
Chapter 2

Core Basics

In this chapter we introduce some of the basic concepts that are important for understanding what

is to follow. We also introduce a few of the fundamental operations that are involved in the vast

majority of useful programs.

2.1 Literals and Types

Section 1.3 introduced the string literal. A string literal is a collection of characters enclosed in

quotes. In general, a literal is code that exactly represents a value. In addition to a string literal,

there are numeric literals.

There are actually a few different types of numeric values in Python. There are integer values

which correspond to whole numbers (i.e., the countable numbers that lack a fractional part). In

Python, an integer is known as an int. A number that can have a fractional part is called a float

(a float corresponds to a real number). For example, 42 is an int while 3.14 is a float.

The presence of the decimal point makes a number a float—it doesn’t matter if the fractional

part is zero. For example, the literal 3.0, or even just 3., are also floats1 despite the fact that

these numbers have fractional parts of zero.2

There are some important differences between how computers work with ints and floats.

For example, ints are stored exactly in the computer while, in general, floats are only stored

approximately. This is a consequence of the fact that we are entering numbers as decimal numbers,

i.e., numbers in the base 10 counting system, but the computer stores these numbers internally as

a finite number of binary (base 2) digits. For integers we can represent a number exactly in any

counting system. However, for numbers with fractional parts, this is no longer true. Consider the

number one-third, i.e., 1/3. To represent this as a decimal number (base 10) requires an infinite

number of digits: 0.3333 · · · . But, if one uses the base 3 (ternary) counting system, one-third is

From the file: core-basics.tex
1We will write the plural of certain nouns that have meaning in Python as a mix of fonts. The noun itself will be in

Courier and the trailing “s” will be in Times-Roman, e.g., floats.
2Other numeric data types that Python provides are complex, Decimal, and Fraction. Of these, only

complex numbers can be entered directly as literals. They will be considered in Chap. 8. Decimals provide a

way of representing decimal numbers in a manner that is consist with how humans think of decimal numbers and do

not suffer from the approximation inherent in floats. Fractions are rational numbers where the numerator and

denominator are integers.

19

20 CHAPTER 2. CORE BASICS

represented with a single digit to the right of the decimal sign, i.e., 0.13.
3 This illustrates that

when converting from one counting system to another (i.e., one base to another), the fractional

part of the number that could be represented by a finite number of digits in one counting system

may require an infinite number of digits in the other counting system. Because computers cannot

store an infinite number of digits, the finite number of digits that are stored for a float is an

approximation of the true number.4

As mentioned in Sec. 1.6.1, when we enter a literal in the interactive environment, Python

merely echoes the literal back to us. This is true of both numeric and string literals as Listing 2.1

illustrates.

Listing 2.1 Entry of numeric and string literals in the interactive environment.

1 >>> 7 # int literal.

2 7

3 >>> 3.14 # float literal.

4 3.14

5 >>> -2.00001 # Negative numbers are indicated with a negative sign.

6 -2.00001

7 >>> +2.00 # Can explicitly use positive sign, but not needed.

8 2.0

9 >>> 1.23e3 # Exponential notation: positive exponent.

10 1230.0

11 >>> 1.23e-3 # Exponential notation: negative exponent.

12 0.00123

13 >>> 1e0 # Exponential notation: decimal point not required.

14 1.0

15 >>> "Literally unbelievable." # String in double quotes.

16 ’Literally unbelievable.’

17 >>> ’Foo the Bar’ # String in single quotes.

18 ’Foo the Bar’

Line 5 shows the entry of a negative number. One can use the positive sign to indicate a positive

number, as is done in line 7, but if no sign is provided, the number is assumed to be positive.

Lines 9, 11, and 13 demonstrate the entry of a number using exponential notation. From your

calculator you may already be familiar with the exponential notation in which the letter e is used as

shorthand for “×10” and the number to the right of e is the exponent of 10. Thus, when we write

1.23e-3 we mean 1.23× 10−3 or 0.00123. Note think in line 13 we have entered 1e0 which is

equivalent to 1× 100 = 1. You might think that since there is no decimal point, 1e0 should be an

integer. However, the output of 1.0 shown on line 14 indicates that it is actually a float. So,

when a decimal point appears in a number or when e appears in a number, the number is a float.

In lines 15 and 17 string literals are entered. In line 15 the string is enclosed in double quotes

but what Python echoes back in line 16 is enclosed in single quotes. Line 17 shows that we can

3The subscript 3 indicates this is a number in base 3. If you are unfamiliar with counting in numbering systems

other than 10, it is not a concern. We will revisit this issue later.
4For a float one obtains about 15 decimal digits of accuracy. Thus, although a float may be an approximation

of the true number, 15 digits of accuracy is typically sufficient to meet the needs of an application.

2.1. LITERALS AND TYPES 21

also use single quotes to enter a string literal. In line 18 Python echoes this back and again uses

single quotes.

The type of various things, including literals, can be determined using the type() function.5

In finished programs it is rare that one needs to use this function, but it can be useful for debugging

and helping to understand code. Listing 2.2 illustrates what happens when various literals are

passed as an argument to type().

Listing 2.2 Using the type() function to determine the type of various literals.

1 >>> type(42)

2 <class ’int’>

3 >>> type(-27.345e14)

4 <class ’float’>

5 >>> type("Hello World!")

6 <class ’str’>

7 >>> type("A") # Single character, double quotes.

8 <class ’str’>

9 >>> # Single character, single quotes; looks like int but isn’t!

10 >>> type(’2’)

11 <class ’str’>

12 >>> type("") # Empty string.

13 <class ’str’>

14 >>> type(’-27.345e14’) # Looks like float but isn’t!

15 <class ’str’>

In line 1 the programmer asks for the type of the literal 42. Line 2 reports that it is an int. The

response is a little more involved than simply saying this is an int—the word class indicates

that 42 is actually an instance of the int class. The notion of an “instance of a class” relates

to object oriented programming concepts and is something that doesn’t concern us yet. Suffice it

simply to say that “42 is an int.”

In line 3 a float is passed as an argument to type() while in line 5 the argument is a string.

Line 6 shows that Python identifies a string as a str. We will take string to be synonymous with

str and integer to be synonymous with int. (For floats we will simply write float.)

Lines 7 through 11 show that a single character, regardless of the type of quotation marks that

enclose it, is considered a string.6 Lines 12 and 13 show the type of an empty string: there are no

characters enclosed between the quotation marks in line 12 and yet this is still considered a string.

An empty string may seem a rather useless literal, but we will see later that it plays a useful role in

certain applications.

Lines 10 and 14 of Listing 2.2 are of interest in that, to a human, the characters in the string

represent a numeric value; nevertheless, the literal is, in fact, a string. Keep in mind that just

because something might appear to be a numeric value doesn’t mean it is. To hint at how this may

lead to some confusion, consider the code in Listing 2.3. In line 1 the print() function has two

5Instead of saying “various things,” it would be more correct to say the objects in our code. We discuss what

objects are in Chap. 5.
6This is not the case in some other languages such as C and C++.

22 CHAPTER 2. CORE BASICS

arguments: an int and a str. However, in line 2 the output produced for each of these arguments

is identical.

Listing 2.3 Printing numeric values and strings that look like numeric values.

1 >>> print(42, "42") # An int and a str that looks like an int.

2 42 42

3 >>> print(’3.14’) # A str that looks like a float.

4 3.14

5 >>> print(3.14) # A float.

6 3.14

In line 3 a str is printed while in line 5 a float is printed. The output of these two statements is

identical. But, there are things that we can do with numeric values that we cannot do with strings

and, conversely, there are things we can do with strings that we cannot do with numeric values.

Thus, we need to be somewhat mindful of type. When bugs are encountered, often the best tool

for debugging is the print() function. However, as the code in Listing 2.3 demonstrates, if we

ever encounter problems related to type, the print() function, by itself, might not be the best

tool for sorting out the problem since it may display data of different types identically.

