
Chapter 1

Introduction

1.1 Modern Computers

At their core, computers are remarkably simple devices. Nearly all computers today are built

using electronic devices called transistors. These transistors serve as switches that behave much

like simple light switches—they can be on or they can be off. In a digital computer each bit of

information (whether input, memory, or output) can be in only one of two states: either off or on,

or we might call these states low or high, or perhaps zero or one. When we say “bit,” we have in

mind the technical definition. A bit is a binary digit that can be either 0 or 1 (zero or one). In a very

real sense computers only “understand” these two numbers. However, by combining thousands

or millions or even billions of these transistor switches we can achieve fantastically complicated

behavior. Thus, rather than keeping track of a single binary digit, with computers we may be able

to work with a stream of bits of arbitrary length.

For each additional bit we use to represent a quantity, we double the number of possible unique

values the quantity can have. One bit can represent only two “states” or values: 0 and 1. This may

seem extremely limiting, but a single bit is enough to represent whether the answer to a question

is yes or no or a single bit can be used to tell us whether a logical statement evaluates to either

true or false. We merely have to agree to interpret values consistently, for example, 0 represents

no or false while 1 represents yes or true. Two bits can represent four states which we can write

as: 00, 01, 10, and 11 (read this as zero-zero, zero-one, one-zero, one-one). Three bits have eight

unique combinations or values: 000, 001, 010, 011, 100, 101, 110, and 111. In general, for n bits

the number of unique values is 2n.

For n = 7 bits, there are 2
7
= 128 unique values. This is already more than the number of

all the keys on a standard keyboard, i.e., more than all the letters in the English alphabet (both

uppercase and lowercase), plus the digits (0 through 9), plus all the standard punctuation marks.

So, by using a mapping (or encoding) of keyboard characters to unique combinations of binary

digits, we can act as though we are working with characters when, really, we are doing nothing

more than manipulating binary numbers.

We can also take values from the (real) continuous world and “digitize” them. Rather than

having values such as the amplitude of a sound wave or the color of an object vary continuously,

we restrict the amplitude or color to vary between fixed values or levels. This process is also known

From the file: intro.tex

1



2 CHAPTER 1. INTRODUCTION

as digitizing or quantizing. If the levels of quantization are “close enough,” we can fool our senses

into thinking the digitized quantity varies continuously as it does in the real world. Through the

process of digitizing, we can store, manipulate, and render music or pictures on our computers

when we are simply dealing with a collection of zeros and ones.

1.2 Computer Languages

Computers, though remarkably simple at their core, have, nevertheless, truly revolutionized the

way we live. They have enabled countless advances in science, engineering, and medicine. They

have affected the way we exchange information, how we socialize, how we work, and how we play.

To a large degree, these incredible advances have been made possible through the development of

new “languages” that allow humans to tell a computer what it should do. These so-called computer

languages provide a way for us to express what we want done in a way that is more natural to the

way we think and yet precise enough to control a computer.

We, as humans, are also phenomenal computing devices, but the way we think and communi-

cate is generally a far cry from the way computers “think” and communicate. Computer languages

provide a way of bridging this gap. But, the gap between computers and humans is vast and,

for those new to computer programming, these languages can often be tremendously challenging

to master. There are three important points that one must keep in mind when learning computer

languages.

First, these languages are not designed to provide a means for having a two-way dialog with

a computer. These languages are more like “instruction sets” where the human specifies what the

computer should do. The computer blindly follows these instructions. In some sense, computer

languages provide a way for humans to communicate to computers and with these languages we

also have to tell the computers how we want them to communicate back to us (and it is extremely

rare that we want a computer to communicate information back to us in the same language we used

to communicate to it).

Second, unlike with natural languages1, there is no ambiguity in a computer language. State-

ments in natural languages are often ambiguous while also containing redundant or superfluous

content. Often the larger context in which a statement is made serves to remove the ambiguity

while the redundant content allows us to make sense of a statement even if we miss part of it. As

you will see, there may be a host of different ways to write statements in a computer language

that ultimately lead to the same outcome. However, the path by which an outcome is reached is

precisely determined by the statements/instructions that are provided to the computer. Note that

we will often refer to statements in a computer language as “computer code” or simply “code.”2

We will call a collection of statements that serves to complete a desired task a program.3

The third important point about computer languages is that a computer can never infer meaning

or intent. You may have a very clear idea of what you want a computer to do, but if you do not ex-

plicitly state your desires using precise syntax and semantics, the chances of obtaining the desired

outcome are exceedingly small. When we say syntax, we essentially mean the rules of grammar

1By natural languages we mean languages that humans use with each other.
2This has nothing to do with a secret code nor does code in this sense imply anything to do with encryption.
3A program that is written specifically to serve the needs of a user is often called an application . We will not

bother to distinguish between programs and applications.



