ax,(0)_ 1 a%,(y) (6.2.78)

X,(x) o Y, (y) oy

Clearly, the left hand side of (6.2.78) is a function of x only while the right
hand side is a function of y only. Since the equality must hold for all x and y
in the domain, each side must be equal to a constant called the “separation”
constant. Hence,
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d?X, (x)

v alX,(x)=0 (6.2.79)
2
d;(—”z(x) —a2Y,(x)=0 (6.2.80)
X

where a is the separation constant. The solutions to (6.2.79) and (6.2.80)

can easily be obtained by using elementary results from differential equations.
They are:

X, (x)= A, sin(e, x)+ B, cos(a,x) (6.2.81)
Y.(x)=C, sinh(a, y)+ D, cosh(e, ) (6.2.82)

so that
(6.2.83)

w,(x,y)=(A, sin(e,x)+ B, cos(e, x))C, sinh(e, y)+ D, cosh(z, y))

Application of the boundary condition at x = 0 yields
(6.2.84)

o0

w(x,y)=>B,(C,sinh(c,y)+ D, cosh(e,y)) forallyin [0,b]

n=1

The only non-trivial solution to this equation is B, = 0 for all n. Now
matching the boundary condition at y = 0 yields

w(x,y)= i A D, sin(e,y) forallxin [0,a] (6.2.85)

The only nontrivial solution for this is to set D, = 0. Thus, the remaining
terms are:

sin(a, x)sinh(a, y)

v, (X y)=A, sinh(a,b)

(6.2.86)

where the separate constant C, has been set equal to 1/(sinh(e,b))since

there is no need for two separate constants and this will turn out to be a
convenient substitution. Thus,
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o inh(a,
w(x y)= Z‘ A, Sm(anx)% (6.2.87)

This formulation satisfies the boundary condition l,//(a, y)= 0if
a, =Nz/awhere a, is an eigenvalue of the differential equations (6.2.79)

and  (6.2.80) and the functions sin(nzx/a)and sinh(nzy/a)are

eigenfunctions of the same equations respectively. The final boundary
condition is satisfied at y = b if

w(x,y)=V, = iAn sin(nzx/a)  for 0<x<a (6.2.88)

n=1

The values of A, required to satisfy this condition can be obtained by
multiplying (6.2.88) by sin(mzx/a), integrating the result over the period 0 —

a and using the orthogonality properties of the sine function. More
specifically,

a

Ve J‘sin(mﬂx/a)dx = i jsin(n;zx/a)sin(m;zx/a)dx
0

n=1 0
(6.2.89)
aVve 3 Aal2, m=n
mz (1 cos(m;z))_ 0, m=n
Hence
A, = Ve (1—cos(mx)) (6.2.90)
mz
The final solution is
E sinh(nzy/a)
yY)= la)——————~ 6.2.91
vlxy)= A sinbma) 08 2o

with A, given by (6.2.90). The validity of this solution can be verified using
the uniqueness theorem (Chapter 3) because the potential satisfies Laplace’s
equation as well as the known potential (Dirichlet) boundary condition on all
sides of the rectangle.
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6.3 Numerical Solutions

Introduction

As mentioned in the introduction to this chapter, analytical techniques are
useful for both insight and validation of numerical techniques. But, they are
restricted to relatively simple geometries and, hence, numerical techniques
will have to be used for most problems. The purpose of this section is to
briefly introduce the reader to numerical techniques that have been used by
the power engineering community to solve problems in electroquasistatics.
These include techniques based on boundary source unknowns (e,
boundary element method and charge simulation method) and field point
unknowns (i.e. finite difference method, finite element method and Monte
Carlo method). Each has its advantages and disadvantages as indicated
throughout the section.

In each case, the numerical method will be introduced in the context of a
two dimensional problem for which the computational domain is a finite area
in space and involves only known electrical potential boundary conditions.
More specifically, the computational domain will be identical to that shown
in Fig. 6.2.11. While each of the methods can be extended to both infinite
and three dimensional regions and more complicated boundary conditions,
these extensions require a) discussions that are beyond the scope of this
section and b) obfuscate the basic ideas behind each method.

The boundary element method”
The Boundary Element Method (BEM) is designed to solve for the surface
charges that are the sources of electrostatic fields (Daffe and Olsen 1979;
Olsen 1986; Olsen and Einarsson 1987). Variations of this method have
been referred to as the integral equation method, the moment method and
the charge simulation method (the latter will be discussed in the following
section).

In a two-dimensional homogeneous region of finite size with known
potentials on its boundary, it is possible to write solutions of Laplace’s
equation for points within the region as

i(xy) = 150 [ = x@OF +(y-y (O Jor @)

27

where C is the perimeter of the region, (X, y) is the location of the field
point, (X'(ﬁ ), y'(f )) is the set of points along the perimeter that represents the

locations of the electrical surface charge distribution P (f) that is the

" More specifically, the method presented here is called the “Indirect Boundary Element
Method” (O’Brien, J. L. and T. L. Geers 1990)
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“source” of the potential in the region. The geometry of the rectangular
region to which the boundary element method will be applied is illustrated in
Fig. 6.3.1.

Ay lIJ=VC
T T T T T T T O
y= I O I |
example o a4
matching £ _|_*— segments with
i g “ unif h
points A 1 uniform charge
A1 (xy) €1
V=0 + b=0
c - .
I
1 1 1 1 1 1 1 1 1 IX=a
$=0

Fig. 6.3.1 Geometry for the boundary element method calculation
It is assumed next that the potential (i.e., voltage with respect to zero =
Vg) is known everywhere on the boundary perimeter (C) so that

Vo =[O lx-x (O +(y-y O Jor 632

0cC

where the point (X, y) is now constrained to be on the boundary surface.

(6.3.2) is now an inhomogeneous Fredholm equation of the first kind for the
unknown charge density on the boundary. An approximation to this charge

distribution can be found by discretizing P, (ﬁ) into a set of N unknown

charges of constant value but finite extent along the total perimeter. A
formula for each source can be written as

ﬁsn fn(f)
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where f (¢) is equal to 1 on the patch of the perimeter C for which §,, is
the charge density there and the union of all functions f (¢) covers the

entire perimeter C. Given this, (6.3.2) can be written

Vo= 3 p [ O x O -y (OF Yo 639

27Ey 13

If the potential is “matched” at a distinct point on the surface (Xm, ym)
within each function f, (¢), then (6.3.3) becomes

Voo =523 ol oty X O -y OF Jo 639

27y o

where Vg, is the value of the boundary potential at (Xm, Y ) (6.3.4) is a set

of N algebraic equations in N unknowns that (in most cases) can be solved in
a relatively straightforward manner. Once the charges are known, the
potential at any point within the computational domain can be written using
(6.3.1) and the electric field calculated from (6.1.2).

Note that one requirement for the simple implementation mentioned here
is that the region be homogeneous. While this is a negative, the number of
unknowns is proportional to the perimeter of the boundary and hence
generally much smaller than the number of unknowns for field based
methods such as the finite element method. While the number of equations
is small, the matrix that represents the coefficients of the algebraic equations
to be solved is completely filled or “dense.” Given this, techniques used to
solve “sparse” matrices that result in field based methods such as the finite
element method cannot be used. Another issue that must be considered
when implementing the boundary element method is that the integrals in
(6.3.4) have singular integrands. While these singularities are integrable,
some care must be used when evaluating them.

The charge simulation method

As mentioned above, one problem with the boundary element method just
described is that the integrals in (6.3.4) have a singularity in the integrand at
points on the surface for which the integrand and matching point coincide.
While such an integral can be evaluated, it requires some care.

An alternative approach to the boundary element method is to
approximate the surface charges with a set of charges with simple forms but
unknown amplitudes located outside the area for which the potential is to be
calculated, but close to the surface (Singer et. al. 1974). In this case, line
charges are placed just behind the perimeter C. The advantage is that field
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calculations are simple and no singular integrals need be evaluated. This
approach is called the “charge simulation method.”

b=V,

Y1 0606 0606 0606 060 0o

y=b
® [ ]
° [ ]
. example e._ linecharge
. matching e~ locations

points

° [ ]
° ®
° [ ]
° [ J
° [ ]
° [ ]
O/ i
o\ .
° [ ]
o (X /Yn ) .

C o *
[ ] llJ=0 °
° o X

e e o0 00 00 00 X=a4a

Fig. 6.3.2 The geometry used to illustrate the charge simulation method.

Consider the two dimensional problem shown in Fig. 6.3.2. The
perimeter C surrounds the computational domain that extends to infinity in
front of and behind the page. The perimeter is at a known potential (Vs) that
may vary from point to point along the perimeter.

To implement the charge simulation method in this case, a large number

(N) of line charges with amplitude (p,,) are located at (xa,ys) close to but

behind the surface S. They are far enough away that their contribution to the
potential on the nearby portion of the perimeter C can be reasonably
constant, but close enough that the actual variation of potential on the
surface is reasonably well matched. The electric potential at any point in
space from these unknown charges is

w(xy)= iimn ln(\/(x —%, ) +(y-vy,) ] (6.3.5)

o h=l

277



The values of the unknown charges are found by matching the potential
on the surface at M =N points (x,,),) on the surface of the rectangle. Given
this, N equations for the N unknown charges can be written as

(6.3.6)

5 (X Y ) =V =—meln(\/x —Xn)2+(ym—yn)z], 1<ms<N

onl

Once these equations have been solved for the unknown line charge
amplitudes, (6.3.5) can be used to find the electric potential at any point in
the rectangular computational domain. From this result, the electric field can
be found using (6.1.2)

The finite difference method

Laplace’s equation can be written in rectangular coordinates as

O’y 'y  0°
vap(xy)= LY TV OV g

6.3.7
ox*  oy*  or? €37

The partial derivative 58_1// can be approximated as
X

OX AX

oy _ w(X+Ax/2)—y(x—Ax/2) 638

where the geometry for (6.3.8) is shown in Fig. 6.3.3

Ax AXx

L 4 g L 4 L g

X-AX X X+AX

Fig. 6.3.3 Geometry for calculating the numerical derivative.

Using this result

oy (x=ax/2) _ y(x)-y(x-Ax) 6.3.9)
X AX

I

and
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Oy (x+Ax/2) _ y(x+ax)-y(x) (6.3.10)
ox - AX -

(6.3.9) and (6.3.10) can be combined to yield

(6.3.11)
Ow(x+Ax/2) dw(x—Ax/2)
o’y X X _ w(x+ AX)+ p(x— Ax) - 2p(x)
ox? AX B (Ax)?
- , O’y 0’y
Similar expressions can be found for —- and —-.

ay2 aZZ
Next, these finite difference approximations will be applied to the
“discretized” two-dimensional rectangular geometry shown in Fig. 6.3.4.

b=V,

® 06 & o & o & o o & o 0o o o
® 6 6 6 06 o o o o o o o o o
e 6 ¢ 0 ¢ o & ¢ o ¢ o o o o
e 6 & o ¢ o o o GE. e O o o
e 6 ¢ o o o o o .‘-’ e & o o o
e 6 ¢ 0 ¢ o & ¢ o ¢ o o o o
® 6 & 0 & o & & o o o o o o

V=0
Fig. 6.3.4 Grid for application of the finite difference method.

In this grid, the potential on the top boundary surface is V. while on the
remaining boundary surfaces it is 0. It has also been assumed for the
remainder of this derivation that Ax = Ay = A.

At the point (x,y), the two dimensional Laplace’s equation can be written
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(6.3.12)

jo))

o'y 0O’y
oo
1
E{V/(“A, y)+u(x=Ay)+ (% y+A)+y(xy-A)-dp(x y)=0

112

or

p(0y)= o (x A Y+ (x- Ay +(xy +A)+wixy-A) 6313

(6.3.13) can be written for every point within the rectangular region in Fig.
6.3.4. For points next to the boundary surface one or more of these
potentials is specified because it is on the boundary. A disadvantage of the
method is that the number of unknowns is proportional to the area over
which the solution is sought. This is in contrast to the two previous methods
for which the number of unknowns is proportional to the perimeter of the
area for which the solution is sought.

If there are N points at which (6.5.13) is applied, then the result is N
algebraic equations in N unknowns. These equations can (usually) be solved
in a relatively straightforward manner. Given that each equation refers to
only 4 other points, many of the coefficients are zero and there are many
methods to accelerate the solution. This partially compensates for the fact
that the number of equations is proportional to the area of the rectangle
rather than the perimeter.

Another issue with field based methods such as the finite difference
method, is that there is an additional error in calculating the electric field.
More specifically, to calculate the electric field from knowledge of the
potential requires a numerical derivative. This process can introduce
significant error. On the other hand, surface based methods such as the
boundary element method calculate surface charge from which the electric
field can be obtained without differentiation.

The Monte Carlo method

At first, the Monte Carlo method appears to be completely unrelated to the
finite difference method, but it is related by the fact that in an electrostatic
field the potential at the center of a sphere can be written as the average of
the potential over the surface of the sphere (Pickles, 1977; Beasley et. al.
1979). In two dimensions, this is equivalent to the following mathematical
statement,

V(x,y)= ijv (x(¢), y(¢))e (6.3.14)

2ma
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where (x,y) is at the center of a circle of radius “a” , C is the perimeter of the
circle and the entire circle is within a Laplacian field.

It is useful to note that (6.3.13) is a specific example of (6.3.14) in two
dimensions. But, before making the connection, consider the same geometry
as in Fig 6.3.4, but where the top side is assigned the value 1 and the
remaining sides assigned the value 0. In a moment, the meanings of these
will be described. This geometry is shown in Fig. 6.3.5.

Consider next a “random walk” beginning at (x,y). Each step of the
random walk is of length A and each step is in one of four directions; each
with equal probability. These are up, right, down and left. The random walk
shown in Fig. 6.3.5 eventually ends on the top surface. At the end of any
walk that ends on the top, the number one is assigned to it and added to a
sum. If, on the other hand, the walk ends on one of the other surfaces, it is
assigned a zero and also added to the sum (of course, the sum is not changed
by the addition of zero). After a large number of random walks, this sum
(divided by the number of random walks) is an estimate of the probability
that a random walk will end on the top surface. The larger the number of
random walks, the more accurate the estimate.

1

o o8 0 o o
1
®e ¢ o-o-9 o
\ 1

° ‘___-‘ o-¢ o

,0—--0--4--43 o o
1

o--o-o

o e o

Fig. 6.3.5 A random walk from (x,y) to the top surface.

Now, there is another (and apparently completely different) way of
calculating the probability that a random walk ends on the top surface.
Consider the probability that a random walk starting at (x,y) ends up at (x+A,
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y) after the first step. Since by symmetry, it is equally probable that the walk
will proceed in any one of the four directions, it can be said that

P(x+A, yx,y)= (6.3.15)

1
4

This notation is read as, the probability that the random walk which starts
at (x,y) proceeds to (x+A, y) at the next step of the walk. Since there are only
four initial steps that can be taken, and it is assumed that each step of the
random walk is selected in a way that is independent of the others, it is
possible to write an expression for the probability that the random walk ends

on the top as
(6.3.16)

1
Prp (%, ¥) = 5 1Py (X 4, Y)+ Py (X~ 4, Y )+ Py (x,y + ) + Py (x,y ~ )

This equation is read, “the probability that the random walk eventually
hits the top is equal to the probability that it first goes to the right (i.e., %/4)
and then goes to the top from there plus the probability that it first goes to
the left (i.e., ¥/4) etc.” This equation holds for every starting point within the
region.

What is interesting is that (6.3.16) has exactly the same form as (6.3.13).
Hence, it is possible to calculate Piop(x,y) by solving asset of linear equations.
But, of course, this requires that one solve for all of the probabilities
simultaneously. This may be wasted effort if it is only desired to know the
potential at one or a few points. To understand this is to discover the power
of the Monte Carlo method. To estimate Pup(x,y) using random walks, it is
only necessary to calculate this probability at one point.

It can be shown that the error in the estimate of Pip(X,y) is proportional

to 1/+/N where N is the number of random walks. Thus, time can be traded
for accuracy.

Without going into details, it can be said that there are numerous ways to
accelerate the random walk process including the so-called “floating random
walk” method. These have been built in to programs to estimate potential in
very complicated three-dimensional geometries. The method has been found
to be useful when it is only necessary to find a reasonable estimate of the
potential or electric field at a small number of points.

The finite element method 4

As with the earlier summaries, the purpose of this discussion of the finite
element method is not to replace the voluminous literature on this method
(Zienkiewicz, 1971). Rather, it is to give an intuitive introduction to the
method using the relatively simple problem shown in Fig. 6.2.11 of this
chapter as context.
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The finite element method for electrostatics usually involves a variational
method (Zienkiewicz, 1971; Schwab 1988). This means that a “functional” is
considered, where a functional is a function of a function (i.e., F(f(x)). Often
it can be shown that a functional is minimized when the function is the
solution of a differential equation such as Laplace’s equation. The functional
usually used for identifying solutions to electrostatic problems is the potential
energy stored in the field. This functional (in two dimensions to be
consistent with the other numerical methods introduced here) is

1
W, = 5% H|E(x, y)|2 dxdy (6.3.17)
A

where A is the area of interest and %80|E(X, y)|2 is the energy density at any

point within the area of interest. When subjected to appropriate boundary
conditions, minimizing this energy has been shown to be equivalent to
solving Laplace’s equation (Stratton. 1941).

Since E = —V(y/) where ¢ is a scalar potential,

1
AZE I

A U dxj ( dy ndxdy (63.18)

At this point, the strategy is as follows:

—_

The area of interest is discretized into individual “elements”

2. The potential (i.e., {) within each sub-area is approximated by a
relatively simple function

3. A set of “element” equations is developed that forms a “system” of
linear equations

4. A “system matrix” is assembled

Boundary conditions are introduced and the solution to the set of

linear equations is found.

1

Discretization is generally done by subdividing the region into N.
elements of variable size and shape; usually triangles in two dimensions as
shown in Fig. 6.3.6. The potential within the region is defined at the vertices
of each triangle shown as the points in Fig. 6.36. The total number of points
is N, = N, + Ny, where N, is the number of points for which the potential is
unknown and N is the number of points on the boundary with known
potential.
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Fig. 6.3.6 Rectangular region discretized for application of the finite element method.

The functional in (6.3.18) is for the entire region of interest, but, of
course, it is also possible to write the value of this functional for any of the
elements within the region. For the n element with area AA,, the functional
becomes

1 el (A (de
W, _ZEOAIA{{[ dx) +[dy] dedy (6.3.19)

Over each element, the unknown potential is approximated by function
that is characterized by unknown constants where the linear approximation is
the simplest and is shown in (6.3.20)

v (X y)=a +a,x+a,y (6.3.20)
where the constants aj, a» and a; are unknown constants. The constants can

be determined in terms of the unknown potentials at the three vertices (i,j,k)
of each triangle as:
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l//(xi’yi); a +a,X; +asy;
wlx,,y,)za +a,x +a,y, (63.21)

w(X, Y )=a, +a,x, +a,y,

The set of equations (6.3.21) can be solved for the unknown coefficients
in terms of the potentials at the locations of the vertices.

= f(‘//nWJ’Wk’Xu j’Xk’yi’yj’yk) m=1,2,3 (6.3.22)

Given these, it is possible to write an approximate expression for the
potential within any particular element AA as

Wan, (X1 Y) =N, (X1 y)’//i +Nj, (X1 Y)‘/’j + Ny, (X1 Y)‘//k (6.3.23)

where

Nio (X, y) = ((ijk — X y,-)+(y,- — Yk )x+(xk —xj)y) (6.3.24)

1
2AA,
where AA, is the area of this n® triangular element. The other functions

N, (X, y) and N, (X,y) can be obtained by cyclically permuting the indices.

To set up the equations using the variational approach, the partial
derivatives of the approximate potential functions in each sub-area with
respect to x and y are taken. The result is

O, ONp(xy)  ONL(XY) AN (xy)
x - ax T T

(6.3.25)

al//AAn _ 8Nin (X, y) oN jn (X’ y) oN kn (X’ y)
y oy Ty Ny

These derivatives can be substituted into (6.3.18) to get the functional for
the total area. This result is

- %goi ] (d%’*" J (d'g;’\‘ j dxdy (6.3.26)

n=1 AA,

Given (6.3.25), and after performing the integrations, (6.3.26) can be
written as
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Np

1
W, = Egoz by +y, by 6.3.27)
i=1 1

I=
J#

where most of the /s are equal to zero since they are only non-zero for
adjacent points within the area.

To find the minimum energy of the functional, (6.3.27) can be
differentiated with respect to each potential and the derivative then set to
zero™.

Wa _ 0 1<i<N, (6.3.28)
oy,
The result is
aW Np Np
- A= 20+ by =0 1<i<N,  (63.29)
Vi i-1 j=1

J#i

which is a set of linear equations in y; where P; =&b; and

Py = &by /2, j # i that can be written in matrix form as

[PIw]=0 (6.3.30)

where [P] is called the “permittivity” matrix and [l// ] is the matrix of
potentials. As mentioned eatlier, however, this equation is not useful in this
form because (while it is square) it involves equations developed assuming
that the known boundary potentials can be varied. In addition, it can be
shown to be a singular matrix (Schwab, 1988).

This issue can be resolved by partitioning the matrix into sub matrices
that relate separately to the unknown potential within area A and the known
boundary potentials. The result is

|:PAA Pas :|E/IA:| ~0 (6.3.33)
Pon  Pes W5

Since the boundary potentials are known, the top equations can be
rewritten as

%8 At this point, the derivative is taken with respect to all potentials included the known
boundary potentials. Later the equations developed using these derivatives will be ignored
since these potentials are known
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[Py al+[Pelve]=0 (6.3.34)

Finally,

[PAA ][‘//A] = _[PAB ][WB ] (6.3.35)

This set of linear equations can be solved for the unknown potentials
either by matrix solutions technique designed for sparse matrices or (often)
by an iterative technique.

6.4 Problems

P6.1. For a material with a dielectric constant &, = 3, find

a. The capacitance per unit area for a parallel plate capacitor with a plate
spacing of 1 mm.

b. The capacitance per unit length for a coaxial capacitor with dimensions a;
=2 mm and 2, = 1 mm.

c. The capacitance of a spherical capacitor with a; = 15 cm and 2, = 10 cm.
What happens to the capacitance if &, = 1and a; — % ? This is the self

capacitance of a spherical electrode in free space and is often useful in
electromagnetic compatibility calculations.

P6.2. A conductor with a voltage V = 1 kV is located in free space at a
distance yq = 1 meter above an interface.

a) Find the line charge per unit length P assuming that the medium below
the interface is a perfect conductor.

b) For the medium in a), use image theory to calculate the vertical electric
field E, at (xy) = (0,0). Refer to Section 5.4 for background on the fields of

line charges.

c) If the perfect conductor is replaced with a dielectric with relative dielectric
constant &, = 2, but eh charge density of the line charge remains the same as
in a), calculate the vertical electric field E at (x;y) = (0,8) as 8 — 0. Then
calculate E, in the lower dielectric medium at (x,y) = (0,-6) as  — 0. Are the

relevant boundary conditions satisfied?

P6.3. Calculate the electric fields E, and E, in the geometry of Fig. 6.2.9 at

the given locations for the parameters Vo = 100 kV and h = 1 meter.
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a. For (xy) = (- 2, 0) meters calculate E . Assume that the field point is

far enough into the capacitor for the parallel plate approximation to be
valid.

b. For (x)) = (- h/mn + 8, h) meters use (6.2.73) to calculate E, where &
<< h. Compare this result with the result of part a).

P6.4. Determine an expression for F in (6.2.32).

P6.5. A small house is modeled as a hemispherical igloo (i.e., Using image
theory, this is equivalent to half of the spherical shell shown in Fig. 6.2.7).

a. Starting with (6.2.30) and (6.2.33), show that the shielding factor (SF) for
r < a; (defined as E/Ey) is

92, (1-A)

SF =
92, —(2+&, J1+2&,)A

where A = (1—1/5)

b. Note that in this form, it is more clear that the shielding factor — 1 if the
thickness of the wall becomes zero.

c. Determine the 60 Hz electric field shielding factor for a house
constructed of Douglas Fir with a 25% moisture content (&£, ~ 2.0 - j
4.3), radius 5 meters and a thickness of 0.2 meters.