2.2 Expressions, Arithmetic Operators, and Precedence

An expression is code that returns data, or, said another way, evaluates to a value.7 In Python, it

is more correct to say that an expression returns an object instead of a value or data, but we will

ignore this distinction for now (and return to it later). The literal values considered in Sec. 2.1 are

the simplest form of an expression. When we write a literal, we are providing (fixed) data. We

can also have expressions that evaluate to a new value. For example, we can add two numbers that

may be entered as literals. The result of this expression is the new value given by the sum of the

numbers. When an expression is entered in an interactive environment, Python will display the

result of the expression, i.e., the value to which the expression evaluates.

Python provides the standard arithmetic operations of addition, subtraction, multiplication, and

division which are invoked via the operators +, -, *, and /, respectively. The numbers to either

side of these operators are known as the operands. Listing 2.4 demonstrates the use of these

operators.

Listing 2.4 Demonstration of the basic arithmetic operators.

1 >>> 4 - 5 # Difference of two ints.

2 -1

3 >>> 5 + 4 # Sum of two ints.

4 9

5 >>> 5 + 4. # Sum of int and float.

7Rather than adhering to traditional usage where the noun data is only plural (with a singular form of datum), we

will adopt modern usage where data can be either singular or plural.

2.2. EXPRESSIONS, ARITHMETIC OPERATORS, AND PRECEDENCE 23

6 9.0

7 >>> 5 + 4 * 3 # * has higher precedence than +.

8 17

9 >>> (5 + 4) * 3 # Parentheses can change order of operations.

10 27

11 >>> 5 / 4 # float division of two ints.

12 1.25

13 >>> 10 / 2 # float division of two ints.

14 5.0

15 >>> 20 / 4 / 2 # Expressions evaluated left to right.

16 2.5

17 >>> (20 / 4) / 2 # Parentheses do not change order of operation here.

18 2.5

19 >>> 20 / (4 / 2) # Parentheses do change order of operation here.

20 10.0

Lines 1 through 4 show that the sum or difference of two ints is an int. Lines 5 and 6 show that

the sum of an int and a float yields a float (as indicated by the decimal point in the result in

line 6).8 When an arithmetic operation involves an int and a float, Python has to choose a data

type for the result. Regardless of whether or not the fractional part of the result is zero, the result

is a float. Specifically, the int operand is converted to a float, the operation is performed,

and the result is a float.

The expression in line 7 uses both addition and multiplication. We might wonder if the addition

is done first, since it appears first in the expression, or if the multiplication is done first since in

mathematics multiplication has higher precedence than addition. The answer is, as indicated by

the result on line 8, that Python follows the usual mathematical rules of precedence: Addition

and subtraction have lower precedence than multiplication and division. Thus, the expression 5

+ 3 * 4 is equivalent to 5 + (3 * 4) where operations in parentheses always have highest

precedence. Line 9 shows that we can use parentheses to change the order of operation.

Lines 11 and 13 show the “float division” of two ints. In line 11 the numerator and

denominator are such that the quotient has a non-zero fractional part and thus we might anticipate

obtaining a float result. However, in line 13, the denominator divides evenly into the numerator

so that the quotient has a fractional part of zero. Despite this fact, the result is a float. This is

a consequence of the fact that we are using a single slash (/) to perform the division. Python also

provide another type of division, floor division, which is discussed in Sec. 2.8.

In line 15 there are two successive divisions: 20 / 4 / 2. Here the operations are evaluated

left to right. First 20 is divided by 4 and then the result of that is divided by 2, ultimately yielding

2.5. If we are ever unsure of the order of operation (or if we merely think it will enhance the

clarity of an expression), we can always add parentheses as line 17 illustrates. Lines 15 and 17 are

completely equivalent and the parentheses in line 17 are merely “decorative.”

The operators in Listing 2.4 are binary operators meaning that they take two operands—one

operand is to the left of the operator and the other is to the right. However, plus and minus signs

can also be used as unary operators where they take a single operand. This was illustrated in lines

8Note that the blank spaces that appear in these expressions are merely used for clarity. Thus 5 + 4 is equivalent

to 5+4.

24 CHAPTER 2. CORE BASICS

5 and 7 of Listing 2.1 where the plus and minus signs are used to establish the sign of the numeric

value to their right. Thus, in those two expressions, the unary operators have a single operand

which is the number to their right.

Finally, keep in mind that in the interactive environment, if an expression is the only thing on a

line, the value to which that expression evaluates is shown to the programmer upon hitting return.

As was discussed in connection with Listing 1.9, this is not true if the same expression appears in

a file. In that case, in order to see the value to which the expression evaluates, the programmer has

to use a print() statement to explicitly generate output.

2.3 Statements and the Assignment Operator

A statement is a complete command (which may or may not produce data). We have already been

using print() statements. print() statements produce output but they do not produce data.

At this point this may be a confusing distinction, but we will return to it shortly.

In the previous section we discussed the arithmetic operators that you probably first encoun-

tered very early in your education (i.e., addition, subtraction, etc.). What you learned previously

about these operators still pertains to how these operators behave in Python. Shortly after be-

ing introduced to addition and subtraction, you were probably introduced to the equal sign (=).

Unfortunately, the equal sign in Python does not mean the same thing as in math!

In Python (and in many other computer languages), the equal sign is the assignment operator.

This is a binary operator. When we write the equal sign we are telling Python: “Evaluate the

operand/expression on the right side of the equal sign and assign that to the operand on the left.”

The left operand must be something to which we can assign a value. Sometimes this is called an

“lvalue” (pronounced ell-value). In Python we often call this left operand an identifier or a name. In

many other computer languages (and in Python) a more familiar name for the left operand is simply

variable.9 You should be familiar with the notion of variables from your math classes. A variable

provides a name for a value. The term variable can also imply that something is changing, but this

isn’t necessarily the case in programs—a programmer may define a variable that is associated with

a value that doesn’t change throughout a program.

In a math class you might see the following statements: x = 7 and y = x. In math, how is x
related to y if x changes to, say, 9? Since we are told that y is equal to x, we would say that y must

also be equal to 9. In general, this is not how things behave in computer languages!

In Python we can write statements that appear to be identical to what we would write in a

math class, but they are not the same. Listing 2.5 illustrates this. (For brevity, we will use single-

character variable names here. The rules governing the choice of variable names are discussed in

Sec. 2.6.)

Listing 2.5 Demonstration of the assignment operator.

1 >>> x = 7 # Assign 7 to variable x.

2 >>> y = x # Assign current value of x to y.

3 >>> print("x =", x, ", y =", y) # See what x and y are.

9In Sec. 2.7 we present more details about what we mean by an identifier or a name in Python. We further consider

the distinction between an lvalue and a variable in Sec. 6.6.

2.3. STATEMENTS AND THE ASSIGNMENT OPERATOR 25

4 x = 7 , y = 7

5 >>> x = 9 # Assign new value to x.

6 >>> print("x =", x, ", y =", y) # See what x and y are now.

7 x = 9 , y = 7

In line 1 we assign the value 7 to the variable x. In line 2, we do not equate x and y. Instead, in line

2, we tell Python to evaluate the expression to the right of the assignment operator. In this case,

Python merely gets the current value of x, which is 7, and then it assigns this value to the variable

on the left, which is the variable y. Line 3 shows that, in addition to literals, the print() function

also accepts variables as arguments. The output on line 4 shows us that both x and y have a value

of 7. However, although these values are equal, they are distinct. The details of what Python does

with computer memory isn’t important for us at the moment, but it helps to imagine that Python

has a small amount of computer memory where it stores the value associated with the variable x

and in a different portion of memory it stores the value associated with the variable y.

