
Chapter 14

Dictionaries

lists and tuples are containers in which data are collected so that elements of the data can

be easily accessed. lists and tuples are also sequences in that data are organized in a well

defined sequential manner. One element follows another. The first element has an index of 0, the

next has an index of 1, and so on. Alternatively, negative indexing can be used to specify an offset

from the last element of a list or tuple. We’ve discussed the use of slices where a portion

of a list or tuple is specified by indices that indicate the start and end of the slice. Almost

everything we have done in terms of accessing the elements of a list or tuple has been related

to the sequential nature of the container and has relied on numeric indexing.

However, as you know from your day-to-day experiences, there are many situations in which

we don’t think of collections of data in a sequential manner. For example, your name, your height,

and your age are all data associated with you, but you don’t think about these in any particular

order. Your name is simply your name. If we want to store a person’s name, height, and age in

a Python program, we can easily store this information in a list (if we want the information to

be mutable) or a tuple (if we want the information to be immutable). If we do this, the order

of an element dictates how it should be interpreted. So, for example, perhaps the first element in

a list is a name (a string), the second element is an age (an integer), and the third element is a

height (a float or integer in centimeters). Within a program this organization of information can

work well, but there are limits to this. What if we want to keep track of many more facts about a

person? Assume, perhaps, there are 15 separate pieces of data we want to record and use. The code

to manipulate this information can become difficult to understand and maintain if the programmer

only has the position within a list as the key to determining how the data should be interpreted.

As an alternative to lists and tuples, Python provides another container known as a dic-

tionary or dict. Dictionaries share some syntactic properties with lists and tuples but there

are many important differences. First, dictionaries are not sequential collections of data. Instead,

dictionaries consist of key-value pairs. To obtain a “value” (i.e., the data of interest), you specify

its associated key. In this way you can create a collection of data in which perhaps the keys are the

strings ’name’, ’age’, and ’height’. The order in which Python stores the key-value pairs

is not a concern. We merely need to know that when we specify the key ’name’, Python will

provide the associated name. When we specify the key ’age’, Python will provide the associated

age. And, when we specify the key ’height’, Python will provide the associated height.

From the file: dictionaries.tex

335



336 CHAPTER 14. DICTIONARIES

In this chapter we will explore the ways in which dictionaries can be used. You are already

familiar with traditional dictionaries in which the “key” is a given word. Using this key, you can

look up the definition of the word (i.e., the data associated with this key). This model works

well in some ways for visualizing a dict in Python. However, in a traditional dictionary all the

keys/words are in alphabetical order. There is no such ordering of the keys in Python. Despite this

lack of order, one of the important properties of a dict is that Python can return the data for a

given key extremely quickly. This speed is maintained even when the dictionary is “huge.”1

14.1 Dictionary Basics

To create a dict, we use curly braces, i.e., {}. If there is nothing between the braces (other than

whitespace), the dict is empty. It is not uncommon to start with an empty dictionary and later

add key-value pairs. Alternatively, key-value pairs can be specified when the dictionary is created.

This is done by separating the key from the value by a colon and separating key-value pairs by a

comma. This is illustrated in Listing 14.1 which is discussed below the listing.

Listing 14.1 Creation of dictionaries.

1 >>> abe = {’name’ : ’Abraham Lincoln’, ’age’ : 203, ’height’ : 193}

2 >>> abe[’height’]

3 193

4 >>> abe[’name’]

5 ’Abraham Lincoln’

6 >>> james = {}

7 >>> james[’name’]

8 Traceback (most recent call last):

9 File "<stdin>", line 1, in <module>

10 KeyError: ’name’

11 >>> james[’name’] = ’James Madison’

12 >>> james[’height’] = 163

13 >>> james[’age’] = 261

14 >>> print(abe)

15 {’age’: 203, ’name’: ’Abraham Lincoln’, ’height’: 193}

16 >>> james

17 {’age’: 261, ’name’: ’James Madison’, ’height’: 163}

In line 1 the dictionary abe is created with three key-value pairs. The use of whitespace surround-

ing a colon is optional. Although not done here, the declaration can span multiple lines because

the opening brace behaves something like an opening parentheses and the declaration does not end

until the corresponding closing brace is entered. To obtain the value associated with a key, the key

is specified within square brackets as shown in lines 2 and 4.

