
Chapter 10

Reading and Writing Files

Up to this point we have entered data into our programs either literally (i.e., hardwired into the

code when the code is written) or obtained it from the user via an input() statement. However,

we often need to work with data stored in a file. Furthermore, rather than displaying results on the

screen, sometimes the desired action is to store the results in a file. In this chapter we explore the

reading and writing of files. In general, the content of a file is in the form of (readable) text or in

the form of binary or “raw” data. In this chapter we will only consider the reading and writing of

text, i.e., files that consist of characters from the ASCII character set.

10.1 Reading a File

To open a file for reading we use the built-in function open(). The first argument is the name of

the file and the second argument is the mode. When we want to read from an existing file, the mode

is set to the character ’r’ (as opposed to the character ’w’ which indicates we want to write to a

new file).1 For the file to be opened successfully, it must be in one of the directories where Python

searches, i.e., the file must be somewhere in Python’s path. Controlling Python’s path for the

reading and writing of files is no different than controlling the path for importing modules. Thus,

the discussion in Sec. 8.6 is directly relevant to the material in this chapter. As a reminder, perhaps

the simplest way to ensure Python will find an existing file is to set the current working directory

to the directory where the file resides. For example, assume there is a file called info.txt2 in

the Documents directory of a Macintosh or Linux machine or in the My Documents folder of

a Windows machine.3 The statements shown in Listing 10.1 are appropriate for opening this file

for the user guido. The first two lines of both sets of instructions serve to set the current working

directory to the desired location. Even if more than one file in this directory is opened, the first two

statements are issued just once (however, there must be one open() statement for each file).

From the file: files.tex
1Actually open() can be used with a single argument—the file name—in which case it is understood that the file

should be opened for reading, i.e., ’r’ is the default mode.
2There is no restriction on a file name. Often files will have an extension of .txt or .dat, but this is not necessary.
3We use the terms folder and directory interchangeably.

239



240 CHAPTER 10. READING AND WRITING FILES

Listing 10.1 Demonstration of setting the current working directory and opening a file within this

directory. It is assumed the user’s account name is guido and the file system has been configured

in a “typical” manner.

The following are appropriate for a Macintosh or Linux machine:

1 import os # Import the "operating system" module os.

2 os.chdir("/Users/guido/Documents")

3 file = open("info.txt", "r")

Analogous statements on a Windows machine are:

1 import os # Import the "operating system" module os.

2 os.chdir("C:/Users/guido/My Documents")

3 file = open("info.txt", "r")

The open() function returns a file object.4 We will typically assign the file object to an

identifier although, as will be shown, this isn’t strictly necessary to access the contents of a file.

A list of a file object’s methods is obtained by giving the object as the argument to dir(). This

is done in Listing 10.2. In the subsequent output we observe the methods read(), readline(),

and readlines(). Of some interest is the fact that, even though we have opened the file for

reading, the object has methods write() and writelines(). We will consider the write-

related methods in Sec. 10.2.

Listing 10.2 Methods for a file object. The methods discussed in this chapter are shown in slanted

bold type.

1 >>> file = open("info.txt", "r")

2 >>> dir(file)

3 [’_CHUNK_SIZE’, ’__class__’, ’__delattr__’, ’__doc__’, ’__enter__’,

4 ’__eq__’, ’__exit__’, ’__format__’, ’__ge__’, ’__getattribute__’,

5 ’__getstate__’, ’__gt__’, ’__hash__’, ’__init__’, ’__iter__’,

6 ’__le__’, ’__lt__’, ’__ne__’, ’__new__’, ’__next__’, ’__reduce__’,

7 ’__reduce_ex__’, ’__repr__’, ’__setattr__’, ’__sizeof__’,

8 ’__str__’, ’__subclasshook__’, ’_checkClosed’, ’_checkReadable’,

9 ’_checkSeekable’, ’_checkWritable’, ’buffer’, ’close’, ’closed’,

10 ’detach’, ’encoding’, ’errors’, ’fileno’, ’flush’, ’isatty’,

11 ’line_buffering’, ’name’, ’newlines’, ’read’, ’readable’,

12 ’readline’, ’readlines’, ’seek’, ’seekable’, ’tell’, ’truncate’,

13 ’writable’, ’write’, ’writelines’]