1.3. PYTHON 3

and punctuation in a language. When writing natural languages, the introduction of a small num-

ber of typographical errors, although perhaps annoying to the reader, often does not completely

obscure the underlying information contained in the writing. On the other hand, in some computer

languages even one small typographical error in a computer program, which may be tens of thou-

sands of lines of code, can often prevent the program from ever running. The computer can’t make

sense of the entire program so it won’t do anything at all.4 A show-stopping typographical error

of syntax, i.e., a syntactic bug, that prevents a program from running is actually often preferable to

other kinds of typographical errors that allow the code to run but, as a consequence of the error, the

code produces something other than the desired result. Such typographical errors, whether they

prevent the program from running or allow the program to run but produce erroneous results, are

known as bugs.

A program may be written such that it is free of typographical errors and does precisely what

the programmer said it should do and yet the output is still not what was desired. In this case

the fault lies in the programmer’s thinking: the programmer was mistaken about the collection

of instructions necessary to obtain the correct result. Here there is an error in the logic or the

semantics, i.e., the meaning, of what the programmer wrote. This type of error is still a “bug.” The

distinction between syntactic and semantic bugs will become more clear as you start to write your

own code so we won’t belabor this distinction now.

1.3 Python

There are literally thousands of computer languages. There is no single computer language that

can be considered the best. A particular language may be excellent for tackling problems of a

certain type but be horribly ill-suited for solving problems outside the domain for which it was

designed. Nevertheless, the language we will study and use, Python, is unusual in that it does so

many things and does them so well. It is relatively simple to learn, it has a rich set of features, and

it is quite expressive (so that typically just a few lines of code are required in order to accomplish

what would take many more lines of code in other languages). Python is used throughout academia

and industry. It is very much a “real” computer language used to address problems on the cutting

edge of science and technology. Although it was not designed as a language for teaching computer

programming or algorithmic design, Python’s syntax and idioms are much easier to learn than

those of most other full-featured languages.

When learning a new computer language, one typically starts by considering the code required

to make the computer produce the output “Hello World!”5 With Python we must pass our code

through the Python interpreter, a program that reads our Python statements and acts in accordance

with these statements (more will be said below about obtaining and running Python). To have

Python produce the desired output we can write the statement shown in Listing 1.1.

4The computer language we will use, Python, is not like this. Typically Python programs are executed as the lines

of code are read, i.e., it is an interpreted language. Thus, egregious syntactic bugs may be present in the program and

yet the program may run properly if, because of the flow of execution, the flawed statements are not executed. On the

other hand, if a bug is in the flow of execution in a Python program, generally all the statements prior to the bug will

be executed and then the bug will be “uncovered.” We will revisit this issue in Chap. 11.
5You can learn more about this tradition at en.wikipedia.org/wiki/Hello world program.

http://en.wikipedia.org/wiki/Hello_world_program


4 CHAPTER 1. INTRODUCTION

Listing 1.1 A simple Hello-World program in Python.

print("Hello World!")

This single statement constitutes the entire program. It produces the following text:

Hello World!

This text output is terminated with a “newline” character, as if we had hit “return” on the keyboard,

so that any subsequent output that might have been produced in a longer program would start on

the next line. Note that the Python code shown in this book, as well as the output Python produces,

will typically be shown in Courier font. The code will be highlighted in different ways as will

become more clear later.

If you ignore the punctuation marks, you can read the code in Listing 1.1 aloud and it reads

like an English command. Statements in computer languages simply do not get much easier to

understand than this. Despite the simplicity of this statement, there are several questions that one

might ask. For example: Are the parentheses necessary? The answer is: Yes, they are. Are the

double-quotation marks necessary? Here the answer is yes and no. We do need to quote the desired

output but we don’t necessarily have to use double-quotes. In our code, when we surround a string

of characters, such as Hello World!, in quotation marks, we create what is known as a string

literal. (Strings will be shown in a bold green Courier font.) Python subsequently treats this

collection of characters as a single group. As far as Python is concerned, there is a single argument,

the string “Hello World!”, between parentheses in Listing 1.1. We will have more to say about

quotation marks and strings in Sec. 2.5 and Chap. 9.

Another question that might come to mind after first seeing Listing 1.1 is: Are there other

Python programs that can produce the same output as this program produces? The answer is

that there are truly countless programs we could write that would produce the same output, but

the program shown in Listing 1.1 is arguably the simplest. However, let us consider a couple of

variants of the Hello-World program that produce the exact same output as the previous program.6

First consider the variant shown in Listing 1.2.

Listing 1.2 A variant of the Hello-World program that uses a single print() statement but with

two arguments.

print("Hello", "World!")

In both Listings 1.1 and 1.2 we use the print() function that is provided with Python to obtain

the desired output. Typically when referring to a function in this book (as opposed to in the code

itself), we will provide the function name (in this case print) followed by empty parentheses.

The parentheses serve to remind us that we are considering a function. What we mean in Python

6We introduce these variants because we want to emphasize that there’s more than one way of writing code to

generate the same result. As you’ll soon see, it is not uncommon for one programmer to write code that differs

significantly in appearance from that of another programmer. In any case, don’t worry about the details of the variants

presented here. They are merely presented to illustrate that seeming different code can nevertheless produce identical

results.