In line 5 the value of x is changed to 9, i.e., we have used the assignment operator to assign

a new value to x. Then, in line 6, we again print the values of x and y. Here we see that y does

not change! So, again, the statement in line 2 does not establish that x and y are equal. Rather, it

assigns the current value of x to the variable y. A subsequent change to x or y does not affect the

other variable.

Let us consider one other common idiom in computer languages which illustrates that the as-

signment operator is different from mathematical equality. In many applications we want to change

the value of a variable from its current value but the change incorporates information about the cur-

rent value. Perhaps the most common instance of this is incrementing or decrementing a variable

by 1 (we might do this with a variable we are using as a counter). The code in Listing 2.6 demon-

strates how one would typically increment a variable by 1. Note that in the interactive environment,

if we enter a variable on a line and simply hit return, the value of the variable is echoed back to us.

(Python evaluates the expression on a line and shows us the resulting value. When they appear to

the right of the assignment operator, variables simply evaluate to their associated value.)

Listing 2.6 Demonstration of incrementing a variable.

1 >>> x = 10 # Assign a value to x.

2 >>> x # Check the value of x.

3 10

4 >>> x = x + 1 # Increment x.

5 >>> x # Check that x was incremented.

6 11

Line 4 of Listing 2.6 makes no sense mathematically: there is no value of x that satisfies the ex-

pression if we interpret the equal sign as establishing equality of the left and right sides. However,

line 4 makes perfect sense in a computer language. Here we are telling Python to evaluate the

expression on the right. Since x is initially 10, the right hand side evaluates to 11. This value is

then assigned back to x—this becomes the new value associated with x. Lines 5 and 6 show us

that x was successfully incremented.

26 CHAPTER 2. CORE BASICS

In some computer languages, when a variable is created, its type is fixed for the duration of the

variable’s life. In Python, however, a variable’s type is determined by the type of the value that has

been most recently assigned to the variable. The code in Listing 2.7 illustrates this behavior.

Listing 2.7 A variable’s type is determined by the value that is last assigned to the variable.

1 >>> x = 7 * 3 * 2

2 >>> y = "is the answer to the ultimate question of life"

3 >>> print(x, y) # Check what x and y are.

4 42 is the answer to the ultimate question of life

5 >>> x, y # Quicker way to check x and y.

6 (42, ’is the answer to the ultimate question of life’)

7 >>> type(x), type(y) # Check types of x and y.

8 (<class ’int’>, <class ’str’>)

9 >>> # Set x and y to new values.

10 >>> x = x + 3.14159

11 >>> y = 1232121321312312312312 * 9873423789237438297

12 >>> print(x, y) # Check what x and y are.

13 45.14159 12165255965071649871208683630735493412664

14 >>> type(x), type(y) # Check types of x and y.

15 (<class ’float’>, <class ’int’>)

The first two lines of Listing 2.7 set variables x and y to an integer and a string, respectively. We

can see this implicitly from the output of the print() statement in line 3 (but keep in mind that

just because the output from a print() statement appears to be a numeric quantity doesn’t mean

the value associated with that output necessarily has a numeric type).

The expression in line 5 is something new. This shows that if we separate multiple variables

(or expressions) with commas on a line and hit return, the interactive environment will show us

the values of these variables (or expressions). This output is slightly different from the output

produced by a print() statement in that the values are enclosed in parentheses and strings are

shown enclosed in quotes.10 When working with the interactive environment, you may want to

keep this in mind for when you want to quickly check the values of variables (and, as we shall see,

other things).

In line 7 of Listing 2.7 we use the type() function to explicitly show the types of x and y. In

lines 10 and 11 we set x and y to a float and an int, respectively. Note that in Python an int

can have an arbitrary number of digits, limited only by the memory of your computer.

Finally, before concluding this section, we want to mention that we will describe the relation-

ship between a variable and its associated value in various ways. We may say that a variable points

to a value, or a variable has a value, or a variable is equal to a value, or simply a variable is a value.

As examples, we might say “x points to 7” or “x has a value of 7” or “x is 7”. We consider all

these statements to be equivalent and discuss this further in Sec. 2.7.

10The output produced here is actually a collection of data known as a tuple. We will discuss tuples in Sec. 6.6.

2.4. CASCADED AND SIMULTANEOUS ASSIGNMENT 27

2.4 Cascaded and Simultaneous Assignment

There are a couple of variations on the use of the assignment operator that are worth noting. First,

it is possible to assign the same value to multiple variables using cascaded assignments. Listing

2.8 provides an example. In line 1 the expression on the right side is evaluated. The value of

this expression, 11, is assigned to x, then to y, and then to z. We can cascade any number

of assignments but, other than the operand on the extreme right, all the other operands must be

lvalues/variables. However, keep in mind that, as discussed in Sec. 2.3, even though x, y, and z

are set to the same value, we can subsequently change the value of any one of these variables, and

it will not affect the values of the others.

Listing 2.8 An example of cascading assignment in which the variables x, y, and z are set to the

same value with a single statement.

1 >>> z = y = x = 2 + 7 + 2

2 >>> x, y, z

3 (11, 11, 11)

A cascading assignment is a construct that exists in many other computer languages. It is

a useful shorthand (allowing one to collapse multiple statements into one), but typically doesn’t

change the way we think about implementing an algorithm. Cascaded assignments can make the

code somewhat harder to read and thus should be used sparingly.

Python provides another type of assignment, known as simultaneous assignment, that is not

common in other languages. Unlike cascaded assignments, the ability to do simultaneous assign-

ment can change the way we implement an algorithm. With simultaneous assignment we have

multiple expressions to the right of the assignment operator (equal sign) and multiple lvalues (vari-

ables) to the left of the assignment operator. The expressions and lvalues are separated by commas.

For simultaneous assignment to succeed, there must be as many lvalues to the left as there are

comma-separated expressions to the right.11

Listing 2.9 provides an example in which initially the variable c points to a string that is

considered the “current” password and the variable o points to a string that is assumed to be

the “old” password. The programmer wants to exchange the current and old passwords. This is

accomplished using simultaneous assignment in line 5.

Listing 2.9 An example of simultaneous assignment where the values of two variables are ex-

changed with the single statement in line 5.

1 >>> c = "deepSecret" # Set current password.

2 >>> o = "you’ll never guess" # Set old password.

3 >>> c, o # See what passwords are.

4 (’deepSecret’, "you’ll never guess")

5 >>> c, o = o, c # Exchange the passwords.

11It is also possible to have a single lvalue to the left of the assignment operator and multiple expressions to the

right. This, however, is not strictly simultaneous assignment. Rather, it is a regular assignment where a single tuple,

which contains the multiple values, is assigned to the variable. We will return to this in Chap. 6.

28 CHAPTER 2. CORE BASICS

6 >>> c, o # See what passwords are now.

7 ("you’ll never guess", ’deepSecret’)

The output generated by the statement in line 6 shows that the values of the current and old pass-

words have been swapped. There is something else in this code that is worth noting. The string

in line 2 includes a single quote. This is acceptable provided the entire string is surrounded by

something other than a single quote (e.g., double quotes or another quoting option considered

later).

To accomplish a similar swap in a language without simultaneous assignment, we have to in-

troduce a “temporary variable” to hold one of the values while we overwrite one of the variables.

Listing 2.10 demonstrates how this swap is accomplished without the use of simultaneous assign-

ment.

Listing 2.10 Demonstration of the swapping of two variables without simultaneous assignment.

A temporary variable (here called t) must be used.

1 >>> c = "deepSecret" # Set current password.

2 >>> o = "you’ll never guess" # Set old password.

3 >>> c, o # See what passwords are.

4 (’deepSecret’, "you’ll never guess")

5 >>> t = c # Assign current to temporary variable.

6 >>> c = o # Assign old to current.

7 >>> o = t # Assign temporary to old.

8 >>> c, o # See what passwords are now.

9 ("you’ll never guess", ’deepSecret’)

Clearly the ability to do simultaneous assignment simplifies the swapping of variables and,

as we will see, there are many other situations where simultaneous assignment proves useful.