Throughout this section we assume the existence of the file info.txt located in a directory

in Python’s path. The file is assumed to contain the following text:

1 This file contains some numbers (and text).

2 4, 5, 6, 12

4More technically, the object is a stream or a file-like object. However, if you issue the command help(open)

the documentation states that open() returns a file object. On the other hand, if you use type() to check the type

of one of these file objects, you get something that looks rather mysterious.



10.1. READING A FILE 241

3 12.3 37.2 -15.7

4

5 This is the last line.

After opening a file, the contents can be obtained by invoking the read(), readline(), or

readlines() methods (or a combination of these methods). read() and readline() both

return a string. readlines() returns a list. Alternatively, we can also simply use the file object

directly as the iterable in a for-loop. In the following sections we consider each of these ways of

reading a file.

10.1.1 read(), close(), and tell()

When one uses the read() method, the entire file is read and its contents are returned as a single

string. This is demonstrated in Listing 10.3. In line 1 the file is opened. In line 2 the read()

method is called and the result is stored to the identifier all. Line 3 serves to echo the contents

of all which we see in lines 4 and 5.5 The output in lines 4 and 5 is not formatted, e.g., newlines

are indicated by \n. To obtain output that mirrors the contents of the file in the way it is typically

displayed, we can simply print this string as is done in line 6. Note that the print() statement

has the optional argument end set to the empty string. This is done because the string all already

contains all the newline characters that were contained in the file itself. Thus, because all ends

with a newline character, if we do not set end to the empty string, there will be an additional blank

line at the end of the output.

Listing 10.3 Use of the read() method to read an entire file as one string.

1 >>> file = open("info.txt", "r") # Open file for reading.

2 >>> all = file.read() # Read the entire file.

3 >>> all # Show the resulting string.

4 ’This file contains some numbers (and text).\n4, 5, 6, 12\n

5 12.3 37.2 -15.7\n\nThis is the last line.\n’

6 >>> print(all, end="") # Print the contents of the file.

7 This file contains some numbers (and text).

8 4, 5, 6, 12

9 12.3 37.2 -15.7

10

11 This is the last line.

After reading the contents of a file with read(), we can call read() again. However, rather

than obtaining the entire contents of the file, we get an empty string. Python maintains a stream

position that indicates where it is in terms of reading a file, i.e., the index of the next character to

be read. When a file is first opened, this position is at the very start of the file. After invoking the

read() method the position is at the end of the file, i.e., there are no more characters to read. If

you invoke the read() method with the stream position at the end of the file, you merely obtain

5An explicit line break has been added for display purposes—Python tries to display the string on a single line but

the output is “wrapped” to the following line at the edge of the window.



242 CHAPTER 10. READING AND WRITING FILES

an empty string—read() does not automatically return to the start of the file. If you must read

a file multiple times, you can close the file, using the close() method, and then open it again

using open(). In fact, there is no need to close() the file before issuing the second open()

because if a file is already open, Python will close it before opening it again. However, it is good

practice to close files when you are done with them. When you close() a file that has been

opened for reading, you free some resources and you ensure that accidental reads of a file do not

occur. Listing 10.4 demonstrates reading from a file multiple times.

Listing 10.4 If the read() method is invoked more than once on a file, the method returns an

empty string for all but the first invocation. To reposition the stream position back to the start of

the file the simplest approach is to close the file and reopen it. It is an error to try to read from a

closed file.

1 >>> file = open("info.txt", "r") # Open file for reading.

2 >>> all = file.read() # Read the entire file.

3 >>> everything = file.read() # Attempt to read entire file again.

4 >>> everything # There is nothing in everything.

5 ’’

6 >>> file.close() # Close file.