1.3. PYTHON 5

when we say function and the significance of the parentheses will be discussed in more detail in

Chap. 4.

The print() function often serves as the primary means for obtaining output from Python,

and there are a few things worth pointing out now about print(). First, as Listing 1.1 shows,

print() can take a single argument or parameter,7 i.e., as far as Python is concerned, between

the parentheses in Listing 1.1, there is a single argument, the string Hello World!. However,

in Listing 1.2, the print() function is provided with two parameters, the string Hello and the

string World!. These parameters are separated by a comma. The print() function permits an

arbitrary number of parameters. It will print them in sequence and, by default, separate them by a

single blank spaces. Note that in Listing 1.2 there are no spaces in the string literals (i.e., there are

no blank spaces between the matching pairs of quotes). The space following the comma in Listing

1.2 has no significance. We can write:

print("Hello","World!")

or

print("Hello", "World!")

and obtain the same output. The mere fact that there are two parameters supplied to print() will

ensure that, by default, print() will separate the output of these parameters by a single space.

Listing 1.3 uses two print() statements to obtain the desired output. Here we have added

line numbers to the left of each statement. These numbers provide a convenient way to refer to

specific statements and are not actually part of the program.

Listing 1.3 Another variant of the Hello-World program that uses two print() statements.

1 print("Hello", end=" ")

2 print("World!")

In line 1 of Listing 1.3 we see the string literal Hello. This is followed by a comma and the word

end which is not in quotes. end is an optional parameter that specifies what Python should do at

the end of a print() statement. If we do not add this optional parameter, the default behavior is

that a line of output is terminated with a newline character so that subsequent output appears on a

new line. We override this default behavior via this optional parameter by specifying what the end

of the output should be. In the print() statement in the first line of Listing 1.3 we tell Python to

set end equal to a blank space. Thus, subsequent output will start on the same line as the output

produced by the print() statement in line 1 but there will be a space separating the subsequent

output from the original output. The second line of Listing 1.3 instructs Python to write World!.8

We will show another Hello-World program but this one will be positively cryptic. Even most

seasoned Python programmers would have some difficulty precisely determining the output pro-

duced by the code shown in Listing 1.4.9 So, don’t worry that this code doesn’t make sense to you.

It is, nevertheless, useful for illustrating two facts about computer programming.

7We will use the terms argument and parameter synonymously. As with arguments for a mathematical function, by

“arguments” or “parameters” we mean the values that are supplied to the function, i.e., enclosed within parentheses.
8We will say more about this listing and the ways in which Python can be run in Sec. 1.6.
9The reason for and in appear in a bold blue font is because they are keywords as discussed in more detail in

Sec. 2.6.



6 CHAPTER 1. INTRODUCTION

Listing 1.4 Another Hello-World program. The binary representation of each individual character

is given as a numeric literal. The program prints them, as characters, to obtain the desired output.

1 for c in [0b1001000, 0b1100101, 0b1101100, 0b1101100,

2 0b1101111, 0b0100000, 0b1010111, 0b1101111, 0b1110010,

3 0b1101100, 0b1100100, 0b0100001, 0b0001010]:

4 print(chr(c), end="")

Listing 1.4 produces the exact same output as each of the previous programs. However, while

Listing 1.1 was almost readable as simple English, Listing 1.4 is close to gibberish. So, the first

fact this program illustrates is that, although there may be many ways to obtain a solution (or some

desired output as is the case here), clearly some implementations are better than others. This is

something you should keep in mind as you begin to write your own programs. What constitutes the

“best” implementation is not necessarily obvious because you, the programmer, may be contending

with multiple objectives. For example, the code that yields the desired result most quickly (i.e., the

fastest code) may not correspond to the code that is easiest to read, understand, or maintain.

In the first three lines of Listing 1.4 there are 13 different terms that start with 0b followed by

seven binary digits. These binary numbers are actually the individual representations of each of the

characters of Hello World!. H corresponds to 1001000, e corresponds to 1100101, and so

on.10 As mentioned previously, the computer is really just dealing with zeros and ones. This brings

us to the second fact Listing 1.4 serves to illustrate: it reveals to us some of the underlying world

of a computer’s binary thinking. But, since we don’t think in binary numbers, this is often rather

useless to us. We would prefer to keep binary representations hidden in the depths of the computer.

Nevertheless, we have to agree (together with Python) how a collection of binary numbers should

be interpreted. Is the binary number 1001000 the letter H or is it the integer number 72 or is it

something else entirely? We will see later how we keep track of these different interpretations of

the same underlying collection of zeros and ones.