1Python dicts are hashes. We will not consider the details of a hash, but essentially what happens in a hash is

that a hash function is applied to the key. The value this function returns indicates, at least approximately, where the

associated value can be found in memory.



14.1. DICTIONARY BASICS 337

An empty dict is created in line 6 and assigned to the variable james. In line 7 an attempt is

made to access the value associated with the key ’name’. However, since this key doesn’t exist

in james, this produces the KeyError exception shown in lines 8 through 10. However, we can

add key-value pairs to a dictionary through assignment statements as shown in lines 11 through

13.2

In line 14 a print() statement is used to display the dictionary abe. In the output in line

15, note that the order of key-value pairs is not the same as the order in which we provided them.3

In the interactive environment, we can see the contents of a dictionary simply by entering the

dictionary name and hitting return as is done with james in line 16. The output in line 17 again

shows that the order in which we specify key-value pairs is unrelated to the order in which Python

stores or displays them.

In Listing 14.1 all the keys are strings. But, keys can be numeric values or tuples or, in fact, any

immutable object! This is illustrated in Listing 14.2 where, in lines 1 through 4, the dictionary d is

created with keys that are a string (line 1), an integer (line 2), a tuple (line 3), and a float (line

4). Lines 5 through 16 demonstrate that the keys do indeed produce the associated values. Note

that the value associated with the tuple key (line 3) is itself a dict and the value associated

with the float key (in line 4) is a list. Although a key cannot be a mutable object, the values

associated with a key can be mutable. (dicts are mutable, because we can change keys and

values.)

Listing 14.2 Demonstration that keys to a dict can be any immutable object. The associated

values can be either mutable or immutable objects.

1 >>> d = {’alma mater’ : ’WSU’,

2 ... 42 : ’The meaning of life.’,

3 ... (3, 4) : {’first’ : 33, ’second’ : 3 + 4},

4 ... 5.7 : [5, 0.7]}

5 >>> d[’alma mater’]

6 ’WSU’

7 >>> d[42]

8 ’The meaning of life.’

9 >>> d[5.7]

10 [5, 0.7]

11 >>> d[5.7][1]

12 0.7

13 >>> d[(3, 4)]

14 {’second’: 7, ’first’: 33}

15 >>> d[(3, 4)][’second’]

16 7

2Abraham Lincoln was the tallest President of the United States at 6 feet 4 inches. James Madison was the shortest

at 5 feet 4 inches.
3The order is dependent on the hash function used. The details of this are something we can easily access and thus

we simply need to accept that ordering of values in the dictionary is effectively random. Nevertheless, as we will see,

using the sorted() function there are ways to order the data from dictionaries.



338 CHAPTER 14. DICTIONARIES

Let us now take a look at the methods provided by a dictionary. These are shown in Listing

14.3. The methods of interest to us are in slanted bold text. The keys() method provides the

keys for a dict while values() provides the values. The method items() provides tuples

of all the key-value pairs. These methods (and the get() method) will be discussed further in the

following sections.

Listing 14.3 Methods provided by dicts.