7 >>> everything = file.read() # Attempt to read a closed file.

8 Traceback (most recent call last):

9 File "<stdin>", line 1, in <module>

10 ValueError: I/O operation on closed file.

11 >>> file = open("info.txt", "r") # Open file for reading (again).

12 >>> everything = file.read() # Now we obtain everything.

13 >>> everything

14 ’This file contains some numbers (and text).\n4, 5, 6, 12\n

15 12.3 37.2 -15.7\n\nThis is the last line.\n’

The first two lines of Listing 10.4 are the same as those of Listing 10.3, i.e., the file is opened

and the entire file is read. In line 3 the read() method is again called. This time the return value

is assigned to the identifier everything. Lines 4 and 5 show that, rather than containing a copy

of the entire file, everything is the empty string. In line 6 the close() method is used to

close the file. In line 7 we again attempt to use read() to read the file. However, it is an error to

read from a closed file and hence a ValueError exception is raised as shown in lines 8 through

10. In line 11 the file is opened again. In line 12 the read() method is used to read the entire file.

As shown in lines 14 through 15, everything now corresponds to the contents of the entire file.

Although it is generally something we ignore, it can be instructive to observe the stream posi-

tion, i.e., the value that indicates the index of the next character to be read. As mentioned, when a

file is first opened, the stream position is zero, i.e., the next character to be read is the first one in the

file. Or, thought of another way, this zero indicates that we are offset zero from the start of the file.

We can obtain the value of the stream position with the tell() method. This is demonstrated in

Listing 10.5. The code is discussed following the listing.



10.1. READING A FILE 243

Listing 10.5 The tell() method returns the current stream position, i.e., the index of the next

character to be read.

1 >>> file = open("info.txt", "r") # Open file for reading.

2 >>> file.tell() # Stream position at start of file.

3 0

4 >>> all = file.read() # Read entire file.

5 >>> file.tell() # Stream position at end of file.

6 103

7 >>> # The following shows that, after reading the entire file, the

8 >>> # length of all the characters in the file and the value of the

9 >>> # stream position are the same.

10 >>> len(all)

11 103

In line 1 the file is opened for reading. In lines 2 and 3 tell() reports the stream position is

0, i.e., we are at the start of the file. In line 4 the entire file is read using read() and stored as the

string all. In lines 5 and 6 we see the stream position is now 103. Checking the length of all in

lines 10 and 11 we see that it is the same as the current stream position. (Recall that the last valid

index of a sequence is one less than its length, i.e., the last valid index for all is 102.)

10.1.2 readline()

Unlike read(), which reads the entire contents of a file in one shot, the readline() method

reads a single line and returns this line as a string. This is illustrated in Listing 10.6 where the file

info.txt is read one line at a time. To illustrate how Python keeps track of where it is within the

file, the tell() method is also called to show the stream position. Typically there is no reason to

display this information—it is sufficient that Python is keeping track of it. The code is discussed

following the listing.

Listing 10.6 Demonstration of the use of readline() to read the contents of a file one line at

a time. The tell() method is used merely to show how the stream position advances with each

invocation of readline().

1 >>> file = open("info.txt", "r")

2 >>> file.readline() # Read one line.

3 ’This file contains some numbers (and text).\n’

4 >>> file.tell() # Check on stream position.

5 44

6 >>> file.readline() # Read second line.

7 ’4, 5, 6, 12\n’

8 >>> file.tell()

9 63

10 >>> file.readline() # Read third line.

11 ’12.3 37.2 -15.7\n’

12 >>> file.tell()



244 CHAPTER 10. READING AND WRITING FILES

13 79

14 >>> file.readline() # Fourth line is "blank" but not empty.

15 ’\n’

16 >>> file.tell()

17 80

18 >>> file.readline() # Read fifth line.

19 ’This is the last line.\n’

20 >>> file.tell()

21 103

22 >>> # It is not an error to call readline() when at the end of the file.

