
Chapter 4

Functions

In this chapter we consider another important component of useful programs: functions. A pro-

grammer often needs to solve a problem or accomplish a desired task but may not be given a precise

specification of how the problem is to be solved. Determining the “how” and implementing the

solution is the job of the programmer. For all but the simplest programs, it is best to divide the task

into smaller tasks and associate these subtasks with functions.

Most programs consist of a number of functions.1 When the program is run, the functions are

called or invoked to perform their particular part of the overall solution. We have already used a few

of Python’s built-in functions (e.g., print() and input()), but most programming languages,

including Python, allow programmers to create their own functions.2

The ability to organize programs in terms of functions provides several advantages over using

a monolithic collection of statements, i.e., a single long list of statements:

• Even before writing any code, functions allow a hierarchical approach to thinking about and

solving the problem. As mentioned, one divides the overall problem or task into smaller

tasks. Naturally it is easier to think about the details involved in solving these subtasks than

it is to keep in mind all the details required to solve the entire problem. Said another way, the

ability to use functions allows us to adopt a divide and conquer approach to solve a problem.

• After determining the functions that are appropriate for a solution, these functions can be

implemented, tested, and debugged, individually. Working with individual functions is often

far simpler than trying to implement and debug monolithic code.

• Functions provide modularization (or compartmentalization). Suppose a programmer asso-

ciates a particular task with a particular function, but after implementing this function, the

programmer determines a better way to implement what this function does. The programmer

can rewrite (or replace) this function. It the programmer does not change the way data are

entered into the function nor the way data are returned by the function, the programmer can

replace this function without fear of affecting any other aspect of the overall program. (With

monolithic code, this is generally not the case.)

From the file: functions.tex
1The term function can mean many things. We will not attempt to completely nail down a meaning here. Instead, we

will introduce various aspects of what constitutes a function and hope the definition eventually becomes self-evident.
2What we are calling functions might be called subroutines or methods in other languages.
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• Functions facilitate code reuse. Often some of the smaller subtasks that go into solving

one particular problem are common to other problems. Once a function has been properly

implemented, it can be reused in any number of programs.

To further motivate the use of functions, consider the BMI calculation performed in Listing 3.9.

In this code the calculation is entered as an expression that is evaluated once. Surrounding code

provides the input and output (I/O). But what if one wants to calculate the BMI for several people?

Ideally one would not have to enter all the statements each time the calculation is performed. This

is a situation where functions are useful: these statements can be placed in a function and then the

function can be called (or invoked) whenever the calculation needs to be performed.

Broadly speaking, in Python, and in several other languages, functions are used in one of three

ways:

1. A function may be called for the value it returns. In some ways, functions like this are similar

to the mathematical functions with which you are familiar. Usually some values are passed

into the function as arguments (or, more formally, parameters). The function generates new

data based on these values and then returns this new data to the point in the program where

the function was called. A function that returns data is said to be a non-void function. (We

will soon see how a function returns data.)

2. A function may be called solely for its side effects. A side effect is an action the function

takes that does not produce a return value. For example, a function may be called to modify

the values in a list of data. As another example, a function may be called to generate some

output using one or more print() statements. It is important not to confuse output, such

as a print() statement produces, with the return value of a function. (We say more related

to this point below.) If the function does not explicitly return data, we will say it is a void

function.

3. A function may be called both for its side effects and its return value. Such a function is also

non-void (since it explicitly returns something), but the code that calls the function does not

necessarily use the value returned by the function. In some cases, when the side effect is the

only action of interest, the return value is ignored.

In the following we consider both void and non-void functions.3

4.1 Void Functions and None

Before turning to the creation of our own functions, let us further consider the print() function.

As we’ve seen, the print() function produces output, but it is, in fact, a void function. If a

function doesn’t explicitly return data and yet it is used in an expression, the function evaluates to

None (None is one of the keywords listed in Listing 2.15). None is, in some ways, Python’s way

of saying, “I’m nothing. I don’t exist.”

To illustrate how None can appear in code, consider Listing 4.1.

3In the strictest sense, all Python functions are non-void in that even the ones that do not explicitly return a value

will return None. This point is discussed in the following pages. Nevertheless, we will identify functions that only

return None as void functions.
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Listing 4.1 Demonstration that print() is a void function that returns None. This code also

demonstrates that None generally cannot be used in expressions.

1 >>> type(None) # Check None’s type.

2 <class ’NoneType’>

3 >>> None + 2 # Try to use None in an arithmetic operation.

4 Traceback (most recent call last):

5 File "<stdin>", line 1, in <module>

6 TypeError: unsupported operand type(s) for +: ’NoneType’ and ’int’

7 >>> # Assign return value of print() to x. Since print() is a void

8 >>> # function, x is set to None.

9 >>> x = print("Salutations!")

10 Salutations!

11 >>> type(x) # Check x’s type.

12 <class ’NoneType’>

13 >>> x # Nothing is echoed with entry of x.

14 >>> print(x) # print() shows us x is None.

15 None

16 >>> x * 2 # Cannot use x (None) in arithmetic expression.

17 Traceback (most recent call last):

18 File "<stdin>", line 1, in <module>

19 TypeError: unsupported operand type(s) for *: ’NoneType’ and ’int’

Line 1 uses type() to check the type of None. We see it is of type NoneType. Again, this

essentially says “I don’t exist.” As line 3 indicates, None cannot be used in an arithmetic operation.

In line 9 the assignment operator is used to assign whatever the print() function returns

to the variable x. However, although the print() produces output, it does not explicitly return

anything. Since print() is a void function, the statement in line 9 sets x to None. This fact is

demonstrated by checking x’s type as is done in line 11. In line 13, x is entered on a line by itself.