P6.6. Consider a 2-dimension problem. A rectangular region has a width » =
4 and a height / = 8. The potentials on the four boundaries of the region
have been specified as that 7 = 1) at the top boundary and 7 = 0 at the
other three (left, right and bottom) boundaries. Let the lower left corner of
the region to be the origin of the coordinates, the bottom boundary to be on
x-axis and the left side boundary on y-axis, as shown in Fig. P.6.6.1

The region is divided into a grid with step size of 1. Set three observation
points on the grid at (2, 6), (2, 4), and (2, 2), whose potentials are assumed to
be 11, 12, and 13, respectively. In this problem, four different methods will
be applied to investigate the potentials at the observation points.

a. Use the infinite series method of (6.2.91) and (6.2.90) to find the exact
solution to the potential at the three points, (x, 5) = (2,2), (2,4) and (2,6) (i.e.,
17, V2and 15) in the region. Write a program (in any language you prefer)
to calculate these potentials. If you wish, calculate the potential over the
whole region and plot constant voltage contours for your results.
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Fig. P6.6.1. A rectangular region with specified potentials on the boundaries

b. Apply the Monte Carlo method to find the potentials on the three
observation points. Use at least ten random walks for each point if you do
the calculation by hand. If you do not have a random number generator, you
may generate random numbers using a 6 sided die and throwing it again if
cither the 5 or 6 come up. If you do this using a computer program, you can
use a finer grid to do the simulation if you wish.

c. Use the grid with larger step size (step size of 2) shown in Fig. P.6.6.2.
Apply the finite difference method to calculate 11, 1%, and 1.

d) Apply the charge simulation method to set up equations for finding 1,
175, and 17; (it is not necessary to solve these equations). Assume there is one
equivalent line charge (with unknown line charge density) outside the center
of each boundary where the distance between the line charge and its
corresponding boundary is 4, as shown in Fig. P.6.6.3. Assume 4 = 0.5 if you
solve the problem by hand. Note that by symmetry, p, = ps. The equations
can be found by matching boundary conditions at the center of each surface.

It is only necessary to set up three equations since P, = pg.
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Chapter VII

Propagation on an Infinitely Long Multiconductor
Transmission Line above Homogeneous Earth

7.1 The Balanced Two Wire Line — Arbitrary
Frequency

Introduction

A study of the case for two conductors adds some complexity to the
problem because there are two unknown currents. As a result, there are not
only “spectral” modes (i.e., transmission line, surface attached and radiation
modes) similar to those discussed in Chapter 4 for the single wire line, but
“geometric” modes or “components” that relate to the relative currents on
each conductor of the transmission system. Here, care will be taken to be
clear about which category (i.e, spectral modes or geometric
modes/components) is the subject of the discussion.

X, = d/2 /\/E

X1 = ‘d/z e
— — @ —@—
2a 2a
conductoril conductor #2

y1=Y,=h

X

TIT7T7T7T7T7TTTT77T777

Fig. 7.1.1. Cross sectional geometry of a two wire transmission

The technique for solving for the propagation of currents on a single
conductor can be readily extended to the case for multiple wires. Here, the
case for two wires at identical heights above the earth is given because the
additional steps in the process can be presented without obscuring the results
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with excessive complication. Consider the case shown in Fig. 7.1.1 for two
infinitely long parallel conductors at a height h above the earth and separated
by a distance d, constructed of the same material and with the same radius, a.
It has been assumed that there is an external source as shown in the figure
and that each conductor is driven by a sinusoidal voltage source (different for
each conductor but not shown in the figure) at z = 0. More about the case
for external sources has been given by Olsen and Aburwein (1980) and by
Wait (1977).

The method by which this problem can be solved is identical to that for
the single wire case except that there is an additional source of field (i.e., the
second conductor). Hence, there will be two coupled equations (one for
each conductor boundary condition) rather than a single one as in Chapter 4.
These equations will be expressed here in matrix form.

As with the general solution presented in Chapter 4, the solution to these
equations is formally valid at any frequency for which the conductor radius a
is small compared to other dimensions and the wavelength at the frequency
of interest, for which the earth is represented by electrical constants
appropriate to the frequency and for which the conductor is appropriately

modeled by its conductance o,,. As a result, the solution can be used to

solve antenna problems at high frequency as well as power line propagation
problems at low frequency. These two extremes are not separate issues and
it is sometimes important that this not be forgotten. In fact, there are certain
cases (such as for calculating electromagnetic interference from corona) for
which general theory is needed even for analysis of power transmission lines.

Just as for Chapter 4, however, it is recognized that the interest of many
readers is restricted to the behavior of power lines at lower frequencies (i.e.,
generally below 1 MHz). Thus, there is no need for these readers to spend a
great deal of effort to understand the remainder of this first section of the
chapter. Rather, these readers can skip topics marked with a < here and in
the table of contents and proceed to Section 7.2 where a special introduction
is written for readers who have skipped earlier sections.

In the Section 7.2 systematic mathematical approximations to the exact
solution will be made with care taken to list exactly the conditions under
which each approximation is valid. These approximations include those that
lead to equivalent transmission line theory. Following this is a section on
mode coupling through reflection and non-symmetric transmission lines for
which symmetric excitation do not produce symmetric currents. Finally, the
theory is extended to transmission lines with an arbitrary number of
conductors that may include shield wires.

Derivation for the general frequency case 4

Using the previously derived result for the axially directed electric field of a
conductor from (4.4.50), (4.4.50) and (4.4.19) two equations in the spatial
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Fourier transform domain for the unknown currents on the two conductors
can be obtained as®

é:zlll(j/)-l_éizzrz(}/)—i_ E’:'ez (_d /Z,h—a,]/)Z _\71 +Ziwi(7) (7.1.1)

L)+ Ead/2h-a)=V,+Z,0,(y) @12

where ég-zl zéezzz Zéez (O,h—a,h,;/) and é-izz :éezzl Zéez(d,h—a,h,)/)

while Eel (—d/ 2,h—a, ]/) and Eez (d/ 2,h—a, ]/) represent the axial electric

field of the external source at each conductor. V,and V,represent the

voltage at z = 0 of the source in series with each conductor.
Here (from (4.4.54) and (4.4.14)

éez[x—xl,y,h,yJ—
2

1 {(}/2 _kg HéZ)((kOZ _yz)l/ZrlJ_ Héz)L(kS _72)1/2r1iJ

(7.1.3)

dwe, ) )
~2kZP(y)+ 2kZ7°Q(y )}
where
2 1/2
=] x=x | +(y=h)
2 2
) 172’
r=|{x=x, | +(y+h)
2 2
Im(kz —52J"* <0
(y+h) j'{“l]
_ J 2 g uly+h)g 2
P == d 7.1.4
() (ﬁjj P (7.1.4)
and

% Note that the physical dimensions of Ec, and V are both “volts” in the Fourier transform
domain.
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jx| x=x
Q)= (Jzﬁe% e [ ] dic. (7.1.5)

s kZu +k02u2

U, = &> +7° -k Re(n;) = 0
u, =’ +y° -k’ Re(uz) = 0

Equations (7.1.1) and (7.1.2) can be written more compactly as

S11 <12 = 4
S LR N (7.1.6)
G Gez Ziw |2 V E2

where  (given symmetry and  reciprocity) GH -2z, =GZ -z, and

éizz zéél. Eez and EezZ are, respectively, the axial electric fields of the

external source evaluated at the bottom surfaces of conductor 1 and 2.

The matrix in (7.1.6) is a 2 x 2 matrix. It is known that if it has 2 distinct
eigenvalues, then it has two distinct eigenvectors that are orthogonal with
respect to it (Wiley 1966). It is also known that any two element vector (e.g.,

| | | ) can be expanded in this set of eigenvectors so that

(7.1.7)

where| | |1s the matrix of “geometric component” amplitudes (often

referred to in the power engineering literature simply as “mode” amplitudes),
and |p|is the a square matrix (by columns) of normalized eigenvectors of the

square matrix in (7.1.6). Since the matrix in (7.1.6) is symmetric, it can be
written

AB 7.1.8
B A (7.1.8)
The eigenvalues of this matrix (\)* are defined by
A B
‘ dal - [ (7.1.9)
B A a b

80 Not to be confused with A, used later to designate “wavelength”
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where the vectors { = (qa ) qb) are its eigenvectors®'. Since (7.1.9) represents

a homogeneous set of equations, it only has a solution if

A-1 B
det =0 . (7.1.10)
A-1
This occurs when the quadratic
22 —2A%+(A? -B?)=0. (7.1.11)
Hence the eigenvalues are
A, =A+B=GYl -7 +G2 (7.1.12)

2

The eigenvectors can be found by inserting the eigenvalues into (7.1.9) as

da
=0 7.1.13
Jp ( )

+B B
B +B

Given that the matrix in (7.1.13) is symmetric its eigenvectors are simply

q, =a, and G, =a, (7.1.14)

1
-1
where a; and a, are arbitrary constants. ; represents the common
component (again often called the “common mode”) which has equal

currents on each conductor and {,represents the differential component

(again often called the “differential mode.)”
These eigenvectors can be written as a matrix of eigenvectors (by
columns) that are normalized to a magnitude of 1 as

1111
szﬁ 1_1‘ (7.1.15)

S A
=<

If the column matrix of conductor currents |, and |, is expanded in the
eigenvectors of the symmetric matrix in (7.1.0), then

81 Not to be confused with q used later to represent charge

297



(7.1.16)

b=
|
« b
3
El

N

S

g and I, are the “geometric mode” amplitudes.

where |
If (7.1.16) is substituted into (7.1.6) and the entire equation pre-multiplied

by the inverse matrix |77|71 which (in this case) is equal to |r|

(7.1.17)
1 11 é:zl_ziw CEelzz 11 it@lml_ 1 11 _Al_ézle
IR - = R L 1 AL N>

But, pre-multiplying and post-multiplying a matrix by a matrix of its
eigenvectors results in a diagonalized matrix of eigenvalues as follows (Wiley

1966).

(7.1.18)
|77|’1 éizl - Ziw 66122 | | _ 1 (—';‘-celz:L - Ziw + é:zz 0
G, G -Zu 2 0 Go —Zw—Gq
In addition, the right hand side of (7.1.17) becomes
1 1 7 = —1 2
‘ ‘ Vi—E. 1+V +EL+E (7.1.19)
1 -1 J-v,-E, V, +EL - Ejz
so that
(7.1.20)
léizl_ziw+é:f 0 rgml ___1 "1 +\72 +€l +E2
2| 0 G2oz,-GE[ |TVEN, v, 1 -

Differential and common Modes 4
Since the matrix is diagonalized, the solutions to this equation for the
component amplitudes can be obtained by simple inspection as

\/—V +V, +E1 +E2
11 12
G, -Z,,+G,

(7.1.21)
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2 V, V+E1 E2
=24 S g (7.1.22)

From these results, it is trivial to find formal solutions for the actual
conductor currents by using (7.1.16). If, for example, the external electric

L A

fields Eez and EeZ are assumed to be zero, and V, =V =-V,, Iy =0 and

only the differential geometric mode is excited. Given this,

L
l

: N
e = (7.1.23)

=
N

Similarly (i.e., if, again, the external fields are zero), if \71 =V 2\72,

| g2 = 0 and only the “common” geometric mode is excited. Given this,

— (124
' ’ G;zl_ziw +Ge122 -

In general, however, both geometric modes will be excited but (as will be
illustrated in the next section) each has a distinct propagation constant and
the rate at which each geometric mode is attenuated as it propagates along
the wires will be different.

It is now possible to calculate the inverse Fourier transform of (7.1.23) to
calculate the currents in space using the methods of Chapter 4 (i.e., Section
4.7). However, because the frequency is still arbitrary, it is a difficult process
because the singularities of éizl -Z,, —(3322 are (in general) difficult to
identify and this can obscure the process of finding currents on
multiconductor transmission lines. For this reason, the material covered in
Section 7.2 that includes a derivation of the currents in the space domain will
be restricted to the low frequency case.

7.2 The balanced two wire line — low frequency

Introduction

It was shown in the last section that a matrix equation can be set up for the
currents on parallel wires excited by a voltage source inserted in series with
each wire at z = 0 and an external source of electric field. This equation is
repeated here as
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~11 ~12
Gez - Ziw Gez
~21 ~ 22
Gez Gez _Zi

=

ez

~V, —EZ

>4

(7.2.1)

L
<

where GY =G2 =G_(0,h—ah,y) and GZ=G% =G, (d,h—a,h,y).

—Vl—El‘

w

N

Given symmetry and reciprocity, é:zl -Z,, = é:f -Z,

w

<12 _ S21 EL
and GY =G2'.E,
=2 . . .
and E,, are, respectively, the external axial electric fields of the external

source evaluated at the bottom surfaces of conductors 1 and 2.

For the reader who is beginning with this section, (7.1.3) — (7.1.5) are
repeated here as

(7.2.2)
Gl x=x0,yhy [=—— {2 —k2 M| (k2 = 2} r, [~ R (k2 = 2],
) dos, ) )
~2kZP(y)+ 221 Q(y)}
where
2 1/2
r = x—xll +(y—h)
2 2
2 1/2
rl = xle +(y+hy
2 2
Im(ko2 —)/2)1/2 <0
(y+h) ’[]
- J 2 g -ulyrh)g 2
P == d 7.2.3
() (ﬁjj PR (7.2.3)
and
(yeh) '{]
~ j2\re e
= == dx. 7.2.4
Q) (njj ki, Y

U, =&’ +y° -k Re(u;) > 0
U, =2 +y° -k’ Re(uz) 2 0
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As was the case in Chapter 4, it is not important for the reader who has
skipped most of Sections 7.1 to understand the details of (7.2.2) — (7.2.4).
Rather, it is important only to recognize that they represent an exact closed
form solution valid at nearly all frequencies and that will be used here to
develop expressions that are very familiar to power engineers.

The low frequency approximation
In order to provide a better understanding of the process for finding currents
on multiple conductor transmission lines, the first case studied will be limited
to a two-conductor line that has a symmetrical geometry (i.e., Fig. 7.1.1) and
is operated at “low” frequency.

At low frequencies, the terms containing the Hankel functions in (7.2.2)

can be replaced by small argument expansions and are independent of K,

Q(») is proportional to 1/k; and P(y) is proportional to 1/k,. Thus, Q(y)

can be ignored at low frequencies under most circumstances since
k| >> |ko| -

Given the small argument expansion for the Hankel function,

N
()= - Jm(q/z) e

where y. is Euler’s constant, the first two terms of (7.2.2) become

J (yz—kg)ln(rli/rlJ. (7.2.5)

2rwe, >

In addition,

) _ uy (y+h)
:ﬂj Uy~ Uy e cos x| X—X, | |[dx
75 .) :

—u, u, +u
1% -uy(y+h)
;—JI (- UZZ)e ~—C0g k| Xx—X, | [dx (7.2.6)
3 (k2K :
;——jz'[ (u—x)e™ " co K[X—le dx
2 0 2

where U=x’— k22 , Re(u) = 0 and U; =k over most of the integration®

since 1/(2h)>>k,. Note that (7.2.6) is essentially a generalization of
Carson’s integral (i.e., (4.7.5) and (4.7.0)) to arbitrary locations in space.

82 this type of approximation is often called a “quasi-static” approximation.
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Thus,
(7.2.7)

ée{xxl, y,h,y}z J (;/2 k(f)ln{rli /rl}Lng{xxl,y,hJ
2

5 2T we, , o

where

Jc(x —X., Y, hj = £'f(u —x)e UM o K{X -~ xlj dc  (7.2.8)
0

and
U=+x>—k? .
As in Section 7.1, the currents on the conductors can be found by solving
the following matrix equation
5 1
_Vl ke
~V, -

(7.2.9)

I,

L

|2

~11 ~12
Gez - Ziw Gez
~21 ~22
Gez Gez - Ziw

— 74
2
ez

my Mp

To facilitate solution of (7.2.9) at these low frequencies, G.; is cast in the

following form

- 2
G, | X=X, y,h,y |=— Z| x=X;,y,h +7_/— X=X, Y,h|| (7.2.10)
2 Ja) 2

2

Where

Z{x—xl, Y, h] = oo In(rli /rlJ—Jc(x—xl, Y, h] (7.2.11)
272- 2 2 2

2

is a mutual impedance per unit length and

27,

In[rli /rlJ
A{x—xl,y,h]=# (7.2.12)

2
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where A{X - XY, h} is the “potential coefficient” (i.e., the space potential

2

at (X, ) for a line charge with unit amplitude at {Xl , hJ and above a perfect

2

ground plane.
Using these results in (7.2.9) yields

7 y?
Zy+Zy,+—A, Ziy+—A, = !

A
=

2 2
Z o+ A, 2,47, + LA, () M +EG
jo jo

where

Z,=2,=2(0h-ah), Z,=2, =2(d,h-ah),
A=Ay = A(O’h_a’h)’ Ay = Ay = A(d’h_a1h)
Terms can be collected and (7.2.13) written as

{ }Uﬂ=%+%
|~2 (7 Az + Ee22

If the notation |Z| is interpreted as the matrix of impedance elements in

le + ZiW ZlZ
ZZl Z22 + Ziw

Al Ay
An Ay

2
A

: (7.2.14)
jow

(7.2.14) and |A| is interpreted as the matrix of potential coefficients, then

jolA " = jeiC|= Y| (7.2.15)

where |Y|is the admittance matrix for the two conductors which is equal to
jo|C|where |Clis the capacitance matrix for the conductors above a perfect

earth®.
If now, (7.2.14) is multiplied by |V|

ﬂY||Z|+7/2>(IA‘:|Y|’VA+ E‘ (7.2.16)

8 Some elements of |C| are negative and do not represent physical capacitors. The
relationship between | C | and a network of equivalent capacitors between the conductors
and the earth is discussed in Problem P7.2
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where | | | is the matrix of conductor currents and | V+E | is the matrix of
conductor source voltages and external fields.

Solving for the modes
In the balanced symmetrical two conductor case shown in Fig. 7.1.1, |Y|Z|
can be written as
|Y||Z| _ (Zn +Z, )Y11 + 2V, (Zu +Zy, )le +ZpYn (7.217)
LYy + (Zn +Zy, )le (Zu + 2y, )Yn + 2V,
This matrix has the same form as the matrix in (7.1.0)
AE 2.18
7.2
B A (7.2.18)

as (7.1.6) and hence, the properties of this matrix developed earlier can be
used again here.

As in Section 7.1, if ‘QZ‘ = |Y||Z|is a 2 x 2 matrix and has 2 distinct
eigenvalues, then it has two distinct eigenvectors that are orthogonal with
respect to‘Qz‘ (Wiley 19606). |77| is the same square matrix (by columns) of

normalized eigenvectors as shown in (7.1.19)

111
|77|:E L 1 (7.2.19)

Further, in this low frequency case, the eigenvalues can be written
explicitly as®

(7.2.20)
A= (le + 2, + 2, Yy +le) and 4, = (Zn +2y =Ly, )(Yn _le)

S
=~

Then, any two component vector (e.g., | | ) can be expanded in this set

of eigenvectors so that

| (7.2.21)

=l

84 Again, A is not to be confused with the wavelength that will be used later.
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wherel |~grn |is the matrix of “geometric mode” amplitudes. Using the
substitution (7.2.21), (7.2.16) becomes

{QZWﬂ+yZWth

=|Y|V +E| (7.2.22)

Now (as in Section 7.1) it can be shown that |77|_l = |77| and

7l *Q%nl =[] (7.2.23)

. . . . 2
where ‘Q; ‘ is a diagonal matrix of the eigenvalues of ‘Q ‘ Hence,

premultiplying (7.2.22) by |77|_1 gives

s+ ufi

-l ¥+ 7224

where |U | is the unitary matrix.

Now, for the specific problem being considered here ‘de ‘can be

11
1 -
(7.2.25)

_ i‘(zn + Ziw + le Yll +Y12) (le + Ziw B le )(Yn _Yiz))‘
2 (le + Ziw + le )(Yll +Y12) - (le + Ziw - le )(Y11 _Y12

calculated in the following way

(le + ZiW )Yll + Z12Y12 (le + ZiW )YlZ + ZlZYll
ZlZYll + (le + Ziw )YlZ (le + Ziw )Yll + ZlZY12

1
2

and
(7.2.26)
i‘l 1Ji(211+ziw+zlz Y11+Y12) (211+Ziw_z12)(Y11_Y12)J:
\/51 - 2 (le+ziw+212 Y11+Y12) _<211+Ziw_212 Y11_Y12
(Z11 + Ziw + le )(Yn +Y1z) 0 J
0 (Zu * Ziw - le )(Yu _le
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Thus,
1

V2

(7.2.27)

(Zn + Ziw * 212 )(Yn "‘le) 0 J_I_ 72
0 (211 + 2y - le Y11 _le

w

1 1JY11(\71 + E:z)"'le(\iz + Eezzj 1 (Yn "'le{ Al + Eelz +\72 + Eezzj

L - le(\i1 + Eelzj"'Yn(\;z + Eezz) ¢ (Yn _Y12{ A1 + IEelz _\72 - Eezzj

Explicit solutions for differential and common niodes
(7.2.27) can easily be solved to obtain

)

(Y, +Y, )(\71 + Eelz +V, + Eezz)
y)= (7.2.28)
( \/E[(Yll +le)(zn +Z,, +le)+72]

(common geometric mode)

gml

2 (Yll _Y12 (\71 - Eiz _\72 + Eei)
| = 7.2.29
o (7/) \/E[(Yll =Y, )(Zn +Ziw =2y )+ e ] ( :

(differential geometric mode)

These are the two geometric components of the current (again, often
simply called “modes” in the power industry). The first is the amplitude of
the common geometric component (or common mode or ground mode as
used in power engineering terminology) and the second is the differential
geometric component mode (or differential mode).

To complete these expressions for the current, explicit expressions for the
impedances and admittances will be identified. Using (7.2.11) as the basis,

the expression for the impedances in (7.2.28) and (7.2.29) are
(7.2.30)

2,42, 2, :%{In[%hji InGj— 3.(0h-a,h)FJ,(d,h-a, h)}+ Z,,

where s = [(Zh)2 +d? ]1/2 and it has been assumed that z << 4. In each case,

the log terms can be combined so that
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(7.2.31)

Z,+2,+Z, :%{ln(z—mj—Jc(o, h—ah)-J (d,h-a, h)}+zivv
2 ad

and
(7.2.32)

Z, -7, +2,, =% {m(zr‘d}—ac(o,h—a, h)+ Jc(d,h—a,h)}+ziw
2 as

Calculation of the admittance term (ie., Y;; £Y,,) is a bit more
complicated because the inverse of the potential coefficient matrix must be

evaluated first.
2h S
1 In| — In| —
A= a d (7.2.33)

<)

and its inverse can be shown to be

5 In(z—h) —In(ij
A = & a d (7.2.34)
2h S S 2h
In?l == |—In?| = ||=In| = | In —
25 )E) (%)
so that
12rwe, 2h
Y., = In| —
cm) o
a d
and
B — 27w, s
) o
a d

so that (in general)
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Y, 4+, = J2T5 ){ln(z—thn(iﬂ— 12708, 75 37)

Inz[ZhJ-—lnz(S d In(znqu

a d ad

Yy =Y = Jomwe, [m(z—hj + |n(ij} _ J2mws, (7.2.38)
InZ(ZhJ—InZ(Sj a d In(Zhdj

and

a d as

Finally, the individual conductor currents (in the spatial transform
domain) can be written as

A

(7.2.39)

Im

1111
V2] 1 -1

Thus, explicit expressions for the common and differential mode currents
can be written respectively as

(Yll + Y22 {\71 + E‘elz +\72 + E‘ezz)

=1, = (7.2.40)
b 20 - 72)
(common geometric mode)
where
J.\0,h—a,h)+J (d,h—ah
7c2 = ko2 1- C( ) ( ) - (Yll +Yp, )Ziw (7.2.41)
[Zhsj
In| —
ad
and
2 rS (Yll _Y12 {\71 + Eelz _\72 - Eezz)
I, =—1I, = (7.2.42)
P 20y*-72)
(differential geometric mode)
where
J.(0,h—a,h)-J.(d,h—a,h
75 = ké 1- ( ) ( ) - (Y11 =Y, )Ziw (7.2.43)




These expressions can be transformed into the spatial domain using the
inverse Fourier transform and same residue theory used in Section 4.7 More
specifically, following (4.7.22) — (4.7.23)

I,(2)=1,(2)= ™ e 7 (7.2.44)

for the common mode and for the differential mode

R R _j(Yn _Y12{\71+E:z(7/d)_\/2_éezz(7/d )) )
I,(2)=-1,(z)= 7 e 7 (7.2.45)
Y

It has been assumed that |m(7/C ), Im(yd ) <0.

Special cases

Closely spaced conductors — differential mode

Consider the case for which the two wires are close to each other compared
to the height above ground as shown in Fig. 7.2.1. Further, assume that the
external source amplitude is zero and that the voltage sources are

V, =V =-V,. In this case, the only currents excited are the differential
currents given in (7.2.45).