23 >>> # Instead, readline merely returns an empty string.

24 >>> file.readline()

25 ’’

In line 1 the file is opened for reading. In line 2 the readline() method is invoked. This

returns, as a string, the first line of the file. Note that the newline character is part of this string

(i.e., the last character of the string). In line 4 the tell() method is called to check the current

value of the stream position. Line 5 reports it is 44. This corresponds to the number of characters

in the first line of the file (the newline character counts as a single character). The next several

lines repeat the process of calling readline() and then showing the stream position.

In line 15 of Listing 10.6, note the result of reading the fourth line of info.txt (i.e., note the

result of the statement in line 14). The fourth line of info.txt is a “blank” line but, in fact, that

does not mean it is empty. Within the file this line consists solely of the newline character. We see

this in the output on line 15.

In line 24, we attempt to read a sixth line. Although there isn’t a sixth line, this does not

produce an error. Instead, the return value is the empty string. Thus, we know (and Python knows)

that the end of the file has been reached when readline() returns an empty string.

Obviously it can be awkward if one has to explicitly call the readline() method for each

individual line of a long file. Fortunately there are a couple other constructs that facilitate reading

the entire file on a line-by-line basis.

10.1.3 readlines()

An alternative approach for conveniently reading the entire contents of a file is offered by the

readlines() method. The readlines() method is somewhat like read() in that it reads

the entire file.6 However, rather than returning a single string, readlines() returns a list in

which each element of the list is a line from the file. This is demonstrated in Listing 10.7 which

is discussed following the listing.

Listing 10.7 Demonstration of the use of the readlines() method .

1 >>> file = open("info.txt", "r")

2 >>> lines = file.readlines() # Read all lines into a list.

6Actually these methods read from the current stream position to the end of the file as discussed in more detail

later.



10.1. READING A FILE 245

3 >>> lines # Display list.

4 [’This file contains some numbers (and text).\n’, ’4, 5, 6, 12\n’,

5 ’12.3 37.2 -15.7\n’, ’\n’, ’This is the last line.\n’]

6 >>> count = 0

7 >>> for line in lines: # Show lines together with a count.

8 ... count = count + 1

9 ... print(count, ": ", line, sep="", end="")

10 ...

11 1: This file contains some numbers (and text).

12 2: 4, 5, 6, 12

13 3: 12.3 37.2 -15.7

14 4:

15 5: This is the last line.

In line 1 the file is opened for reading. In line 2 the readlines() method is invoked. This

returns a list, which is assigned to the identifier lines, in which each element corresponds to

a line of the file. In this particular case the list lines contains all the lines of the file. The entire

file is stored within the list because the stream position was 0 when the method was invoked,

i.e., readlines() starts from the current location of the stream position and reads until the end

of the file. This type of behavior (with the reading starting from the current stream position and

continuing to the end of the file) also pertains to read() and is discussed further in Sec. 10.1.5. If

the readlines() method is invoked when the stream position is at the end of a file, the method

returns an empty list.

Line 3 echoes lines. The output on lines 4 and 5 shows that this list does indeed contain

all the lines of the file. Note that each string in the list (i.e., each line) is terminated by a newline

character. The code in lines 6 through 9 displays each line of the file with the line preceded by

a line number (starting from one). The output is shown in lines 11 through 15. Note that the

print() statement in line 9 has the optional argument end set to the empty string. If this were

not done, each numbered line would be followed by a blank line since one newline is produced by

the newline character contained within the string for the line and another newline generated by the

print() function, thus resulting in a blank line. The optional argument sep is also set to the

empty string so that there is no space between the count at the start of the line and the colon.

10.1.4 File Object Used as an Iterable

Rather than using readlines() to read the lines of file into a list and then using a for-loop

to cycle through the elements of this list, one can use the file object itself as the iterable in the

for-loop header. In this case the file will be read line-by-line, i.e., for each iteration of the for-

loop the loop variable will be assigned a string corresponding to a line of the file. Lines are read,

in order, from the current stream position until the end of the file.