In the interactive environment, this usually results in the value of the variable being echoed to the

programmer. However, if the value of the variable is None, then no output is produced. If the

variable is printed using a print() statement, as is done in line 14, then the output is the word

None. Line 16 again illustrates that None (whether the literal or in the form of a variable) cannot

be used in an arithmetic operation.

It may not be obvious at the moment, but the values returned by functions will be extremely

important in much of what we will do later. Also, at some point in the future, you are likely to

encounter a bug that involves None showing up in your code. So, although you do not need to

have a deep understanding of None, you should have a feel for how it can appear in your code and

what it represents.

4.2 Creating Void Functions

To create a function, one uses the template shown in Listing 4.2 where the terms in angle brackets

are replaced with appropriate values as discussed below.
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Listing 4.2 Template for defining a function.

def <function_name>(<parameter_list>):

<body>

In this template the first line is known as the header. The first word of the header is the keyword

def which you should think of as define, i.e., we are defining a new function. This keyword

is followed by the function’s name which is any identifier that follows the rules given in Sec.

2.6. The parentheses following the function’s name are mandatory. They enclose a list of formal

parameters that are identifiers separated by commas (i.e., a list of variable names). The actual

values assigned to these parameters are established when the function is called; thus, expressions

enclosed in parentheses when the function is called are known as the actual parameters. We will

return to this point shortly. It should also be noted that a function is not required to have any

parameters. If a function has no parameters, the parentheses enclose nothing. The parentheses are

followed by a colon which signals the end of the header. The body of the function starts on the

second line and is given in indented code.4 The body can consist of any number of statements and

it continues until the code is no longer indented. Indentation of statements must be at the same

level. (In an integrated development environment such as IDLE, when one hits return, the proper

indentation will generally be provided for you. To terminate the definition of the function in an

interactive environment, you simply enter a blank line. When using IDLE to edit a file, you may

have to use the delete key to remove the indentation that is automatically entered at the start of a

line.)

The function can be terminated by a return statement, which ends execution of the function

and returns execution to the location where the function was called.5 If no return statement is

present, execution continues until the end of the body, at which point execution returns to the point

in the program where the function was called. (Thus, a return statement at the end of the body

does not affect the execution in any way, but it is often included in the function definition to signal

the end of the function.)

A function is not executed when it is defined. Rather, to execute (or call, or invoke) a func-

tion, one writes the function’s name followed by parentheses with the requisite number of (actual)

parameters.

Listing 4.3 provides a demonstration of the creation of two void functions. When a line ends

with a colon, the Python interpreter knows more input is needed. Thus, in line 3, the prompt

changes to indicate more input is expected. As you add lines of indented code, the interactive

prompt will continue to be three dots. In the interactive environment you must use a blank line to

terminate a function’s body.6

4More formally, the body is known as the suite and the header and suite together are considered a clause.
5In Python, as with most computer languages, statements are executed sequentially, one after the other. However,

when a program is run, in some sense the order in which statements are executed may not be the same as the order in

which the statements were written. Later we will consider statements which explicitly alter the flow of execution (e.g.,

if statements or for loops which can tell Python to skip or repeat statements, respectively). However, when there is

an expression in which a function is called, this effectively tells Python to not proceed further until the statements in

the body of that particular function have been executed.
6In the command-line interactive environment, “semi-blank” lines can be included in the body of a function. In this

case the indentation must be present, but the rest of the line is left blank. This can sometimes enhance the readability
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Listing 4.3 Demonstration of the creation of two functions that do not explicitly return anything

(hence they evaluate to None if used in an expression). Note that the function say hi() is used

in the body of the function greet user().

1 >>> # Create Hello-World function that takes no parameters.

2 >>> def say_hi():

3 ... print("Hello World!")

4 ...

5 >>> say_hi() # Check that function works properly.

6 Hello World!

7 >>> # Create function to greet a user.

8 >>> def greet_user(name):

9 ... say_hi()

10 ... print("Oh! And hello ", name, "!", sep="")

11 ... return

12 ...

13 >>> greet_user("Starbuck") # Provide string literal as argument.

14 Hello World!

15 Oh! And hello Starbuck!

16 >>> the_whale = "Moby Dick"

17 >>> greet_user(the_whale) # Provide string variable as argument.

18 Hello World!

19 Oh! And hello Moby Dick!

In lines 2 and 3 we define the function say hi() which takes no parameters. The body of this

function consists of a single print() statement. In line 5 this function is called to ensure that it

works properly. The output on line 6 shows that it does.

In lines 8 through 11 the function greet user() is defined. This function has a single pa-

rameter called name. The first line in the body of this function (line 9 in the overall listing) is a call

to the function say hi(). This is followed by a print() statement that has as one of its argu-

ments the name parameter. The third line of the body is a return statement. When this function

is called, the statements in the body are executed sequentially. Thus, first the say hi() function

is executed, then the print() statement is executed, then the return statement instructs the

interpreter to return to the point in the code where this function was called. Although it is not an

error to have statements in the body of the function after a return statement, such statements

would never be executed.

The order in which the say hi() and greet user() functions are defined is not important.

Either could have been defined first. However, it is important that every function is defined before

it is called. Thus, both the say hi() and greet user() functions must be defined before the

greet user() function is called. (If one defines the greet user() first and then called it

before the say hi() function was defined, an error would occur because the interpreter would

not know what to do with the call to say hi() that appears in the body of greet user().)