X, =-d/2 X, = d/2

—5 — Q@10
2a | 2a
conductor #1 conductor #2

y1=y,=h

TTTTTTTTTT 77777777777

Fig. 7.2.1 Two closely spaced conductors over a lossy earth.
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First, since h >> d, it can be shown that

J.(0,h—a,h)=J (d,h—a,h) (7.2.46)
and
s=1/(2h) +(d -a) =2h. (7.2.47)
Hence
R . _27%we N .
|1(Z) =-1, (Z) = —ﬂda)go g 7t (7.2.48)
In(a]yd
where
2rwe,L;,
yi =k - j—g (7.2.49)
In(]
a

In this case, the effect of the earth is negligible since the fields associated
with the conductor currents are confined to points near the conductors.
Also, the propagation constant is that for a transmission line mode on a pair
of wires in free space as expected. Since high voltage transmission line
conductors are relatively close to each other compared to their height above
the earth, it can be expected that (at least for modes for which the sum of the
currents is zero) the effect of the earth is relatively small. One practical
consequence of this is that a power transmission line with conductors that
are far from the earth suffers very little energy loss to the earth if it is driven
in a balanced fashion so that only the differential component is excited. The
only source of loss in (7.2.49) is Z,, the loss associated with the conductors.

Closely spaced conductors — common mode
Consider, again, the case for which the two wires are close to each other
compared to the height above ground as shown in Fig. 7.2.1. Further, assume
that the external source amplitude is zero and that the voltage sources are [
= 17 = 2. In this case, the only currents excited are the common currents
given in (7.2.44).

Again, (7.2.46) and (7.2.47) hold, so the common mode currents are

— 2 .
IAcml (Z) = IAcmZ (Z) = %‘C"Ovej}’cz (7250)
Inf ——
(@]7c

where
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J.(0,hh)| . zwe,Z,

2:k2 1_ c\Mth _ 0-iw
7/0 0 In[ 2h j Jln( 2h j (7251)

vad Jvad

It is interesting to note that this result has almost the same form as that
for a single conductor above earth as given in (4.7.20). The only differences

are 1) that the radius of the single conductor is replaced by the factor Jad
that is called the geomagnetic mean radius of the pair of conductors and 2)
the deletion of the factor of 2 in the last term comes from the fact that
having two wires in parallel decreases the impedance per unit length by a

factor of 2. The factor vad will surface again when conductor bundles are
discussed in Section 7.11. The attenuation constant for the ground mode
will generally be much larger than the attenuation constant for the
transmission line mode because the return current flows in the lossy earth.

Unbalance due to unsymmetrical terminations

Clearly, there is a transmission line equivalent for each “mode” that can

propagate on a two conductor transmission line. These are illustrated in Fig.

7.2.2 in the case for which there is no external source (i.e., EL, = EZ =0).
The propagation constants have been given earlier in (7.2.41) and (7.2.43).

The characteristic impedances for the “common” and “differential

transmission line modes are defined respectively as

N

Z — \/(le + ZiW + ZlZ) \/(le + ZlZ) (7252)
" (Yll + YlZ ) (Yll + YlZ )

and

N

(7.2.53)

2o (B

1 le)
(Yll - Y12 ) (Yll =Y

)

These transmission line modes can become “mixed” in two ways. First,
as shown above, a source that is not completely symmetric or anti-symmetric
will excite both common and differential modes. Thus, according to Fig.
7.2.2,if V; #V, or V, #-V,, both common and differential modes will be
excited and currents will be excited on both equivalent transmission lines.
Second, if the transmission line is finite in length, then the terminations of
the transmission line at its ends may (if the load is not perfectly symmetric or
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anti-symmetric) cause reflections that consist of both modes even if only one
is incident. Consider the impedance loading circuit illustrated in Fig. 7.2.3.

(Vi+V,)/2

e\

N/

-7, Zoc ™
Yc Yc

8 1
8|

()

~

—/
(Vi+V,)/2

(@)

81
8

(Vi+V,)/2

()

a)

/

-7, Zoc ™
Yc Yc

81
8!

[

~J

—/
(Vi+V,)/2

®)

Fig. 7.2.2. Equivalent transmission lines for a symmetric two wire transmission line above
the earth a) common mode b) differential mode

gt

8

If symmetry is preserved at the terminations, so that Z,,5 =Z, 5, then

the reflection coefficients for incident common and differential modes
respectively are

Z..12-Z
L =—ue &t (7.2.54)
2 12+2Z
224l
oD
Iy = 2, +27, ¢ _ 22,6 Zyy, _ZOD(ZLlZ +ZZ'-1G) (7.2.55)

22 L1G Z L12

o bbbl 27 LlGZLlZ + ZOD (Z L12 + 22LlG )
ZL12 +2Z L1G

+Zyp
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If however, Z,,5 # Z, 55 , the reflected wave is a mixture of common and

differential modes. The several pertinent reflection coefficients can be
derived as follows.

conductor#1 | conductor #2

12(0)

V,(0)

F1rrrrrrrrrrrrrrirrri

Fig. 7.2.3. Loads for a symmetric, two conductor transmission line at z = €.

Assume that the load is located at z = 0 and that the incident differential
and common mode waves are v, e V4% and Vg g respectively. In terms of

these incident wave amplitudes (i.e. v, and v, ) and appropriate in-mode

and cross-mode reflection coefficients, the voltages (with respect to perfect
earth) and currents at z = 0 are

Vl(o) = Vdf (1+ 1—‘dd + 1—‘dc)/z +ch (1+ 1—‘cc +ch )
vV, (O) Vo ((1-Tgg + Ty )/ 2+ vy (1+ I — Ty )
Il(o) =V (Yog = YoaLaa = Yoclae) + Ves (YOC ~Yoel'e = Yoal'w )

I, (0) =V (—You +YoaTaa = Yol ac) + Vs (Y0c —Yocl'e +Yoal'w )

0c™ cc

(7.2.56)

Here note that v is the voltage between the two conductors and (given
symmetry) the voltage between conductor 1 and 2 and ground is v, /2 and
—Vg 12, respectively, while v, is the voltage to ground of either conductor.

In addition, the direction of the differential mode current for each conductor
is opposite and, upon reflection, the current on either conductor changes
sign.

Application of nodal analysis to the system in Fig. 7.2.3 yields another
relationship between these voltages and currents
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I (O) =V, (O)(YLlG +Yi1 )_Vz (O)Yuz

I, (O) =-V, (O)Yle +V, (OXYLZG +Yi, ) (7:227

The unknown reflection coefficients can be found by assuming (in
succession) that the only incident wave is the differential (common) mode.
In the first case, v, =0 and equating the second two equations of (7.2.56) to

the two equations in (7.2.57) and using the first two of (7.2.56) yields

(Yod - YOd Fdd - YOcrdc ) =
(YLlG + Yo )(1"' Ly + T )/12=Y 3, (1T +T)/2

(7.2.58)
(—Yoa +Yoalaa —Yoclae) =
_YL12 (1+ Fdd + ch)/Z + (YLZG +Y|_12 )(_1_ Fdd + ch) /2

These can be rearranged in matrix form to give

YOd +YLlG /12 +YL12 Y0c +Y|_1(3 /2 ‘ Fdd _ YOd _YLlG /12 _YL12 (7 ) 59)

YOd +Y|_2<3 /12 +YL12 _YOC _YLZG /2 ch YOd _YLZG /12 _YLlZ
Equation (7.2.59) can be solved for I'yy and I'y, with the result

-1
rdd _ YOd +YLlG 12 +Y|_12 YOc +YLlG /12 YOd _YLlG /12 _YL12 (7 2 60)
ch YOd +YL2G 12 +Y|_12 _YOC _YLZG 12 YOd _YLZG 12 _YL12

Cleatly, in general, an incident differential mode wave causes both differential
and common mode reflected waves. However, it can be determined by

inspection that, if Z,,5 =Z,,5, additon of the two equations of (7.2.59)

results in

— YOd _YLlG /2 _YL12
Yoo *Yus /2+Y,

W , T, =0(7.2.61) (72.61)

which (after conversion to impedances) is identical to (7.2.55).
In the second case, v, =0 and equating the second two equations of

(7.2.56) to the two equations in (7.2.57) and using the first two of (7.2.50)
yields

(7.2.62)
Yo —Yocl e —Yoalea) = (Yue + Y )(1+Fcc +T) =YL @+, —Ty)
(YOC _YOCFOC +Y0drcd) = _YL (1+rcc +rcd ) + (YZQ +YL Xl_'_rcc _Fod )
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Again, these can be rearranged in matrix form to give

YOc +YL1G YOd +YL1G + 2YL12 Fcc _ YOc _YL1G (7.2.63)
YOc +YLZG _YOd _YLZG _2Y|_12 ch Y0c _YLZG
Equation (7.2.63) can be solved for I' ; and T’ .
-1
rcc _ Y0c +YLlG YOd +YLlG + 2YL12 Y0c _YLlG (7 256 4)
ch Y0c +Y|_2c3 _YOd _YLZG - 2Y|_12 YOc _YLZG

Again, in general, an incident common mode wave causes both differential
and common mode reflected waves. However, it can be determined by

inspection that, if Z ;5 =2, , addition of the two equations of (7.2.59)

results in

_ Yoo —Yie , T, =0 (7.2.65)
YOC +YL1G

cc

which (after conversion to impedances) is identical to (7.2.54).

7.3 Examples of Coupling to Multiconductor
Transmission Lines

Distant external field high frequency excitation (ightning)

Lightning strokes generate a significant amount of electromagnetic energy
that can interact with and disrupt the operation of the electric power
transmission and distribution system. In some cases (to be considered in
more detail later) the lightning stroke current is directly injected into the
power system. In others (the subject of this section), the effects are coupled
to the power system electromagnetically. Lightning strokes may occur from
cloud to ground or from cloud to cloud. While the purpose of this section is
to develop an electromagnetic coupling model rather than to review specific
lightning source models, it is appropriate to list a few examples of lightning
source models. A comprehensive review of electromagnetic models for
cloud to ground lightning has been given by Baba and Rakov (2007). Other
models have been described by Delfino et. al. (2011) and Shoory et. al.
(2005). Characteristics of Lightning in general as well as specific information
about cloud to cloud discharges can be found in (Uman, M. A. 2001).

In all cases, the fundamental element of the lightning model is an
elementary electric dipole. Here, this simple model will be used and further
specialized to one that is vertical and (so that the essential physics will not be
obscured by the mathematics) located in a vertical plane that contains the
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center of the power line (i.e., the yz plane in Fig. 7.3.1) to which its energy is
being coupled.

Consider again the case for which the two wires are close to each other
compared to the height above ground as shown in Fig. 7.2.1. Further, assume
that the voltage sources are zero, but there is an external field source. If the
external source is distant and the spacing of the wires is small compared to a

wavelength, then Ezle (7/)= Eze (}/)E Ezze (}/) and only the common mode is

excited. Hence, from (7.2.40) and (7.2.46),

A

2 2 Y, +Y,, )E
|1(7): |2(7/): ( 11 _ 22) 2ez (7/) (731)
(7/ -7 )
where
J27we
Y, +Y, :(Thsoj (7.3.2)
In| —
ad
and

J (0,h,h . T,

ve =kg| 1- { oh ) - ] ;h (7.3.3)
Inf| — Inf —
&) &)

Again, E,, (}/) represents the spatial Fourier transform with respect to z

of the incident electric field.
Using (7.3.1) and the inverse Fourier transform, the current in the space
domain can be written as

S

r " " ja)go T Eez(y) -j
1,(z)=1(z)=1,(z)= e d (7.3.4)
( ) ( ) 2( ) In[zr:jsj __[0(7/2 _7c2) /4
a

As mentioned above, the source is a distant vertical electric dipole source
with dipole moment (Isf) located in the yz plane at a distance R from the
origin of coordinates as shown in Fig. 7.3.1.

If R is large compared to the wavelength (A) in free space (ie. ,
k,R=27R/A >>1), the incident electric field in the yz plane as illustrated in

Fig. 7.3.1 can be written as (Ulaby, 2001)

|>

E..=—] %sin(@i Jexp(- jk,R)a, cos(6,)+a, sin(6,)) (7.3.5)
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1,8

(rrrrrrrrrrrrrrrrrrirg

Fig. 7.3.1. A plane wave traveling in the y z plane and incident on the earth at an angle 6;

Near the earth’s surface, this incident field can be approximated as a
parallel polarized plane wave where “parallel” means that the electric field is
parallel to the plane of incidence (i.e. the yz plane). Given this, the total
incident field is that of the incident plane wave and its reflection that is
required by the interface boundary conditions. The magnitude and phase of
this reflected wave is determined by multiplying the incident wave amplitude
by a Fresnel reflection coefficient appropriate to the polarization of the
incident field (Ulaby, 2001)

In the space domain, the plane wave and its reflection can be written as
(Ulaby 2001)

E(y,2)=E, (&, cos6,)+ &, sin(@) Jexpl- k, (zsin(6,) - ycos(s,)]

7.3.6
EL,, (éz cos(6;)-a, sin(6, ))exp[— jk,(zsin(6, )+ ycos(8,))] (736)
where the Fresnel reflection coefficient can be written as
2 . 2 _ 1 2cin2(n.
- k2 cos(@,)+\/k2 kZsin?(6,) 757
kZ cos(d, )+ \/kzz —kZsin?(,)
and
Eo=—] wsin(éﬂ Jexp(= jk,R) (7.3.8)

47R

Since only the z component is relevant to this derivation, it can be written
as
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E, (y,2) = E, cos(6) Jexpljk,y cos(6, )]+ T, expl- ik, ycos(d, )]}

exp[- jk,(zsin(8,))] (7.3.9)

The spatial Fourier transform of this expression with respect to z (see
(4.3.1)) is

E,(1,7) = 27, cos(6, Jexpljk, y cos(6, )]+ T, expl- jk,ycos(6,)]

) (7.3.10)
8y ~k, sin(4,))
where O (q) is the Dirac delta function of argument q.
Using this result, the final expression for the induced current is
(7.3.11)

((2,0)= jrwe,E, cos(ei).

In(ZhJ

Jad

[expl jkohcos(6,)]+ T, expl— jkohcos(6, )]
(k2sin?(6,)-72)

This result has an interpretation that may not be obvious initially. First,
the current has the same phase dependence with respect to z as that of the
incident plane wave. This is to be expected. However, as 6; approaches 90
degrees (i.e., grazing incidence), the amplitude of the induced current

exp(— jkyzsin(6,))

becomes  quite large. This occurs  because (kg sin?(6,)—y? )
=kZ COSZ(Hi)wL(yC2 -k )Ekj cos?(0,) since y. = kp. Hence the current is
inversely proportional to COS(Hi) until 6 is small enough that the term
(7/3 - koz) can no longer be neglected. This behavior has been noted in the
literature and is related to the fact that long conductors carrying traveling
wave currents radiate at grazing angles (Olsen and Usta, 1977; Olsen and
Aburwein, 1980).

As mentioned at the beginning of this section, it is beyond the scope of
this text to describe detailed electromagnetic models of lightning (Baba and
Rakov 2007). However, it is useful to summarize here how the work

described above can be used with lightning models to calculate the currents
that are induced by lightning on high voltage transmission lines.

Generally cloud to ground lightning is modeled as a currenti,(z,t) that

travels between ground and cloud (for the return stroke) in a vertical channel
as illustrated in Fig. 7.3.2.
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lightning currentiy(y-t/v)
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earth

X

Fig. 7.3.2. A vertical cloud to ground lightning channel of height h carrying a return stroke
current with a velocity v from the earth to the cloud.

The current induced on the transmission line due to this current can then
be calculated by

1) Transforming the current to the frequency domain by taking the
temporal Fourier transform using (7.3.12)

E(i (1) T (v.0)- [i, Otk c 7312
2) Decomposing Ts (y,®) into short “dipole” segments along the
lightning channel shown in Fig. 7.3.2.
3) Calculating the induced current [(z, @) from each segment using
(7.3.8) and (7.3.11) and summing to obtain the total induced current.
4) Transforming the induced current in the time domain using (7.3.13).

o0

,5_1(]*(2’@)): i(z,t)zzi jf(z,a))e+jwtdw (7.3.13)

T

Distant excternal field low frequency excitation (geomagnetic induced currents)

Electric power transmission systems have been designed to operate reliably
under well-defined terrestrial weather conditions. However, space weather
has also been shown to affect the operations of the transmission system
(NASA 2003). More specifically, the sun emits a constant stream of charged
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particles known as the solar wind that takes 4-5 days to reach the earth. This
activity is cyclic in time and peaks during a relatively short period of an 11
year cycle. The charged particles of the solar wind constitute an electric
current and interact with the earth’s magnetic field to cause disturbances in
the earth’s magnetic field called “magnetic storms.” Far from the earth’s
surface where the earth’s magnetic field is weak, these currents distort the
earth’s field so that it appears as a paraboloid pointing at the sun. At closer
distances where the earth’s field is larger and essentially undistorted, the
currents enter the ionosphere, flow along the magnetic field lines (in a more
or less east — west direction) and then exit back out of the ionosphere. These
ionospheric currents (called the ‘“auroral electrojet”) are largest in the
northern regions of the earth and are responsible for the visible and very
colorful aurora borealis. But the large quasi-DC (i.e., these currents vary on
a scale of one to several minutes) electric currents in the ionosphere can also
cause large unexpected geomagnetically induced currents (GICs) in high
voltage transmission lines (parallel to the currents) and their grounding
terminations (IEEE 2013). Absent sufficient warning and the use of
appropriate countermeasures, these GICs can cause a severe impact on the
transmission system (e.g, high harmonic levels due to saturation of
transformer cores, generator reactive power output swings, voltage dips,
negative sequence alarms and transformer failures) that can result in severe
system disturbances.

In March of 1989 a blackout occurred on the Hydro Quebec transmission
system that was attributed to the impact of geomagnetic disturbances caused
by solar storm activity (NERC 1989). This incident and numerous other
equipment malfunction and/or damage events in both North America and
Europe demonstrated the need to account for reliability risks due to space
weather and its resultant geomagnetically induced currents (Elovaara et. al.
1992).

As illustrated in Fig. 7.3.3, the quasi-DC ionospheric currents that cause
these disturbances are often modeled as high altitude infinitely-long
horizontal line currents although sometimes as infinitely-long finite-width
sheet currents or finite length horizontal currents with vertical segments at
the end to represent the entry and exit of currents from the ionosphere
(Pirjola and Hakkinen, 1991). The current resides in the ionosphere at a
height on the order of 100 km.

More specifically, Fig. 7.3.3 shows a high altitude auroral electrojet current
modeled as a line current parallel to the z axis that intersects the (x, y) plane
at (X, ys). It is assumed that the frequency of the electrojet current is w, and
that it propagates with propagation constant y, (shortly the variation of the
fields in time will be shown explicitly). Centered at (x, y) = (0, h) is (for
simplicity) a two conductor power line of length { terminated at each end by
a balanced transformer with a center tap that is grounded through an
impedance of Zaz at z = 0 and Zgi at z = £. It will be assumed here that the
current induced on the two conductors (the same holds for the set of three
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conductors in a three phase system) are identical and can be replaced by a
single conductor centered at (0, h).

high altitude electrojet current

IS exp(j(wst-VSz))

inc
Ez

/

Trrrrrrirrryirrirrriry

(X5)s)

rrrrrrrrrrrrrrrirriny

Fig. 7.3.3. High altitude auroral electrojet current above and parallel to a two conductor
transmission line.

The auroral electrojet current generates an incident z directed electric field
at a point (X, h) (see Section 5 for its derivation) that can be described as the

tield from the source in free space and a “complex image” that represents the
effect of the earth®

(7.3.14)
E‘eZ(X_XS’h’yS'Z):(-';-;ez(x_xs’l’]'ySfys)IAOe_j}/sz
j ! i 12
) oo s

= In| =
2rwe, r, 2r r

where

8% Note that this is not a divergence-less field as is often used in the GIC literature. Hence it
is necessary to identify the vertical electric field that reduces to the quasi-static electric field.
Its effect will be shown later to cancel out of the final expression so that the result is
equivalent to that derived under the assumption of a divergence-less current.
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2 +ijz
a= 5 SNPY NN
& e,

V2

CAO

r, :((x—xs)2 +(h—ys)2)u2 oo :((x—xs)2 +(h+ ys)z)uz.

This interpretation (i.e., source plus “complex image” ) is illustrated in
Fig. 7.3.4, Here the line current source is located in free space at (x, y) = (X,
ys) and its return current in the same free space at a complex depth y, + a.

and
o=

and

y e x y ‘_x54’|

. . B :
s Ys

//////////////x/ »—— ______________________ X
y.ta

o °

compleximage

Fig. 7.3.4. Geometry for Complex Image formation of the source field

In the formulations used here, it is also necessary to have an expression
for the vertical electric field which is

2 YV (h-y,) (h+y)|s —irez
E —X_,hvy..,z)= S SZ— 2 7s 7.3.15
y(X %, Ys.2) 27[6080{ (r.)’ (rsi )2 of ( )

It is shown in Section 10.3 of this text that for electrically short
transmission lines (almost always the case at the frequencies of interest here)
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the vertical electric field in (7.3.15) cancels a portion of the axial electric field
in (7.3.14) when integrated around the loop. The remaining part of the axial
electric field can be identified with inductive coupling between the electrojet
current and the transmission line.

It has been assumed in this formulation of the problem that the earth is
homogeneous and infinite in depth. This cannot always be assumed because
the frequency content of auroral electrojet currents is very low (le., <<'1
Hz). For this reason, many calculations of geomagnetically induced currents
have assumed 4 or more layers for the earth (and also assumed that the
electrical constants for these layers are known) (Erinmez et. al 2000; Boteler
and Pirjola 1997).

This field (called E;d) and an approximate form valid for Yy, >> a,h,

can be written as

(7.3.16)

. 12
£y, 2)= - 12 (00 vl
T r

{_ Jou, In (1+ 2ys (h + a))} i\oe*i}’sl

4z (L-2yh/r?)

_ jou, ys(2h+a)f e it ~ _ joou, Y@ i
27 r? 0 2T

[ —Jrsz
fe

IR

IR

since @ >>h. To show the explicit dependence on frequency and
conductivity, (7.3.16) can be written (using the approximation for o in
(7.3.14)) as

- 12
Eq'(x=x,,h,y,,2) = —M£e+j”’4foe“'“z (7.3.17)

o} 7

One thing evident at this point is that (for given values of grounding
impedance) the currents induced are larger for a region with low conductivity
(i.e., high resistivity).

Without going into details at this point, the current induced on the power

. . . .. . = ind
line by an electrojet current directly above it is proportional to E;,; and the

length of the transmission line £ and inversely proportional to the total quasi-
DC impedance of the transmission line including the grounding
impedances®. The result is

% When the vertical electric field is integrated over the vertical end segments of the
transmission line, it cancels the quasi-electrostatic portion of the hotizontal electric field for

323



1,4 (z.0)=H'(z, )l () (7.3.18)

where the transfer function H' (Z, a)) can be written as®’

_ H +j7r/4€
H'(Z,a)): Al

ys —jysz
—e s 7.3.19
”\/U_Z(ZG1+202 +(2h+£)ZSW)I’2 ( :

Here | (@) is the temporal Fourier transform of the electrojet current,

is(t), Z,, is the self-impedance per unit length of the two parallel
conductors, 2h + € is the total length of the transmission line including the
vertical segments each of length h and the grounding impedances Zg, and

Z,include the resistance and inductance of the transformer windings (at
the quasi-DC frequencies of interest here) through which the induced current
flows.

Given this result, it is relatively straightforward to see how the time
domain electric field can be calculated. The derivation begins with the
definition of the temporal Fourier transform and its inverse that can be
found in (7.3.12) and (7.3.13). Using the convolution identity, the inverse
Fourier transform of the product E(w)ﬁ (@) can be written as

(7.3.20)

ﬁ'l[ﬁ(w)ﬁ'(w)]Z Th'(t')f(t—t')dt' = Th'(t')f(t—t')dt': jh'(t—t')f(t')dt'

0

where the last steps can be taken because /(?) is the response to an impulse at
t = 0and hence, h'(t-t)=0 fort'>t.

For typical geomagnetic source currents, the induced current |, (Z,a))
satisfies the conditions for its inverse transform to exist (Brigham, 1974).
However, the inverse Fourier transform of H'(Z,a)) does not exist because

the function \/5 is not integrable over the infinite range. To resolve this
situation, the inverse Fourier transform of the temporal integral of the
induced current will be found with the final result for the induced current
being the time derivative of this result. This can easily be done since the
following transform exists

electrically short transmission lines. The only remaining term is the “inductive coupling
term.” This phenomenon is described more fully in Chapter 10, Section 3.