In some applications input files are huge. It thus requires significant memory to read and store

the entirety of these files. However, by using the file object as the for-loop iterable, only one line

is read (and processed) at a time. In this way it is possible to process files that are tremendously

large without using much memory.

The use of a file object as the iterable of a for-loop is illustrated in Listing 10.8.



246 CHAPTER 10. READING AND WRITING FILES

Listing 10.8 Demonstration that a file object can be used as the iterable in the header of a for-

loop. In this case the loop variable takes on the value of each line of the file.

1 >>> file = open("info.txt", "r")

2 >>> count = 0

3 >>> for line in file:

4 ... count = count + 1

5 ... print(count, ": ", line, sep="", end="")

6 ...

7 1: This file contains some numbers (and text).

8 2: 4, 5, 6, 12

9 3: 12.3 37.2 -15.7

10 4:

11 5: This is the last line.

In this code the integer variable count is used to keep track of the line number. The print()

statement in the for-loop prints both the line number and the corresponding line from the file. end

is set to the empty string to suppress the newline generated by the print() function. Alterna-

tively, rather than setting end to the empty string, to avoid repeating the newline character, we can

strip the newline character from the line variable using the rstrip() method.

As a slight twist to the implementation in Listing 10.8, one may use the open statement directly

as the iterable in the for-loop header. Thus, an alternate implementation of Listing 10.8 is given in

Listing 10.9. Here, however, we made the further modification of enclosing the open() function

in the enumerate() function. This allows us, in line 1 of Listing 10.9, to use simultaneous

assignment to obtain both a “count” and a line from the file. However, the count starts from zero.

Because we want the line number to start from one, we add 1 to count in line 2 in the first

argument of the print() function.

Listing 10.9 An alternate implementation of 10.8 where the open() function is used as the iter-

able of the for-loop. In this implementation the enumerate() function is used to obtain the

“count” directly, although we have to add one to this value to obtain the desired line number.

1 >>> for count, line in enumerate(open("info.txt", "r")):

2 ... print(count + 1, ": ", line, sep="", end="")

3 ...

4 1: This file contains some numbers (and text).

5 2: 4, 5, 6, 12

6 3: 12.3 37.2 -15.7

7 4:

8 5: This is the last line.

Both Listing 10.8 and Listing 10.9 accomplish the same thing but five lines of code were

required in Listing 10.8 whereas only two lines were needed in Listing 10.9. Reducing the number

of lines of code is, in itself, neither a good thing nor a bad thing. Code should strive for both



10.2. WRITING TO A FILE 247

efficiency and readability. In the case of Listings 10.8 and 10.9, efficiency is not an issue and the

“readability” will partly be a function of the experience of the programmer. Listing 10.9 is rather

“dense” and hence may be difficult for beginning Python programmers to understand. On the other

hand, experienced Python programmers may prefer this density to the comparatively “verbose”

code in Listing 10.8. Recognizing that readability is partially in the eye of the reader, we try to use

common Python idioms in the listings, but often tend toward a verbose implementation when it is

easier to understand than a more terse or dense implementation.

10.1.5 Using More than One Read Method

As mentioned in Sec. 10.1.3, when the read() or readlines()methods are called, the reading

starts from the current stream position. To help illustrate this, consider a situation in which the

first two lines of a file are comment lines or provide header information or simply need to be

handled differently than the rest of the file. In this case these two lines could be read using the

readline() method and then the remainder of the file could be conveniently read using either

readlines() or read().

The “mixing” of read methods is demonstrated in Listing 10.10. The file is opened in line 1.

The first and second lines are read in lines 2 and 3, respectively. Then, in line 4, the readlines()

method is invoked as the iterable of the for-loop. The strings returned by readlines() are

assigned to the loop variable line and printed using the print() statement in line 5. The fact

that there are only three lines of output (shown in lines 7 through 9) shows that readlines()

starts reading the file from its third line.