1 >>> dir({})

2 [’__class__’, ’__contains__’, ’__delattr__’, ’__delitem__’, ’__doc__’,

3 ’__eq__’, ’__format__’, ’__ge__’, ’__getattribute__’, ’__getitem__’,

4 ’__gt__’, ’__hash__’, ’__init__’, ’__iter__’, ’__le__’, ’__len__’,

5 ’__lt__’, ’__ne__’, ’__new__’, ’__reduce__’, ’__reduce_ex__’,

6 ’__repr__’, ’__setattr__’, ’__setitem__’, ’__sizeof__’, ’__str__’,

7 ’__subclasshook__’, ’clear’, ’copy’, ’fromkeys’, ’get’, ’items’,

8 ’keys’, ’pop’, ’popitem’, ’setdefault’, ’update’, ’values’]

14.2 Cycling through a Dictionary

Although a dict is not a sequence like a list or a tuple, it is an iterable and can be used in a

for-loop header. This is demonstrated in Listing 14.4 where the dictionary abe is created in line

1 and then used as the iterable in the for-loop in line 2. Here we use foo for the loop variable

name to indicate that it is not obvious what value is assigned to this variable. The body of the

loop (line 3) simply prints the value of the loop variable. We see in the output in lines 5 through

7 that the loop variable is assigned the values of the keys. By invoking the keys() method on

the dictionary abe, the for-loop defined in lines 8 and 9 explicitly says that the iterable should

be the keys of the dict. This loop is functionally identical to the loop in lines 2 and 3. Since it

is superfluous, typically one does not invoke the keys() method in the header of a for-loop and

instead writes the header as shown in line 2. (Another common idiom is to name the loop variable

key.)

Listing 14.4 When a dict is used as the iterable in a for-loop, the loop variable takes on the

values of keys.

1 >>> abe = {’name’ : ’Abraham Lincoln’, ’age’ : 203, ’height’ : 193}

2 >>> for foo in abe:

3 ... print(foo)

4 ...

5 age

6 name

7 height

8 >>> for foo in abe.keys():

9 ... print(foo)

10 ...



14.2. CYCLING THROUGH A DICTIONARY 339

11 age

12 name

13 height

Of course, one is usually interested in the values associated with keys and not in the keys

themselves. Listing 14.5 demonstrates the printing of keys together with their associated values.

In the print() statement in line 3, the second argument is ’:\t’. Recall that \t is the escape

sequence for a tab. This serves to align the output as shown in lines 5 through 7.

Listing 14.5 Display of key-value pairs.

1 >>> abe = {’name’ : ’Abraham Lincoln’, ’age’ : 203, ’height’ : 193}

2 >>> for key in abe:

3 ... print(key, ’:\t’, abe[key], sep="") # \t = tab.

4 ...

5 age: 203

6 name: Abraham Lincoln

7 height: 193

An alternative way to display key-value pairs is provided by the items() method. As men-

tioned in the previous section, this method provides a pairing of keys and their associated values.

In this way, simultaneous assignment can be used in the header of the for-loop to obtain both

the key and the associated value. This is demonstrated in Listing 14.6. This listing is identical to

Listing 14.5 except in line 2 (where value has been added as a loop variable and the items()

method is invoked) and in line 3 (where abe[key] has been replaced by value).

Listing 14.6 Use of the items() method to obtain both the key and the associated value in the

header of the for-loop.

1 >>> abe = {’name’ : ’Abraham Lincoln’, ’age’ : 203, ’height’ : 193}

2 >>> for key, value in abe.items():

3 ... print(key, ’:\t’, value, sep="")

4 ...

5 age: 203

6 name: Abraham Lincoln

7 height: 193

If we are interested in obtaining only the values from a dict, we can obtain them using the

values() method. This is demonstrated in Listing 14.7.

Listing 14.7 Displaying the values in a dictionary.

1 >>> abe = {’name’ : ’Abraham Lincoln’, ’age’ : 203, ’height’ : 193}

2 >>> for value in abe.values():



340 CHAPTER 14. DICTIONARIES

3 ... print(value)

4 ...

5 203

6 Abraham Lincoln

7 193

Assume a teacher has created a dictionary of students in which the keys are the students’ names.