7 The designation H’ is given to the transfer function because as will be illustrated shortly,
the inverse transform into the time domain will be done using the integral of H* in the
frequency domain.
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{ [ t)dt} @ = H(w) (7.3.21)

More specifically, the inverse Fourier transform of

jo
(7.3.22)
FA(z o), (0)= j z,t-t)i, ()t
will be found where
~ q IA
H(z )= i (.Z’w) _he (7.3.23)

It has been assumed that the frequency is low enough that all impedances
in (7.3.19) are purely resistive. Hence the only frequency dependence is the

1/ @ term and A and 6, are real constants. Next, it is known that

1 27
— o = (7.3.24)

Jt ®

represents a Fourier transform pair. Hence,

h(t) = MOTSSA) (7.3.25)

where A is the same constant defined above.
Finally, since the ultimate goal is to calculate the induced current which is
the time derivative of the result just obtained,

iind(t)_A‘i;’if dt{ I\/— } (7.3.26)

Consider next an example of using this result for calculating induced
currents in a power line. In this case, the normalized induced current

2z ~27i,4(t) ti(t)
dt{ j = } (7.3.27)

1 =
normalized ACOS(H )

—00
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is calculated. The source current is assumed to be a linearly growing current
for Ty = 200 seconds that reaches 20 kA and then (unphysically) stops
abruptly as shown in Fig. 7.3.5

25
§ 20
t
@ 15
=
=
3 /
o 10 /
[&]
™.
S
0 5
v

0

0 200 400 600 800 1000

t - seconds

Fig. 7.3.5. Auroral Electrojet Source Current

Using integral tables from Gradshteyn and Ryzhik (2007), (7.3.27) can be
evaluated to give
0.2t t<T,

| = —
normalized 0.2 \/E_ 6t 5TO
3ft-T,

(7.3.28)

where Ty = 200 seconds. The normalized current is shown in Fig. 7.3.6.
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Normalised Induced Current

Fig. 7.3.6. Normalized current induced in a power line by the electroject current shown in
Fig. 7.3.5.
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Because of the dispersive nature of the earth, the current increases as the
square root of time and aside from a (nonphysical) spike due to the assumed
abrupt current cutoff, decays very slowly towards zero after the source
current becomes zero.

With respect to the time variation of the system voltages and currents, this
geomagnetic induced current causes a nearly constant current (in the
transformer windings. This current, in turn, creates a nearly constant flux
through the cores of the transformers terminating the transmission line.

Now that the current induced on the transmission line has been found,
the issue of its effect on the power system and its components will be
addressed. More specifically, the effect of this quasi-dc current on the
transformers that terminate the transmission line will be addressed.

The relationship between the voltageV,, (t) across a transformer’s winding

terminals and the flux @, (t) in its core is (Chapman 2002)

1
#.(t)= N—ijw(t)dt (7.3.29)
Hence, if the system voltage across the winding is
v, (t)=V,, cos(at) (7.3.30)

The flux passing through the transformer core is sinusoidal and equal to

,(t)= 2 sin(at) (7.3.31)
oN

w

Now, the core of the transformer is generally made of nonlinear material
so that the relationship between flux (or the magnetic flux density, B) and the
current flowing in the winding (proportional to the magnetic field intensity,
H) in the winding is also nonlinear. A somewhat idealized version of the
relationship between flux and current is illustrated in Fig. 7.3.7.

In this case, the relationship between flux (or B) and current (or H) is
linear (i.e., iy = ¢/10) as long as the flux is less than 10 (unspecified units).
However, if the total flux either exceeds 10 or is smaller than -10, the
increase in iy for a given increase in ¢ is markedly greater (i.e., Aiy = +/-
5.00).

Consider, first the transformer under normal operating conditions for
which the transformer is approximately linear. In this case, the winding
current is simply

i, (t)= Vi sin(at) (7.3.32)



where the constant A is determined by the characteristics of the core. If
however, there is a quasi-DC geomagnetically induced fluxg in the core,

then the total flux in the core is now

VA
¢, (t)=¢, + N sin(et) (7.3.33)

@ —
Q 10 ——
5 /
-3 5
x
=2
o 0
.5-15 10 -5 10 15
-1}
c 5
g /
= .

.——__-_-_.-._m

Winding Current iw (o toH)

Fig. 7.3.7. Idealized transformer flux-current characteristic (no specific units).
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system voltage flux
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Fig. 7.3.8. a) Transformer core flux components (no specific units) and b) Total transformer
winding current with and without the geomagnetically induced flux assuming the
transformer characteristic given in Fig. 7.3.7 (no specific units).
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The geomagnetically induced core fluxgy, the core flux without any

geomagnetically induced flux (i.e., 7.3.31) and the total core flux (i.e., 7.3.33)
are plotted in Fig. 7.3.8a. While under normal operating conditions, the core
flux does not enter the saturation region, the total flux (including the
geomagnetically induced flux) exceeds the level at which the core enters
saturation at peak flux values (i.e., in this case those for which the total flux
exceeds 10 units on the scale of Fig. 7.3.8a).

The transformer winding current is radically different during the half cycle
for which the geomagnetically induced flux adds to the normal flux due to
the fact that the transformer core saturates for values of flux greater than 10
(in this example). This winding current with and without the added quasi-DC
flux is plotted in Fig. 7.3.8b. Clearly even small excursions of the total flux
into the saturation region can cause very large increases in winding current
for short periods of time during each cycle that can (as mentioned earlier)
have significant consequences for the operation of the power system (IEEE
2013). These include transformer heating (although modeling and experience
indicate that this is not a large problem), transformer shunt reactive loading
that can cause voltage stability issues and the introduction of large harmonic
currents that can lead to unintended relay tripping.

Unbalanced excitation of the transmission line (phase-to-ground fault current
or lightning injection)

The purpose of this section is to find the current distribution on a two wire
symmetric transmission line due to a current injected (or removed) at the
center of the first conductor as shown in Fig. 7.3.9. This situation can occur
when either there is a phase to ground fault or a lightning strike to the
conductor.

Y
X1='d/2 X2=d/2

conductor #1 | |

= —@®—  conductor#2
2a 2a

injected current
Y1=Y,=h atz=0

rrrrrrrrrrrrrrrrrrrri

Fig. 7.3.9. A current injected into conductor #1 atz = 0.
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At low frequencies, this problem can be solved using the existing solution
for a voltage source on the conductor in the following way. Consider the set
of two equal and opposite voltage sources on conductor #1 (with no sources
on conductor #2) separated by a distance & as illustrated in Fig. 7.3.9. Notice
that the total voltage across the pair of sources is zero but there is a
difference in current at z = 0 that is supplied by an injected current. This is
characteristic of a current source driving the conductor at z = 0.

it
1
14
lT
g

- b 2
oo [= =]

Fig. 7.3.10. Voltage sources with equal and opposite amplitudes separated by a distance 8 on
conductor #1 of a symmetric two conductor transmission line.

The current to the right can be calculated by superimposing the current
from the two sources and assuming that the difference in currents at z = 0 is
the injected current. Here, the current for z > 0 will be found; the current
for z < 0 can be found in a similar way.

The fundamental result needed is that for the geometry shown in Fig.
7.1.1 with the external electric field set equal to zero. The starting point is
Equations (7.2.44) and (7.2.45) for the common and differential mode
currents with the respective propagation constants in (7.2.41) and (7.2.43).

The total currents for z > 8/2 on conductors #1 and #2 respectively due

to a single voltage source of amplitude \7((0)/ 2 at z = §/2 on conductor #1
68

1s
fl(z) __ j(Yn + Y )‘/ (a)) g irlz-ol2 _ j(Yn _le)‘/(a)) g irlz-012) (7.3.34)
870 87/d
and
fz (Z): — j(Yll +Y12)‘/(w)e—j7c\2—5/2\ " j(Yll _Y12)‘/(a))e—j7d\2—5/2\ (7.3.35)
87/(; 87/d
Similarly, the currents for z > /2 on conductors #1 and #2 respectively
due to a single voltage source of amplitude —V (w)/2at z = -8/2 on

conductor #1 is

88 Of course this is a low frequency approximation, but should be valid to frequencies up
to at least 1 MHz. The solutions for arbitrary frequencies can be found earlier in this
chapter.
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fl(z): j(Y11 +Y12)‘7(a))e—J70\2+5/2\ " j(Yll _le)‘i(w)e—jyu\2+5/2\ (7.3.36)
87/0 87/d

and

f1(2)= j(Yll +Y12)‘7(w)e—17c\2+6/2\ 4 j(Yll _le)‘i(a’)e—Jyd\Z+5/2\ (7.3.37)
87/0 87/d

The total current on conductor #1 due to both sources (for z > 8/2) is
then

A

~ — iV e ejycb‘lz _eijcfs/z
|1<z>=JT<w>{<YH+Yu)e o |

Ve

) ej7d5/2 _e—jydé‘IZ
—Jraz
+(Y11 _le)e ‘

Vd

(7.3.38)

while the total current on conductor #2 from both sources (for z > 8/2) is

A

A — iV L ejyc(ilz _e—j}/c&/z
|2(Z):JT(G)){(YM+Y12)9 e ( J

Ve

(elndlz _gmirdiz ]
—Jrqz
_(Yll _le)e ‘

74

(7.3.39)

Now, 7,012, 74012 <<1because 8 is assumed to be small compared to

the wavelength of either mode, hence the terms involving & in (7.3.38) and
(7.3.39) can be simplified as

7612 _ n—iredl2 i
(e ¢ J: j25N0e812) 5 (7.3.40)
2 e

and

N

76812 _ q-iredl2 -
[e ¢ j: PRUCIE NP (7.3.41)

7d Vd

Hence, (7.3.38) and (7.3.39) become

()= 5(Yyy + Y, NV (@) e iz | 5(Yy =Y V (@) o e

8 8 ’

2>0 (7342

and
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IA2 (Z) — 5(Yll +;12)\7(60) e*j}’cz _ (Yll _YéZ)\/(a)) e*jﬂ/dz' 7 >0 (7343)

These can be simplified further to

|A1(z):—év(“’)Yll 1422 v g Ve e |50 (7344
8 Yll Yll

and

fz(z):—é\/(“’)Yll 142 g {1 Y eine | >0 (7345
8 L Y11 Y11

Now, from (7.2.35) and (7.2.36)

v - j2rwe, In[z—hj
11 Inz(%j_lnz[sj a (7.3.46)
a d
and
v - — j2nwe, In(ij
12 Inz(ZhJ B Inz(sj d . (7347)
a d
Hence
v In(;)
Yﬁ =— oh . (7.3.48)
i '”(j
a
Hence,

S
In(dj
—jrqz
=)
In| —
a

S
In(d}
vz _ —Jrqz
1+—(2hj e
In| —
a

, 2> 0 (7.3.49)

, 2> 0 (7.3.50)
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where from (7.2.41) and (7.2.43)

J.(0,h—a,h)+J (d,h—a,h)

= k(f 1- - (Y11 +Y12 )Ziw

and

J.(0,h—a,h)-J (d,h-a,h)

= kg 1- - (Y11 _YIZ)Ziw-

2]1/2

Now, 7, and y4 can be written as

where s = [(2h)2 +d

(e +74), (re=74)
2 2

Ve =
and

(e +74) (e —70)
2 2

Ya =

With these substitutions the currents for z > 0, can be written as

(w)Yn

}'c+7d

I,(2)=

(7.3.51)

(7.3.52)

(7.3.53)

(7.3.54)

(7.3.55)




Finally, using trigconometric substitutions

(7.3.57)
In(sj
i et _ q _
fl(z):W(Z))Ynel 7 os e 27d)2+j 2dh in 7 27d)2
Inl <&
(%)
z>0
and
(7.3.58)

e — jsin — cos
4 2 (2hj 2
Inf —
a
z>0
Next,
(2 =92)=0e+ra)re —74) (7.3.59)

Using the definitions of ¥, and 4,

(7.3.60)
(2 -72)=
%A J.(0,h-a, h)In(s/;Ih)— J.(d,h-a,h)In(zh/a)| N7,
Inz()— Inz[sj
a d
Given this,
(re —74) _ k2Q- Yl (7.3.61)
2 (7e +74)
where
o- J,(0,h—a,h)In(s/d)-J,(d,h—a,h)In(2h/a) (7.3.62)
(y.+7 Inz(%j—lnz(sj
c d a d
Hence (for z > 0)
(7.3.63)
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i (re+r),

fl(z): N(Z))Yn e 2

and
(7.3.64)
7 _retr),
|2(Z)— é\/(a))Yll e 2
4
Y,Z In(;j Y,Z
- jsin{{ka — 27w }z}— COS{|:k02Q _H—M}}
(e +74) ,n(Zhj (e +74)
a
The current at z=0 on conductor # 1 is
) j I
I,(0)= W(Z))Y“ = fa”'zt(w) (7.3.65)
Hence (again for z > 0) (where, again, Q is defined in (7.3.62))
(7.3.66)
A r _-(}/c+7d )Z
|1(Z10)): fault(w)e =
2
Y,Z In(;j Y,Z
cos{[ka — 127w }z}+ j| ——% sin{ka — 27w }z}
(e +74) ,n(Zhj (e +74)
a
and
(7.3.67)
| B (7 +7d)z
|2(Z,a))= fault(a))e U
2
Y,Z In(;j Y,Z
- jsin{{ka— 127w }z}— — L cos{{ka — 127w } }
(e +7a) ,n[Zhj (e +74)
a



—_—

Finally, if |7, —74)/ 2z <<1 and z >0,
(@) 079,

S
In(d}
e 2 |1+
2 2h
Inf —
a

Y12 Z iw

{ka — —}z (7.3.68)
(7e +74)

and
In(sj
A IA 0} 7-(7c+7d)z . q
,(z) = an )el 2 —j{kon— Yo }z— d (7.3.69)
2 (e +74) ,n(Zh
a
, S 2h
For typical values of parameters, In d <<In =) Hence,

I, (0)<< I, (0) as expected.

Before interpreting this result further, it is useful to look more carefully at
the current at z = 0 by examining the case for fl(O) and fz (O)before taking
the limit as & — 0.

These currents can be found by considering the sums (7.3.34) + (7.3.36)

and (7.3.35) + (7.3.37). Since|2 =812/ =512 when z = 0,

fl(o): - J\;(w){(Yll +Y12)efj;/05/2 + (Yll _le)eijsz/Z

e 74 (7.3.70)
_ (Yll +Y12)eijc6/2 _ (Yll _le)eijdb‘/Z -0
7/0 7/d
and
|”2 (0) __ J\i(a)){(Yn +Y12)eijc5/2 _ (Yll _le)eijdﬁ/Z
° e 74 (7.3.71)
_ (Yll +Y12)e,1-7€5/2 + (Yll _le)efiydb‘/Z -0
7/c }/d

Cleatly, the current at z = 0 is equal to zero on both conductors as it
should be by symmetry. But, on conductor #1, the current rises quickly to
half the fault current on either side of the source area while on conductor #2,
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the current rises to a fractonY,,/2Y, = In(s/d)/2|n(2h/a)of the fault

current.

Interpretation of the Result

An examination of (7.3.68) and (7.3.69) reveals that one term in each
increases algebraically with z. Clearly this behavior will be more evident in
(7.3.69) because In(s/d)<<In(2h/a). Hence the lincarly increasing term is

the most important part of (7.3.69) but only a small part of (7.3.68).
Ultimately, the current will no longer grow either because the argument of

the sine in (7.3.68) will be large enough that |(]/C — 74 )/ 2|Z is no longer <<'1
or because the exponential decay due to the term exp(— j(}/c + 74 )Z/ 2)

becomes important. Nevertheless, this is an unexpected enough result that it
is worth some additional interpretation.

As mentioned above, the second term of each current in (7.3.68) and
(7.3.69) is especially interesting because it grows linearly near the source.
This behavior can be understood in the following way. Recall the problem
of driving a circuit with a voltage source at its natural (i.e., resonant)
frequency as shown in Fig. 7.3.10. It is assumed that the source is “turned

on”att=0.
L
+

Veos(wgt)U(t) <~> C

Fig. 7.3.11 A lossless LC circuit driven at its natural (i.c., resonant) frequency @y = ]/1/ LC

Clearly, in the steady state, the current that flows in this circuit is
undefined because the impedance of the LC combination is
Z = jo,L— j/(@,C)=0. Hence, it is illustrative to study the circuit in the
time domain for t > 0. Itis well known that the differential equation for the
current that flows in this circuit is

.
ddlgt) +%i(t)= —aV sin(agt), t>0 (7.3.72)

The complementary solution I, (t) for this equation is of the form
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i, (t) = Asin(a,t)+ B cos(ayt) (7.3.73)

Given that the source frequency is wo, the particular solution for this
equation cannot take the form of either of complementary solutions. Rather,
it must be of the form (Ford, 1955)

i.(t)= Atsin(myt)+ Bt cos(a,t) (7.3.74)

Without going into the details of the solution which would require
imposition of specific boundary conditions, it is simply worth noting that the
current in this circuit will increase linearly with time until something about
the circuit changes (e.g., the source current limit is reached or a circuit
element becomes nonlinear).

By analogy to this time domain problem, conductor #2 in Fig. 7.3.7 is
exposed to an incident field over its length that has natural spatial
frequencies of (y, + 74)/2 and (7, —y,)/2. These are the same as the
natural spatial frequencies of current on Conductor #2. Hence it is to be
expected that the current induced on conductor #2 will have a component
that is linearly growing along its length (Olsen, 1984). Of course, the current
on conductor #2 eventually becomes large enough to influence the current
on conductor #1 and the process is limited as indicated in (7.3.66) and
(7.3.67). In addition it is limited by the exponential decay due to the term

exp(= i(re +74)2/2).
Transform to the Time Domain

It is assumed that the source current has been transformed into the
frequency domain using the Fourier transform

IAfault(a)): jifault(t)e_jwtdt (7375)

Hence, the current on conductors #1 and #2 can be found by evaluating
the inverse Foutiet transforms

0

i(z,t)= % j I,(z, 0 dew (7.3.76)
and
iz(z,t):%ffz(z,a))e”“"da) (7.3.77)

338



using (7.3.66) and (7.3.67) as integrands in the respective inverse transforms.

Given the complexity of (7.3.66) and (7.3.67), these transforms will be

evaluated using the inverse Fast Fourier Transform (FFT) (Brigham, 1974).
For “large” values of z, fl(Z, a)) and fz (Z, a)) oscillate considerably in the

© domain. This behavior causes numerical difficulties for “large” z if the
inverse FFT is applied directly to (7.3.66) and (7.3.67). To overcome this
problem, it is helpful to recall the “time shift” theorem,

o0

i'(z,t—t0)=ijf'(z,m)e‘j“‘oe“"”‘da; (7.3.78)
2r
1(z,0)=1"(z, 0)e '™ (7.3.79)
and
i'(z,t)=i jf'(z,a))e”‘"tdco (7.3.80)
2r

Hence, if it is possible to separate out (at least most of) this oscillation in
the form e % it is only necessary to compute the inverse FFT of f‘(z, a)),
which is much easier because it does not oscillate rapidly as a function of w
as does f(z,a)).

The factor that contains most of the oscillation behavior of either (7.3.66)
or (7.3.67) is

exp(— j(y, +7,)212) : (7.3.81)

But, for most practical situations, |V, — k0|,| Vi — k0| <<k, and most of the

oscillation and be taken out by separating out the factor
exp(— jkOZ): exp(— ja)Z/C) where C=1/,/ty&, is the speed of light in free

space. Hence
(7.3.82)
exp(— (7. +74)2/2)=[exp(= j(7, +74)2/ 2)exp(+ jkyz)]exp(= jet, ).

where ty = 2/C =7,/ tt,&, where the part in brackets oscillates much less
rapidly than eXp(— jat,). Then, if

I,(z,0)=1,'(z, )7 (7.3.83)
and

I,(z,0)=1,'(z, 0", (7.3.84)
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then,

il(z,t SN )= i,'(z,t)= % j I,'(z, 0k " dew (7.3.85)

and

iZ(Z,t—Zw/,Llog(,):iz'(Z,t)— L sz'(z,a))e”“’tda) (7.3.86)
ﬂ-—oo

Cor

To complete this derivation, it is necessary to define a pulse. A number
of different pulses could be used, but here, the one used is

i) =U()lte™ (7.3.87)

which has a Fourier transform

A

I fault (Cl)) = I—Oz . (7.3.88)
(@+ ja)

Alternative method for very large values of 3

If the method described above for removing the oscillatory term is not

sufficient, a larger fraction of the oscillation can be eliminated by separating

the currents into their component modes. More specifically, from (7.3.49)

and (7.3.50),

I(z,0)=1.(z,0)+1,(z,0) (7.3.89)

where the component modes are

L In(;J
|C(z,a))=Z 1- (Zh) [ e (@) 77 (7.3.90)
In| —
a
and
1 In(;j
'd(z’”)_Z " (Zhj | o (0277 (7.3.91)
Inj —
a
where (7.3.64) has been used. Similatly,
I(z,0)=1 (z,0)-1,(z,0) (7.3.92)
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The pulse that will be used to represent the fault current is described in
(7.3.87) and (7.3.88). From Parseval’s theorem, roughly half the energy of the
pulse is contained in frequencies below w = a/2. Hence, it is reasonable to

write the first term of (7.3.90) as
(7.3.93)

S
|n[j 2Re(y.(a/2))z : 2Re(y,(a/2))

d N A e g @)
T AR Ifault(a))e J : e ( J

_jZRe(yC(aIZ))zm
Most of the integrand’s oscillation is contained in the term € a
which is in the form required to use the time shift theorem. Hence, a more

stable form for calculating this component of the current is

ic( 2Re(y, (al2))z j

a

S
In dj © ( 2Re(yc(a/2))wjz (7-3-94)
2N Jlfault a))e ! e/ dw
In(j -
a
Similarly,
] (z,t _ 2Re(y, a/2))zj _
a
(7.3.95)

S
In(j 0 _i _w z
i 1- d Irfault(a))e J(yd : j ejwtda)

()= [z,t ~ 2Re(;/C(a/2))szrid (z,t— 2Re(y, (a/2))zj (7396

i,(z,t)= ic(z,t _2Re(y. (alz))zj—id (z,t _2Relys (a/2))zj (7.3.97)
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Note that the speeds of the two modes are approximately

a
SN S 7.3.98
Ve = JRe(r(@r2) ™ (73.98
and
a
m/sec (7.3.99)

" = 2Re(7,(al2)

respectively. Generally, the differential mode will be faster since it is not
slowed down as much by electromagnetic fields in the earth.

Results

The currents il(Z, '[) and iz(Z, t) were determined for several relevant values
of z using the geometry of Fig. 7.3.7, the expressions (7.3.85) and ((7.2.86)

and a fault current

i () =U (0 te 0 (7.3.100)

which has a (zero to peak) rise time of 1 usec and a peak amplitude of 3678
amps at 1 pusec. The geometric parameters used were a = 1 cm, d = 10 m
and h = 10 m while the electrical parameters of the wire and earth were
assumed to be g, = 3.5 x 10" S/m (i.e., aluminum), 0, = 0.01 S/m and &, = 5.

In each case, the current is plotted with an advance of t; =K,Z so that the

currents plotted for different values of z can easily be shown on the same
plot. The inverse FFT used 215 points with a sample rate in time of
32,768,000 per second. The frequency spectrum extended from 0 — 16.384
MHz. The results are shown in Fig. 7.3.11.

A number of things can be observed in these plots. First consider i1 (t)

At z = 0, the peak current is 1839 amps as expected since the total fault
current of 3678 amps splits in half as it enters the conductor. As expected,
and as observed for z = 10 km, the current peak decays for larger values of z
since there is attenuation of both modal currents due to losses in the
conductor and the earth. Atz = 50 km, it is possible to observe the splitting
of the differential mode (which occurs first at about 2 psec since its speed is
the faster of the two and has a larger peak due to lower earth losses) and the
common mode (which occurs later at about 20 psec since its speed is the
slower of the two and has a smaller peak due to larger earth losses). Further,
the common mode is more spread out more due to dispersion (i.e., frequency
dependent speeds) from the earth. Atz = 100 km, the splitting of the two
modes is essentially complete. The differential mode current is centered at
approximately 4 psec and the total current goes to zero by 20 usec.
Following this, the current increases again as the common mode current
reaches z = 100 km at about 30 psec.
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Fig. 7.3.12. Currents (a) il(z,t— z /,[080) and (b) iz(Z:t —z /#ogo) on conductors #1 and #2

respectively due to the fault current (7.3.95) at z = 0 on conductor #1 for several values of z.