Listing 10.10 The first two lines of a file are read using readline() and the remainder of the

file is read using readlines().

1 >>> file = open("info.txt", "r")

2 >>> line_one = file.readline()

3 >>> line_two = file.readline()

4 >>> for line in file.readlines():

5 ... print(line, end="")

6 ...

7 12.3 37.2 -15.7

8

9 This is the last line.

10.2 Writing to a File

The converse of reading from a file is writing to a file. To do this, we again open the file with

the open() function. As with opening a file for reading, the first argument is the file name.

Now, however, the second argument (the mode) must be ’w’. Caution: When you open a file

for writing, you destroy any previous file that existed with this file name in the current working

directory. Because open() can destroy existing files, any time you plan to open a file for writing



248 CHAPTER 10. READING AND WRITING FILES

or reading, make doubly sure you have set the mode and the file name correctly. After opening the

file we can use the write() or writelines() methods to write to it. Additionally, there is an

optional argument for the print() function that allows us to specify a file to which the output

can be written (i.e., rather than the output appearing on the screen, it is written to the file).

10.2.1 write() and print()

The write() method takes a single argument which is the string to be written to the file. The

write() method is much less flexible than the print() function. With the print() function

we can use any number of arguments and the arguments can be of any type. Furthermore, using

the optional sep and end parameters, we can specify the separator to appear between objects and

how the line should be terminated. In contrast, the write() method only accepts a single string

as its argument (or, of course, any expression that returns a string). However, this is not quite as

restrictive as it might first appear. Using string formatting, we can easily represent many objects

as a single string. As an example of such a construction, first consider the code in Listing 10.11

which uses the print() function to display three variables.

Listing 10.11 Use of the print() function to display three values.

1 >>> a = 1.0

2 >>> b = "this"

3 >>> c = [12, -4]

4 >>> print(a, b, c)

5 1.0 this [12, -4]

The code in Listing 10.12 produces the same output as Listing 10.11, but in this case the output

goes to the file foo.dat. In line 1 the file is opened and assigned to the identifier file out.

In line 5 the write() method is called with a single string argument. However, this string is the

one produced by the format() method acting on the given format string which contains three

replacement fields (see the discussion of replacement fields in Sec. 9.7). The resulting string is the

same as representation of the three objects displayed in line 5 of Listing 10.11, i.e., after this code

has been run, the file foo.dat will contain the same output as shown in line 5 of Listing 10.11.

Line 7 of Listing 10.12 invokes the close() method on file out. If you look at the contents

of the file foo.dat before calling the close() method, you will probably not see the output

generated by the write() method. The reason is that, in the interest of speed and efficiency, the

output is buffered. Writing from internal computer memory to external memory (such as a disk

drive) can be slow. The fewer times such an operation occurs, the better. When output is buffered,

it is stored internally and not written to the file until there are “many” characters to write or until

the file is closed.7

Listing 10.12 Use of the write() method to write a single string. Use of a format string and

the format() method gives the same representation of the three objects as produced by the

print() statement in Listing 10.11.

7Alternatively, there is a flush() method that forces the “flushing” of output from the buffer to the output file.



10.2. WRITING TO A FILE 249

1 >>> file_out = open("foo.dat", "w")

2 >>> a = 1.0

3 >>> b = "this"

4 >>> c = [12, -4]

5 >>> file_out.write("{} {} {}\n".format(a, b, c))

6 18

7 >>> file_out.close()

The 18 that appears in line 6 is the return value of the write() method and corresponds to the

number of characters written to the file. This number is shown in the interactive environment, but if

the statement on line 5 appeared within a program (i.e., within a .py file), the return value would

not be visible. A programmer is not obligated to use a return value and when a return value is not

assigned to an identifier or printed, it simply “disappears.”

Now, having discussed the write() method, we actually can use the print() function to

write to a file! By adding an optional file=<file object> argument to print()’s argument

list, the output will be written to the file rather than to the screen.8 Thus, the code in Listing 10.13

is completely equivalent to the code in Listing 10.12.