But, one should be careful not to overuse simultaneous assignment. For example, one could use

simultaneous assignment to set the values of x and y as shown in line 1 of Listing 2.11. Although

this is valid code, it is difficult to read and it would be far better to write two separate assignment

statements as is done in lines 6 and 7.

Listing 2.11 Code that uses simultaneous assignment to set the value of two variables. Although

this is valid code, there is no algorithmic reason to implement things this way. The assignment in

line 1 should be broken into two separate assignment statements as is done in lines 6 and 7.

1 >>> # A bad use of simultaneous assignment.

2 >>> x, y = (45 + 34) / (21 - 4), 56 * 57 * 58 * 59

3 >>> x, y

4 (4.647058823529412, 10923024)

5 >>> # A better way to set the values of x and y.

6 >>> x = (45 + 34) / (21 - 4)

7 >>> y = 56 * 57 * 58 * 59

8 >>> x, y

9 (4.647058823529412, 10923024)

2.5. MULTI-LINE STATEMENTS AND MULTI-LINE STRINGS 29

2.5 Multi-Line Statements and Multi-Line Strings

The end of a line usually indicates the end of a statement. However, statements can span multiple

lines if we escape the newline character at the end of the line or if we use enclosing punctuation

marks, such as parentheses, to span multiple lines. To escape a character is to change its usual

meaning. This is accomplished by putting a forward slash (\) in front of the character. The

usual meaning of a newline character is that a statement has ended.12 If we put the forward slash

at the end of the line, just before typing return on the keyboard, then we are saying the statement

continues on the next line. This is demonstrated in Listing 2.12 together with the use of parentheses

to construct multi-line statements.

Listing 2.12 Constructing multi-line statements by either escaping the newline character at the

end of the line (as is done in line 1) or by using parentheses (as is done in lines 3 and 5).

1 >>> x = 3 + \

2 ... 4

3 >>> y = (123213123123121212312 * 3242342423

4 ... + 2343242332 + 67867687678 - 2

5 ... + 6)

6 >>> x, y

7 (7, 399499136172418158920598441990)

Here we see, in lines 2, 4, and 5, that the prompt changes to triple dots when the interpreter is

expecting more input.

The converse of having a statement span multiple lines is having multiple statements on a

single line. The ability to do this was mentioned in Sec. 1.3 and demonstrated in Listing 1.5. One

merely has to separate the statements with semicolons. However, for the sake of maximizing code

readability, it is best to avoid putting multiple statements on a line.

Often we want to construct multi-line strings. This can be done in various ways but the simplest

technique is to enclose the string in either a single or double quotation mark that is repeated three

times.13 This is illustrated in Listing 2.13.

Listing 2.13 Using triple quotation marks to construct multi-line strings.

1 >>> s = """This string

2 ... spans

3 ... multiple lines."""

4 >>> t = ’’’This

5 ... sentence

6 ... no

12Keep in mind that although we cannot see a newline character, there is a collection of bits at the end of a line that

tells the computer to start subsequent output on a new line.
13When using triple quotation marks, the string doesn’t have to span multiple lines, but since one can use a single

set of quotation marks for a single-line string, there is typically no reason to use triple quotation marks for a single-line

string.

30 CHAPTER 2. CORE BASICS

7 ... verb.’’’

8 >>> print(s)

9 This string

10 spans

11 multiple lines.

12 >>> print(t)

13 This

14 sentence

15 no

16 verb.

17 >>> s, t # Quick check of what s and t are.

18 (’This string\nspans\nmultiple lines.’, ’This\nsentence\nno\nverb.’)

In lines 1 through 3 and lines 4 through 7 we create multi-line strings and assign them to variables

s and t. The print() statements in lines 8 and 12 show us that s and t are indeed multi-line

strings. In line 17 we ask Python to show us the values of s and t. The output on line 18 appears

rather odd in that the strings do not span multiple lines. Instead, where a new line should start we

see \n. \n is Python’s way of indicating a newline character—the n is escaped so that it doesn’t

have its usual meaning. We will consider strings in much more detail in Chap. 9.14

2.6 Identifiers and Keywords

In addition to assigning names to values (or objects), there are other entities, such as functions and

classes, for which programmers must provide a name. These names are known as identifiers. The

rules that govern what is and isn’t a valid identifier are the same whether we are providing a name

for a function or variable or anything else. A valid identifier starts with a letter or an underscore

and then is followed by any number of letters, underscores, and digits. No other characters are

allowed. Identifiers are case sensitive so that, for example, ii, iI, Ii, and II, are all unique

names.

Examples of some valid and invalid identifiers are shown in Listing 2.14.

Listing 2.14 Some valid and invalid identifiers.

one2three Valid.

one 2 three Valid.

1 2 three Invalid. Cannot start with a digit.

one-2-three Invalid. Cannot have hyphens (minus signs).

n31 Valid.

n.31 Invalid. Cannot have periods.

trailing Valid.

leading Valid.

net worth Invalid. Cannot have blank spaces.

vArIaBlE Valid.

14If you were paying close attention to the output presented in Listing 1.12, you would have noticed \n in it.

2.6. IDENTIFIERS AND KEYWORDS 31

When choosing an identifier, it is best to try to provide a descriptive name that isn’t too long; for

example, area may be sufficiently descriptive while area of the circle may prove cum-

bersome. There are some identifiers that are valid but, for the sake of clarity, are best avoided.

Examples include l (lowercase “ell” which may look like one), O (uppercase “oh” which may

look like zero), and I (uppercase “eye” which may also look like one).

It is also good practice to use short variable names consistently. For example, s is often used

as a name for a string while ch is used for a string that consists of a single character (i.e., ch

connotes character). The variables i and j are often used to represent integers while x and y are

more likely to be used for floats.

In addition to the rules that govern identifiers, there are also keywords (sometimes called re-

served words) that have special meaning and cannot be used as an identifier. All the keywords in

Python 3 are listed in Listing 2.15.15 Keywords will appear in a bold blue Courier font.

Listing 2.15 The 33 keywords in Python 3.

False None True and as assert break

class continue def del elif else except

finally for from global if import in

is lambda nonlocal not or pass raise

return try while with yield

At this point we don’t know what these keywords represent. The important point, however, is that

apart from these words, any identifier that obeys the rules mentioned above is valid.

Perhaps we should take a moment to further consider this list of keywords and think about

them in the context of what we have learned so far. Thus far we have used two functions that

Python provides: print() and type(). Notice that neither print nor type appears in the

list of keywords. So, can we have a variable named print? The interactive interpreter provides

an excellent means to answer this question. Listing 2.16 shows what happens when a value is

assigned to the identifier print. The statement in line 1 assigns the integer 10 to print and we

see, in lines 2 and 3, that this assignment works! There is no error. Now we have to wonder: What

happened to the print() function? In line 4 an attempt is made to print Hello! The output

following line 4 shows this is not successful—we have lost our ability to print since Python now

thinks print is the integer 10!

Listing 2.16 Demonstration of what happens when we assign a value to a built-in Python function.

1 >>> print = 10 # Assign 10 to print.

2 >>> print # Check what print is. Assignment worked!

3 10

4 >>> print("Hello!") # Try to print something...

5 Traceback (most recent call last):

15You can produce this list from within Python by issuing these two commands: import keyword;

print(keyword.kwlist).

32 CHAPTER 2. CORE BASICS

6 File "<stdin>", line 1, in <module>

7 TypeError: ’int’ object is not callable

Variables spring into existence when we assign them a value. If an identifier had previously been

used, the old association is forgotten when a new value is assigned to it. In practice this is rarely

a problem. There are very few built-in Python functions that you would consider using as an

identifier. There is one possible exception to this that we will discuss in more detail in Chap. 6.16

For now, the use of leading underscores is discouraged as Python uses leading underscores for

some internal identifiers. Also identifiers with leading underscores are treated slightly differently

than other identifiers. However, underscores within an identifier, such as net worth, are quite

common and are encouraged.