Next consider iz('[). At z = 0, the peak current is approximately -200
amps. This occurs because the excitation amplitudes for the differential and
common modes are slightly different according to (7.3.79) and (7.3.80).
Since the differential mode amplitude is larger (and negative for conductor
#2) and the total current on conductor #2 is the sum of the differential and
common mode currents, the current is relatively small in the negative
direction. Interestingly, the current peak increases for larger values of z (e.g.,
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z = 10 km) since the common mode is delayed by its slower speed and
attenuated, hence the sum of the two modal currents grows at smaller times
because there is less cancellation between differential and common modes.
This growth is consistent with the previous discussion about the current in
the frequency domain. The total current actually becomes positive (e.g., z =
10 km) at later times because the differential mode has now passed while the
delayed common mode arrives. Hence the common mode current is
dominant for later times. At z = 50 km, the splitting of the negative
differential mode current (which occurs first at about 2 usec since its speed is
the faster of the two and has a larger peak due to lower earth losses) and the
positive common mode current (which occurs later at about 20 psec since its
speed is the slower of the two and has a smaller peak due to larger earth
losses) becomes more obvious. Again, the common mode current is more
spread out due to its larger dispersion. At z = 100 km, the splitting of the
two modes is essentially complete. The differential mode current is centered
around approximately 4 usec and the total current goes to zero by 20 psec.

It is interesting to note that iz(t) = —il(t)at short times as it should because
the differential mode dominates, while iz(t)= I (t) at later times because the
common mode dominates.

7.4 The Unbalanced Two Wire Line - Low
Frequency

The results given in the last section are specific to the case for which the
transmission line is symmetric with respect to the ground. For the more
general case, an anti-symmetrical excitation (i.e., V2 = -Vi) will not produce
anti-symmetric currents. To illustrate how this happens, consider the
problem solved here.

Derivation
Consider the case shown in Fig. 7.4.1. Here the two conductors are no

longer at equal heights above the earth®.
Again, (7.2.14) applies

le ZlZ
ZZl Z22

Al Ay
An Ay

2
e

- () M (7.4.1)

2(7 2

Hence, the matrices|Z| and |A| are no longer symmetric as it was the case

in Section 7.2. This difference, while seemingly subtle, has some important
consequences.

69 Again, for simplicity here, the conductor loss Zi, = 0
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Again |Z] is the impedance matrix for this set of conductors and |A| is the

matrix of potential coefficients.

jolA ™ = jolC|=|Y| (74.2)

where |Y|is the admittance matrix for the two conductors in the

configuration of Fig. 7.4.1 and is equal to jw|C|where |C|is the capacitance

matrix for this configuration.

conductor i1

—b‘i— Za

2a —> @ —_

conductor #2
Y1

Y2

Frrrrrrrrrrrrirrrrrri

Fig. 7.4.1. An unbalanced two wire transmission line above the earth.

But in this case Zi1 # Z» , Yu # Y. Instead, (with reference to 7.2.11
and 7.2.12)

Zn = Z(O! Y — 4, hyl)’ Zzz = Z(O’ Y, —a, yz)’ le = ZZl = Z(O! Y, —a, yl)
Ail = A(O1 Yi—a, Y1)’ Azz = A(O’ Y, -4, YZ)1 AiZ = A21 = A(O’ Y, -4, yl)

If, as before, (7.4.1) is pre-multiplied by Y|
i¥|z|+7? }m - ¥V 743

where | | |is the matrix of conductor currents and | V |is the matrix of
conductor source voltages.
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Again, if ‘Qz‘ = |Y||Z|is a 2 x 2 matrix and has 2 distinct eigenvalues, then

. .o . . 2
it has two distinct eigenvectors that are orthogonal with respect to ‘Q ‘

Any two component vector (e.g., | I |) can be expanded in this set of
eigenvectors so that

| (7.4.4)

=l

where | | gm |is the matrix of “component” amplitudes, and I7|is a square
. . . 2
matrix (by columns) of normalized eigenvectors of ‘Q ‘=|Y||Z|. The

difference for the case of vertically oriented conductors is that the impedance
and admittance matrices are no longer symmetric. The eigenvectors and
eigenvalues can be found in the following way from the definition of

eigenvectors. More specifically the eigenvalues of ‘Q ? ‘ can be found from

det‘ Q’

+[aQ? - (4, +a2ju] =0 (7.4.5)

Qs

considered in Section 7.2,

where and A, are the matrix and its eigenvalues for the symmetric case

AQz‘and A are the differences between the

matrix and eigenvalues respectively for the symmetric and unsymmetric
cases.
Given that the matrix is a2 2 x 2 matrix, the determinant can be written
explicitly as
(7.4.0)

(Qszll B AXAQZZZ - A/l) + (Q5222 -4 XAlel - A}“)"' (Alel - A;LXAszz - A/l)
N Q5221AQ122 - Q5212AQ221 - AlezAszl =0

where (Q5211 —/?,XQSZZZ —/1)—Q5221Q3212 =0since this is for the symmetrical

case. (7.4.6) can be expanded in a quadratic expression in the variable A\ as

(7.4.7)
(A;L)z - A/I(Qszll + Q5222 -2+ AQ121 + Aszz )"' (Q5211 - AXAszz )"’
(Qszzz - /IXAQIZI )+ (Alel XAszz >_ Q5221AQ122 - QsleAszl - AlezAszl =0

(7.4.7) can be expanded and solved explicitly for A;as

346



b 1
Mi:—Ei?/bz—%, =12 (7.4.8)

where
b= _(Q5211 + Qszzz —24 + Alel + Aszz)
and
C= (Qs,211 - ;l’i XAszz )+ (Qs,222 - ;Li XAQ121)+ (AQ121 XAQ; )
- Q3221AQ122 - QSZIZAQZZl - Alez AQ221

To first order (i.e., ignoring (AL)?,

Aﬂ“i = [(Q3211 - ﬂ’i XAQéZz )"' (Q5222 - ﬂ“i XAlel )+ (Alel XAszz )_

(7.4.9)
Q5221AQ122 - QSZIZAQZZI - AQ122Aszl ]/ (Q5211 + Q5222 - Zﬂ’i + AQ121 + Aszz )

The eigenvectors can be derived from this result by first writing

(7.4.10)
Yll Y12 le + ZiW ZlZ —
Y, Y,+AY| Z, Z,+AN+Z,,
(le + ZiW )Yll + ZlZY12 (le + AZ + ZiW )YlZ + ZlZYll

ZlZ (Yll + AY )+ (le + ZiW )le (le + AZ + ZiW XYll + AY )+ ZlZY12

where AY =Y,, =Y, AZ=2,,-2,,.

Now, the eigenvectors for the case AY =AZ =0 (since the matrix is
symmetric) are

q, =a, and J, = a, (7.4.11)

4

Hence, (for the eigenvector #1 case)
(7.4.12)

(le + Ziw )Yll + ZlZYIZ (le + ZiW )YlZ + ZlZYll All
Z12Y12 + (le + ZiW )YlZ (le +Z iw )Yll + ZlZY12 A12

0 Y,AZ 1] Ay
Z,AY (Z,,+Z,)AY +Y,AZ| 1 AL,
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which can be solved for Aj;and A, since AY =Y,, =Y,, AZ=2,,-7Z,,
are known, and Ay (the eigenvalue #1 in the symmetric case) is equal to

(le +Z, )(Y 11+Y12) and AAjis the difference between the symmetric and

unsymmetric case eigenvalues for 1= 1.
Once the normalized eigenvectors are known, it is possible to solve for
the modal currents from
i

de ‘ is the diagonalized version of ‘Qz‘ and

= (7.4.13)

st il

where |U|is the unitary matrix,

7@l =3 (7.4.14)

Here |p|is the normalized matrix (by columns) of the eigenvectors in this

-1, . . 2 . .
case and|77| is its inverse. Since both ‘Qd‘ and |U| are diagonal matrices

(7.4.13) can be solved as individual equations to yield.

s
N Y
lgm = —(@dzﬂ' j\;z)l (7.4.15)
and Q . )
N I\
lgme = _g|§22|—+r\;22 (7.4.16)

A numerical study of (7.4.15) and (7.4.16) shows that these modes are no
longer purely common or differential. This has consequences for the balance
of transmission line currents as discussed in the next section.

Comment abont balance

At this point, it is very important to point out a difference between the
“unsymmetric” geometry case and the “symmetric” geometry case discussed
in Section 7.2. In the symmetric geometry case an anti-symmetric source
(le, V, =-V,) excited only the component associated with the (1,-1)
eigenvector and since the other component was never excited, only the anti-
symmetric component will exist at arbitrary distances along the transmission

line Thus, if V, =-V,, I, = —Tz for all values of z". This will generally not be

0 Another reason for unbalanced currents is that the loads on each phase are not equal
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the case for conductor configurations that are non-symmetric such as the
one shown in Fig. 7.4.1. In these “unsymmetric” cases, an anti-symmetric

excitation (i.e., V, =-V,) will excite BOTH components. One result is that

the currents at the input are no longer equal and opposite (i.e., I, #-1,). In

addition, because each component is attenuated at a different rate because
each has its own (and generally different) propagation constant, the ratio of
the currents at arbitrary distances down the transmission line will be different
than at the input and (in general) will become even less balanced. Finally, as
discussed in Section 7.2, non-symmetrical termination impedances (or
junctions along the transmission line) can cause further unbalance in the
currents.

7.5 The general multiconductor case — low frequency

Derivation

The solution for propagation of currents on a general number Nc
ungrounded conductors above earth as shown in Fig. 7.5.1 will be
summarized in this section. Only a summary will be given because even in
the low frequency case, the solution is rather complex.

Y
—@— 2a1
—
X1
® - —@— 232
— X, —
Y1 o 2a,
y2 —>.|<— T
Xy Yn
| X

Frrrrrrrrrrrrrrrrrliri

Fig. 7.5.1. Geometry for propagation on N¢ conductors above earth.

Following the mathematical formulation of Section 7.2 but for Nc

conductors
2 n
V4 T f
Z|+— I =
{I |+jw|A|}‘ (7)( y

(7.5.1)
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where |Z| and |A| are Nc x Nc matrices of impedance and potential
coefficients respectively,

and ’\7

conductors at z = 0.
Here

I (d is an N¢ x 1 column matrix of wire currents

is an N¢ x 1 column matrix of voltage generators in series with the

ja)luo {In(rnim / rmn)_ ‘]c(xm = Xns Yo Yn )} (7.5.2)

Z(Xm X0 Yo yn):
where

o = (00 =%, ¥+ =vo B 1 = (60 =%, + (v + v, )

and

‘Jc(xm_xn’ymiyn):

—%j(u—Kk*“w“%wiK@m—XJMKy FN ey (7.5.3)

kz 0
is a mutual impedance per unit length. The potential coefficients are

In(r! /
AKX, =X, Y Yo )= n(g“;—;”“‘) (7.5.4)
0

As before, the admittance per unit length matrix |Y| is related to the

matrix of potential coefficients as

jol A =]Y| (7.5.5)

where |Y| is an Nc¢ x N¢ matrix.

To solve for the currents, (7.5.1) is first pre-multiplied by |Y | to get
ﬂQﬂ—yﬂuq~@X=WW4d (7.5.6)

where ‘Qz‘ = —|Y||Z| is an N¢ x N¢ matrix and |U| is an N¢ x N¢ unit matrix.

If it has N¢ distinct eigenvalues, then it has Nc distinct eigenvectors that are
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orthogonal with respect to‘Qz‘ and any n component vector (e.g.,

Ié(d) can

be expanded in this set of eigenvectors so that

"77)1 =[]

fgm (7/)( (7.5.7)

A

where

am (;/)( is an N¢ x 1 column matrix of component amplitudes and ||

is an N¢ x Nc¢ matrix of normalized eigenvectors arranged by columns. Now,
because |5|is a unitary matrix, it has the property that its inverse is equal to

the complex conjugate of its transpose (i.e., its associate) so that

|—l

= (7.5.8)

Further, because the eigenvectors are orthogonal with respect to ‘QZ‘
Q|| = Q2| (7.5.9)

where ‘Qg ‘is a diagonal matrix with elements equal to the eigenvalues of

<

i 0 e 0
0 7/2 o o
2| _ 2
Q3| = S (7.5.10)
0 e 0 7

If (7.5.6) is pre-multiplied by |77|_1 and the above mentioned properties of

The current component amplitudes can easily be determined from this
equation. More specifically, since

7| are used,

ﬂde‘ ‘72|U|1'Agm (d =Y (7.5.11)

lQ2|-72ul]
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is a diagonal matrix, its inverse may be obtained by inverting each term of the
matrix. The result is

1
—— 0 0
an_?’z
2 0 e 0 0 T
| = Y 5.
R PSSRSO U/ 7 e
1
0 00
ann_y2

The individual conductor currents can then be found from (7.5.7).
Currents in the space domain can be found using the inverse Fourier
transform as illustrated in Section 4.0. More specifically, for

A
=~

F(}/) =K/ (}/2 -y 5 ) , where K is an arbitrary constant.

f(z)=2ij|§(y)e—mo|y=£ ( 21 2}‘j”zd7/=—_2iKe_jypz (7.5.13)

T 2\ v =7, o
Hence,
—JQu11Z
e 0 0
B o0 o
A J ) a A
I =—= Y
@==5il o o . o YV (75.14)
e*JannZ
0 0 0
ann

The effect of shield wires

The derivation presented above can be applied to transmission lines that
have grounded shield wires by modifying the impedance and admittance
matrices |Z| and |Y|in the following way.

The impedance matrix

Consider a transmission line with N¢ phase conductors and N, shield wires.
According to (7.5.1) its impedance matrix satisfies the following equation for
7 = 0 so that the effects of capacitance can be neglected.”

"I'This corresponds to the case for which the current does not vary in the space domain. An
alternative derivation can be done in the space domain using a short segment of transmission
line (Anderson, 1973)
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IS
=~

2| (2]

er 7.5.15
‘ gp‘ ‘Zgg‘ |g ( :

9

where

‘Z op ‘ is the (N¢ x N¢) impedance matrix for the phase conductors only
‘Zgg ‘ is the (N, x Nyp) impedance matrix for the shield wires only

T
‘Z pg‘ = ‘ng‘ (by reciprocity) is the (N x N¢) matrix of mutual

impedances between phase conductors and shield wires

A
=<

| 1 o |1s the 1 x N¢ matrix of phase conductor currents

|V | is the 1 x N¢ matrix of voltage sources in seties with the phase
conductors. As shown in Section 4.7, this corresponds to a line —

A

o |is the 1 x N, matrix of shield wire currents

ground voltages of N/ 2‘ .

|O| is the 1 x Ny, matrix of voltage generator amplitudes in series with the

shield wires that are assumed to be zero.

The bottom set of equations of (7.5.15) can be separately solved to get

)

__‘Z ‘ ‘ng‘ Tp

(7.5.16)
It is possible, then, to substitute (7.5.16) into the top set of equations of

(7.5.15) to get
QZ pp‘ _‘Z HZ )

Hence the impedance matrix for an N¢ conductor power line (with Ng,
non-excited shield wires) can be written in terms of the phase currents only
as (Anderson, 1973).

=V| (7.5.17)

‘Z ‘pr‘_‘nguzgg‘il‘zgp‘ (7.5.18)

pp‘ =
The admittance matrix

In the electrostatic case, the potential matrix (i.e., the inverse of the
admittance matrix divided by jw — see (7.5.5) ) for a transmission line with N¢
phase conductors and Ny, shield wires satisfies the following equation.
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Pon| [ An
‘Agp‘ ‘Agg

p

(7.5.19)
0

<

Pq

where

A, lis the (N¢ x N¢) potential matrix for the phase conductors only

A, |is the (N x Nyy) potential matrix for the shield wires conductors

A =\A

g
potentials between phase conductors and shield wires

T
p‘ (by reciprocity) is the (N x N¢) matrix of mutual

| /A)'p |is the 1 x N¢ matrix of phase conductor line charge densities
—(jlo)ol I &z
| ;g |is the 1 x N, matrix of shield wire line charge densities

|V, |is the 1 x Nc mattix of phase conductor voltages (i.e. voltages with

respect to ground)
|0]is the 1 x Ny, matrix of shield wire voltages with respect to ground

since they are assumed periodically grounded with spacing much less
than a wavelength”

In a similar way to the derivation for the impedance matrix, the bottom
set of equations for (7.5.19) can be solved to get

"39 ‘ - _‘ Agg ‘_l‘Agp Hf)p‘ (7.5.20)

It is possible, then, to substitute (7.5.20) into the top set of equations of
(7.5.19) to get

=Np

Hence the potential matrix for an Nc¢ conductor power line (with N,
grounded shield wires) can be written in terms of the phase line current
densities only as

hApP‘ - ‘Apg HAgg ‘_l‘A J/Sp (7.5.21)

gp

‘Alpp‘ = ‘App‘ _‘Apg HAgg‘il‘Agp‘ (7.5.22)

2 If the frequency is in the Megahertz range (such as for radio noise), this approximation is
no longer generally valid.
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Hence,

‘Ep‘ = |V, (7.5.23)

:|C'pp

v,

‘ng‘ = ja)‘C'pp‘ (7.5.24)

and

Thus, as long at the shield wires are periodically grounded with spacing
Ypp
(7.5.18) and (7.5.24) respectively can be substituted for the impedance and
admittance matrices |Z| and |Y| in (7.5.1) to analyze high voltage

significantly smaller than a wavelength, the matrices ‘Z pp‘ and in

transmission lines with shield wires.

Excample results and interpretation

An example three phase transmission line for which individual phase
conductor currents will be computed is shown in Fig. 7.5.2. For all results,
the voltage 1 in series with each conductor is 100 kV which (since the line to
ground voltage, 17, is 17/2) results in a line-to line voltage 1% of 86.6 kV.
The phasing of the line is as shown in the Figure with phases A, B and C
equal to 0, -120 and 120 degrees respectively.

y
- phase A _
x,=0 7

phaseB phase
2a
| ‘ Y2
Xlz-d/z X3=‘d/2
Y1=Y3

TTTTe, o, TTT/TTTTTITTI77

Fig. 7.5.2. The “generic” transmission line used for calculation of phase currents. For all
examples given here, a = 0.01 meters and the earth relative dielectric constant ¢,2 equals 5.
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The “base case” is a horizontal transmission line with y1 = y3, d/2 and y»
equal to 15, 5 and 15 meters respectively above an earth with conductivity o>
= 0.01 S/m . The results for this “base case” are shown in Fig. 7.5.3. At the
input of the transmission line, the amplitudes of the three phase currents
range from 123 to 134 amps, a spread of nearly 10% of the average input
current. 'This spread in values occurs because the simple symmetry evident
in the two conductor transmission line in Fig. 7.1.1 is complicated by the
addition of a third conductor. However, while it is not surprising that the
Phase A (i.e., center) current is different for the others, geometric symmetry
and the fact that the voltages on phases B and C in the phasor domain have
some symmetry, one might expect that the currents in phases B and C would
have equal magnitudes. This issue will be examined in the next paragraphs.

140

135

130 =

125 -

120 — >~ . —— Phase B

\n-. = = Phase A

115 ~_
110

Current (A)

Phase C

105

100

0 200 400 600 800 1000 1200
z (km)

Fig. 7.5.3. Individual Phase Cuttents for the Case y1 = y3 = 15, d/2 = 5, y» = 0 metets, o2 =
0.01 S/m.

The vector of line to ground phasor voltages for each of the cases
examined can be split into real and imaginary parts as shown in (7.5.25).

-1/2 —~/3/2

+j igi\zso +1 [+j50 0 |kv (7.5.25)
+1/2 ++/3/2

Vol =V

It can be shown that the currents induced on the conductors by the real
and imaginary parts of the line to ground voltage vector symmetric and anti-
symmetric respectively. Hence, in each individual case, the currents on
phases B and C have identical magnitudes.

The asymmetry in the current magnitudes for the sum of these currents
results from the fact that the conductors and the earth are lossy and, hence,
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the phases of the currents are no longer 0, -120 and 120 degrees respectively.

(15524

Rather, they can be written (with the phase term “j” separated from the

currents due to rvfgi‘) as

Vfr 1 V/r Vfi H Vfi

IBrg +J|Big IBrg +J|Big
1,y | =] Ui+ 31 | and 1V, )= 3] 1o+ jive 7.5.26
fgr )| — Ar J Ai an (gi _J Ar J Ai ( o )

\Y -V, V, -V

IB;gr + JIB;gr - IB;QI + JIB;gl

If these currents are added, the results for phase currents B and C are

|
B Vigr | i Vier 1 i1 Vg iy Vi Vigr = 1 Vigi 1+ ifo y Vegi 1 Vier
=lg" + )l -—"J(IB;Q + g ):IB;Q + g +J(i|Brg + g’ )(75-27)
c

Clearly, if the currents in (7.5.26) had no imaginary parts, then the
magnitudes of the phase B and C currents would be the same. However,
since there is loss in the conductors and the earth, these imaginary parts are
not zero and

I:j (0 F o (1 (1o P (12 2201V —21% e ) (7.5.8)

The last term of cross products is the term responsible for the fact that
the phase B and C current magnitudes are not equal.

It is also clear from Fig. 7.5.3 that all currents decay as a function of
distance along the transmission line because of losses in both the conductors
and the earth. This is to be expected due to the fact that according to (7.5.14)
each geometric mode decays exponentially with z, albeit with a different
propagation constant (s, For this transmission line, the current decay is
somewhat more than 10% after 1000 km and appears to be a linear decay

because |Im( dnn )Z| <<l and e 1% =g IRA?(1 _1m(Q,,, )z). Finally, the

current balance changes as the distance along the transmission line is
increased. This is because each of the different modes of propagation has a
different attenuation constant so that each current decays at a somewhat
different rate. Thus, the ratio of the different current amplitudes will
change with distance.

In the next sequence of figures, one parameter will be varied in each to
illustrate its effect on the current excitation and propagation process. The
first of these is shown in Fig. 7.5.4 in which the earth conductivity is changed
to 0.001. It is clear from this figure that the change in the currents is
minimal. In Fig. 7.5.5, y» is increased to 23.67 so that the transmission line
becomes a “delta” configured transmission line. Two things can be noted
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here. First, Phase currents B and C are essentially the same. It turns out that
they are not identical, but the cross terms in (7.5.28) neatly cancel out.
Second, the current magnitudes are more nearly the same. This is
characteristic of transmission lines that have more symmetry such as the
delta configuration. It is clear, however, that the balance changes with
distance as with the horizontal configuration.
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Current (A)
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0 200 400 600 800 1000
z (km)

Fig. 7.5.4. Individual Phase Currents for an earth of lower conductivity (y1 = y3 = 15,d/2 =
5,y2 = 15 meters, o2 = 0.001 S/m)
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Fig. 7.5.5. Individual Phase Currents for a delta configured transmission line (y1 = y3 = 15,
d/2 =5,y =23.67 meters, o2 = 0.01 S/m)

In the next case, shown in Fig. 7.5.6, the height of the horizontal
transmission line is decreased from 15 to 10 meters. This change appears to
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have little effect on the currents induced or their rate of decay with distance.
The final case is shown in Fig. 7.5.7. Here, the spacing between the phase
conductors has been increased to 10 meters. One consequence is that the
current induced on the transmission line is smaller. This reflects the fact that
the inductance per unit length of this line is larger and, hence the surge
impedance is higher. It can also be observed that the rate of decay for all
three currents is roughly the same.
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Fig. 7.5.6. Individual Phase Currents for a horizontal transmission line with a reduced height
of 10 meters (y1 = y3 = 10, d/2 = 5, y2 = 10 metets, o2 = 0.01 S/m).
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Fig. 7.5.7. Individual Phase Currents for a horizontal transmission line with an increased
phase spacing of 10 meters (y1 = y3 = 10, d/2 = 10, y2 = 10 meters, o2 = 0.01 S/m).
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On the need for transposition

It was shown in section 7.4 that currents induced on transmission lines with
unbalanced geometries with respect to the earth will generally exhibit unequal
phase current magnitudes. This result was reinforced for the specific case for
three phase transmission lines by the results shown in Figures 7.5.3 — 7.5.7.
These results also illustrated the fact is that even if the excitation is balanced,
the currents are generally unbalanced at the input and naturally become more
unbalanced as they propagate down the line. For this reason, (at least some)
utilities will “transpose” their power line conductors (i.e., change the
positions of each conductor with respect to the earth at various distances
along the power line). Such a tower is shown in Fig. 2.2.16.