Each student is assigned a grade (which is a string). The teacher then wants to view the students’

names and grades. Typically such a listing is presented alphabetically. However, with a dict we

have no way to directly enforce the ordering of the keys. For a list the sort() method can

be used to order the elements, but this cannot be used with the keys of a dict because the keys

themselves are not a list nor does the keys() method produce a list. Fortunately, Python

provides a function called sorted() that can be used to sort the keys. sorted() takes an

iterable as its argument and returns a list of sorted values.

In Listing 14.8, in lines 1 through 5, a dictionary of eight students is created. In lines 6 and 7 a

for-loop is used to display all the student names and grades. Note that the sorted() function

is used in the header (line 6) to sort the keys. For strings, sorted() will, by default, perform the

sort in alphabetical order. The body of the for-loop consists of a single print() statement. A

format string is used to ensure the output appears nicely aligned (because of the plus or minus that

may appear in the grade, the width of the first replacement field is set to two characters). Note that

the listing of students in lines 9 through 16 is in alphabetical order. The for-loop in lines 17 and

18 does not use the sorted() function to sort the keys nor is a format string used for the output.

The subsequent output, in lines 20 through 27, is not in alphabetical order and the names are no

longer aligned.

Listing 14.8 Use of sorted() to sort the keys of a dict and thus show the data “in order.”

1 >>> students = {

2 ... ’Harry’ : ’B+’, ’Hermione’ : ’A+’, ’Ron’ : ’B-’,

3 ... ’Fred’ : ’C’, ’George’: ’C’, ’Nevel’ : ’B’,

4 ... ’Lord Voldemort’ : ’F’, ’Ginny’ : ’A’

5 ... }

6 >>> for key in sorted(students): # Sorted keys.

7 ... print("{:2} {}".format(students[key], key))

8 ...

9 C Fred

10 C George

11 A Ginny

12 B+ Harry

13 A+ Hermione

14 F Lord Voldemort

15 B Nevel

16 B- Ron

17 >>> for key in students: # Unsorted keys.

18 ... print(students[key], key)

19 ...



14.3. GET() 341

20 A+ Hermione

21 B- Ron

22 B+ Harry

23 B Nevel

24 F Lord Voldemort

25 A Ginny

26 C George

27 C Fred

14.3 get()

The dictionary method get() provides another way to obtain the value associated with a key.

However, there are two important differences between the way get() behaves and the way dic-

tionaries behave when a key is specified within brackets. The first argument to get() is the

key. If the key does not exist within the dictionary, no error is produced. Instead, get() returns

None. This is demonstrated in Listing 14.9. In line 1 a dictionary is created with keys ’age’

and ’height’. The header of the for-loop in line 2 explicitly sets the loop variable key to

’name’, ’age’, and ’height’. In the body of the loop, in line 3, the get() method is used

to obtain the value associated with the given key. The output in line 5 shows that the method re-

turns None for the key ’name’. The for-loop in lines 8 and 9 is similar to the previous loop

except here the values are obtained using james[key] rather than james.get(key). This

results in an error because the key ’name’ is not defined. This error terminates the loop, i.e., we

do not see the other values for which a key is defined.

Listing 14.9 The get() method can be used to look up values for a given key. If the key does

not exist, the method returns None.

1 >>> james = {’age’: 261, ’height’: 163}

2 >>> for key in [’name’, ’age’, ’height’]:

3 ... print(key, ’:\t’, james.get(key), sep="")

4 ...

5 name: None

6 age: 261

7 height: 163

8 >>> for key in [’name’, ’age’, ’height’]:

9 ... print(key, ’:\t’, james[key], sep="")

10 ...