In line 13 the greet user() function is called with the string literal "Starbuck" as the

argument. This is the actual parameter for this particular invocation of the function. Whenever

of a multi-line function.
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a function is called, the parameters that are given are the actual parameters. Recall that when

the function was defined, the list of parameters in parentheses were the formal parameters, and

these consisted of identifiers (i.e., variable names). Before the body of the function is executed,

the actual parameters are assigned to the formal parameters. So, just before the body of the

greet user() function is executed, it is as if this statement were executed:

name = "Starbuck"

The output in lines 14 and 15 shows that the function works as intended.

In line 17 greet user() is called with a variable that has been defined in line 16. So, for

this particular invocation, before the body of the function executes, it is as if this statement had

been executed:

name = the_whale

Since the whale has been set to Moby Dick, we see this whale’s name in the subsequent

output in lines 18 and 19.

Now let’s return to the calculation of the BMI which was previously considered in Listing 3.9.

Listing 4.4 shows one way in which to implement a function that can calculate a person’s BMI.

Listing 4.4 Calculation of BMI using a void function. Here all input and output are handled within

the function bmi().

1 >>> def bmi(): # Define function.

2 ... weight = float(input("Enter weight [pounds]: "))

3 ... height = float(input("Enter height [inches]: "))

4 ... bmi = 703 * weight / (height * height)

5 ... print("Your body mass index is:", bmi)

6 ...

7 >>> bmi() # Invoke bmi() function.

8 Enter weight [pounds]: 160

9 Enter height [inches]: 72

10 Your body mass index is: 21.69753086419753

11 >>> bmi() # Invoke bmi() function again.

12 Enter weight [pounds]: 123

13 Enter height [inches]: 66

14 Your body mass index is: 19.8505509642

In lines 1 through 5 the function bmi() is defined. It takes no parameters and handles all of its

own input and output. This function is called in lines 7 and 11. Note the ease with which one can

now calculate a BMI.

4.3 Non-Void Functions

Non-void functions are functions that return something other than None. The template for creating

a non-void function is identical to the template given in Listing 4.2 for a void function. What
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distinguishes the two types of functions is how return statements that appear in the body of the

function are implemented. In the previous section we mentioned that a return statement can be

used to explicitly terminate the execution of a function. When the return statement appears by

itself, the function returns None, i.e., it behaves as a void function. However, to return some other

value from a function, one simply puts the value (or an expression that evaluates to the desired

value) following the keyword return.

Listing 4.5 demonstrates the creation and use of a non-void function. Here, as mentioned in

the comments in the first two lines, the function calculates a (baseball) batting average given the

number of hits and at-bats.

Listing 4.5 Demonstration of the creation of a non-void function.

1 >>> # Function to calculate a batting average given the number of

2 >>> # hits and at-bats.

3 >>> def batting_average(hits, at_bats):

4 ... return int(1000 * hits / at_bats)

5 ...

6 >>> batting_average(85, 410)

7 207

8 >>> # See what sort of help we get on this function. Not much...

9 >>> help(batting_average)

10 Help on function batting_average in module __main__:

11

12 batting_average(hits, at_bats)

Note that the return statement in line 4 constitutes the complete body of the function. In this

case the function returns the value of the expression immediately following the keyword return.

Lines 6 and 7 show what happens when the function is invoked with 85 hits and 410 at-bats. As

mentioned, before the body of the function is executed, the actual parameters are assigned to the

formal parameters. So, for the statement in line 6, before the body of batting average() is

executed, it is as if these two statements had been issued:

hits = 85

at_bats = 410

The expression following the keyword return in the body of the function evaluates to 207 for

this input (a batting average of “207” means if this ratio of hits to at-bats continues, one can an-

ticipate 207 hits out of 1,000 at-bats). Because the batting average() function was invoked

in the interactive environment and its return value was not assigned to a variable, the interactive

environment displays the return value (as given on line 7).

In line 9 the help() function is called with an argument of batting average (i.e., the

function’s name without any parentheses). The subsequent output in lines 10 through 12 isn’t

especially helpful although we are told the parameter names that were used in defining the function.

If these are sufficiently descriptive, this may be useful.

Listing 4.6 demonstrates the creation of a slightly more complicated non-void function. The

goal of this function is to determine the number of dollars, quarters, dimes, nickels, and pennies in
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a given “total” (where the total is assumed to be in pennies). Immediately following the function

header, a multi-line string literal appears that describes what the function does. This string isn’t

assigned to anything and thus it is seemingly discarded by the interpreter. However, when a string

literal is given immediately following a function header, it becomes what is known as a “docstring”

and will be displayed when help is requested for the function. This is demonstrated in lines 16

through 21. So, rather than describing what a function does in comments given just prior to the

definition of a function, we will often use a docstring to describe what a function does. When more

than one sentence is needed to describe what a function does, it is recommended that the docstring

be started by a single summary sentence. Next there should be a blank line which is then followed

by the rest of the text.

Listing 4.6 A function to calculate the change in terms of dollars, quarters, dimes, nickels, and

pennies for a given “total” number of pennies

1 >>> # Function to calculate change.

2 >>> def make_change(total):

3 ... """

4 ... Calculate the change in terms of dollars, quarters,

5 ... dimes, nickels, and pennies in ’total’ pennies.

6 ... """

7 ... dollars, remainder = divmod(total, 100)

8 ... quarters, remainder = divmod(remainder, 25)

9 ... dimes, remainder = divmod(remainder, 10)

10 ... nickels, pennies = divmod(remainder, 5)

11 ... return dollars, quarters, dimes, nickels, pennies

12 ...

13 >>> make_change(769)

14 (7, 2, 1, 1, 4)

15 >>> # Try to get help on this function. "Docstring" is given!

16 >>> help(make_change)

17 Help on function make_change in module __main__:

18

19 make_change(total)

20 Calculate the change in terms of dollars, quarters,

21 dimes, nickels, and pennies in ’total’ pennies.