While the issue of current unbalance is a real one, most analysis of power
flow on transmission lines is carried out using analysis that assumes balanced
currents. This is the subject covered in the next several sections. Later, this
simplified theory for propagation using the approximate positive sequence
component (and its single transmission line equivalent) will be compared to
the complete theory developed in Sections 7.4 and 7.5. The comparison will
shed light on both the amplitude of the individual phase currents compared
to the “balanced” current as well as the change in unbalance with distance
from the source along the transmission line.

7.6 Symmetrical Components

While the method described in Section 7.5 works in general for an arbitrary
power line, it is complex and does not lead to much insight into the
propagation process or answer the question about the conditions under
which such a complex analysis is necessary. So, here, the process will be
examined a bit further in the very important three-phase case.

If the results from Section 7.5 are written explicitly for the three
conductor case, the result is

le le Z13 7/2 AJ.l A12 A13 Ll
Zy Zy 223+j—w A, A, Aylll= (7.6.1)
Zy sy g A Ay Agll]l,
where (as before) Zj = Z; by reciprocity.
Again
. -1 .
jol A =|Y|= jo[C| (7.6.2)
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(the admittance per unit length matrix for the conductors over earth).
Multiplying (7.6.1) by |Y| and then expanding the unknown current in the

eigenvectors of ‘QZ‘ = |Y||Z| yields

i

bz 0lfi =

(7.6.3)
vV

These equations could be solved for the natural modes as previously, but
here it will be assumed (without justification at this time) that

e+ WIfi| =Inl

Z,=2Z; i,j=13 and Z,=Z, i#]j

i ii
Ai=A; 1,j=13 and A;=A; i#]

These approximations are justified if the power line conductors are
symmetrically located with respect to each other and very far from the earth.
The approximations are also justified if a non-symmetric line is regularly
transposed. But, also, it can be shown to be quite reasonable at 60 Hz for
any realistic power line as will be demonstrated later in this chapter.

Using this symmetry approximation

z, 2, zZ, Yo Y, Y,
z|=|z, Z, Z,| . [Y|=[Ya Y. Y. (7.6.4)
Z, Z, Z, Yo Y. Y
so that
S M M
Y|z]=4Q*=M s M (7.6.5)
M M S

Note that for a lossless earth, Y and Z are imaginary and hence the values
of the matrix elements are negative. This is the reason for the “-* sign.
In (7.6.5)

S=ZY,+2Z Y, and M=Z_Y, +ZY +Z Y,  (7.60)
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. . . . 2
Next, it will be shown that the eigenvectors and eigenvalues of ‘Q ‘are

respectively:
1 1
ej27r/3 e—jZn/S (767)
efj27r/3 ej27z'/3
and
S+2M S-M S-M (7.6.8)
To prove this, consider that
S M M| 1 S+2M
M S M| 1 |[=|S+2M|=(S+2M) 1 (7.6.9)
M M S| 1 S+2M

for the first eigenvector. For the second,

s M M| 1 S+M(e? +e772)
M S Mleiz=3|= Sej27r/3+Mej27r/3(ej2ﬂ/3+e—j27r/3)
M M Sleiz2 Se—jZﬁ/3+Me—j27r/3(ej27zl3+e—j27r/3

(7.6.10)
1 1
= {S +2M cos(z—”ﬂ el 3| = (S-M) el
3 e—j27r/3 e—j27r/3

The third proof is similar to the second.

This result means simply that the “components” for the symmetric case
are simply the traditional symmetrical components that are commonly used
in power systems analysis. These are the positive, negative and zero
sequence components respectively.

To solve for the currents it is necessary to know the matrix of
eigenvectors (arranged by columns) and its inverse. They are respectively

1 1 1

l=—=| 1 el?7® ¥ (7.6.11)
\/§ 1 e—j27r/3 ej27z/3

and
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1 1 1
a1 1 1 e-izel3  gi2nl3 (7.6.12)

n==—
|| \/§ 1 eizwl3  g-i2el3

These two matrices can be used to diagonalize ‘Qz‘ using the identity,

|77|_1‘Q2H77| = ‘de ‘ . Carrying out the calculations results in

S+2M 0 0

Q3| = 0 S-M 0 (7.6.13)

0 0 S—-M
. . kgl
A similar calculation for |77| |Y”V‘ yields
(Y, +2v, )(\/1 +V, +\73)
|77|_1|Y N = ﬁ (v, -, )\71 +V,e 12/ +\73e12”’3 (7.6.14)
(Y, =Y, WV, +V,ei273 4y g 1278
Given these results, (7.6.3) becomes explicitly
St2M 0 0 100 |,
0 S-M 0 [+y% 0 1 0 [fI,|=
0 0 S-M 00 1 |||}
" (7.6.15)

(Y, +2Y, )(\71 +V, +\73)
(Y, =Y, WV, +V,e 71273 1\ g2
(Y, =Y WV, +V,ei?/? 1V g 12713

to -

This is simple to solve because each equation is independent of the
others. For example, the positive, negative and zero sequence currents are

respectively
2 (Y, =YV, +V,ei? % Ly gzl
_ ( S m)( 1 2 3 ) (7616)

T Az -z, )Y, V)]
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S (VY WV Ve 67
" \/§(Zs_zm)(Ys_Ym)+7/2J e
s (v, +2v, )(\/1 +V, +V3) (7.6.18)

. \/§[(ZS +Zm)(Ys +Ym)+ZZmYm +72J

7.7 Per-Unit Length Parameters for an “Equivalent
Symmetric” Transmission Line

Simplified method

The easiest way to calculate the “equivalent symmetric” parameters of a
transmission line that is not long enough to become very unbalanced (or a
transposed line) is to simply replace each diagonal (off-diagonal) element in
the Z and Y matrices (i.e., (7.5.2) — (7.5.4) for transmission lines without
shield wires with (7.5.18) and (7.5.22) for transmission lines with shield wires)
with the average of the diagonal (off-diagonal) elements (Weeks, 1968).
Using this method for a three phase transmission line,

13 1
Zs zgzznn Zng(212+213+223)
) - ) (7.7.1)
Ys = §ZYnn Y m §(Y12 +Y13 +Y23)
n=1

Given this result, the positive and negative sequence impedance and
admittance values (as shown in (7.6.16) are respectively

Z s Zoeg =Zs = Zis Ypos1Yoeq = Ys = Yin (7.7.2)
and the zero sequence impedance and admittance values are
Z,o=2,+2Z,, Y, =Y, +2Y, (7.7.3)

More accurate method

A more common method for calculating the equivalent symmetric
parameters begins by recognizing that a purely symmetric transmission line
has impedance and admittance matrices that look like (7.6.4) or
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ZS Zm Zm YS Ym Ym
z|=1z,, Z, Z,| ., M|=[Ya Y. Y. (7.7.4)
Zm Zm ZS Ym Ym YS

One property of this a matrix with this type of symmetry is that post-
multiplying by || (a matrix of eigenvectors by columns) and pre-multiplying

by |77|71 where
L 1 1
|77| — E 1 ej27z’/3 e—j27z’/3 (775>
1 e—j27r/3 ej27r/3
and
1 1 1
1 1 i i
| | — 1 e j2713 e]27r/3 (776)

\/§ ej27r/3 e—j27z‘/3

-

yields the diagonalized matrices,

Z,+2Z, 0 0
Z4|=] O Z,-7, 0 (7.7.7)
0 o z,-Z,
and
Y, +2Y, O 0
Yq|=| O Y, -Y, 0 (7.7.8)
0 0 Y.-Y,

where, as in Section 7.5, the positive and negative sequence impedance and
admittance values are

Z s Zog =Zs = Zns Yoos1 Yoeg =Ys —Yq (7.7.9)
and the zero sequence impedance and admittance values are
Zzero = ZS + sz’ Yzero = YS + 2Ym (7'7'10)

Using the same procedure for a transmission line that does not have
perfect symmetry, but is close enough to symmetric, approximations to its
equivalent “symmetric component” impedance” and admittance are:
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2 o5a| =l 235l =

Z,+2Z, o), 05 Z,+2Z, 0 0 (7.7.11)
Oy Z,-Z, Oy | = 0 Z,-Z,
Oy O3, Z, -7, 0 0 Z, -7,
and
. 1
‘Yppd ‘ = |77| ‘Ypp“77| =
Y, +2Y,, o, 013 Y, +2Y,, 0 0 (7.7.12)
0y Y, =Y, O,y |= 0 Y, =Y,
é‘31 532 Ys - Zm 0 0 Ys _Ym

where ‘Z ;Jp‘and ‘YF;D‘ can be found from (7.5.18) and (7.5.22) respectively”.

Note that since |77| does not represent the eigenvectors of ‘Z pp‘ or ‘Y

r;p the
matrices are not perfectly diagonalized. But, since the off-diagonal terms are
assumed to be “small,” they have been neglected in the final result. In
(7.7.11) and (7.7.12), Z, — Z,, and Y, — Y, are the equivalent positive sequence
impedance and admittance respectively.

Another approximate (but commonly used) method for calculating the
positive sequence impedance and admittance can be found in Section 3.3 of
EPRI (1982) or 2.4 of EPRI (2005). In this method, values of these
parameters are derived using the geometric mean distance (GMD) of the
transmission line conductors as well as the geometric mean radius of the
phase conductor bundle.

b

Impedance per-unit length of a symmetrical transmission line
Consider the symmetrical transmission line above earth as illustrated in Fig.

7.7.1a. The impedance matrix for this power line is found from (7.5.1) —
(7.5.3) as

Z, Z, Z, - In(@)+5 In(sy,)+5 In(sy,)+ 4
Z, Z, Zp|z=-3 ;’0 In(s,)+8 In@)+s In(s,)+d (7.7.13)
Z, Z, Zg In(s,)+5 In(s,)+5 In(a)+s

3 If the transmission line has shield wires, it is first necessary to do a network reduction on
the 3+N; x 3+N; Z and Y matrices (where N is the number of shield wires and potential of
each shield wire is assumed to be zero) to get an equivalent 3 x 3 system.
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where by symmetry S, =S,; =S;, and the Carson integral has been

approximated by (4.7.16) to be

Kri ) .
Jo(Xy =Xy Yo ¥y ) = In[%}t j% Clkorl <<l (7.7.14)
Hence,
S=In(k,/2)+ jz!2 (7.7.15)
is independent of the geometry.
Y Y
l2 R I3 ) R I3
X X
1/ w
e e
radius=a | 1 radius=a |
rrrrrrrrrrrrrr1 T
a b

Fig. 7.7.1. A symmetrical three phase transmission line above earth. a) earth included b)
earth neglected

If, next, (7.7.13) is matrix multiplied by a set of positive sequence currents
then

_ In(@)+5 In(s,)+5 In(sy,)+a]| 1
A% ins )+ s In(@)+s  In(sy,)+ o] le iz
In(s,)+5 In(s,)+d In(a)+s ||le™1?
. (In(s, /a))
= Jw—i/“;o (In(s,, /a))le”iz”’3
(In(sy, /@))le iz’

(7.7.16)

where the effect of the earth can now be neglected as illustrated in Fig.
7.7.1b. From this result, the zero sequence impedance for this balanced
symmetrical transmission line can be written as
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A Jex In(s,, /a) (7.7.17)
2r

This result is identical to that derived in many textbooks using the theory
of flux linkages (Bergen, 1986). A practical consequence of this is that a
reduction in impedance can be had by either reducing the spacing between
phases (i.e., a compact line) or increasing the conductor (or bundle) diameter.

7.8 Currents in the Space Domain

From 4.7.9, the inverse Fourier transform for calculating the current in the
space domain can be written as

A (7.8.2)
I,(2)=
(Y, -v, )(\71 +V,e12/2 +\73ej2”’3) %

Since Zs, Zm, Ys and Y are independent of vy, the only singularity of the
denominator of (7.8.2) is the pair of zeros at

y=re =£J(Z. = Z, (Y, = Y,) (7.8.3)

where it will be assumed that Im(yp) = 0. This zero represents the
propagation constant of the positive sequence component. Since this zero in
the denominator represents a simple pole of the integrand, it becomes
straightforward to evaluate (7.8.2) by residue theory. Following (4.7.17) —
(4.7.21), (7.8.2) becomes

( )_ _ j(Ys _Ym)(\il +\72ej27r/3 +\736_j2”/3)
T 2\/§7P
) (\71 +v2ej2ﬂ/3 +\73e—jz;z/3)
. 2432,

e—jJ’PZ

A

(7.8.4)

e_ijZ

where 7z, =./(z, -Z,)/(Y, Y, ) is the positive sequence characteristic

impedance.
Other components can be obtained in a similar manner.
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7.9 The Single Line Approximation and Calculation
of the Individual Currents

It is usually assumed for power flow calculations that the only component on
the transmission line is the positive sequence voltage and current. If it is
assumed that the transmission line is excited by a positive sequence voltage
as in (7.9.1)

>

I
<

7 _\Ja-i27/3
V, =Ve

\;3 :v\ej27r/3

(7.9.1)

b

where V is the phase to ground voltage magnitude, then only the positive
sequence current is excited and

_ = J(Ys _Ym)\/é\;

Io(2)= e e (7.9.2)
25
Further, it is now possible to determine the individual currents from
(7.4.4)
" (7)( = |1y (7)1 (7.9.3)
and (7.6.11)
1 1 1
|77| :% 1 ej27r/3 e—j27r/3 (794)

1 efj27r/3 ej27z’/3

so that (since all other components are zero)

. —ilY. =Y.V _.
,(z)= Me‘w (7.9.5)
27p
Given the definition of pp in (7.8.3), (7.9.5) can be written as
VAR
1,(z)=——e V" 7.9.6
(0= (7.9.)

where
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Zs_Zm

7 = |\Ms T em)
" (Ys _Ym)

(7.9.7)

is the positive sequence characteristic impedance (often called “surge
impedance”) of the transmission line. The reason for the factor of 2 in the
denominator can be understood in the same way at in Chapter 4 where the
voltage source in series with the line can be related to the “phase-to-ground”
voltage V,, as shown in Fig. 7.9.1

Vi2 Vi2 Vo= V/2
—~ @) I(2)

\Y

P9 pg

Fig. 7.9.1. a) circuit equivalent to a series source of voltage V b) equivalent phase to ground
sources for the case that all cross sectional dimensions of the power line are small compared
to a wavelength at the operating frequency.

Given this result, the cutrrent for z > 0 can be written as
VA
l,(z)=-"e 7 (7.9.8)
Zps

Other components of the current can be obtained in s similar manner.

More specifically,
I,(z)=T,(2)e™*"

IA3 (Z) = |A1(Z)e+j2”/3

(7.9.8) and (7.9.9) are the basis for treating three phase systems carrying a
balanced three phase positive sequence current as an equivalent single
conductor line.

(7.9.9)

7.10 Comparison of the single line and general
methods for calculating phase currents

In this section, a comparison will be made between the general results of
Section 7.5 for currents induced on a transmission line and the simple
approximations that have been made in the previous sections. More
specifically, the magnitude of the individual positive sequence phase currents
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of (7.9.8) where 17, = 177/2 using the simplified impedance and admittance
parameters from (7.7.1) will be plotted in addition to the individual currents.
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120 —e ~
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115 —trel
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------- Positive Sequence

Current (A)

110

105

100
0 200 400 600 800 1000

z (km)

Fig. 7.10.1 Hotizontal line of Fig. 7.5.3 with positive sequence cutrent (y1 = y3 = 15,d/2 =
5, y2 = 15 metets, o2 = 0.01 S/m)

In Fig. 7.10.1, the magnitude of the positive sequence currents is plotted
for the horizontal configured transmission line base case along with the
individual phase currents. As expected, the positive sequence current has a
value at z = 0 that is roughly equal to the average of the three individual
phase currents. In addition, the rate of decay is roughly the average for the
three currents. Also, as expected, the current imbalance that varies with
distance, is not captured by the positive sequence current.
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Fig. 7.10.2 Delta configured transmission line of Fig. 7.5.5 with positive sequence current (yi
=y3;=15,d/2 =5,y, = 23.67 meters, o, = 0.01 S/m)
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In Fig. 7.10.2, the magnitude of the positive sequence currents is plotted
for the delta configured transmission line along with the individual phase
currents. In this case, the agreement is much better because the individual
currents are significantly closer. Nevertheless the current imbalance is, again,
not captured.

7.11 Extension to conductor bundles

Introduction

A short introduction to the idea of a conductor bundle was given earlier in
Section 7. 2. Here this idea will be examined more carefully in the case for
two subconductors and then generalized to the case for an arbitrary number
of subconductors. The effect of using conductor bundles on line parameters
will then be discussed.

Two subconductors

Suppose that rather than a single wire above the earth, there are two parallel
wires, each driven by an identical voltage source at z = 0, placed a distance d
apart and at the same height, h, above a homogeneous earth (Olsen and
Aburwein 1980). It is assumed here that 4 >> 4 >> 4 and that 4 << 4. A
cross sectional view of this problem is illustrated in Fig. 7.11.1.

LA X, =X, +d —
— —@— —@—
23 2a
y1=yz=h
X

P77 rrrrrrrrrrrrrry

Fig. 7.11.1. Cross sectional view of a two conductor bundle. Each wire is driven by a
sinusoidal voltage source with magnitude V atz = 0.

By symmetry, the current in each wire is the same. Hence, following
(4.3.4) with E,, = 0 and assuming that the total axial electric field (due to

both sources) is zero at (X,y)=| X,,h—a
2
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(x,y):{xl,h—aJ

Gez(o’h_a’h’y)l (7)+Gez(_d’h_a’h’7/)l (7):_V +Ziw| (7/) (7'11'1)
Note that only one equation is necessary here because (by symmetry) the
electric field will automatically be zero at (X, y):(xz,h—a). Given this,
(7.11.1) can be solved for the total current (i.e., 2r(7/)) on the bundle. The

result is

’itl(y): = :ZV
e G,(0,h—a,h,y)+G,(-d,h—ah,y)-Z,

(7.11.2)

Now, from (4.4.64)

é.‘EZ[X_X:L’ y’hlj/J:é-esz{X_X]_l yth/J‘l‘éerz(X—Xl, y,h,ﬂ/] (7113)

2 2 2

where

éj{xxl, y'h,y]_L_kg)H(()Z)[(j/z koz)mrl] (7.11.4)

) dowe, )

is the “source” term and

S R = R
2

) dwe,
on) —jr(x=%,) (7.11.5)
s o Uy (y+ 2
+ij(1+ R(x))e™""e dx
e, U,

is the earth “reflection” term.
Now, since 4 >> d>> a4, G5(0,h—a,h,y) is substantially different from

G:(~d,h—ah,y) but G.(0,h—ah,y)=G (~d,h—ah,y). Thus,

(7.11.2) can be written approximately as
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IAta.(y)——ZV/
{ 2oz, Sl 16 ) me o a] o110

+2G.(d/2,h,h,y)-Z

Further, since
@(q)=1-2linq/2)- 2% q<<1
T T

where y. is Euhlet’s constant, (7.11.6) can be written

(7.11.7)
I, _ov
Itotal(7)= _ (
szgo [Ind (d? +a? )" +1In( )]+ZG (d/2,h,h,5)-
and, by combining the log terms,
(7.11.8)
I, N
Itotal(y)_
_J 4 _k /2 /2 ~,
Z(M,go)'”{( (@*+a*f )1 :|+ZGez(d/2,h,h,]/)_

The term ( (dz +a )1 )l ad)ll2 a << d is called the “effective

radius” of the conductor and can be used to write the final result for the total
current as (Weeks 1981)

2 —V
| == 7.11.9
total (7/) Gez ((ad)llz,h,h,y)—ZiWIZ ( )

This is exactly the same result as for a single wire except that the radius of
the single conductor is replaced by the geometric mean radius of the bundle
and the internal impedance per unit length of the conductor is halved.

Arbitrary number of subconductors

It was shown above that two conductors held at the same potential and
driven by the same voltage can be combined into an “equivalent” single
“bundled” conductor with an equivalent radius. Here this result will be
generalized to an N conductor “symmetric” bundle (i.e., even values of N). It
will be assumed that the bundle dimensions are small compared to either the
distance to the nearest other phase or shield conductor and the earth. Such a
problem is shown in Fig. 7.11.2
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Fig. 7.11.2. Cross sectional view of an N conductor symmetric bundle of bundle diameter 4} ,
bundle radius 4, and subconductor spacing s centered at (xl,yl). Each subconductor is of

radius asb and is driven by a sinusoidal voltage source with magnitude V at z = 0.

Assuming again that ¢ << 4, , equation (7.11.8) can be generalized to the
N conductor bundle shown in Fig. 7.11.2 and is given as (7.11.10) below
(EPRI 1982)

(7.11.10)
2 -V
| ota (7): T2 2
— J(j/ — kO )In[<Nasub(br )N_l)UN ]+ Gerz (db /21 h1 h’ 7/)_ Zil\)/\l/mdle
2rwe,
where the “effective radius” is
ay = (Nasub(br ) )”N (7.11.11)

The relationship between the “bundle radius” and the “subconductor
spacing’ is
S

b=——F—— 7.11.12
" 2sin(z/N) ( )

The appropriate surface impedance to use for a conductor bundle is
zyrte =z IN (7.11.13)

where Z,, is the surface impedance for an individual subconductor.
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2 ~V
| S 7.11.14
total (7/) Gez (aeﬁ ’ h, h, 7)_ ZiW/ N ( )

Again, this is exactly the same result as for a single wire case except that
the radius of the single conductor is replaced by the effective radius of the
bundle and the internal impedance per unit length of any subconductor is
divided by N.

Effect of bundling on line parameters
Recall that the distributed capacitance and external inductance for a single
conductor transmission line from (5.5.1) and (5.5.6) are respectively

Cc = 27 (7.11.15)
%)
In| —
a
and
L, =0 3] (7.11.16)
2r a

respectively, where a is the conductor radius. Hence, replacing the conductor
radius a with the effective bundle radius a, (which is generally much larger

than a even if the sub conductor radius is smaller than the original
conductor) has the effect of increasing the capacitance per unit length of the
equivalent power transmission line, and reducing the inductance per unit
length of the equivalent transmission line. Since the inductance and
capacitance are respectively proportional to and inversely proportional to the
factor In(®/a), these changes occur logatrithmically. According to (4.2.5) —
(4.2.7), the behavior of the resistance is a bit more complicated. More
specifically, since the resistance of a subconductor is proportional to
something between a and a°, the total resistance of the bundle will be
proportional to a factor between a/N and a°/N where N is the number of
subconductors. Thus, again, the resistance of the bundle is generally reduced
compared to the original conductor even if the subconductor radius is
smaller than the original conductor radius.

7.12 Problems

P7.1 Derive (7.2.14) starting with (7.2.9) — (7.2.10)
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P7.2 a) Find an explicit expression for |Y| and |C| in (7.2.15) in terms of the
individual elements of |A| as defined in (7.2.12) and (7.2.14). Note that some

elements of |C| are negative, but this does not imply negative equivalent

capacitances as shown in part b.

b) Consider Figure P 7.2 in which the cross section of a two conductor
horizontal transmission line is shown along with a network of capacitors that
accounts for the capacitive currents between conductors and between
conductors and the earth. Using
= jolC L\;l
2

and the successive assumptions ;7 = 1% and 1, = -172, find explicit
expressions for Cj, = Cy and Cr.. Show that each of these has a positive
value.

A

Il

5

2

Conductor #1 "_' d/2 - d/Z a{ Conductor #2

22 el b 2

[
N

———————

/7////)///////}//////

Fig. P7.2 Two conductors above earth with an array of capacitors used to calculate capacitive
currents between conductors and between the conductors and the earth.

P7.3 Using (7.2.19), show explicitly that || Q|7 =[] "[Y[Z|n]in (7.2.23)

is a diagonal matrix and equal to (7.2.26) where |Y||Z| can be found in

(7.2.17). Essentially this problem asks you to follow steps (7.2.25) through
(7.2.20).

P7.4 Using (7.2.33) and (7.2.34) show explicitly that |A | A/=|U

matrix.

, the unit
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P7.5 Using the approximation for the Carson integral

J.(x=x,y,y)= In(j%j+0.077— j%kz(y+ y')

where the last two terms can be ignored, calculate values of y_ and y4. The

formulas for these two propagation constants can be found in (7.2.41) and
(7.2.43). Assume aluminum conductors (i.e., oy = 3.5 x 10" S/m) and the
parameters f = 60 Hz,2 = 0.0l m,h = 10 m,d = 5 m and o, = 0.01 S/m.

P7.6 Using the parameters of problem P7.5 except for the frequency,
evaluate the attenuation constant (i.e., the imaginary part of the propagation

constant) for y and y, for the frequencies 100 Hz, 1 kHz, 10 kHz and 100

kHz. Does the loss from the conductors or the earth contribute the largest
part of the attenuation?