Finally, there is one final identifier that is worth noting. In the interactive environment (and only

in the interactive environment), a single underscore (_) is equal to the value of the most recently

evaluated expression. Although we will not use this functionality in this book, it does prove useful

when using the interactive environment as a calculator. Listing 2.17 briefly illustrates this.

Listing 2.17 Using “_” to recall the value of previously evaluated expressions.

1 >>> 5 + 4 # Enter an expression.

2 9

3 >>> _ # See that _ is equal to value of last expression.

4 9

5 >>> _ + 27 # Use _ in new expression.

6 36

7 >>> print(_) # See that _ has been reset.

8 36

9 >>> _ - 15

10 21

11 >>> result = _ # Store value of _ to a variable.

12 >>> result

13 21

2.7 Names and Namespaces

Let us now delve deeper into what happens when a value is assigned to a variable. A variable has

a name, i.e., an identifier. The assignment serves to associate the value with the name. This value

really exists in the form of an object. (We aren’t concerned here with the details of objects,17 so we

16If you want to learn more now, there is a built-in function called list(). Lists are commonly used in Python

and it is tempting to use list as an identifier of your own. You can do this, but you will then lose easy access to the

built-in function list(). However, one further aside: If you ever mask one of the built-in functions by assigning

a value to the function’s identifier, you can recover the built-in function by deleting, using the del() function, your

version of the identifier. Returning to Listing 2.16 as an example, to recover the built-in print() function you would

issue the statement del(print). Note that del is a keyword and hence you cannot accidently assign it a new value.
17Objects are discussed in Chap. 5.

2.7. NAMES AND NAMESPACES 33

can simply think of an object as a “thing” that has a value and we are only interested in this value.

For example, although the integer 7 is really treated by Python as a particular kind of object, here

we consider this to be simply the integer 7.)

Within your computer’s memory, Python maintains what are known as namespaces. A name-

space is used to keep track of all the currently defined names (identifiers) as well as the objects

associated with these names. If, within an expression, you refer to a name that was not previously

defined, an exception will be raised (i.e., an error will occur). However, if a previously undefined

name is used on the left side of the assignment operator, then the name is created within the name-

space and it is associated with the value produced by the expression to the right of the assignment

operator.

The behavior of namespaces is illustrated in Fig. 2.1. The namespace is shown to the right

of the figure and the code that is assumed to be executed is shown to the left. In the figure, the

namespace is depicted as consisting of two parts: a list of names and a list of objects (where only

the values of the objects are shown). The namespace serves to map names to objects. In Fig. 2.1(a),

the statement x = 7 is executed. The name to the left side of the assignment operator, x, is placed

in the list of names and is associated with the value 7. This association is indicated by the curved

line. We can think of this as “x points to 7.” In Fig. 2.1(b), the statement x = 19 is executed.

(Here we are assuming this statement is executed in the same session in which the statement x =

7 was previously executed.) Since the name x already exists in the list of names, no new name is

created. Instead, an object with a value of 19 is created and x is associated with this new value.

You may ask: What happens to the value 7? The fate of that object is up to Python and not our

concern. In the figure, rather than removing the object from the list of objects, we show that it

persists but no name is associated with it (i.e., nothing points to it and hence it is shown in gray

rather than black).

Finally, in Fig. 2.1(c), the statement x = x / 2 is executed. Recall that in assignment state-

ments the expression to the right of the assignment operator is evaluated and then this value is

associated with the name to the left of the assignment operator. Here x appears in the expression

to the right of the assignment operator. This does not cause a problem since x has previously been

defined. When this expression is evaluated, the value associate with x is 19. The result of 19 /

2 is the float value 9.5, hence after this third statement is executed, x is associated with the

float 9.5.

As another example of the behavior of namespaces, consider Fig. 2.2 which involves two vari-

ables, x and y. Listing 2.2(a) is no different from Listing 2.1(a): the name x is assigned the value

7. Figure 2.1(b) depicts what happens when the statement y = x is executed. From your math

classes, it would be natural to think this statement would somehow associate y directly with x.

But, this is not the case. Instead, as always, the right hand side is evaluated and the resulting value

is associated with the name y. In this case, the right hand side simply evaluates to 7 and y is

associated with that. Since 7 is already in the list of objects, Python does not create a new object

but rather has y point to the same object as x.

Figure 2.1(c) depicts what happens when the statement x = 19 is executed. Python does not

change the value of an integer object, i.e., it will not change the value in memory from 7 to 19.

Instead, it creates a new object and associates x with it.

As a final example, Fig. 2.3 depicts the behavior of a namespace when code involving simul-

taneous assignment is executed. In Fig. 2.3(a), x and y are simultaneously assigned values: x

is assigned the integer 2 while y is assigned the string two. In Fig. 2.3(b), x is assigned a new

34 CHAPTER 2. CORE BASICS

Namespace
Names Objects

x = 7 x 7

x = 19 19

Namespace
Names Objects

x = 7 x 7

x = 19 19

x = x / 2 9.5

Namespace
Names Objects

x = 7 x 7

(a)

(c)

(b)

Figure 2.1: Depiction of a namespace which consists of names (i.e., identifiers or variables) and a

collection of objects (where only the value of the object is shown). (a) Contents of the namespace

after the statement x = 7 is executed. (b) Contents of the namespace after executing x = 19.

(c) Contents of the namespace after executing x = x / 2.

2.7. NAMES AND NAMESPACES 35

Namespace
Names Objects

x = 7 x 7

Namespace
Names Objects

x = 7 x 7

y = x y

Namespace
Names Objects

x = 7 x

19y = x y

x = 19

7

(a)

(c)

(b)

Figure 2.2: Depiction of another namespace (i.e., independent of the namespace shown in Fig.

2.1). (a) Contents of the namespace after the statement x = 7 is executed. (b) Contents of the

namespace after executing y = x. (c) Contents of the namespace after executing x = 19.

36 CHAPTER 2. CORE BASICS

Namespace
Names Objects

y, x = x + 1.0, “two”

x
2

y

2.0
“one”

1
“two”

Namespace
Names Objects

x, y = x - 1, “one”

x
2

y

“one”
1

“two”

Namespace
Names Objects

x, y = 2, “two” x
2

y
“two”

(a)

(c)

(b)

x, y = 2, “two”

x, y = 2, “two”

x, y = x - 1, “one”

Figure 2.3: Depiction of another namespace. The code that is executed involves simultaneous

assignment to the names x and y. (a) x and y are initialized to an integer and a string, respectively.

(b) x and y are assigned different integer and string values. (c) y is set to a float (based on the

current value of x and x is assigned a string.

integer value (that is obtained by decrementing its initial value by one) and y is assigned the string

one. In Fig. 2.3(c), y is assigned the float 2.0 (which is obtained by adding 1.0 to the current

value of x) and x is assigned the string two. Since the float 2.0 is distinct from the integer 2,

in Fig. 2.3(c) the value 2.0 is added to the list of objects.

Again we note that, as Figs. 2.1–2.3 illustrate, in Python a name can, at different points in a

program, be associated with values of different type. Thus, a given name may be associated with

an integer in one section of the code, with a float in a different section of the code, and a string

in yet another section. This “freedom” to easily associate names with different types of values is

not possible in many other computer languages. For example, in C a variable can typically only

be associated with values of a fixed type (the value itself can change, but its type cannot). This

ability in Python is generally a blessing but can be something of a curse. It allows the programmer

to express things in a few lines of code that might otherwise take many more. However, it can be

a source of bugs when the underlying type isn’t what the programmer assumes.

2.8. ADDITIONAL ARITHMETIC OPERATORS 37

2.8 Additional Arithmetic Operators

There are other arithmetic operators in Python that are somewhat less common than those discussed

in Sec. 2.2, but are nevertheless quite important in the implementation of many algorithms.