1.4 Algorithmic Problem Solving

A computer language provides a way to tell a computer what we want it to do. We can consider a

computer language to be a technology or a tool that aids us in constructing a solution to a problem

or accomplishing a desired task. A computer language is not something that is timeless. It is

exceedingly unlikely that the computer languages of today will still be with us 100 years from

now (at least not in their current forms). However, at a more abstract level than the code in a

particular language is the algorithm. An algorithm is the set of rules or steps that need to be

followed to perform a calculation or solve a particular problem. Algorithms can be rather timeless.

For example, the algorithm for calculating the greatest common denominator of two integers dates

back thousands of years and will probably be with us for thousands of years more. There are

efficient algorithms for sorting lists and performing a host of other tasks. The degree to which these

algorithms are considered optimum is unlikely to change: many of the best algorithms of today are

10The space between Hello and World! has its own binary representation (0100000) as does the newline

character that is used to terminate the output (0001010).



1.5. OBTAINING PYTHON 7

likely to be the best algorithms of tomorrow. Such algorithms are often expressed in a way that is

independent of any particular computer language because the language itself is not the important

thing—performing the steps of the algorithm is what is important. The computer language merely

provides a way for us to tell the computer how to perform the steps in the algorithm.

In this book we are not interested in examining the state-of-the-art algorithms that currently

exist. Rather, we are interested in developing your computer programming skills so that you can

translate algorithms, whether yours or those of others, into a working computer program. As

mentioned, we will use the Python language. Python possesses many useful features that facilitate

learning and problem solving, but much of what we will do with Python mirrors what we would

do in the implementation of an algorithm in any computer language. The algorithmic constructs

we will consider in Python, such as looping structures, conditional statements, and arithmetic

operations, to name just a few, are key components of most algorithms. Mastering these constructs

in Python should enable you to more quickly master the same things in another computer language.

At times, for pedagogic reasons, we will not exploit all the tools that Python provides. Instead,

when it is instructive to do so, we may implement our own version of something that Python pro-

vides. Also at times we will implement some constructs in ways that are not completely “Pythonic”

(i.e., not the way that somebody familiar with Python would implement things). This will gener-

ally be the case when we wish to illustrate the way a solution would be implemented in languages

such as C, C++, or Java.

Keep in mind that computer science and computer programming are much more about problem

solving and algorithmic thinking (i.e., systematic, precise thinking) than they are about writing

code in a particular language. Nevertheless, to make our problem-solving concrete and to be able to

implement real solutions (rather than just abstract descriptions of a solution), we need to program

in a language. Here that language is Python. But, the reader is cautioned that this book is not

intended to provide an in-depth Python reference. On many occasions only as much information

will be provided as is needed to accomplish the task at hand.

1.5 Obtaining Python

Python is open-source software available for free. You can obtain the latest version for Linux/Unix,

Macintosh, and Windows via the download page at python.org. As of this writing, the current

version of Python is 3.2.2. You should install this (or a newer version if one is available). There

is also a 2.x version of Python that is actively maintained and available for download, but it is

not compatible with Python 3.x and, thus, you should not install it.11 Mac and Linux machines

typically ship with Python pre-installed but it is usually version 2.x. Because this book is for

version 3.x of Python, you must have a 3.x version of Python.

Computer languages provide a way of describing what we want the computer to do. Differ-

ent implementations may exist for translating statements in a computer language into something

that actually performs the desired operations on a given computer. There are actually several dif-

11When it comes to versions of software, the first digit corresponds to a major release number. Incremental changes

to the major release are indicated with additional numbers that are separated from the major release with a “dot.” These

incremental changes are considered minor releases and there can be incremental changes to a minor release. Version

3.2.2 of Python is read as “version three-point-two-point-two” (or some people say “dot” instead of “point”). When

we write version 3.x we mean any release in the version 3 series of releases.

http://python.org


8 CHAPTER 1. INTRODUCTION

ferent Python implementations available. The one that we will use, i.e., the one available from

python.org, is sometimes called CPython and was written in the C programming language.

Other implementations that exist include IronPython (which works with the Microsoft .NET frame-

work), Jython (which was written in Java), and PyPy (which is written in Python). The details of

how these different implementations translate statements from the Python language into some-

thing the computer understands is not our concern. However, it is worthwhile to try to distinguish

between compilers and interpreters.

Some computer languages, such as FORTRAN, C, and C++, typically require that you write

a program, then you compile it (i.e., have a separate program known as a compiler translate your

program into executable code the computer understands), and finally you run it. The CPython

implementation of Python is different in that we can write statements and have the Python in-

terpreter act on them immediately. In this way we can instantly see what individual statements

do. The instant feedback provided by interpreters, such as CPython, is useful in learning to pro-

gram. An interpreter is a program that is somewhat like a compiler in that it takes statements

that we’ve written in a computer language and translates them into something the computer under-

stands. However, with an interpreter, the translation is followed immediately by execution. Each

statement is executed “on the fly.” 12

1.6 Running Python

With Python we can use interactive sessions in which we enter statements one at a time and the

interpreter acts on them. Alternatively, we can write all our commands, i.e., our program, in a file

that is stored on the computer and then have the interpreter act on that stored program. In this

case some compilation may be done behind the scenes, but Python will still not typically provide

speeds comparable to a true compiled language.13 We will discuss putting programs in files in Sec.