Technically return statements can only return a single value. It might appear that the code in

Listing 4.6 violates this since there are multiple values (separated by commas) in the return

statement in line 11. However, in fact, these values are collected together and returned in a single

collection known as a tuple. Later we will study tuples and other collections of data. For now it

suffices to know that it is possible to get multiple values from a function simply by putting them in

a comma-separated list in the return statement. The output in line 14 shows that 769 pennies is

the equivalent of seven dollars, two quarters, one dime, one nickel, and four pennies. (One could

use simultaneous assignment to store these values to individual variables.)

Now let us again revisit the calculation of a BMI. In the bmi() function of Listing 4.4, the

user was prompted for a weight and height for each invocation of the function. However, there may
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be applications for which weight and height data are stored in a file and thus it doesn’t make sense

to prompt for these values. In anticipation of situations such as this, it may be better to separate the

calculation of the BMI from the code that handles the input (before the calculation) and the output

(after the calculation).

Listing 4.7 demonstrates one way this might be done. Here three functions are implemented.

get wh() gets the weight and height; calc bmi() calculates the BMI (given the weight and

height as parameters); and show bmi() displays the BMI (which it is given as a parameter).

Listing 4.7 Reimplementation of the BMI calculation where the calculation itself has been sepa-

rated from the handling of the input and output.

1 >>> def get_wh():

2 ... """Obtain weight and height from user."""

3 ... weight = float(input("Enter weight [pounds]: "))

4 ... height = float(input("Enter height [inches]: "))

5 ... return weight, height

6 ...

7 >>> def calc_bmi(weight, height):

8 ... """

9 ... Calculate body mass index (BMI) for weight in

10 ... pounds and height in inches.

11 ... """

12 ... return 703 * weight / (height * height)

13 ...

14 >>> def show_bmi(bmi):

15 ... print("Your body mass index is:", bmi)

16 ...

17 >>> w, h = get_wh()

18 Enter weight [pounds]: 280

19 Enter height [inches]: 72

20 >>> bmi = calc_bmi(w, h)

21 >>> show_bmi(bmi)

22 Your body mass index is: 37.9706790123

Lines 1 through 16 define the three functions get wh(), calc bmi(), and show bmi(). In

line 17, get wh() is called to obtain the weight and height. This leads to the user being prompted

for input as shown in lines 18 and 19. The values the user enters are returned by get wh() and

assigned, simultaneously, to the variables w and h. (As will be discussed in the next section, the

weight and height variables defined in the function get wh() are not defined outside of that

function. Thus, we need to store the values returned by the function. By “store” we mean assign

the values to variables for later use.)

In line 20, calc bmi() is called to calculate the BMI. If we have the weight and height

(whether read from a file or obtained via the keyboard), this function can be used to calculate the

BMI. The value this function returns is stored in the variable bmi which is subsequently passed as

a parameter to show bmi() in line 21 to obtain the desired output.
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4.4 Scope of Variables

For now, you should always use parameters to pass data into a function and always use the return

statement to obtain data from a function. (There are other ways to exchange data with a function

using what are known as global variables, but the use of global variables is generally considered

to be a dangerous programming practice.) Something that you need to keep in mind is that all the

parameters and variables that are defined in a function are local to a function, meaning that these

variables cannot be “seen” by code outside of the function.

The code over which a variable is accessible or visible is known as the variable’s scope. The

scope of a variable within a function is from the point it is created (either in the parameter list or

in the body via an assignment operation) to the end of the function.

Although scope is an important and, at times, complicated issue, it is not something we want

to belabor here. Nevertheless, there are a few issues related to scope about which you should be

aware as this awareness may help prevent bugs from appearing in your code.

Listing 4.8 again uses the get wh() function that was used in Listing 4.7.

Listing 4.8 Demonstration that variables are local to a function.

1 >>> def get_wh():

2 ... """Obtain weight and height from user."""

3 ... weight = float(input("Enter weight [pounds]: "))

4 ... height = float(input("Enter height [inches]: "))

5 ... return weight, height

6 ...

7 >>> get_wh()

8 Enter weight [pounds]: 120

9 Enter height [inches]: 60

10 (120.0, 60.0)

11 >>> print(weight)

12 Traceback (most recent call last):

13 File "<stdin>", line 1, in <module>

14 NameError: name ’weight’ is not defined

15 >>> print(height)

16 Traceback (most recent call last):

17 File "<stdin>", line 1, in <module>

18 NameError: name ’height’ is not defined

Lines 1 through 5 define get wh() as before. This function is invoked in line 7. The user

enters 120 for the weight and 60 for the height. Since the return value of this function is not

assigned to anything, the interactive environment displays the return value in line 10 (were this

code run from within a file, the return value would simply be ignored—it would not appear as

output). In lines 11 and 15 an attempt is made to print the weight and height, respectively,

that exist in the get wh() function. Both these attempts produce NameErrors with a statement

that the variables are not defined. Again, these variables exist in the get wh() function and only

in get wh().
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In Sec. 2.7 we discussed namespaces and how Python uses them to associate identifiers with

values. Python actually maintains multiple namespaces. When a function is defined, there is a

namespace created for that particular function. When a identifier is referenced within a function,

Python will look in that function’s namespace for the associated value. If it cannot find that identi-

fier, it will look in the surrounding scope, i.e., in the namespace associated with place from which

the function was called. (For example, if we call a function from the interactive environment,

the global namespace is the surrounding scope for that function call.) However, if an identifier is

referenced outside of a function, Python will never look inside the namespaces of functions to try

to determine the value of that identifier. Similarly, if an identifier is referenced in one function,

Python will not look in another function’s namespace to try to determine the value of that identifier.