Listing 10.13 The print() function’s optional file argument is used to produce the same

result as in Listing 10.12. This code and the code of Listing 10.12 differ only in line 5.

1 >>> file_out = open("foo.dat", "w")

2 >>> a = 1.0

3 >>> b = "this"

4 >>> c = [12, -4]

5 >>> print(a, b, c, file=file_out)

6 >>> file_out.close()

As we are already familiar with the print() function, we will not consider it further in the

remainder of this chapter.

As an example of the use of the write() method, let’s read from one file and write its con-

tents to another. Specifically, let’s copy the contents of the file info.txt to a new file called

info lined.txt and insert the line number at the start of each line. This can be accomplished

with the code shown in Listing 10.14. Lines 1 and 2 open the files. In line 3 the variable count

is initialized to 0. The for-loop in lines 4 through 6 cycles through each line of the input file.

Pay close attention to the argument of the write() method in line 6. The first replacement field

in the format string specifies that two spaces should be allocated to the integer corresponding to

the first argument of the format() method. The second replacement field merely serves as a

placeholder for the second argument of the format() method, i.e., the string corresponding to

a line of the input file. Note that this format string does not end with a newline character and the

write method does not add a newline character. However, the line read from the input file does end

with a newline character. Thus, one should not add another newline. The numerical values shown

in lines 8 through 12 are the numbers of characters written on each line. (We can prevent these

8Or, more technically, the default output is directed to sys.stdout which is usually the screen.



250 CHAPTER 10. READING AND WRITING FILES

values from being displayed simply by assigning the return value of the write() method to a

variable. However, when this code is run from a .py file, these values are not displayed unless we

explicitly do something to display them.)

Listing 10.14 Code to copy the contents of the file info.txt to the (new) file info lined.txt.

1 >>> file_in = open("info.txt", "r")

2 >>> file_out = open("info_lined.txt", "w")

3 >>> count = 0

4 >>> for line in file_in:

5 ... count = count + 1

6 ... file_out.write("{:2d}: {}".format(count, line))

7 ...

8 48

9 23

10 20

11 5

12 27

13 >>> file_out.close()

After running the code in Listing 10.14, the file info lined.txt contains the following:

1 1: This file contains some numbers (and text).

2 2: 4, 5, 6, 12

3 3: 12.3 37.2 -15.7

4 4:

5 5: This is the last line.

10.2.2 writelines()

The writelines() method takes a sequence as an argument, e.g., a tuple or a list. Each

element of the sequence must be a string. In some sense writelines() is misnamed in that it

doesn’t necessarily write lines. Instead, it writes elements of a sequence (but a method name of

writeelementsofsequence() isn’t very appealing). If all the elements of the sequence end

with the newline character, then the output will indeed be as if writelines() writes lines.

Consider the code shown in Listing 10.15 which creates two files, out 1.txt and out 2.txt.

The writelines() method is used to write the list values 1 to out 1.txt and the

tuple values 2 to out 2.txt. The significant difference between these two statements is

not that one argument is a tuple and the other is a list (this distinction is of no concern to

writelines()). Rather, it is that the strings in values 2 are terminated with newline charac-

ters but the strings in values 1 are not. The discussion continues following the listing.

Listing 10.15 Demonstration of the use of the writelines() method.



10.3. CHAPTER SUMMARY 251

1 >>> out_1 = open("out_1.txt", "w")

2 >>> out_2 = open("out_2.txt", "w")

3 >>> values_1 = ["one", "two", "three"]

4 >>> values_2 = ("one\n", "two\n", "three\n")

5 >>> out_1.writelines(values_1)

6 >>> out_2.writelines(values_2)

7 >>> out_1.close()

8 >>> out_2.close()

After the code in Listing 10.15 is run, the file out 1.txt contains the following:

onetwothree

This text is not terminated by a newline character. On the other hand the file out 2.txt contains:

one

two

three

This text is terminated by a newline character.