1.6.2. First, we want to consider the two most common forms of interactive sessions for the Python

interpreter.

Returning to the statements in Listing 1.3, if they are entered in an interactive session, it is

difficult to observe the behavior that was described for that listing because the print() state-

ments have to be entered one at a time and output will be produced immediately after each entry.

In Python we can have multiple statements on a single line if the statements are separated by a

semicolon. Thus, if you want to verify that the code in Listing 1.3 is correct, you should enter it as

shown in Listing 1.5.

12Compiled languages, such as C++ and Java, typically have an advantage in speed over interpreted languages such

as Python. When speed is truly critical in an application, it is unlikely one would want to use Python. However, in

most applications Python is “fast enough.” Furthermore, the time required to develop a program in Python is typically

much less than in other languages. This shorter development time can often more than compensate for the slower

run-time. For example, if it takes one day to write a program in Python but a week to write it in Java, is it worth the

extra development time if the program takes one second to run in Java but two seconds to run in Python? Sometimes

the answer to this is definitely yes, but this is more the exception rather than the rule. Although it is beyond the scope

of this book, one can create programs that use Python together with code written in C. This approach can be used to

provide execution speeds that exceed the capabilities of programs written purely in Python.
13When the CPython interpreter runs commands from a file for the first time, it compiles a “bytecode” version of

the code which is then run by the interpreter. The bytecode is stored in a file with a .pyc extension. When the file

code is rerun, the Python interpreter actually uses the bytecode rather than re-interpreting the original code as long as

the Python statements have not been changed. This speeds up execution of the code.

http://python.org


1.6. RUNNING PYTHON 9

Listing 1.5 A Hello-World program similar to Listing 1.3 except that both print() statements

are given on a single line. This form of the program is suitable for entry in an interactive Python

session.

print("Hello", end=" "); print("World!")

1.6.1 Interactive Sessions and Comments

When you install Python, an application called IDLE will be installed on your system. On a Mac,

this is likely to be in the folder /Applications/Python 3.2. On a Windows machine, click

the Start button in the lower left corner of the screen. A window should pop up. If you don’t

see any mention of Python, click All Programs. You will eventually see a large listing of

programs. There should be an entry that says Python 3.2. Clicking Python 3.2 will bring

up another list in which you will see IDLE (Python GUI) (GUI stands for Graphical User

Interface).

IDLE is an integrated development environment (IDE). It is actually a separate program that

stands between us and the interpreter, but it is not very intrusive—the commands we enter are still

sent to the interpreter and we can obtain on-the-fly feedback. After starting IDLE, you should see

(after a bit of boilerplate information) the Python interactive prompt which is three greater-than

signs (>>>). At this point you are free to issue Python commands. Listing 1.6 demonstrates how

the window will appear after the code from Listing 1.1 has been entered. For interactive sessions,

programmer input will be shown in bold Courier font although, as shown in subsequent listings,

comments will be shown in a slanted, orange Courier font.

Listing 1.6 An IDLE session with a Hello-World statement. Programmer input is shown in bold.

The information on the first three lines will vary depending on the version and system.

1 Python 3.2.2 (v3.2.2:137e45f15c0b, Sep 3 2011, 17:28:59)

2 [GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin

3 Type "copyright", "credits" or "license()" for more information.

4 >>> print("Hello World!")

5 Hello World!

6 >>>

To execute the print() statement shown on line 4, one merely types in the statement as shown

and then hits the enter (or return) key.

An alternative way of running an interactive session with the Python interpreter is via the

command line.14 To accomplish this on a Mac, go to the folder /Applications/Utilities

and open the application Terminal. After Terminal has started, type python3 and hit return.

14IDLE is built using a graphics package known as tkinter which also comes with Python. When you use tkinter

graphics commands, sometimes they can interfere with IDLE so it’s probably best to open an interactive session using

the command line instead of IDLE.



10 CHAPTER 1. INTRODUCTION

For Windows, click the Start button and locate the program Python (command line) and

click on it.

Listing 1.7 shows the start of a command-line based interactive session. An important part of

programming is including comments for humans. These comments are intended for those who are

reading the code and trying to understand what it does. As you write more and more programs,

you will probably discover that the comments you write will often end up aiding you in trying to

understand what you previously wrote! The programmer input in Listing 1.7 starts with four lines

of comments which are shown in a slanted, orange Courier font. (One would usually not include

comments in an interactive session, but they are appropriate at times—especially in a classroom

setting!)

Listing 1.7 A command-line session with a Hello-World statement. Here lines 4 through 7 are

purely comments. Comment statements will be shown in a slanted, Courier font (instead of

bold).