Now consider the code shown in Listing 4.9 which further demonstrates the local nature of

variables. This code is quite confusing in that the variable name weight is used throughout the

code. Nevertheless, the variable weight in the function change weight() is different from

the variable weight defined outside the function!

Listing 4.9 Another demonstration of the local scope of variables within a function.

1 >>> weight = 160 # Set initial weight to 160.

2 >>> def change_weight(weight): # Define function to change weight.

3 ... weight = weight - 10

4 ... print("weight is now", weight)

5 ...

6 >>> change_weight(weight) # Claim is weight is now 150.

7 weight is now 150

8 >>> print(weight) # Check on weight. Still 160!

9 160

In line 1 weight is set to 160. In lines 2 through 4 a function is defined whose name implies

it will change the weight. The function is invoked in line 6. The output in line 7 shows that

weight is now 150, i.e., 10 less than the value that was passed to the function. However, one

needs to realize that the variable weight within the change weight() function is different

from the variable weight that lives outside the function. The proof of this is in lines 8 and 9

where we see the value of weight outside the function is unchanged from its initial value, i.e., it

is still 160.

So, how can one employ a function to change the value of a variable? To change the value of

a float, int, or str variable, you must assign a new value to the variable. This assignment

must be done within the desired scope. To use a function to change a variable, the function should

return the desired value and then this should be assigned to the variable. The code in Listing 4.10

illustrates this (note that the change weight() function defined in Listing 4.10 is different from

the one defined in Listing 4.9).

Listing 4.10 Demonstration of a way in which a function can be used to change the value of an

int variable. Here one must assign the return value of the function back to the variable.
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1 >>> weight = 160 # Initialize weight to 160.

2 >>> def change_weight(weight): # Define function to return new weight.

3 ... return weight - 10

4 ...

5 >>> weight = change_weight(weight) # Assign return value to weight.

6 >>> print(weight) # Confirm that weight has changed.

7 150

4.5 Scope of Functions

As described in Secs. 4.2 and 4.3, a def statement is used to create a function. So far, all the

functions we have created have been defined outside the body of any other function. Defining a

function in this way gives the function global scope meaning it is visible everywhere—we can call

a function with global scope from within another function or call it while outside of any function

(i.e., directly from the interactive prompt).

However, it is also possible to define a function within the body of another. When this is done,

the inner function can only be invoked from within the function in which it was defined.7 Thus

the scope of the inner function is local to the outer function. This is demonstrated in Listing 4.11

where the function g0() is defined in the body of f0(). g0() returns the cube of its argument.

f0() passes its argument to g0(), raises that to the fourth power, adds 4, and returns the resulting

value.

Listing 4.11 Demonstration that one function can be defined within another. However, when this

is done, the scope of the inner function is restricted to the outer function in which it was defined.

1 >>> def f0(x):

2 ... def g0(y):

3 ... return y ** 3 + 3

4 ... return g0(x) ** 4 + 4

5 ...

6 >>> f0(4)

7 20151125

8 >>> g0(4)

9 Traceback (most recent call last):

10 File "<stdin>", line 1, in <module>

11 NameError: name ’g0’ is not defined

12 >>> def f1(x):

13 ... return g1(x) ** 4 + 4

14 ...

15 >>> def g1(x):

16 ... return x ** 3 + 3

17 ...

7Also, the function can only be called after it is defined.
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18 >>> f1(4)

19 20151125

20 >>> g1(4)

21 67

The f0 and g0() functions are defined in lines 1 through 4. The body of g0() consists of a

single return statement (line 3). The body of f0() consists of the definition of g0() and then

its return statement in line 4. Lines 6 and 7 show the result produced by calling f0() with an

argument of 4.

In line 8 an attempt is made to call g0(). This produces a NameError with the statement

that g0() is not defined. Again, the scope of g0() is restricted to f0() and thus there is no other

way to access this function. There are situations in which this sort of encapsulation is considered

advantageous. Encapsulation is the practice of restricting the scope of programming elements,

such as variables and functions, so that these elements are accessible only where they are needed.

If a function, such as g0(), is only needed within another function, such as f0(), then this type

of nesting can be considered a good programming practice.

However, many languages do not allow the nesting of function definitions as Python does.

Thus, we will generally restrict our function definitions to be in the global scope, external to

any function. Lines 12 through 21 demonstrate an alternative way of implementing f0(). This

alternative approach creates the functions f1() and g1() (which perform calculations equivalent

to f0() and g0(), respectively). Since g1() is defined in the global scope, it can be called from

within f1() but also external to f1() as line 20 demonstrates.

Ultimately the scoping rules for functions are no different than for variables: anything defined

inside a function is local to that function. Variables and functions defined external to any function

have global scope and are visible “everywhere.”

4.6 print() vs. return

In some situations print() statements and return statements appear to behave the same way.

However, print() and return are fundamentally different and a failure to understand how

they differ can lead to errors. To illustrate this, consider the code in Listing 4.12. Two functions

are defined, p() and r(). Both take a single argument and both multiply this argument by 2.

p() prints the result of this multiplication whereas r() returns this result.

Listing 4.12 Demonstration of the difference between a function that prints a value and one that

returns the same value.

1 >>> def p(x): # p() prints a result

2 ... print(2 * x)

3 ...

4 >>> def r(x): # r() returns a result

5 ... return 2 * x

6 ...

7 >>> p(10)
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8 20

9 >>> r(10)

10 20

11 >>> p_result = p(10) # Use p() in assignment operation. Note output.

12 20

13 >>> r_result = r(10) # Use r() in assignment operation. No output!