P7.7 Assuming that conductors and the earth are both perfect conductors,
calculate the characteristic impedances Z . and Zqp in (7.2.52) and (7.2.53)
for a pair conductors spaced 5 meters apart and located 10 meters above the
earth. How do they compare? If Z ;5 = 1000 Q and Z,;, =2 5, — ©,
calculate the reflection coefficients I'yy, Iy, I, and I'y,.

P7.8 Given the propagation constant y’ in (7.3.3) and using the first term

of the approximate Carson integral given in problem P7.5, show that the
factor

kZ cos(8,) < i(2)

(k3 sin®(6,)- )

in (7.3.11) has a maximum value for some value of 0; near n/2. For this
calculation, assume that Z;, = 0, that the frequency is 10 kHz and that 02 =
0.01 S/m, d = 5 meters, » = 10 meters and « = 0.01 meters. What does this
result mean for induced currents on power lines from a lightning field at
grazing incidence?

P7.9 A quasi-DC current of 100 A at a frequency of 0.01 Hz is induced in a
300 km long transmission line 20 meters above the earth by a parallel
electroject current that is 100 km directly above the transmission line. The
earth conductivity is 0.01 S/m, the transmission line’s quasi-DC resistance is
5 Q and the quasi-DC grounding impedance of each transformer is 5.
Using (7.3.18) and (7.3.19), determine the magnitude (i.e., not the phase) of
the electrojet current.
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P7.10 Assuming that ACOS(HA)= N2, and i(t)= t exp(— at)where a =
0.01/sec, find the geomagnetic induced current on a transmission line using
(7.3.26) reproduced below.

fing (t)= ACjZi:A)z i; (f?[' dt'

Use whatever numerical technique you have available. Note that the
singularity at t = t’ is integrable.

P7.11 For the transformer characteristics given in Fig. 7.3.7. and the flux
given in

#(t) = 2+10sin(wt)

where /= 60 Hz and w = 2nf, plot the transformer current. Comment on
the harmonic content of this current.

P7.12 Suppose you have a single wire transmission line 10 meters above
earth with a single shield wire 2 meters above it. Write down the full

impedances matrix as in (7.5.12) as well as its reduced form ‘Z pp‘ that
accounts for the shield wire. Also, write down the full admittance matrix as
in (7.5.16) as well as its reduced form ‘A'pp‘ that accounts for the shield wire.

Assume that the earth has a conductivity of 0.01 S/m, that the frequency is
60 Hz and that you can use the first term of the simplified Carson equation
in P7.5.  Also assume that @; = 4, = 0.01 meters.

P7.13 Calculate the per-unit length impedance and admittance parameters
(.€.s Zpoy Zingy Liery Yoy Yugand Yo.,) for an equivalent symmetric transmission
line using the “simplified” and “more accurate” methods discussed in Section
7.6. Assume that the transmission line is a horizontal line at a height of 15
meters above ground and that the phase-phase spacing is 5 meters and that
the radius of the conductor is 0.01 meters. Assume that the earth has a
conductivity of 0.01 S/m, that the frequency is 60 Hz and that you can use
the simplified Carson equation in P 7.5.

P7.14 Calculate the geometric mean radius for a four conductor bundle in a
square configuration with a subconductor radius of 0.01 meters and a spacing
of 0.5 meters.

P7.15 The geometries of a single-conductor power line and a bundle-
conductor power line are shown in Fig. P7.15.1. The single conductor is
solid, 1.75 centimeters in radius, and 14 meters above the ground. The four
solid subconductors, each with radius of 1.75 centimeters and bundle
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spacing, s of 45.72 centimeters, in the bundle are uniformly distributed on a
circle contour. The center of the circle is 14 meters above the ground.

]

>
"

o0

Y1 Y1

X X

[TTT T 7T T T77TT Frrrrrrnyrrrrrrr

Fig. P7.15.1 Geometries of a single-conductor and a bundle-conductor power line

Find the effective radius of the conductor bundle. With the given
information above and ignoring the effect due to the earth, calculate the per-
unit length capacitance ¢ and external inductance / of the single-conductor
line and the bundle-conductor line. Compare the product of the capacitance
and inductance (¢XJ) for the two lines.
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Appendix A

Wireless vs. Wired Transmission

It is shown in (7.2.45) that the differential mode current induced on two
wires above the earth by either voltage sources or external fields is

A R _j(Yll_le(v\l—i_Eelz(yd)_\;Z_Eezz(yd )) _
,(z)=—1,(2)= 7 e (A1)
V4

It is now assumed that 1) the voltage sources are set to zero, 2) the source
of external fields is an electric dipole located between the two wires and
oriented so that it points from one wire to another as shown in Fig. A.1 and
that the earth is far enough away to be neglected.

d X
2a
. l l .
(== T oo
z
™~ Dipole
Fig. A.1 Two parallel wires in free space excited by a dipole between them
The result is shown in (A.2) — (A.3).
. . _j(Yll_Y12{Eelz(7d)_Eezz(7d)) _
L,(z)=-1,(z)= e e, (A.2)
4yq
where
Va =k — (Yll —Y )Ziw (A3)
and
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127we, k,a)J,(k,a
Y =Y, = d g, Ziw(w) = Rdc( 2 jJ—O((k a)) (A4
In(aJ 1w

Note that the common mode is not excited in this case because the
excitation field has odd symmetry with respect to the x axis.

Further, at high enough frequencies that |kWa| >>1

1/2 (1 )
ziw(w);[%j 2;&1 , kel >>1 (A.5)

w

From (9.4.2), and assuming that (kg - }/2)1/2d <<1, the z component of

the dipole fields in the spatial Fourier transform domain (i.e., as a function of

Y) 1s
= _ —1hy (x—x')}
E..(x x,y)zzmgo{ et (A.6)

Hence, the induced current on each wire equals

fl(z): _fz(z): th(Yll _le)e—iydz - Ih g inz (A7)

2rwe,d diIn(d/a)

At large values of z, the magnetic field between the wires (at (x,y,2) =
(0.0.2)) is

- -2lh :

H,(00,z)=————e "¢ A8
,00.2) d? In(d/a)e (B9

7a =Ko \/1_ (Yll =Y )Ziw / kg (A9)

This compares to the magnetic field from the dipole without wires which
1s

A IhkZ | j 1
H.(00,z)=—%| — A.10
,(00.2) Arx [konr(ka)z}( )

Hence, (for K,z <<1 as is typical for 50/60 Hz) the ratio of the “guided”
field to the free space field is
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—8z2

|:|y(0,0, Z)= Wd/a)

g (A.11)

Since ‘lm(y pZ} <<1, it is clear that for even moderate distances from the

source, the “guided” field is significantly larger than the ‘free space” field.
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Appendix B

Round Wire Impedance (Skin Effect)

Consider a solid round wire of radius “a” and conductivity g, as shown in
Fig. B.1.

Fig. B.1. Solid Round conductor of radius a and conductivity g, .

The goal of this section is to determine the distribution of current flowing
along z throughout the cross section of the conductor. The starting point
will be Maxwell’s equations in time harmonic form (with | = ¢,I2 ) or

VXH = joE +0 E = ng(l_ jﬂjﬁ B.1)
weE

VXE = —jouH B.2)
In most metals o is on the order of 10" S/m and hence, unless the radian
o
frequency is on the order of 10" Rad/s, — >>1 and Maxwell’s equations

e
reduce to

VxH =] (B.3)
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VxJ =—-jouoc ,,H (B.4)

where the substitution ] = oE has been made because the ultimate goal is to
find the distribution of current. Taking the curl of (B.4), substituting (B.3)
and using the vector identity

VXVxJ =V(V e J)- V2] (B.5)

2. . .
where V©is the Laplacian operator results in

V2] = jouo,,J B.0)

w

If it is assumed that o is constant throughout the conductor.
Now, if it is assumed that the only component of current is in the z direction,
then in cylindrical coordinates,

,= 1 0 d, 10%, 8°J, .
Vil=——I|p t—— +t—— = Jouo,J, (B.7)
pop\" Op ) p° 0p 0z

The first simplification that can be made is that

8,
5 -0 (B.8)

since it is assumed that the current distribution is independent of the angle ¢.
The remaining equation can be solved by a method called “Separation of
Variables.” In this method, it is assumed that the unknown can be written as
a product of a function of p only (R(p)) and a function of z only (Z(z)) so
that

J.(p.2)=R(p)Z(2) B.9)

The justification for this assumption will come later. (B.7) can then be
written as (after it has been divided by J,(p,4)= R(p)Z(z)as

1 a( Rp)) . 1 0°2(z) _
pR(p)ap(p 6/9} TG w0 P

Since the first two terms are a function of p only and the last a function of
z only and the sum is a constant, each term must be a constant (a separation
constant) that will be called here »*. Given this,
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1 0°2(z)
= - 11
Z(z) éz° " B0
1 0 6R(pJ . ,

oA | P |~ Jowo, =K (B.12)

PR(p) ap( op

The solution to the first equation is
Z(z)=Ae™ + Ae (B.13)

Since it will be show in Chapter 1 that currents that travel on power lines
travel approximately as

g/ ko2 (B.14)

where K, = @4/ 1,&, and the fields inside the conductor must travel with the

same factor, (B.12) can now be written

1 a[ R(p)

mRp)opl” op

R() ap j— jouo,, = -’ 1y, =0 (B.15)

given the same assumption on frequency made between (B.1) and (B.3) (i.e.,
o, we,)>>1).

(B.15) can now be rewritten as

o( @R .

a—(pﬁ) - jouo ,,R(p)=0

p\ op
0° R(p) .

p= 7 R(p)+= "=~ jouo, R(p)=0 (B.15)
P %

0? 1 0R .

FR(P)JF—M—JQWGWR(P):O

P p 0

This differential equation is known as Bessel’s equation and is known to
have a solution of the form

where Jy(x) is known as the Bessel function of first kind and order 0 and
Yy(x) is known as the Bessel function of second kind and order 0. Now,
Y(x) cannot be a part of a physical solution because it is known to have a
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singularity at x = 0 and the current density does not have a singularity there.
Thus, the constant B = 0 and

R(p)= A3, (V= jamo, p). (B.17)

The total current flowing on the conductor (J) is equal to

2ra a
| = [[3,pd00¢ = 27A[ 3 (= jawor, oo
00 0 (B.18)
27A ¢
= VLZJ ‘] 0 (kwp)(kwp)d (kwp)
0
where K, =+/— jouo,, .
The last integral in (B.18) can be evaluated as follows
27A
=" [Jokp)k,p)d (k)
"o (B.19)

27A "8 27A
= T [ (0= 5k, 23, 2)
w 0

w

where [i(x) is known as the Bessel function of first kind and order 1. The
current | (Z) can then be written as

1(z)=le*/ % (B.20)

Using this result, it is possible to write the constant A in terms of the
current and thus

k1 J,(k,0)
R —_—w_ To\'w// 2
(p)=35 T (k.a) (B.21)
Hence,
_ k! Jo(kwp) +1- jkoz 2
Ja(p2)= 27a Jl(kwa)e (022

Given this result, the surface impedance Z;,, can be written as

E,(az) J,(az) k, Jk,a)

w

o, 1(2)  270,a J,(k,a)

(B.23)
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Where K, =+— Jouo, . This can also be written in terms of the dc

resistance per unit length of the wire as

k,a)J,(k,a)
Z(w)= Rdc[ : j 3 (c.a) (B.24)
where
Ry = (B.25)
O, A
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Appendix C

Essentials of Complex Variable Theory

It is appropriate here to provide some background about complex variables
since relatively few of the readers of the text will have had a course in this
area.

Consider the xy plane shown in Fig. C.1 below

y
°(xy)

Fig. C.1 — the xy plane

It is possible to write an expression for a complex valued function of x
and y as

w(x, y) =u(x, y)+ jv(xy) €D
A point in the (x,y) plane can be described as
Z=X+Jy (C.2)

where z is a “complex variable.” (C.2) describes the values of x and y and
can be used to find the value of the function w(x,y). To carry out this
process in general, the “complex conjugate” of z (i.e., Z ) can be defined as

Z=X-Jy (C.3)

so that X=%(Z+Z) and yz_TJ(Z—Z).

Thus, in general

wix,y)=u((z+2)/2-j(z-2)/12)+ jv((z+2)/2~j(z—2)/2)  (C4)
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Now, it is clear that certain functions w(x,y) can be written as a function
of z alone (ie., if x and y combine in just the right way). But that other
functions w(x.y) cannot be written in this way. For example,

w(x,y)= (x2 — y2)+ j2xy =(x+ jyf =z (C.5)
X .y 1 1

y = _— = R = — C6

w(x.y) X% +y? Jx2+y2 X+jy z ©0)

However,

w(x, y)=4x+ j2y =4(z+2)/2+ j2(- j(z—2)/2) )

=2z+2)+2(z-2)=3z+2 '
Functions which can be written as a function of z alone will be called analytic
functions and will be shown to have the property that the methods of
differential calculus for functions of a single real variable can be used. Prior
to showing this, a few definitions will be given.

Continuity
A function f is continuous at a point zo if all of these following conditions are
met.

Z|I_)I’!] f(Z) exists (C.8)
f(ZO) exists (C.9)
lim f(z)= f(z,) (C.10)

A function of a complex variable is said to be continuous in a region R if
it is continuous at every point in R. It should be noted that functions of
both z and its complex conjugate may be continuous. For example,

f (Z, 2) = 7 is a continuous function.

Boundedness
If f(z)is continuous in a region R which is closed and bounded, then f is

“bounded” and |f(Z)| reaches a maximum value somewhere in R. To be

precise, there exists a positive number M such that | f (Z] <M forall zin R.

Differentiability
Let f be a function whose domain of definition contains a neighborhood of a
point z. The derivative of f at z, is written as f '(Zo)and defined by
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f(2)- f(z,) im f(z+Az)- f(z,) 1

71, Z-1, Az—0 Az

whete AZ=17-12,
If, further Aw= f(z+Az)— f(z), then

, dwiz . Aw
f (ZO):WS—ZO):AIZ'H%E (C.12)

Some examples will now be considered in order to solidify an
understanding of the difference between analytic and non-analytic functions.
Consider f(z) = z°.

AW . (z+Az) -2°

lim = = lim = lim(2z + Az) =2z (C.13)
Az—0 A7 Az—0 AZ Az—0
Hence, f'(Z)z 2z7.
Next consider, f(Z, Z): 77 = |Z|2
. AW (Z+AZNZ+AZ)-22 . AZ
lim AW _ (2 +82)2+A7)-22 Ilm(Z+AZ+z—] (C.14)
Az—0 A7 Az—0 AZ Az—0 AZ
AW dw
Ifz=0, —=AZ ,and — =0.
Az dz

If, howevet, z # 0, then the limit depends upon how Az goes to zero. For
example, if Az approaches 0 through real values of z (l.e., Az = Ax) then
AZ = AZ and

Iim(Z+AZ+z£j=Z+z (C.15)
Az—0 AZ

If Az approaches 0 through pure imaginary values of z (i.e., Az = Ay) then
AZ = —-Az and

Iim[Z+AZ+z£]=Z—z (C.16)
Az—0 AZ

Now since by definition any limit is unique, it is clear here that the limit
does not exist. Consequently, £’(z) exists only at the origin z = 0.

The real and imaginary parts of a complex function may have continuous
partial derivatives of all orders and yet the function may not be differentiable.
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It is, however, true that the existence of a derivative of a function at a point
implies the continuity of the function there.

Analytic functions

If a function is single values and differentiable at every point of a domain D,
save possibly for a finite number of exceptional points, it can be said that it is
analytic in D. The exceptional points are called the singular points or
singularities of the function. If no point of D is a singularity, then it can be
said that the function is regular in D. An entire function is one which is
regular at each point in the entire complex plane. Consider next some
specific examples of functions to examine their properties.

Polynomials
Consider the function z" where n is an integer. This function can be shown
to be regular in every bounded domain. It can be further shown that if f(z)
and g(z) are regular, then f(z) + g(z) is regular in the same domain, Thus any
sum of terms z raised to an integer is a regular function in any bounded
domain.

Thus, any polynomial is a regular function in any bounded domain.

For example,
f(Z) = a(z =1, )(Z =1, )(Z = 23)- -+ where the z; are constants is regular

The function z™ (where n is an integer) can be shown to be analytic in
every bounded domain but has one singularity at the origin. This singularity
is called a pole of order n.

The quotient of two polynomials is a rational function. A rational
function is an analytic function with singularities at the zeros of the
denominator. These singularities are called poles.

Power Series Representation

Consider the series f (Z) = ian z".
=)

1/n .
<1 and diverges when

a,z"

This series converges absolutely when lim
N—>o0!

. 1/n
lim

N—o0

a,z" =R, then the

1 .
">1 by Cauchy’s nth root test. Thus, if lim[a,|

series is convergent when |Z| < R and divergent when |Z| > R. Ris called the

radius of convergence.

It can be shown that the sum of a series with a non-zero radius of
convergence is an analytic function regular within this circle of convergence.
The converse can also be shown: that an analytic function regular in the
neighborhood of a point z, can be expanded in a power series.
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Canchy-Riemann Equations

Consider a function

f(z)=u(xy)+ jv(xy) (C.17)

It can be shown that if a function is analytic, then

a_u = @ (C.18)
ox oy

and
a_u = _@ (C.19)
oy OX

These are the Cauchy-Reimann equations.

Thus, for a function to be analytic, it is necessary that the four partial
derivatives exist and that they satisfy the Cauchy-Riemann equations. For
sufficient conditions, it can be said that

f(z) is analytic, regular in D, if the function is single valued and if the four partial

derivatives exist, are continuons and satisfy the Canchy-Reimann equations at each point
m D.

If the partial derivatives of (C.18) and (C.19) are taken with respect to x
and y, respectively then added together, the result is

=0 or Viu=0 (C.20)

gu ou
ox* oy
o’v  dv
— ——O or V=0 (C.21)
ox?

Thus, both the real and the imaginary parts of a regular function satisfy
Laplaces’ equation. This property will be used again later.

One consequence of (C.20) and (C.21) is that a closed line integral of an

analytic function around any path in the complex plane that does not enclose
a singularity is zero. Hence

§f(z)=0 (C.22)

C

There is another method for determining that a function is analytic.
Consider the function
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w(x, y)=u(x, y)+ jv(x, y)

In terms of z and Z , w can be written (as eatlier)

w(x,y)=u((z+2)/2~j(z=2)12)+ jv(z+2)/2~-j(z—2)I2) (C23)

It will now be shown that, if w is analytic, then w will not depend on Z.

ow
To see this, the derivative e will be computed.

z

ow 6(u+jv)_6_u+ oV
oz oz oz "oz

au ox 6u8y ov Oox  ov oy
et oy oz

ox o7 8y oz

But, from the definitions

ox 1 oy

—_=—and—_=

oz 2 0

Thus,

ow _1(fou ou) jfov
+— |+ =+

oz 2\ 6x oy ) 2\0ox
16_u_@+1 ou

2\ 0x oy ay

=0

) (C.24)

—j (C.25)

since u and v satisfy the Cauchy Riemann equations because w was defined
as analytic. Thus w must be a function of z alone.

The way that analytic functions will be used in this context is to begin
with a function f(x) defined on the real axis. x will then be replaced with z to
extend the definition of f(x) to the complex plane. The resulting function is
analytic because it is a function of z alone. Strictly speaking this process has
pitfalls that can be discussed in the context of analytic continuation, but the

process works in nearly all cases.
Consider next some specific examples.

The exponential function

o) Zn
= 1 —_—
exp(z)=1+ >
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It can be shown that the radius of convergence of this series is infinite.
Hence, the exponential function is an analytic function in any bounded
domain of the z plane.

Trigonometric and Hyperbolic functions

Since trigonometric and hyperbolic functions are simply defined as sums of
exponential functions, the same properties can be attributed to them as the
above. Note also that

e sin(jz) = j sinh(z)
e sinh(jz) = sin(z)
e cos(jz) = cosh(z)
e cosh(jz) = cos(z)

Next, the zeros of sin(z) and cos(z) will be examined.
sin(z) = sin(x+jy) = sin(x) cosh(y) + j cos(x) sinh(y) (C.27)
(C.27) vanishes if and only if
sin(x) cosh(y) = 0 and cos(x) sinh(y) = 0

Thus, the zeros of sin(z) are identical with the zeros of sin(x) and occur at
z = nm.

The logarithmic function

If x is real and positive, " = x has one solution which is called u = In(x).
But, the situation is more complicated if x is replaced with the complex
variable z = x + jy. Then, u must also be replaced by the complex variable w
= u +jv resulting in

etV =glel = 7 =|ze i) (C.28)

where arg(z) is the angle from the +x axis to the point z in the complex
plane. To get equality, both magnitude and phase are equated so that

e! = |Z| and U = In(Z) as before

but v= arg(z), therefore
w = log|z| + jarg(z) (C.29)

There is a serious difficulty with the arg(z) function. This function must
either be single valued and hence discontinuous across some angle 0 (e.g., if
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this line of discontinuity is 6 =0, then the range of arg(z) is 0 — 2n and it is
discontinuous across the 6 = 0 line) or it is a multivalued function. In the
latter case 0 continues to increase as 0 passes by 2. In this latter case, arg(z)
may take on values 0 + 2n7m where n is any integer.

The only way for w to be a single valued function is to define limits on 6
and to recognize that w will be discontinuous (and hence non-analytic) along
the constant 0 boundary line. Each possible range of 0’s which result in
single valuedness is called a branch or Riemann sheet. The line of
discontinuity is called a branch cut.

An example branch cut for the log function is shown in Fig. C.2.

Branch Roints
4

[ € — i —

-0 K
Branch Cu

Fig. C.2. Possible branch cut and branch points for the logarithmic function.

In this case the definition of the branch is -n <0 < =,

The branch cut is terminated at points called branch points which always
occur in pairs. For the log function (and branch shown in Fig. C.2), the
branch points occur at z = 0 and z = -0,

The final result is that if D is any bounded domain in the cut plane so that
no point of the cut is in D (for continuity) log(z) is single valued and
continuous (and regular) in D. It also has the detivative 1/z.

The functionz*®
Suppose a« = p is an integer. Consider

exp(plog(z))=exp(log(z” ))= z° (C.30)
Recall that exp(z) is a periodic function since
exp(z+ j2nz)=exp(z) (C.31)

Thus, if p is an integer
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exp(plog(z)) = exp(ploglz| + jparg(z)+ j2zpn)
= exp(plogz| + jparg(z)) (C.32)
_ |Z|peiparg(2)

where arg(z) is interpreted as being restricted to a specified branch (e.g., -n
< 0 < n). Next consider

exp{g Iog(z)j = exp{g logz|+ j garg(z)+ jer® nj

q (C.33)
_ |Z|§e12pnarg(2)/q
There are several possible values of the function
P iokes
|z|a @71 (C.34)

for values k = 0,1.... g-1.
The value chosen depends upon which branch is specified. The branch
chosen is usually called the principal branch and defines the meaning of 2.
Example: z'? has branch points at 0 and - if the branch cut is placed on
the negative real axis. In this case, z'? means

‘lez‘ejarg(z)lz (C.35)

where -n <arg(z) <.

Further properties of branch points and cuts
1. Branch points always occur in pairs and branch lines (i.e., cuts) join
the branch points
2. To show the branch point at infinity for the function f(z) = z'2, use
the transformation z = 1/ Thus z'? becomes £'? which is a
multivalued function of € and has a branch point at £ = 0 (or z — )
3. Branch cuts are not unique. They may be chosen in any convenient

fashion. For example, for z'?, either the branch cut in Fig. C.3a or
Fig. C.3b can be used.

Consider the example,

f(z)=(22 -1)" (C.36)

This function can be shown to have branch points at zZ==21. Let
z=+1F " . Then
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f(z)

(L+ee) + 22 —1)"?

o — e o

1

@) (b)

Fig. C3 Possible branch cuts for z!/2 a) hotizontal to -00, b) vertical to 0

(C.306) is multivalued no matter how small the value of e. Note that there
is no branch point at % since if the transformation z = 1/Z is used,

1/2 2
[iz —1) = 1‘5 — %as £— 0 (ic.as z — o) (C.38)
g

This represents is simple pole behavior as z — . As mentioned above,

the branch cuts are not unique and could be elected in a number of different
ways. Two examples are shown in Fig. C.4 below.

Branch Cut Branch Cutg| l

Fig. C.4 Two possible choices for branch cuts for the function (22-1)!/2
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Note that the fact that the branch cuts are arbitrary does not imply that
there are no good reasons to select branch cuts in a certain way. For
example, one way of selecting branch cuts may lead to a simpler result or
another way might lead one that is easier to interpret physically.