2.8.1 Exponentiation

Exponentiation is obtained with the operator **. The expression x ** y says to calculate xy.

This operator is unlike the other arithmetic operators in that it associates (or evaluates) right to

left. The expression x ** y ** z is equivalent to xy
z

= x(yz) and not (xy)z. If both operands

are ints, the result is an int. If either operand is a float, the result is a float. Listing 2.18

demonstrates the use of exponentiation.

Listing 2.18 Demonstration of the ** (exponentiation) operator.

1 >>> 2 ** 3

2 8

3 >>> 2 ** 3 ** 4 # Operator is right associative.

4 2417851639229258349412352

5 >>> 3 ** 4

6 81

7 >>> (2 ** 3) ** 4 # Use parentheses to change order of operation.

8 4096

9 >>> 3 ** 400 # A big number. Exact value as an int.

10 70550791086553325712464271575934796216507949612787315762871223209262085

11 55158293415657929852944713415815495233482535591186692979307182456669414

12 5084454535257027960285323760313192443283334088001

13 >>> 3.0 ** 400 # A big number. Approximate value as a float.

14 7.055079108655333e+190

In line 1 we calculate 23 and in line 3 we calculate 23
4

= 281. In line 9 3400 is calculated using

integers. The result shown on the next three lines is the exact result; this number is actually

returned as one continuous number (i.e., without explicit line breaks) but here the number has been

split into three lines for the sake of readability. Lines 13 and 14 show what happens when one

of the arguments is a float. The result in line 14 is an approximation to the exact answer. The

float result has about 16 digits of precision whereas the exact result has 191 digits.

2.8.2 Floor Division

Recall from Sec. 2.2 that float division is represented by the operator /. (If one simply says

“division,” float division is implied.) Python provides another type of division which is known

as floor division. Many computer languages provide two types of division and Python’s floor

division is similar to what is known as integer division in most other languages. In most other

languages, both integer and float division share the same symbol, i.e., /. The type of division

that is done depends on the types of the two operands involved. This can be confusing and often

38 CHAPTER 2. CORE BASICS

leads to bugs! Python is different in that the operator / always represents float division while //

is always used for floor division. In floor division the quotient is a whole number. Specifically, the

result is the greatest whole number that does not exceed the value that would be obtained with float

division. For example, if the value obtained from float division was 3.2, the result from floor

division would be either the integer 3 or the float 3.0 since three is the largest whole number

that doesn’t exceed 3.2. The result is an int if both operands are integers but is a float if either

or both operands are floats. As another example, if the value obtained from float division

was -3.2, the result from floor division would be either the integer -4 or the float -4.0 since

negative four is the largest whole number that doesn’t exceed -3.2.

Floor division may not seem to be a useful tool in that it discards information (the fractional

part). However, in many problems it only makes sense to talk about whole units of a quantity.

Thus, discarding the fractional part is appropriate. For example, what if we want to know how

many complete minutes there are in 257 seconds or how many quarters there are in 143 pennies?

The first six lines of Listing 2.19 illustrate how floor division answers these questions.

Listing 2.19 Demonstration of floor division.

1 >>> time = 257 # Time in seconds.

2 >>> minutes = time // 60 # Number of complete minutes in time.

3 >>> print("There are", minutes, "complete minutes in", time, "seconds.")

4 There are 4 complete minutes in 257 seconds.

5 >>> 143 // 25

6 5

7 >>> 143.4 // 25

8 5.0

9 >>> 9 // 2.5

10 3.0

Lines 7 through 10 show that floats can be used with floor division. The result is a float but

with a fractional part of zero (i.e., a whole number represented as a float).

Floor division has the same precedence as multiplication and float division.

2.8.3 Modulo and divmod()

Another arithmetic operator that you may not have encountered before is the modulo, or sometimes

called remainder, operator. In some sense, modulo is the complement of floor division. It tells us

what remains after the left operand is divided by the right operand an integer number of times.

The symbol for modulo is %. An expression such as 17 % 5 is read as seventeen mod five (this

expression evaluates to 2 since 5 goes into 17 three times with a remainder of 2). Although

modulo may be new to you, it is extremely useful in a wide range of algorithms. To give a hint of

this, assume we want to express 257 seconds in terms of minutes and seconds. From Listing 2.19

we already know how to obtain the number of minutes using floor division. How do we obtain the

number of seconds? If we have the number of minutes, we can calculate the remaining number of

seconds as line 3 of Listing 2.20 shows.

2.8. ADDITIONAL ARITHMETIC OPERATORS 39

Listing 2.20 Slightly cumbersome way to find the number of minutes and seconds in a given time

(which is assumed to be in seconds).

1 >>> time = 257 # Initialize total number of seconds.

2 >>> minutes = time // 60 # Calculate minutes.

3 >>> seconds = time - minutes * 60 # Calculate seconds.

4 >>> minutes, seconds # Show minutes and seconds.

5 (4, 17)

In Listing 2.20 we first calculate the minutes and then, using that result, calculate the number of

seconds. However, what if we just wanted the number of seconds? We can obtain that directly

using the modulo operator, i.e., we can replace the statement in line 3 with seconds = time

% 60.

Modulo has the same operator precedence as division and multiplication.

If we want to calculate both floor division and modulo with the same two operands, we can

use the function divmod(). This function returns the results of both floor division and modulo.

Thus,

divmod(x, y)

is equivalent to

x // y, x % y

We can use simultaneous assignment to assign the two results to two variables. Listing 2.21 demon-

strates this.

Listing 2.21 Using the divmod() function to calculate both floor division and modulo simulta-

neously.

1 >>> time = 257 # Initialize time.

2 >>> SEC_PER_MIN = 60 # Use a "named constant" for 60.

3 >>> divmod(time, SEC_PER_MIN) # See what divmod() returns.

4 (4, 17)

5 >>> # Use simulataneous assignment to obtain minutes and seconds.

6 >>> minutes, seconds = divmod(time, SEC_PER_MIN)

7 >>> # Attempt to display the minutes and seconds in "standard" form.

8 >>> print(minutes, ":", seconds)

9 4 : 17

10 >>> # Successful attempt to display time "standard" form.

11 >>> print(minutes, ":", seconds, sep="")

12 4:17

13 >>> # Obtain number of quarters and leftover change in 143 pennies.

14 >>> quarters, cents = divmod(143, 25)

15 >>> quarters, cents

16 (5, 18)

40 CHAPTER 2. CORE BASICS

In addition to illustrating the use of the divmod() function, there are two other items to note

in Listing 2.21. First, in Listings 2.19 and 2.20 the number 60 appears in multiple expressions.

We know that in this context 60 represents the number of seconds in a minute. But, the number

60 by itself has very little meaning (other than the whole number that comes after 59). 60 could

represent any number of things: the age of your grandmother, the number of degrees in a particular

angle, the weight in ounces of your favorite squirrel, etc. When a number appears in a program

without its meaning being fully specified, it is known as a “magic number.” There are a few

different definitions for magic numbers. The one relevant to this discussion is: “Unique values with

unexplained meaning or multiple occurrences which could (preferably) be replaced with named

constants.”18 In line 2 of Listing 2.21 we create a named constant, SEC PER MIN, as a substitute

for the number 60 in the subsequent code. This use of named constants can greatly enhance the

readability of a program. It is a common practice for a named constant identifier to use uppercase

letters.

The other item to note in Listing 2.21 pertains to the print() statements in lines 8 and 11. In

line 8 the print() statement has three arguments: the number of minutes, a string (corresponding

to a colon), and the number of seconds. When displaying a time, we often separate the number

of minutes and seconds with a colon, e.g., 4:17. However, the output on line 9 isn’t quite right.