1 Python 3.2.2 (v3.2.2:137e45f15c0b, Sep 3 2011, 17:28:59)

2 [GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin

3 Type "help", "copyright", "credits" or "license" for more information.

4 >>> # This is a comment. The interpreter ignores everything

5 ... # after the "#" character. In the command-line environment

6 ... # the prompt will change to "..." if "#" is the first

7 ... # character of the previous line.

8 ... print("Hello", "World!") # Comment following a statement.

9 Hello World!

10 >>>

Python treats everything after the character # as a comment, i.e., it simply ignores this text as

it is intended for humans and not the computer. The character # is called pound, hash, number

sign, or (rarely) octothorp. As line 8 demonstrates, a comment can appear on the same line as a

statement. (The # character does not indicate a comment if it is embedded in a string literal.) A

hash is used to indicate a comment whether using the Python interpreter or writing Python code in

a file. (String literals can also be used as comments as discussed in connection with doc strings in

Sec. 4.3.)

As Listing 1.7 shows, sometimes the Python prompt changes to three dots (...). This happens

in the command-line environment when Python is expecting more input (we will see later the

situations in which Python expects more input). In the command-line environment, when a line

starts with a comment, Python will change the prompt in the following line to three dots. However,

as shown in line 8 in Listing 1.7, a statement entered after the three dots will be executed as usual.

Things behave slightly differently in IDLE: the prompt will remain >>> in a line following a line

of comment. In this book, when showing an interactive session, we will typically adopt the IDLE

convention in which the prompt following a comment is still >>>.

There is one important feature of the interactive environment that, though useful, can lead to

confusion for those new to Python. The interactive environment will display the result of ex-

pressions (what we mean by an expression will be discussed further in Chap. 2) and will echo a

literal that is entered. So, for example, in the interactive environment, if we want to print Hello



1.6. RUNNING PYTHON 11

World!, we don’t need to use a print() statement. We can merely enter the string literal and

hit return. Listing 1.8 illustrates this where, on line 1, the programmer entered the literal string and

on line 2 Python echoed the message back. However, note that, unlike in Listing 1.7, the output is

surrounded by single quotes. We will have more to say about this below and in the next chapter.

Listing 1.8 When a literal is entered in the interactive environment, Python echoes the literal back

to the programmer.15

1 >>> "Hello World!"

2 ’Hello World!’

3 >>>

1.6.2 Running Commands from a File

There are various ways you can store commands in a file and then have the Python interpreter act

on them. Here we will just consider how this can be done using IDLE. After starting IDLE, the

window that appears with the interactive prompt is titled Python Shell. Go to the File menu

and select New Window. Alternatively, on a Mac you can type command-N, while on a Windows

machine you would type control-N. Henceforth, when we refer to a keyboard shortcut such as C-

N, we mean command-N on a Mac and control-N under Windows. The letter following “C-” will

vary depending on the shortcut (although this trailing letter will be written in uppercase, it is not

necessary to press the shift key).

After selecting New Window or typing C-N, a new window will appear with the title Untitled.

No interactive prompt appears. You can enter Python statements in this window but the interpreter

will not act on these statements until you explicitly ask it to. Once you start typing in this window

the title will change to *Untitled*. The asterisks indicate that the contents of this window have

changed since the contents were last saved to a file.

Before we can run the statements in the window we opened, we must save the file. To do this,

either select Save from the File menu or type C-S. This will bring up a “Save” window where

you indicate the folder and the file name where you want the contents of the window to be saved.

Whatever file name you choose, you should save it with an extension of “.py” which indicates

this is a Python file. Once you have saved the file, the title of the Window will change to reflect the

new file name (and the folder where it is stored).

Once the file has been saved, it can be run through the Python interpreter. To do this, you

can either go to the Run menu and select Run Module or you can type F5 (function key 5—on a

Mac laptop you will have to hold down the fn key, too). To illustrate what happens now, assume a

programmer has entered and saved the two lines of code shown in Listing 1.9.

Listing 1.9 Two lines of code that we assume have been saved to a file via IDLE. (This code is

not entered directly in the interactive environment.)

15If an expression is entered in the interactive environment, Python displays the result of the expression. Expressions

are discussed in Chap. 2.



12 CHAPTER 1. INTRODUCTION

1 "Hello World!"

2 print("Have we said enough hellos?")

When this is run, the focus will switch back to the Python Shell window. The window will contain

the output shown in Listing 1.10.

Listing 1.10 The output that is produced by running the code in Listing 1.9

1 >>> =========================== RESTART ===========================

2 >>>

3 Have we said enough hellos?

4 >>>

The output shown in the first two lines is not something our code produced. Rather, whenever

IDLE runs the contents of a file, it restarts the Python interpreter (thus anything you previously

defined, such as variables and functions, will be lost—this provides a clean start for running the

code in the file). This restart is announced as shown in line 1; it is followed by a “blank line,”

i.e., a line with the interactive prompt but nothing else. Then, in line 3 of Listing 1.10, we see

the output produced by the print() statement in line 2 of Listing 1.9. However, note that no

output was produced by the Hello World! literal on line 1 of Listing 1.9. In the interactive

environment, Hello World! is echoed to the screen, but when we put statements in a file, we

have to explicitly state what we want to show up on the screen.