14 >>> p_result, r_result

15 (None, 20)

16 >>> p(10) + 7

17 20

18 Traceback (most recent call last):

19 File "<stdin>", line 1, in <module>

20 TypeError: unsupported operand type(s) for +: ’NoneType’ and ’int’

21 >>> r(10) + 7

22 27

After defining the two function, p() is called in line 7 with an argument of 10. On line 8 we see

the value that is printed by this function, i.e., 20. Since p() doesn’t explicitly return a value, it is

a void function.

In line 9 r() is called, also with an argument of 10. In this case r() returns the result, which

is also 20. We see the result on line 10 only because the interactive environment displays the value

of an expression if the expression is the only thing on the line. To further illustrate this point,

consider the next few lines.

An assignment statement appears in line 11 where p() is to the right of the assignment operator

and p result is the variable to the left. Note that 20 appears on line 12. This is because when

the p() function is called, it prints two times its argument. So, what is p result? Knowing

that p() is a void function provides the answer (but the answer also appears later in Listing 4.12

itself).

Another assignment statement is given in line 13. In this case r() appears to the right of the

operator and r result is to the left. Note that, unlike when p() was used in a similar state-

ment, this statement produces no output! This is a consequence of the fact that r() does not print

anything. The value this function returns is simply assigned to r result and the interactive en-

vironment doesn’t display anything for such statements. Line 14 displays the values of p result

and r result, which are None and 20, respectively.

Look closely at the statement in line 16 and the subsequent result. This statement is the sum of

p(10) and 7. To calculate this sum, Python must first evaluate p(10). Thus the p() function is

called with an argument of 10. Since the body of p() contains a print() statement, we see the

output of that print() statement in line 17. Since p() is a void function, line 16 is ultimately

equivalent to: None + 7. An integer cannot be added to None and hence this produces an error

as the text in lines 18 through 20 shows. Finally, line 21 shows that r(10) can be used in a sum

since it returns an integer.

The code in Listing 4.12 might leave you with the impression that print() statements cannot

appear together with a return statement in a function, but this is not the case. For debugging

purposes print() statements are often the quickest and easiest way to ascertain where a prob-

lem lies. Thus, when developing your code, it can often be useful to “sprinkle” your code with
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print() statements that enable you to check that values are what they should be. There are also

many other circumstances where a function should have one or more print() statements and a

return statement.

As an example of mixing print() and return statements, consider the code shown in

Listing 4.13. A function f() is defined that calculates a value, prints that value, and then returns

it.

Listing 4.13 Demonstration that print() and return statements can appear in the same func-

tion.

1 >>> def f(x):

2 ... y = 2 * (x - 3) // 14

3 ... print("f(", x ,") = ", y, sep="")

4 ... return y

5 ...

6 >>> z = (7 + f(94)) * 2

7 f(94) = 13

8 >>> z

9 40

In line 6 the f() function is used in an expression. When this function is evaluated, as part of that

evaluation, the print() statement in its body is executed. Thus, in line 7, the output we see is the

output produced by the print() statement in f() (line 3 of the listing). The value that f(94)

returns (which is 13) is used in the arithmetic expression in line 6 and z is assigned the value 40.

4.7 Using a main() Function

In some popular computer languages it is required that every program has a function called main().

This function tells the computer where to start execution. Since Python is a scripted language in

which execution starts at the beginning of a file and subsequent statements are executed sequen-

tially, there is no requirement for a main() function. Nevertheless, many programmers carry

over this convention to Python—they write programs in which, other than function definitions

themselves, nearly all statements in the program are contained within one function or another. The

programmers create a main() function and often call this in the final line of code in the program.

Thus, after all the functions have been defined, including main() itself, the main() function is

called.

Listing 4.14 provides an example of a program that employs this type of construction. Here it

is assumed this code is stored in a file (hence the interactive prompt is not shown). When this file

is executed, for example, in an IDLE session, the last statement is a call to the main() function.

Everything prior to that final invocation of main() is a function definition. main() serves to

call the other three functions that are used to prompt for input, calculate a BMI, and display that

BMI.



82 CHAPTER 4. FUNCTIONS

Listing 4.14 A BMI program that employs a main() function which indicates where computa-

tion starts. main() is invoked as the final statement of the program. (Since the definitions of the

first three functions are unchanged from before, the comments and docstrings have been removed.)

1 def get_wh():

2 weight = float(input("Enter weight [pounds]: "))

3 height = float(input("Enter height [inches]: "))

4 return weight, height

5

6 def calc_bmi(weight, height):

7 return 703 * weight / (height * height)

8

9 def show_bmi(bmi):

10 print("Your body mass index is:", bmi)

11

12 def main():

13 w, h = get_wh()

14 bmi = calc_bmi(w, h)

15 show_bmi(bmi)

16

17 main() # Start the calculation.

In an IDLE session, after this file has been run and one BMI calculation has been performed,

you can perform any number of subsequent BMI calculations simply by typing main() at the

interactive prompt.

4.8 Optional Parameters

Python provides many built-in functions. The first function we introduced in this book was the

built-in function print(). The print() function possesses a couple of interesting features

that we don’t yet know how to incorporate into our own functions: print() can take a variable

number of parameters, and it also accepts optional parameters. The optional parameters are sep

and end which specify the string used to separate arguments and what should appear at the end of

the output, respectively. To demonstrate this, consider the code shown in Listing 4.15.

Listing 4.15 Demonstration of the use of the sep and end optional parameters for print().

1 >>> # Separator defaults to a blank space.

2 >>> print("Hello", "World")

3 Hello World

4 >>> # Explicitly set separator to string "-*-".