Residue Theory for Calculating Integrals

Often in work related to transmission lines, integrals will appear that result
from performing an inverse Fourier transform. In some cases, these can be
solved easily by residue theory. An example is the one shown in (C.39). The
denominator of the integrand contains a pair of zeros at +/- y, which
represent simple poles of the integrand. The numerator of the integrand is
assumed to be regular (and hence to have no singularities in the plane except

possibly at infinity).
1(z)= T{ fly) )}‘j”‘dy (C.39)

s (7 7 XV ~7p

In this case the pole is chosen to have its imaginary part less than or equal
to 0 (Le., Im(y,) = Im(B, —jo,) = 0 or Re(a,) =20) Note that the opposite
selection will lead eventually to an identical result. Since the integrand is
analytic everywhere except at +/- y;, both its real and imaginary parts satisfy
Laplaces’ equations according to (C.20) and (C.21). One consequence of this
(as illustrated in (C.22)) is that any closed line integral that does not enclose
singular points is zero. Hence,

f[(y fe) )Je“"zo (C.40)

C +7px7/_7/p

for any contour C that does not enclose the singular points at +/- y, .
Consider the contour C = C, (the original contour of integration) + Cwz +
Cp + C, + Gy, + Cuy where the entire contour is defined in a clockwise
direction. Since this contour does not enclose the pole at y,, the integral
(C.37) is equal to zero and

Ol
f(r) Je—mdy

Coy+Ch1+Cp+Cyp+C.ry ((7 T7p )(7 ~7p )

(C.41)

Note that the contour Ce; + Cp1 + C, + Cp + Coz is now defined in the
counter clockwise direction and accounted for by a change in sign of the
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integral. If z > 0, then & " =€777"€"" (yhere y = y, + jy) tends to zero
exponentially for values of y in the lower half of the complex y plane (i.e., yi
= 0) and hence the integrations Cw; and Cx are zero. In addition, since the
integrations Cpi and Cy are along the same line but in opposite directions
their contributions cancel. The only remaining contribution is the integration
C, around the pole at y;, (i.e. the residue due to the simple pole at y,).

G, _

\ Vi

| pole aty, '
\ Co (71" |
\ (| /

Ve

Fig. C.5 Deformation of contour leading to a residue integration

Therefore,

@)= |

Cp

( f (7) ]ejﬂ dy (C.42)
(2

+7px7_7p)

which is relatively simple to evaluate as follows.
The contribution of the pole can be evaluated by using the transformation

y >y, +Y, e<<ly,
where dy = jel’sd6 .

The integral around the pole (i.e., the residue) then becomes

@)= 16 ) [ 3= g TP ™ i) e

2, 22y, 27, 7o

Note that if Im(y,) = 0, then the pole that is located in the lower half of
the complex plane occurs at — y,, the transformation used is

_ io
y >y, +ee, g<<‘yp‘
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and the residue becomes

(C.44)

2y, 70
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Appendix D

Carson Integral and Series Derivation

D.1 Derivation of the Carson Integral

Problem Definition

The purpose of this Appendix is to review the methodology by which J. R.
Carson in 1926 determined approximate expressions for the electric currents
on and equivalent distributed parameters of an infinitely long horizontal
conductor located above a single-layer linear, homogeneous, isotropic lossy
(i.e., non-zero conductivity) earth. Here, the derivation will be repeated in SI
units: the original was in cgs units. In addition, the arguments he used as well
as the justification for the individual steps will be expanded to make the
derivation easier to follow. The exact solution to this problem problem was
discussed in great detail earlier in Chapter 4 and its geometry is shown again
in Fig. D.1.1.

y
-5 —@— 23
h
X
///////(/)///////
y 2a
h
&, Ho 7

oew/ [T
(b)

Fig. D.1.1 a) end view and b) side view of the infinitely long conductor of radius “a” and
height “h” above a linear, homogeneous isotropic lossy earth.

404



As in Chapter 4, the z-oriented, horizontal conductor has radius a, and is
located at a distance h above the earth but it is assumed here that it intersects
the x axis at x’ = 0 (Carson, 1926). The upper half space (i.e., y > 0) is free
space and is characterized by permittivity and permeability &, = ¢, and z1 = #,
respectively while the lower half space (i.e., y < 0) is assumed to be a linear,
homogeneous, isotropic lossy earth characterized by conductivity,
permittivity and permeability oz, &2 = e2¢, and g = pou, respectively. e and
are the relative permittivity and permeability of the earth respectively. The
conductor is assumed to be non-magnetic (i.e., f, = f,) and to have a

conductivity o,,. The dielectric constant of the conductor is not needed

since it is only used to calculate displacement currents and (below optical
frequencies) these can always be neglected in the conductor. It is assumed
that all currents and fields vary in time as exp(jw?).

Problem Solution

The method by which the solution is found can be summarized as follows.
First, a propagating current with unknown [(z)= I exp(— jjz) is assumed to
exist on the conductor. Given this, all fields have this same variation with z
and hence can be suppressed; it can be added back by simply multiplying the
current distribution or appropriate field expression byexp(— jyz). As the
derivation proceeds, a number of low frequency approximations will be
made. These will be discussed in detail as they are made.

The first task addressed by Carson was to determine a general expression
for the z-directed electric field in the earth (i.e., y < 0). To this end, the form
of this expression was chosen to be one that is convenient for matching
boundary conditions on a horizontal plane. This earth field must satisfy the
homogeneous wave equation (3.3.4) because there are no primary sources in
the earth (i.e., sources that do not depend on the electric and magnetic fields
in the region such as earth currents that are equal to o, E,).

Hence

ot L, e
(ax—ﬁy—V +szEzZ(X,y,7)=0,y<0 D.1.1)

where the subscript “2z” means the z component in the earth (i.e.. region 2).
As mentioned above, the field is assumed to vary as exp(— j;z), hence the y
term in (D.1.1).

The spatial Fourier transform in the x direction and its inverse (i.e., Q(K')

and Q*(x)) used here are defined as
Q(f (x))=Qlx)= Ja(xp""dx D.1.2)
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Qfl(é(rc))= q(x)= %Té(lf)%jkxdk (D.1.3)

The symbol ~ indicates a spatial Fourier transform that is a function of
the transform variable ». If the spatial Fourier transform of (D.1.1) is taken,
then (for all values of x)

2
( +§y_—;/ +k ] 2 (K, Y, 7)=0,y<0 (D.1.4)

It should be noted here that, given (ID.1.2) and the even symmetry of the

source and fields with respect to x, E,, (K, Y, }/) must be an even function of

n. This property will be used later. The question now is, “Can a form be
found for the y variation of the field that allows (D.1.4) to be satisfied for all
values of »?”” This can be done by assuming that

~

E,, (i, ¥,7)= F(c)exp(- j&(x)y), v < 0 (D.15)

where Im (é’(l()) > 0 in order that the field decay as y — - (i.e., the energy

contained in the field is finite™). In order that (D.1.4) be satisfied for all
values of x.

(x?—£2—y2+K2)=0 (D.1.6)

Hence,
E() =+ —y? +K2J"* =Oforall x where Im (&(x))>0. (D.1.7)

Given this result, the inverse Fourier transform of EZZ(K, Y, }/) can be
taken using (D.1.3) and

1 — jKX
(x,y,7)= 27[]- x)exp(— jé(x)y)e ™ dx (D.1.8)

As noted earlier, this form has been selected because it is convenient to use
for matching boundary conditions at the interface y = 0. Now

™ The fact that this is the only possible answer can be determined by referring to the
uniqueness theorem that is discussed in detail in Chapter 3. According to that theorem, a
solution is unique if it satisfies Maxwell’s equations, matches source conditions and satisfies
certain boundary conditions at interfaces.
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k, = (o X058, — jo, | @) =z exp(= 7] 4)\Jou,0, >> K, if

w<<c,l(g¢,,)

where it has been assumed that the earth is non-magnetic. In addition, given
that values of y will later be found to be relatively close to 4s, y can be
ignored compared to 4. in (D.1.6). Hence, after absorbing the factor j into

)
)=

XYJ/EZE

T exp(lc +Ja)/,zoaz)”2y)efj’“dz<y<o (D.1.9)

where

Re(rc2 + jou,o, )1/2 >0

If, in addition, it is recognized that f(l{) and EZZ(K, Y, }/)are both even

function of x, then the doubly infinite integral can be folded into an infinite
integral as

E,,(xy,7)= i? E(K')COS(KX)eXp((K‘Z + jou,o, ) y)dzc (D.1.10)

0

Since 2COS(KX)= exp(jxx)+ exp(— jKX), with the exception of the
constants in front of the integral and inside the square root (a consequence
of the different unit system used), (D.1.8) is identical to form of Equation (1)
of Carson’s 1926 paper (Carson, 1926).

At this point, Carson calculates the magnetic field in the earth. To this
end, he used Faraday’s law

VXE + jou,H =0, D.1.11)

where it has been assumed that the earth is non-magnetic. This equation is
expressed in rectangular coordinates and it is assumed that the electric field

components E and E, are zero at low frequencies. The latter assumption

can be made because as w — 0 they reduced to the electrostatic fields of a
line source above earth and the earth becomes a perfect conductor. Hence,
these fields are zero in the earth. The same is not true for the axial
component of the electric field because it is generated by the time varying
magnetic field in the earth.

Hence,
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E, (D.1.12)

STESEY

a, a,
—ja),uolj:VXI?:detg 9

ox oy

0 O

m

Given this, the magnetic fields in the earth are

|:|2x(x’y’7):

Wjoﬂz(’(z + jou,o, )1/2 F(zc)cos(zcx)exp((zc2 + jou,o, )1/2 y)d/c (D119

- o0

wou ﬂj"ﬁ(K)Sin(m()exp((Kz + ja),uoaz)uzy)drc (D.1.14)

|_AIZy(X’ y;7)=

Carson’s next step was to calculate the magnetic fields in the free space
medium y > 0. The first step in this process was to state the known
magnetostatic solution for the magnetic fields of a z directed line source of

current | in free space at (x,y) = (0,h). These are

A

HO =— sin@ (D.1.15)
273X +(y —h)’
HY = : cosd (D.1.16)

277X% +(y —h)’

where 0 is defined in Fig. D.2

h|

X
TTTTTTI7T7TT7777

Fig. D.2 Definition of the angle 0 (the z direction is out of the page)
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The total magnetic field for y > 0 is then this source term plus terms due
to induced currents in the earth. These can be expressed as

H, =H°+H", (D.1.16)

H, =H)+H", D.1.17)

The magnetic field in the air due to distributed current sources in the
earth is assumed to have the form

H, (X, y,7 _ij' x’)cos(xx )exp(— xy) dxy > 0 (D.1.18)
0

HY (X y,7)= —%j ))sin(xx)exp(— xy)dxy > 0 (D.1.19)
0

Here, the sign of the exponent is negative in order that the field be
propetly behaved as y — 0. The relationship between the two field
components is determined by the fact that the magnetic field in free space
must satisfy the Maxwell equation

-, oMy, ahy, aHY, oM’
V.-H=0=— 12+ ly+a Ly by V=0 (D120

x oy o X oy

Where H'}, is assumed to be zero given the nearly uniform z-directed source

current.
Now, the source field can be expressed in a form that is useful for
matching boundary conditions at y = 0. More specifically,

A0 (x, y, y):+2Lfcos(,«)exp(K(y_h))dK, y<h  Di21)
73 0

H o (x y,y):+2L]°sin(Kx)exp(K(y_h))d,c, y<h D122
T 0

These can be proven by direct integration using the definitions of sin(xx)
and cos(xx) in terms of exponentials and the result

y<h  (D.1.23)

!exp(+((y L (P

y-h)+ jx)’
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Given these results, the boundary conditions (N is a unit vector directed
into region 1 from region 2.)

ax(H, —H,)=1J (D.1.24)

me(B,—B,)=0 (D.1.25)

the facts that J, = 0 on a dielectric-dielectric boundary and both materials are
non-magnetic, both the x and y components of the magnetic field must be
continuous across the boundary”.

Hence (equating integrands)

I (2 4 japo, ' )= ®(x)+ | exp(— xh)/ 2 (D.1.26)
Wi

IR B (1) = () + 1 exp(— xh)/ 2 (D.1.27)
(220

If (D.1.26) and (D.1.27) are added, E(K‘) can easily be found as

()= %] EXp(_,ZKh) (D.1.28)
(K‘2 + ja)yOO'z)1 +K
&)(K') can easily be found by using (D.1.2.8) in (D.1.2.7) as
A2 1/2
&)(K): - |((K + ja),uoaz) - K')eXp(— xh) D.129)

2((1(2 + jou,o, )1/2 + K‘)

Aside from constants due to the different unit system, (D.1.28) and
(D.1.29) are equivalent to (11) and (12) of Carson (1926). Given this result,
the electric field in the earth is

' In this case, the boundary conditions on normal and tangential magnetic field are applied.
According to the uniqueness theorem, the boundary conditions on tangential electric and
tangential magnetic fields should be applied. In this case, it can be shown that matching the
normal magnetic field boundary condition is equivalent to matching the tangential electric
field boundary condition.
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(D.1.30)
EZZ (X’ y’y):
— jou, 7 exp(— Kh)

. 12
4 o(lc2+ja),uoaz)1 +K

cos(xx)exp((/c2 + jou,o, )1/2 y)dzc

[ ©

_ -l I((zcz + oo, ) —zc)cos(xx)exp(—Kh)exp((zc2 + jou,o, ) y)dzc

703 %

after multiplying numerator and denominator by the factor
((K'2 + jou,o, )1/2 —K‘).

From Chapter 5 (5.3.40), the electric field in the earth is (for x> = 0 and
kS = jou,o,) is

(D.1.31)

0

GZ(x,y,h y)= _—j(u — k) cos(xx )exp(— Kh)exp((rc2 T jou,o, ) y)jzc

where U =\/K2 ~-k? = \/KZ + jou,o, .

The equivalence of (D.1.29) and (D.1.30) is evident.
The axial electric field in the air can now be found as

E,, (X Y.7)=-joA,(xy)- %Vl(x, y) D.1.32)

where A, (X, y) andV, (X, y) are the vector and scalar potentials respectively.
Given this result, the axial electric field at a point (x,y) can be related to
the field at a point directly below it on the surface aty = 0 as

Elz (X, yij/)_ Elz (X’OJ/)

— ol A, (x,y)~ A, (x0) i

% ,(x,y)-V(x.0)

o

Now,
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H,(x,y)= [LVXKJ = iVxAlZ]

Ho Ho y
8, & & . (D134
= ideti g g :ii'&lz(x! y)
Hy X oy oz Mo OY
0 0 A,

X

This result can be integrated along a vertical line to get

A, (%, y)— A, (x,0)= (D.1.35)

o*—.~<

Next, the scalar potential V,(X,y) is that of a line charge above a
perfectly conducting earth. Hence, since by current continuity (3.1.14),

- J?"A =—jap,
where p,is the line charge density (the exponential variation of current and

charge has been suppressed).
With these results,

(D.1.36)
Elz(x’ y|7)=
y 220 2 2
EleOy jou, U xydy]+1 Nt In (y+h) X
0 @ | 278y | \J(y=h) +x2
Consider next, the term
y
L (40.7)~ o UH (x,y>dyJ 1)
0

This is equal to

o0

E,(x0,7)= —%j((zcz + jou,o, ) - K)COS(KX)eXp(— xh)dx

20

Ja)'u R A _[ exp(— xh)cos(xx)-
0

. /2
f exp(xy )dy — "+ joro, )1/2 —= [exp(—y)dy fdx
0 (K‘Z + jou,o,) +x%
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_ 1 T((K2+ja)lu002)1/2—K)COS(KX)eXp(—Kh)dK
703 %
~ jc;/;zrol Texp(—x’r}?cos(z«)‘ D.138)

0
1/2

[<exp<xy>—1>+ Ezj - jzzj ; — <exp<_,<y)_1>JdK

The terms in (D.1.38) that are independent of y can be gathered together
as

L1l + jonye, ' ~ i eos(ixenpl- an)

703 %

N jou, Texp(—xh)cos(lo()[lJr (K‘Z + jou,o, )UZ —K]d’(
P 12
2r K (K‘ + Ja),uoaz)l +K (D.1.39)

_ 1 J.((K'z + jouyo, ) —zc)cos(zo()exp(—xh)d/c

703 %

0

L J@UOIJ' GZXD(.—Kh)COSSIZ(X) dx
% (K' +ja),uoaz)1 +K

I(K‘ + Ja),uoa2 —K)COS(IO()GXp(—Kh)dK

0,

. Jo,! I((" + jouge, ) lexplc ah)eos(io)

T % Jou,o,

The remaining terms of (D.1.36) are (aside from the scalar potential term)

ooy Texp(—m)cos(xx),

E., (X' yJ’): or .

0

. 12
exp(ry) + e+ o, - exp(-y) |dx
(K' Jrja),uOGZ)1 +K

(D.1.40)

The final term of (D.1.40) can be simplified by multiplying the numerator

. : 12 , ,
and denominator by the term (K‘ 2+ Ja),uoaz)l — K. This results in
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o ferpl- o)

27 K

E, (xy.7)= exp(xy)

0
. 2y .

N ZK(K—(](2 + J_CO,UOUZ)l 2)+ Jouyo, exp(— Ky)JdK
Jop,o,

- ol [eOR0) oy ) expl-ly + )

(D.1.41)

N ZK(K - (K'Z + jou,o, )1/2 )exp(— K(y)+ h)JdK

ja)/uoaz

_ o ]‘3 cos(xx) (exp(x(y —h))+exp(—x(y +h))dx

2r K

+

Tcos(xx)(/c ~(? + jouo, ) )exp(— x(y+h)dx

7o, Y

The second to last term in (D.1.40) can be simplified by recognizing that

0

- Aol E00) oy ) expl- ey )=

Yy

O ooty ) 0l o -

0

B jou,l In[ (y+h)2 +X2J

27 (y—h) +x?

Collecting all terms

jcoyollr{ (y+h)2+x2]+jy2f( 1 In[ (y+h)2+xzﬂ
27 (Jly-hp+xt )~ @275 | |(y-hY +x*

N | Tcos(;o()(rc—(lf2+ja)ﬂoaz)llz)eXp(_K(erh))dK
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_ il (kozyz)ln{ Ey+h)2+sz

2rwe,

(D.1.42)

+

: TCOS(KX)(K' - (K'2 + jou,o, )1/2 )exp(— x(y +h)dx

703 %

This result is identical to that developed in Chapter 5. To see this, note
that (5.4.6) is

E,(x=x,y,h,7)=G, (x=x,y,h, )l (»)

/2 , ol (D.1.43)
=—{m+ (x=x.,y, )] (7/)
where
Y(x-x,y,h)= Jzﬂgf% (D.1.44)
In()
R
and
Z(x—x',y,h):%{In(EJ—JC(y+h,x—x')} (D.1.45)
27 R

D.2 The Full Carson Series

From Chapter 4, (4.6.7) Carson’s integral (for y’ = h) is given as

2
Ky

where U =+x>—k? and kX =—jau,o,.

Here this will be converted to the form that was originally presented by
Carson and Carson’s full series given. The first step is to change the

integration variable by letting K = S\/@,0, so that

J.(y+hx=x)="-[(u-x)e """ cos(x(x - x))dx (D.2.1)

O3

J =

c

23 [ (571 —sp 0% cod fapper, (¢ x)sKis =213 (p,a) 7
0
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where P =, ou,o, (y + h) and Q =,/ ou,o, (X - X'). Hence
J(p.q)= J‘(w/s2 +j- s)e"’S cos(gs)ds (D.2.3)
0

which is the integral from Carson’s equation (29).
Now, (D.2.3) can be evaluated by first evaluating an integral of the form

Int = [{u® +a’edu (D.2.4)
0

This can be shown to be equal to

Int=]?w/,u2 +azeﬂ”dy=%(Kl(aﬁ)+ G(ap)) (D.2.5)

where K, (X) is the Modified Bessel function of the second kind and G(X) is
the absolutely convergent series

NG x* x®

+ —_— .
3 3%e5 3%e5%e7

(D.2.6)

Given these results, it is straightforward (though not simple) to develop
the series that Carson derived for J(p,g). Itis

J(p,q)=P+jQ (D.2.7)

where

P="(1-s )+£In(ng o toile i ls D.2.8)
8 I o 2TV Ty 1T 02T 5 Lo
and
1 1 2 1 1 T 1 1
=—+ZIn = |1-s,)-=0s,'+—=0, - =S, +——0, —=0,. (D.2.9
Q42{7I‘j( 4)24\/50-182\/5324()
Here =4 p?+q*, @=tan*(q/p), y = 1.7811, In(zj:0.11593,
Y

In(y)=0.57722 and
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‘7ol
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5,'= 1(r S"K49}——£— r
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2

1 6
_ﬁ[‘

2cos(ze)
_ 1 (%)4 cos(46) - —
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O, = 325
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” ( 2 4)].!2!(2) s(20)

1 1 1

1
E T
1
3

i
ol
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1
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r
2

8
jCO

j3|4|( j cos(66)+ ....;gsz
j cos(46)

(_

5
)+....;§54

(D.2.10)

(D.2.11)

(D.2.12)

(D.2.13)

(D.2.14)

(D.2.15)
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analytic functions 394
antenna, dipole 9

auroral electrojet 320
boundary conditions 130
branch cut 398
branch point 398
capacitance

effect of 22

per unit length 244
capacitors, series 76
Carson

approximations 181

integral 187, 404

series 187, 415
Cauchy-Reimann equations
characteristic impedance
circuit breakers79
common mode297

conductor
bundle 62, 376
characteristics 185
heating 49
AAC 60
ASCR 61
sag 068

constituitive relationships
corona 48

current continuity 38
current, hidden paths 37
differentiability 392

differential mode 297
distribution 59
distribution underbuild 84
double circuit 64
earth, not equipotential
earthquakes 90
electric field
conductor bundle

terrain/vegetation

102
101

Index

395
192

126

38
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thin wire, axial 162
towers 103
single wire 219

electromagnetic compatibility
optical fiber 81
pipeline 80
railroad 81

wireless communication 82
electromagnetic potentials 137
electrostatics

images 257

justification 246
simple shapes
theory 250
exact solution, thin witre
fault current excitation 329
fire 89
flashover, vegetation 71
frequency, power system 15
geomagnetic induced currents 89,
319
gold standard 92
grading ring 47
grading ring 67
grounding 37
tower75
hardware, environmental control
75
high phase order transmission 51
high voltage DC 50
human occupancy 34
ice 86
image, complex
inductance 21
effect of 21
per unit length
insulator 47
contamination 68
post 67

253

175

244



suspension 67 impedance matrix 352

integral equation, single wire 157 admittance matrix 353
landslides 90 shunt reactor 78
lightning 87 single wire above earth 154
coupling from distant 315 arbitrary frequency 222
direct coupled 329 tields in earth 242
line compensation 197 low frequency 228
lumped circuit approximation 104 skin effect 386
magnetic field snow 86
conductor sag 102 solution validity 100
single wire 219 spacer hardware 63
magnetic storm 320 spatially growing currents 337
marker ball 74 spherical shell 260
materials splice 73
conducting 126 surge arresters 77, 205
dielectric 126 surge impedance 192
Maxwell's Equations 121 suspension clamp 67,73
modal attenuation 342 symmetrical components 360
modal equation, thin wire 175 Tesla, Nikola 9
modal speeds 342 Thevenin equivalent 42
numerical solutions thin wire
boundary element method 274 approximation 158
charge simulation method 276 boundary condition 159
finite difference method 278 three phase 43
finite element method 282 tower
Monte Carlo method 280 heavy angle 65
phase, leading vs. lagging 21 wood pole 65
phasor 16 transformer saturation 327
physical approximations 93, transformers 79
97 transmission line 15
power factor 28 voltage 16
power flow 28 equivalent 190
power, complex 25 equivalent symmetric364
Poynting’s theorem 131 losses 17
rain 86 multiconductor, low frequency
reactive power 26 349
reciprocity symmetric vs. actual 370
electromagnetic 142 finite length 193
electrostatic 147 short 195
residue theory 401 unbalanced 344
ring surrounding conductor 262 transposition 70
round wire impedance 386 transposition 360
rules of thumb 106 two wires above earth 293
separation of variables270 arbitrary frequency 294
shield wires 64 closely spaced 309
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low frequency 299 wave equation 129

uniqueness theorem 133 wind 88

unsymmetrical terminations 311 windblown material 90
vibration damper 67 wireless power transmission 9,
volcanoes 90 383

voltage regulation 199 wires, excitation of 11
voltages to earth 191

420