There are extraneous spaces surrounding the colon. The print() statement on line 11 fixes this

by setting the optional parameter sep to an empty string. If you refer to the output shown in

Listing 1.12, you will see that, by default, sep, which is the separator that appears between the

values that are printed, has a value of one blank space. By setting sep to an empty string we get

the desired output shown in line 12.

As with floor division, if both operands are integers, modulo returns an integer. If either or both

operands are a float, the result is a float. This behavior holds true of the arguments of the

divmod() function as well: both arguments must be integers for the return values to be integers.

2.8.4 Augmented Assignment

As mentioned in Sec. 2.3, it is quite common to assign a new value to a variable that is based on

the old value of that variable, e.g., x = x + 1. In fact, this type of operation is so common

that many languages, including Python, provide arithmetic operators that serve as a shorthand

for this. These are known as augmented assignment operators. These operators use a compound

symbol consisting of one of the “usual” arithmetic operators together with the assignment operator.

For example, += is the addition augmented assignment operator. Other examples include -= and

*= (which are the subtraction augmented assignment operator and the multiplication augmented

assignment operator, respectively).

To help explain how these operators behave, let’s write a general augmented assignment oper-

ator as <op>= where <op> is a placeholder for one of the usual arithmetic operators such +, -, or

*. A general statement using an augmented assignment operator can be written as

<lvalue> <op>= <expression>

18http://en.wikipedia.org/wiki/Magic_number_(programming)

http://en.wikipedia.org/wiki/Magic_number_(programming)

2.8. ADDITIONAL ARITHMETIC OPERATORS 41

where <lvalue> is a variable (i.e., an lvalue), <op>= is an augmented assignment operator, and

<expression> is an expression. The following is a specific example that fits this general form

x += 1

Here x is the lvalue, += is the augmented assignment operator, and the literal 1 is the expression

(albeit a very simple one—literals are the simplest form of an expression). This statement is

completely equivalent to

x = x + 1

Now, returning to the general expression, an equivalent statement in non-augmented form is

<lvalue> = <current_value_of_lvalue> <op> (<expression>)

where <current value of lvalue> is, naturally, the value of the lvalue prior to the as-

signment. The parentheses have been added to <expression> to emphasize the fact that this

expression is completely evaluated before the operator associated with the augmented assignment

comes into play.

Let’s consider a couple of other examples. The following statement

y -= 2 * 7

is equivalent to

y = y - (2 * 7)

while

z *= 2 + 5

is equivalent to

z = z * (2 + 5)

Note that if we did not include the parentheses in this last statement, it would not be equivalent to

the previous one.

There are augmented assignment versions of all the arithmetic operators we have considered

so far. Augmented assignment is further illustrated in the code in Listing 2.22.

Listing 2.22 Demonstration of the use of augmented assignment operators.

1 >>> x = 22 # Initialize x to 22.

2 >>> x += 7 # Equivalent to: x = x + 7

3 >>> x

4 29

5 >>> x -= 2 * 7 # Equivalent to: x = x - (2 * 7)

6 >>> x

7 15

8 >>> x //= 5 # Equivalent to: x = x // 5

9 >>> x

42 CHAPTER 2. CORE BASICS

10 3

11 >>> x *= 100 + 20 + 9 // 3 # Equivalent to: x = x * (100 + 20 + 9 // 3)

12 >>> x

13 369

14 >>> x /= 9 # Equivalent to: x = x / 9

15 >>> x

16 41.0

2.9 Chapter Summary

Literals are data that are entered directly into the

code.

Data has type, for example, int (integer),

float (real number with finite precision), and

str (string, a collection of characters).

type() returns the type of its argument.

A literal float has a decimal point or con-

tains the power-of-ten exponent indicator e,

e.g., 1.1e2, 11e1, and 110.0 are equivalent

floats.

A literal int does not contain a decimal point

(nor the power-of-ten exponent indicator e).

A literal str is enclosed in either a matching

pair of double or single quotes. Quotation marks

can be repeated three times at the beginning and

end of a string, in which case the string can span

multiple lines.

\n is used in a string to indicate the newline

character.

Characters in a string may be escaped by pre-

ceding the character with a backslash. This

causes the character to have a different mean-

ing than usual, e.g., a backslash can be placed

before a quotation mark in a string to prevent

it from indicating the termination of the string;

the quotation mark is then treated as part of the

string.

An expression produces data. The simplest ex-

pression is a literal.

There are numerous arithmetic operators. Bi-

nary operators (which require two operands) in-

clude:

+, - ⇔ addition and subtraction

/, // ⇔ float and floor division

% ⇔ modulo (or remainder)

* ⇔ multiplication

** ⇔ exponentiation

float division (/) yields a float regard-

less of the types of the operands. For all other

arithmetic operators, only when both operands

are integers does the operation yield an integer.

Said another way, when either or both operands

are floats, the arithmetic operation yields a

float.

Floor division (//) yields a whole number

(which may be either an int or a float, de-

pending on the operands). The result is the

largest whole number that does not exceed the

value that would be obtained with float divi-

sion.

Modulo (%) yields the remainder (which may

be either an int or a float, depending on

the operands) after floor division has been per-

formed.

2.10. REVIEW QUESTIONS 43

divmod(a, b): equivalent to ⇒ a // b,

a % b.

Evaluation of expressions containing multiple

operations follows the rules of precedence to de-

termine the order of operation. Exponentiation

has highest precedence; multiplication, integer

and float division, and modulo have equal

precedence which is below that of exponentia-

tion; addition and subtraction have equal prece-

dence which is below that of multiplication, di-

vision, and modulo.

Operations of equal precedence are evaluated

left to right except for exponentiation operations

which are evaluated right to left.

The negative sign (-) and positive sign (+) can

be used as unary operators, e.g., -x changes the

sign of x. The expression +x is valid but has no

effect on the value of x.

Parentheses can be used to change the order or

precedence.

Statements are complete commands.

The equal sign = is the assignment operator.

The value of the expression on the right side of

the equal sign is assigned to the lvalue on the

left side of the equal sign.

An lvalue is a general name for something that

can appear to the left side of the assignment op-

erator. It is typically a variable that must be a

valid identifier.

A variable can also be thought of as a name

within a namespace. A namespace maps names

to their corresponding values (or objects).

Valid identifiers start with a letter or underscore

followed by any number of letters, digits, and

underscores.

There are 33 keywords that cannot be used as

identifiers.

Augmented operators can be used as shorthand

for assignment statements in which an identi-

fier appears in an arithmetic operation on the left

side of the equal sign and on the the right side

of the assignment operator. For example, x +=

1 is equivalent to x = x + 1.

Simultaneous assignment occurs when multi-

ple comma-separated expressions appear to the

right side of an equal sign and an equal number

of comma-separated lvalues appear to the left

side of the equal sign.

A statement can span multiple lines if it is en-

closed in parentheses or if the newline character

at the end of each line of the statement (other

than the last) is escaped using a backslash.

Multiple statements can appear on one line if

they are separated by semicolons.

A magic number is a numeric literal whose un-

derlying meaning is difficult to understand from

the code itself. Named constants should be used

in the place of magic numbers.

2.10 Review Questions

1. What does Python print as a result of this statement:

print(7 + 23)

(a) 7 + 23

(b) 7 + 23 = 30

44 CHAPTER 2. CORE BASICS

(c) 30

(d) This produces an error.

2. Which of the following are valid variable names?

(a) _1_2_3_

(b) ms.NET

(c) WoW

(d) green-day

(e) big!fish

(f) 500_days_of_summer

3. Which of the following are valid identifiers?

(a) a1b2c

(b) 1a2b3

(c) a_b_c

(d) _a_b_

(e) a-b-c

(f) -a-b-

(g) aBcDe

(h) a.b.c

4. Suppose the variable x has the value 5 and y has the value 10. After executing these state-

ments:

x = y

y = x

what will the values of x and y be, respectively?