5 >>> print("Hello", "World", sep="-*-")

6 Hello-*-World

7 >>> # Issue two separate print() statements. (Multiple statements can

8 >>> # appear on a line if they are separated by semicolons.)
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9 >>> # By default, print() terminates its output with a newline.

10 >>> print("Why,", "Hello"); print("World!")

11 Why, Hello

12 World!

13 >>> # Override the default separator and line terminator with the

14 >>> # optional arguments of sep and end.

15 >>> print("Why,", "Hello", sep="-*-", end="ˆvˆ"); print("World!")

16 Why,-*-HelloˆvˆWorld!

In line 2 print() is called with two arguments. Since no optional arguments are given, the

subsequent output has a blank space separating the arguments and the output is terminated with a

newline. In line 5 the optional argument is set to -*- which then appears between the arguments

in the output, as shown in line 6. In line 10 two print() statements are given (recall that multiple

statements can appear on a single line if they are separated by semicolons). The output from each

of these statements is terminated with the default newline characters as shown implicitly in the

subsequent output in lines 11 and 12. Line 15 again contains two print() statements but the

first print() statement uses the optional parameters to set the separator and line terminator to

the strings -*- and ˆvˆ, respectively.

As explained earlier in this chapter, we create functions in Python using a def statement. In the

header, enclosed in parentheses, we include the list of formal parameters for the function. Python

provides several different constructs for specifying how the parameters of a function are handled.

We can, in fact, define functions of our own which accept an arbitrary number of arguments and

employ optional arguments. Exploring all the different constructs can be a lengthy endeavor and

the use of multiple arguments isn’t currently of interest. However, creating functions with optional

arguments is both simple and useful. Thus, let’s consider how one defines a function with optional

parameters.

First, as shown in Listing 4.16, let’s define a function without optional parameters which

squares its argument. The function is defined in lines 1 and 2 and then, in line 3, invoked with

an argument of 10.

Listing 4.16 Simple function to square its argument. Here the function is invoked by passing it

the actual parameter which is the literal 10.

1 >>> def square(x):

2 ... return x * x

3 ...

4 >>> square(10)

5 100

Recall that when we write square(10), the actual parameter is 10. The actual parameter is

assigned to the formal parameter and then the body of the function is executed. So, in this example,

where we have square(10), it is as if we had issued the statement x=10 and then executed the

body of the square() function.

If we so choose, we can explicitly establish the connection between the formal and actual

parameters when we call a function. Consider the code in Listing 4.17 where the square()
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function is defined exactly as above. Now, however, in line 4, when the function is invoked, the

formal parameter x is explicitly set equal to the actual parameter 10.

Listing 4.17 The same square function is defined as in Listing 4.16. However, in line 4, when the

function is invoked, the formal parameter x is explicitly assigned the value of the actual parameter

10.

1 >>> def square(x):

2 ... return x * x

3 ...

4 >>> square(x=10)

5 100

Note carefully what appears in the argument when the square() function is called in line 4. We

say that x is assigned 10. This assignment is performed, the body of the function is then executed,

and, finally, the returned value is 100 which is shown on line 5. In practice, for this simple

function, there is really no reason to explicitly assign 10 to x in the invocation of the function.

However, some functions have many arguments, some of which are optional and some of which

are not. For these functions, explicitly assigning values to the parameters can aid readability (even

when the parameters are required).

What happens if we use a different variable name (other than x) when we invoke the square()

function? Listing 4.18 provides the answer.

Listing 4.18 The square() function is unchanged from the previous two listings. When the

function is invoked in line 4, an attempt is made to assign a value to something that is not a formal

parameter of the function. This produces an error.

1 >>> def square(x):

2 ... return x * x

3 ...

4 >>> square(y=10)

5 Traceback (most recent call last):

6 File "<stdin>", line 1, in <module>

7 TypeError: square() got an unexpected keyword argument ’y’

In line 4 we tried to assign the value 10 to the variable y. But, the square() function doesn’t

have any formal parameter named y, so this produces an error (as shown in lines 5 through 7). We

have to use the formal parameter name that was used when the function was defined (in this case

x).

Now, with this background out of the way: To create a function with one or more optional pa-

rameters, we simply assign a default value to the corresponding formal parameter(s) in the header

of the function definition. An example helps to illustrate this.

Let’s create a function called power() that raises a given number to some exponent. The

user can call this function with either one or two arguments. The second argument is optional and

corresponds to the exponent. If the exponent is not given explicitly, it is assumed to be 2, i.e.,
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the function will square the given value. The first argument is required (i.e., not optional) and

represents the number that should be raised to the given exponent. The code in Listing 4.19 shows

how to implement the power() function. Notice that in the header of the function definition (line

1), we simply assign a default value of 2 to the formal parameter exponent.

Listing 4.19 Function to raise a given number to an exponent. The exponent is an optional param-

eter. If the exponent is not explicitly given when the function is invoked, it defaults to 2 (i.e., the

function returns the square of the number).

1 >>> def power(x, exponent=2):

2 ... return x ** exponent

3 ...

4 >>> power(10) # 10 squared, i.e., 10 ** 2.

5 100

6 >>> power(3) # 3 squared, i.e., 3 ** 2.

7 9

8 >>> power(3, 0.5) # Square root of 3, i.e., 3 ** 0.5.

9 1.7320508075688772

10 >>> power(3, 4) # 3 ** 4

11 81

12 >>> power(2, exponent=3) # 2 ** 3

13 8

14 >>> power(x=3, exponent=3) # 3 ** 3

15 27

16 >>> power(exponent=3, x=5) # 5 ** 3

17 125

18 >>> power(exponent=3, 5) # Error!