If you make further changes to the file, you must save the contents before running the file

again.16 To run the file you can simply type C-S (the save window that appeared when you first

type C-S will not reappear—the contents will be saved to the file you specified previously) and

then F5.

1.7 Bugs

You should keep in mind that, for now, you cannot hurt your computer with any bugs or errors

you may write in your Python code. Furthermore, any errors you make will not crash the Python

interpreter. Later, when we consider opening or manipulating files, we will want to be somewhat

cautious that we don’t accidentally delete a file, but for now you shouldn’t hesitate to experiment

with code. If you ever have a question about whether something will or won’t work, there is no

harm in trying it out to see what happens.

Listing 1.11 shows an interactive session in which a programmer wanted to find out what would

happen when entering modified versions of the Hello-World program. In line 2, the programmer

wanted to see if Print() could be use instead of print(). In line 7 the programmer attempted

to get rid of the parentheses. And, in line 13, the programmer tried to do away with the quotation

marks. Code that produces an error will generally be shown in red.

16Note that we will say “run the file” although it is more correct to say “run the program contained in the file.”



1.8. THE HELP() FUNCTION 13

Listing 1.11 Three buggy attempts at a Hello-World program. (Code shown in red produces an

error.)

1 >>> # Can I write Print()?

2 >>> Print("Hello World!")

3 Traceback (most recent call last):

4 File "<stdin>", line 2, in <module>

5 NameError: name ’Print’ is not defined

6 >>> # Can I get rid of the parentheses?

7 >>> print "Hello World!"

8 File "<stdin>", line 2

9 print "Hello World!"

10 ˆ

11 SyntaxError: invalid syntax

12 >>> # Do I need the quotation marks?

13 >>> print(Hello World!)

14 File "<stdin>", line 2

15 print(Hello World!)

16 ˆ

17 SyntaxError: invalid syntax

For each of the attempts, Python was unable to perform the task that the programmer seemingly in-

tended. Again, the computer will never guess what the programmer intended. We, as programmers,

have to state precisely what we want.

When Python encounters errors such as these, i.e., syntactic errors, it raises (or throws) an

exception. Assuming we have not provided special code to handle an exception, an error mes-

sage will be printed and the execution of the code will halt. Unfortunately, these error messages

are not always the most informative. Nevertheless, these messages should give you at least a

rough idea where the problem lies. In the code in Listing 1.11 the statement in line 2 produced a

NameError exception. Python is saying, in line 5, that Print is not defined. This seems clear

enough even if the two lines before are somewhat cryptic. The statements in lines 7 and 13 resulted

in SyntaxError exceptions (as stated in lines 11 and 17). Python uses a caret (ˆ) to point to

where it thinks the error may be in what was entered, but one cannot count on this to truly show

where the error is.

1.8 The help() Function

The Python interpreter comes with a help() function. There are two ways to use help().

First, you can simply type help(). This will start the online help utility and the prompt will

change to help>. You then get help by typing the name of the thing you are interested in learning

about. Thus far we have only considered one built-in function: print(). Listing 1.12 shows the

message provided for the print() function. To exit the help utility, type quit.

Listing 1.12 Information provided by the online help utility for the print() function.



14 CHAPTER 1. INTRODUCTION

1 help> print

2 Help on built-in function print in module builtins:

3

4 print(...)

5 print(value, ..., sep=’ ’, end=’\n’, file=sys.stdout)

6

7 Prints the values to a stream, or to sys.stdout by default.

8 Optional keyword arguments:

9 file: a file-like object (stream); defaults to the current sys.stdout.

10 sep: string inserted between values, default a space.

11 end: string appended after the last value, default a newline.

When you are just interested in obtaining help for one particular thing, often you can provide that

thing as an argument to the help() function. For example, at the interactive prompt, if one types

help(print), Python will return the output shown in Listing 1.12. (When used this way, you

cannot access the other topics that are available from within the help utility.)

1.9 Comments on Learning New Languages

When learning a new skill, it is often necessary to practice over and over again. This holds true for

learning to play an instrument, play a new sport, or speak a new language. If you have ever studied

a foreign language, as part of your instruction you undoubtedly had to say certain things over and

over again to help you internalize the pronunciation and the grammar.

Learning a computer language is similar to learning any new skill: You must actively practice

it to truly master it. As with natural languages, there are two sides to a computer language: the

ability to comprehend the language and the ability to speak or write the language. Comprehension

(or analysis) of computer code is much easier than writing (or synthesis of) computer code. When

reading this book or when watching somebody else write code, you may be able to easily follow

what is going on. This comprehension may lead you to think that you’ve “got it.” However, when it

comes to writing code, at times you will almost certainly feel completely lost concerning something

that you thought you understood. To minimize such times of frustration, it is vitally important that

you practice what has been presented. Spend time working through assigned exercises, but also

experiment with the code yourself. Be an active learner. As with learning to play the piano, you

can’t learn to play merely by watching somebody else play!