(a) 5 and 10

(b) 10 and 5

(c) 10 and 10

(d) 5 and 5

5. True or False: “x ** 2” yields the identical result that is produced by “x * x” for all

integer and float values of x.

6. True or False: “x ** 2.0” yields the identical result that is produced by “x * x” for all

integer and float values of x.

7. What does Python print as a result of this statement?

2.10. REVIEW QUESTIONS 45

print(5 + 6 % 7)

(a) This produces an error.

(b) 5 + 6 % 7

(c) 11

(d) 4

8. What is the output from the print() statement in the following code?

x = 3 % 4 + 1

y = 4 % 3 + 1

x, y = x, y

print(x, y)

(a) 2 4

(b) 4 2

(c) 0 3

(d) 3 0

9. What is the output produced by the following code?

x = 3

y = 4

print("x", "y", x + y)

(a) 3 4 7

(b) x y 7

(c) x y x + y

(d) 3 4 x + y

(e) x y 34

For each of the following, determine the value to which the expression evaluates. (Your answer

should distinguish between floats and ints by either the inclusion or exclusion of a decimal

point.)

10. 5.5 - 11 / 2

11. 5.5 - 11 // 2

12. 10 % 7

46 CHAPTER 2. CORE BASICS

13. 7 % 10

14. 3 + 2 * 2

15. 16 / 4 / 2

16. 16 / 4 * 2

17. Given that the following Python statements are executed:

a = 2

b = a + 1 // 2

c = a + 1.0 // 2

d = (a + 1) // 2

e = (a + 1.0) // 2

f = a + 1 / 2

g = (a + 1) / 2

Determine the values to which the variables b through g are set.

18. What output is produced when the following code is executed?

hello = "yo"

world = "dude"

print(hello, world)

(a) hello, world

(b) yo dude

(c) "yo" "dude"

(d) yodude

(e) This produces an error.

19. The following code is executed. What is the output from the print() statement?

x = 15

y = x

x = 20

print(y)

(a) 15

(b) 20

(c) y

(d) x

(e) This produces an error.

2.10. REVIEW QUESTIONS 47

20. The following code is executed. What is the output from the print() statement?

result = "10" / 2

print(result)

(a) 5

(b) 5.0

(c) ’"10" / 2’

(d) This produces an error.

21. The following code is executed. What is the output from the print() statement?

x = 10

y = 20

a, b = x + 1, y + 2

print(a, b)

(a) 10 20

(b) 11 22

(c) ’a, b’

(d) ’x + 1, y + 2’

(e) This produces an error.

22. True or False: In general, “x / y * z” is equal to “x / (y * z)”.

23. True or False: In general, “x / y ** z” is equal to “x / (y ** z)”.

24. True or False: In general, “w + x * y + z” is equal to “(w + x) * (y + z)”.

25. True or False: In general, “w % x + y % z” is equal to “(w % x) + (y % z)”.

26. True or False: If both m and n are ints, then “m / n” and “m // n” both evaluate to

ints.

27. True or False: The following three statements are all equivalent:

x = (3 +

4)

x = 3 + \

4

x = """3 +

4"""

48 CHAPTER 2. CORE BASICS

28. Given that the following Python statements are executed:

x = 3 % 4

y = 4 % 3

What are the values of x and y?

29. To what value is the variable z set by the following code?

z = 13 + 13 // 10

(a) 14.3

(b) 14.0

(c) 2

(d) 14

(e) 16

30. Assume the float variable ss represents a time in terms of seconds. What is an appropriate

statement to calculate the number of complete minutes in this time (and store the result as an

int in the variable mm)?

(a) mm = ss // 60

(b) mm = ss / 60

(c) mm = ss % 60

(d) mm = ss * 60

31. To what values does the following statement set the variables x and y?

x, y = divmod(13, 7)

(a) 6 and 1

(b) 1 and 6

(c) 6.0 and 2.0

(d) This produces an error.

ANSWERS: 1) c; 2) a and c are valid; 3) a, c, d, and g are valid; 4) c; 5) True; 6) False, if x is an

integer x * x yields an integer while x ** 2.0 yields a float; 7) c; 8) b; 9) b; 10) 0.0; 11)

0.5; 12) 3; 13) 7; 14) 7; 15) 2.0; 16) 8.0; 17) b = 2, c = 2.0, d = 1, e = 1.0, f =

2.5, g = 1.5; 18) b; 19) a; 20) d; 21) b; 22) False (the first expression is equivalent to “x * z

/ y”); 23) True; 24) False; 25) True; 26) False (“m / n” evaluates to a float); 27) False (the

first two are equivalent arithmetic expressions, but the third statement assigns a string to x); 28) 3

and 1; 29) d; 30) a; 31) b.

2.11. EXERCISES 49

2.11 Exercises

1. Write a small program that assigns an angle in degrees to a variable called degrees. The

program converts this angle to radians and assigns it to a variable called radians. To

convert from degrees to radians, use the formula radians = degrees × 3.14/180 (where we

are using 3.14 to approximate π). Print the angle in both degrees and radians.

The following demonstrates the program output when the angle is 150 degrees:

1 Degrees: 150

2 Radians: 2.616666666666667

2. Write a program that calculates the average score on an exam. Assume we have a small

class of only three students. Assign each student’s score to variables called student1,

student2, and student3 and then use these variables to find the average score. Assign

the average to a variable called average. Print the student scores and the average score.

The following demonstrates the program output when the students have been assigned scores

of 80.0, 90.0, and 66.5:

1 Student scores:

2 80.0

3 90.0

4 66.5

5 Average: 78.83333333333333

3. Imagine that you teach three classes. These classes have 32, 45, and 51 students. You want

to divide the students in these classes into groups with the same number of students in each

group but you recognize that there may be some “left over” students. Assume that you would

like there to be 5 groups in the first class (of 32 students), 7 groups in the second class (of

45 students), and 6 groups in the third class (of 51 students). Write a program that uses the

divmod() function to calculate the number of students in each group (where each group

has the same number of students). Print this number for each class and also print the number

of students that will be “leftover” (i.e., the number of students short of a full group). Use

simultaneous assignment to assign the number in each group and the “leftover” to variables.

The following demonstrates the program’s output:

1 Number of students in each group:

2 Class 1: 6

3 Class 2: 6

4 Class 3: 8

5 Number of students leftover:

6 Class 1: 2

7 Class 2: 3

8 Class 3: 3

50 CHAPTER 2. CORE BASICS

4. The Python statements below have several errors. Identify the errors and correct them so that

the program properly calculates the circumference of Jimmy’s pie (circumference = 2πr).

1 pi = ’3.14’

2 pie.diameter = 55.4

3 pie_radius = pie.diameter // 2

4 circumference = 2 * pi ** pie_radius

5 circumference-msg = ’Jimmy’s pie has a circumference: ’

6 print(circumference-msg, circumference)

The following demonstrates the output from the corrected program:

Jimmy’s pie has a circumference: 173.956

5. Write a program that calculates the wavelength of a wave traveling at a constant velocity

given the speed and the frequency. Use the formula λ = v/f , where λ (lambda) is wave-

length in meters, v is velocity in meters per second, and f is frequency in Hertz (cycles per

second). Print the velocity, frequency, and wavelength. Assign each of these values to a

variable and use the variables in your print() statements.

The following demonstrates what the program prints:

1 The speed (m/s): 343

2 The frequency (Hz): 256

3 The wavelngth (m): 1.33984375

	Core Basics
	Literals and Types
	Expressions, Arithmetic Operators, and Precedence
	Statements and the Assignment Operator
	Cascaded and Simultaneous Assignment
	Multi-Line Statements and Multi-Line Strings
	Identifiers and Keywords
	Names and Namespaces
	Additional Arithmetic Operators
	Exponentiation
	Floor Division
	Modulo and divmod()
	Augmented Assignment

	Chapter Summary
	Review Questions
	Exercises