11 Traceback (most recent call last):

12 File "<stdin>", line 2, in <module>

13 KeyError: ’name’

The other important difference between using get() and specifying a key within brackets is

that get() takes an optional second argument that specifies what should be returned when a key

does not exist. In this way we can obtain a value other than None for undefined keys. Effectively



342 CHAPTER 14. DICTIONARIES

this allows us to provide a default value. This is demonstrated in Listing 14.10 which is a slight

variation of Listing 14.9. The only difference is in line 3 where the string John Doe is provided

as the second argument to the get() method. Note that this particular default value (i.e., John

Doe) appears to be reasonable in terms of providing a missing “name,” but it does not make much

sense as a default for the age or height.

Listing 14.10 Demonstration of the use of a default return value for get().

1 >>> james = {’age’: 261, ’height’: 163}

2 >>> for key in [’name’, ’age’, ’height’]:

3 ... print(key, ’:\t’, james.get(key, "John Doe"), sep="")

4 ...

5 name: John Doe

6 age: 261

7 height: 163

Let’s now consider a more practical way in which the default value of the get() method

can be used. Assume we want to analyze some text to determine how often each “word” appears

within the text. For the sake of simplicity, we will assume a word is any collection of contiguous

non-whitespace characters. Thus, letters, digits, and punctuation marks are all considered part of

a word. Furthermore, we will maintain case sensitivity so that words having the same letters but

different cases are considered to be different. For example, all of the following are considered to

be different words:

end end. end, End "End

Analysis of text in which one obtains the number of occurrences of each word is often referred

to as a concordance. As an example of this, let’s analyze the following text to determine how many

times each word appears:

How much wood could a woodchuck chuck if a woodchuck could chuck

wood? A woodchuck you say? Not much if the wood were mahogany.

We can do this rather easily as demonstrated by the code in Listing 14.11. This code is discussed

following the listing.

Listing 14.11 Analysis of text to determine the number of times each word appears.

1 >>> text = """

2 ... How much wood could a woodchuck chuck if a woodchuck could chuck

3 ... wood? A woodchuck you say? Not much if the wood were mahogany.

4 ... """

5 >>> concordance = {}

6 >>> for word in text.split():

7 ... concordance[word] = concordance.get(word, 0) + 1

8 ...

9 >>> for key in concordance:



14.4. CHAPTER SUMMARY 343

10 ... print(concordance[key], key)

11 ...

12 2 a

13 2 wood

14 1 A

15 1 mahogany.

16 1 say?

17 2 could

18 2 chuck

19 1 How

20 2 much

21 3 woodchuck

22 1 were

23 1 Not

24 1 you

25 1 wood?

26 1 the

27 2 if

In lines 1 through 4 the text is assigned to the variable text. In line 5 an empty dictionary is

created and assigned to the variable concordance. This dictionary will have keys that are the

words in the text. The value associated with each key will ultimately be the number of times the

word appears in the text.

The for-loop in lines 6 and 7 cycles through each word in text. In the header, in line 6, this

is accomplished by using the split() method on text to obtain a list of all the individual

words. The body of the for-loop has a single assignment statement (line 7). On the right side of

the assignment statement the get() method is used to determine the number of previous occur-

rences of the given key/word. If the word has not been seen before, the get() method returns 0

(i.e., the optional second argument is the integer 0). Otherwise it returns whatever value is already

stored in the dictionary. The value that get() returns is incremented by one (indicating there

has been one more occurrence of the given word) and this is assigned to concordance with the

given key/word.

The for-loop in lines 9 and 10 is simply used to display the concordance, i.e., the count for

the number of occurrences of each word. We see, for example, that the word wood occurrs twice

while woodchuck occurrs three times.

14.4 Chapter Summary

Dictionaries consist of key-value pairs. Any ob-

ject consisting of immutable components can be

used as a key. Values may be any object. Dic-

tionaries themselves are mutable.

Dictionaries are unordered collections of data

(i.e., they are not sequences).

The value associated with a given key can be ob-

tained by giving the dictionary name followed

by the key enclosed in square brackets. For ex-

ample, for the dictionary d, the value associated

with the key k is given by d[k]. It is an error

to attempt to access a non-existent key this way.