You should also keep in mind that you can learn quite a bit from your mistakes. In fact, in some

ways, the more mistakes you make, the less likely you are to make mistakes in the future. Spending

time trying to decipher error messages that are produced in connection with relatively simple code

will provide you with the experience to more quickly decipher bugs in more complicated code.

Pixar Animation Studios has combined state-of-the-art technology and artistic talent to produce

several of the most successful movies of all time. The following quote is from Lee Unkrich, a

director at Pixar, who was describing the philosophy they have at Pixar.17 You would do well to

adopt this philosophy as your own in your approach to learning to program:

17From Imagine: How Creativity Works, by Jonah Lehrer, Houghton Mifflin Harcourt, 2012, pg. 169.



1.10. CHAPTER SUMMARY 15

We know screwups are an essential part of what we do here. That’s why our goal is

simple: We just want to screw up as quickly as possible. We want to fail fast. And

then we want to fix it.

— Lee Unkrich

1.10 Chapter Summary

Comments are indicated by a hash sign # (also

known as the pound or number sign). Text to

the right of the hash sign is ignored. (But, hash

loses its special meaning if it is part of a string,

i.e., enclosed in quotes.)

print(): is used to produce output. The op-

tional arguments sep and end control what ap-

pears between values and how a line is termi-

nated, respectively.

Code may contain syntactic bugs (errors in

grammar) or semantic bugs (error in meaning).

Generally, Python will only raise, or throw, an

exception when the interpreter encounters a syn-

tactic bug.

help(): provides help. It can be used inter-

actively or with a specific value specified as its

argument.

1.11 Review Questions

Note: Many of the review questions are meant to be challenging. At times, the questions probe

material that is somewhat peripheral to the main topic. For example, questions may test your ability

to spot subtle bugs. Because of their difficulty, you should not be discouraged by incorrect answers

to these questions but rather use challenging questions (and the understanding a correct answer) as

opportunities to strengthen your overall programming skills.

1. True or False: When Python encounters an error, it responds by raising an exception.

2. A comment in Python is indicated by a:

(a) colon (:)

(b) dollar sign ($)

(c) asterisk (*)

(d) pound sign (#)

3. What is the output produced by print() in the following code?

print("Tasty organic", "carrots.")

(a) "Tasty organic", "carrots."

(b) "Tasty organic carrots."

(c) Tasty organic carrots.

(d) Tasty organic", "carrots.



16 CHAPTER 1. INTRODUCTION

4. What is the output produced by print() in the following code?

print("Sun ripened ","tomatoes.")

(In the following, ⊔ indicates a single blank space.)

(a) Sun ripened⊔tomatoes.

(b) "Sun ripened⊔","tomatoes."

(c) "Sun ripened⊔",⊔"tomatoes."

(d) Sun ripened⊔⊔tomatoes.

5. What is the output produced by print() in the following code?

print("Grass fed ","beef.", end="")

(In the following, ⊔ indicates a single blank space.)

(a) Grass fed⊔beef.

(b) "Grass fed⊔","beef."

(c) "Grass fed⊔",⊔"beef."

(d) Grass fed⊔⊔beef.

6. What is the output produced by the following code? (In the following, ⊔ indicates a single

blank space.)

print("Free range⊔", end="⊔⊔")

print("chicken.")

(a) Free range⊔⊔⊔chicken.

(b) Free range⊔⊔⊔

chicken.

(c) "Free range"⊔"⊔⊔"⊔"chicken."

(d) Free range⊔⊔⊔⊔⊔chicken.

(e) Free range"⊔⊔"chicken.

7. What is the output produced by the following code? (In the following, ⊔ indicates a single

blank space.)

print("Free range⊔", end="⊔⊔"); print("chicken.")

(a) Free range⊔⊔⊔chicken.

(b) Free range⊔⊔⊔

chicken.



1.11. REVIEW QUESTIONS 17

(c) "Free range"⊔"⊔⊔"⊔"chicken."

(d) Free range⊔⊔⊔⊔⊔chicken.

(e) Free range"⊔⊔"chicken.

8. The follow code appears in a file:

"Hello"

print(" world!")

What output is produced when this code is interpreted? (In the following, ⊔ indicates a single

blank space.)

(a) Hello

⊔world!

(b) Hello⊔world!

(c) ⊔world!

(d) world!

ANSWERS: 1) True; 2) d; 3) c; 4) d; 5) a; 6) a; 7) a; 8) c.



18 CHAPTER 1. INTRODUCTION


	Introduction
	Modern Computers
	Computer Languages
	Python 
	Algorithmic Problem Solving
	Obtaining Python
	Running Python 
	Interactive Sessions and Comments
	Running Commands from a File 

	Bugs
	The help() Function
	Comments on Learning New Languages
	Chapter Summary
	Review Questions