10.3 Chapter Summary

Files are opened for reading or writing using the

open() function. The first argument is the file

name and the second is the mode (’r’ for read,

’w’ for write). Returns a file object.

The stream position indicates the next

character to be read from a file. When the file

is first opened, the stream position is zero.

Contents of a file can be obtained using the fol-

lowing file-object methods:

• read(): Returns a string corresponding

to the contents of a file from the current

stream position to the end of the file.

• readline(): Returns, as a string, a sin-

gle line from a file.

• readlines(): Returns a list of

strings, one for each line of a file, from the

current stream position to the end of the

file (newline characters are not removed).

If the stream position is at the end of a

file, read() and readline() return empty

strings while readlines() returns an empty

list.

A file object can be used as the iterable in a for-

loop.

The close() method is used to close a file ob-

ject. It is an error to read from a closed file.

The write() method can be used to write a

string to a file.

A print() statement can also be used to print

to a file (i.e., write a string to a file) using the

optional file argument. A file object must be

provided with this argument.

The writelines() method takes a sequence

of strings as its argument and writes them to the

given file as a continuous string.



252 CHAPTER 10. READING AND WRITING FILES

10.4 Review Questions

1. Assume the file input.txt is opened successfully in the following. What is the type of

the variable z after the following code is executed:

file = open("input.txt", "r")

z = file.readlines()

(a) list

(b) str

(c) file object

(d) None of the above.

(e) This code produces an error.

For problems 2 through 9, assume the file foo.txt contains the following:

This is

a test.

Isn’t it? I think so.

2. What output is produced by the following?

file = open("foo.txt", "r")

s = file.read()

print(s[2])

3. What output is produced by the following?

file = open("foo.txt", "r")

file.readline()

print(file.readline(), end="")

4. What output is produced by the following?

file = open("foo.txt", "r")

for line in file:

print(line[0], end="")

5. What output is produced by the following?

file = open("foo.txt", "r")

s = file.read()

xlist = s.split()

print(xlist[1])



10.4. REVIEW QUESTIONS 253

6. What output is produced by the following?

file = open("foo.txt")

s = file.read()

xlist = s.split(’\n’)

print(xlist[1])

7. What output is produced by the following?

file = open("foo.txt")

xlist = file.readlines()

ylist = file.readlines()

print(len(xlist), len(ylist))

8. What output is produced by the following?

file = open("foo.txt")

xlist = file.readlines()

file.seek(0)

ylist = file.readlines()

print(len(ylist), len(ylist))

9. What output is produced by the following?

file = open("foo.txt")

for x in file.readline():

print(x, end=":")

10. What is contained in the file out.txt after executing the following?

file = open("out.txt", "w")

s = "this"

print(s, "is a test", file=file)

file.close()

11. What is contained in the file out.txt after executing the following?

file = open("out.txt", "w")

s = "this"

file.write(s, "is a test")

file.close()

12. What is contained in the file out.txt after executing the following?

file = open("out.txt", "w")

s = "this"

file.write(s + "is a test")

file.close()



254 CHAPTER 10. READING AND WRITING FILES

13. What is contained in the file out.txt after executing the following?

file = open("out.txt", "w")

s = "this"

file.write("{} {}\n".format(s, "is a test"))

file.close()

ANSWERS: 1) a; 2) i; 3) a test.; 4) TaI; 5) is; 6) a test.; 7) 3 0; 8) 3 3; 9)

T:h:i:s: :i:s:; 10) this is a test (terminated with a newline character); 11) The

file will be empty since there is an error that prevents the write() method from being used—

write() takes a single string argument and here is is given two arguments.; 12) thisis a

test (this is not terminated with a newline character); 13) this is a test (terminated with

a newline character).


	Reading and Writing Files
	Reading a File
	read(), close(), and tell() 
	readline()
	readlines() 
	File Object Used as an Iterable
	Using More than One Read Method 

	Writing to a File 
	write() and print()
	writelines()

	Chapter Summary
	Review Questions