344 CHAPTER 14. DICTIONARIES

The get() method can be used to obtain the

value associated with a key. If the key does not

exist, by default, get() returns None. How-

ever, an optional argument can be provided to

specify the return value for a non-existent key.

The keys() method returns the keys of a dic-

tionary. When a dictionary is used as an iter-

able (e.g., in the header of a for-loop), by de-

fault the iteration is over the keys. Thus, if d is

a dictionary, “for k in d:” is equivalent to

“for k in d.keys()”.

The sorted() function can be used to sort

the keys of a dictionary. Thus, “for k in

sorted(d):” cycles through the keys in or-

der. (Similar to the sort() method for lists,

the order can be further controlled by providing

a key function whose output dictates the values

to be used for the sorting. Additionally, set-

ting the optional argument reverse to True

causes sorted() to reverse the order of the

items.)

The values() method returns the values in

the dictionary. Thus, if d is a dictionary,

“for v in d.values():” cycles through

the values of the dictionary.

The items() method returns the key-value

pairs in the dictionary.

14.5 Review Questions

1. What is the output produced by the following code?

d = {’a’ : 0, ’b’: 1, ’c’ : 2}

print(d[’c’])

(a) c

(b) 2

(c) ’c’ : 2

(d) This code produces an error.

2. What is the output produced by the following code?

d = {’a’ : 0, ’b’: 1, ’c’ : 2}

print(d[2])

(a) c

(b) 2

(c) ’c’ : 2

(d) This code produces an error.

3. What is the output produced by the following code?

d = {’a’ : 0, ’b’: 1, ’c’ : 2}

print(d.get(2, ’c’))



14.5. REVIEW QUESTIONS 345

(a) c

(b) 2

(c) ’c’ : 2

(d) This code produces an error.

4. What is the output produced by the following code?

d = {’a’ : 0, ’b’: 1, ’c’ : 2}

for x in sorted(d):

print(d[x], end=" ")

(a) a b c

(b) 0 1 2

(c) (’a’, 0) (’b’, 1) (’c’, 2)

(d) This code produces an error.

5. What is the output produced by the following code?

d = {’a’ : 0, ’b’: 1, ’c’ : 2}

for x in sorted(d.values()):

print(x, end=" ")

(a) a b c

(b) 0 1 2

(c) (’a’, 0) (’b’, 1) (’c’, 2)

(d) This code produces an error.

6. What is the output produced by the following code?

d = {’a’ : 0, ’b’: 1, ’c’ : 2}

for x in sorted(d.items()):

print(x, end=" ")

(a) a b c

(b) 0 1 2

(c) (’a’, 0) (’b’, 1) (’c’, 2)

(d) This code produces an error.

7. What is the output produced by the following code?

d = {’a’ : 0, ’b’: 1, ’c’ : 2}

for x in sorted(d.keys()):

print(x, end=" ")



346 CHAPTER 14. DICTIONARIES

(a) a b c

(b) 0 1 2

(c) (’a’, 0) (’b’, 1) (’c’, 2)

(d) This code produces an error.

8. What is the output produced by the following code?

pres = {’george’ : ’washington’, ’thomas’ : ’jefferson’,

’john’ : ’adams’}

print(pres.get(’washington’, ’dc’))

(a) george

(b) washington

(c) dc

(d) This code produces an error.

9. What is the output produced by the following code?

pres = {’george’ : ’washington’, ’thomas’ : ’jefferson’,

’john’ : ’adams’}

for p in sorted(pres):

print(p, end=" ")

(a) george thomas john

(b) george john thomas

(c) washington jefferson adams

(d) adams jefferson washington

(e) None of the above.

ANSWERS: 1) b; 2) d; 3) a; 4) b; 5) b; 6) c; 7) a; 8) c; 9) b;


	Dictionaries 
	Dictionary Basics
	Cycling through a Dictionary
	get()
	Chapter Summary
	Review Questions