19 File "<stdin>", line 1

20 SyntaxError: non-keyword arg after keyword arg

Lines 4 through 7 show the argument is squared when power() is called with a single argument,

i.e., the value of the argument is assigned to the formal parameter x and the default value of 2 is

used for exponent. Lines 8 through 11 show what happens when power() is called with two

arguments. The first argument is assigned to x and the second is assigned to exponent, thus

overriding exponent’s default value of 2. In lines 8 and 10, the assignment of actual parame-

ters to formal parameters is based on position—the first actual parameter is assigned to the first

formal parameter and the second actual parameter is assigned to the second formal parameter (this

is no different than what you have previously observed with multi-parameter functions, such as

calc bmi() in Listing 4.7). So, for example, based on the call in line 8, 3 is assigned to x and

0.5 is assigned to exponent (which yields
√
3).

In line 12 we see that the function can be called with the optional parameter explicitly “named”

in an assignment statement (thus optional parameters are sometimes called named parameters).

Line 14 shows that, in fact, both parameters can be named when the function is called. Keep

in mind, however, that x is not an optional parameter—a value must be provided for x. If one

names all the parameters, then the order in which the parameters appear is not important. This is

illustrated in line 16 where the optional parameter appears first and the required parameter appears
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second (here the function calculates 53). Finally, line 18 shows that we cannot put an optional

parameter before an unnamed required parameter.

Let us consider one more example in which a function calculates the y value of a straight line.

Recall that the general equation for a line is

y = mx+ b

where x is the independent variable, y is the dependent variable, m is the slope, and b is the

intercept (i.e., the value at which the line crosses the y axis). Let’s write a function called line()

that, in general, has three arguments corresponding to x, m, and b. The slope and intercept will be

optional parameters, and the slope will have a default value of 1 and the intercept a default value

of 0. Listing 4.20 illustrates both the construction and use of this function.

Listing 4.20 Function to calculate the y value for a straight line given by y = mx + b. The value

of x must be given. However, m and b are optional with default values of 1 and 0, respectively.

1 >>> def line(x, m=1, b=0):

2 ... return m * x + b

3 ...

4 >>> line(10) # x=10 and defaults of m=1 and b=0.

5 10

6 >>> line(10, 3) # x=10, m=3, and default of b=0.

7 30

8 >>> line(10, 3, 4) # x=10, m=3, b=4.

9 34

10 >>> line(10, b=4) # x=10, b=4, and default of m=1.

11 14

12 >>> line(10, m=7) # x=10, m=7, and default of b=0.

13 70

In lines 4, 6, and 8, the function is called with one, two, and three arguments, respectively. In

these three calls the arguments are not named; hence the assignment to the formal parameters is

based solely on position. When there is a single (actual) argument, this is assigned to the formal

argument x while m and b take on the defaults values of 1 and 0, respectively. When there are

two unnamed (actual) arguments, as in line 6, they are assigned to the first two formal parameters,

i.e., x and m. However, if one of the arguments is named, as in lines 10 and 12, the assignment of

actual parameters to formal parameters is no longer dictated by order.

In line 10, the first argument (10) is assigned to x. The second argument dictates that the

formal parameter b is assigned a value of 4. Since nothing has been specified for the value of m, it

is assigned the default value.

4.9 Chapter Summary
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The template for defining a function is:

def <function_name>(<params>):

<body>

where the function name is a valid identifier, the

formal parameters are a comma-separated list

of variables, and the body consists of an arbi-

trary number of statements that are indented to

the same level.

A function is called/invoked by writing the func-

tion name followed by parentheses that enclose

the actual parameters which are also known as

the arguments.

A function that does not explicitly return a value

is said to be a void function. Void functions re-

turn None.

A variable defined as a formal parameter or de-

fined in the body of the function is not defined

outside the function, i.e., the variables only have

local scope. Variables accessible throughout a

program are said to have global scope.

Generally, a function should obtain data via its

parameters and return data via a return state-

ment.

print() does not return anything (it gener-

ates output) and the return statement does not

print anything (it serves to return a value).

If comma-separated expressions are given as

part of the return statement, the values of

these expressions are returned as a collection of

values that can be used with simultaneous as-

signment. The values are in a tuple as de-

scribed in Chap. 6.

Function definitions may be nested inside other

functions. When this is done, the inner function

is only usable within the body of the function in

which it is defined. Typically such nesting is not

used.

The scoping rules for functions are the same as

for variables. Anything defined inside a func-

tion, including other functions, is local to that

function. Variables and functions defined exter-

nal to functions have global scope and are visi-

ble “everywhere.”

Often programs are organized completely in

terms of functions. A function named main()

is, by convention, often the first function called

at the start of a program (but after defining all

the functions). The statements in main() pro-

vide the other function calls that are necessary to

complete the program. Thus, the program con-

sists of a number of function definitions and the

last line of the program file is a call to main().

An optional parameter it created by assigning

a default value to the formal parameter in the

header of the function definition.

4.10 Review Questions

1. The following code is executed

def f(x):

return x + 2, x * 2

x, y = f(5)

print(x + y)

What is the output produced by the print() statement?
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(a) 7 10

(b) 17

(c) x + y

(d) This produces an error.

(e) None of the above.

2. True or False: Names that are valid for variables are also valid for functions.

3. What output is produced by the print() statement when the following code is executed?

def calc_q1(x):

q = 4 * x + 1

return q

calc_q1(5)

print(q)

(a) 24

(b) 21

(c) q

(d) This produces an error.

(e) None of the above.

4. What is the value of q after the following code has been executed?

def calc_q2(x):

q = 4 * x + 1

print(q)

q = calc_q2(5)

(a) 24

(b) 21

(c) This produces an error.

(d) None of the above.

5. What is the value of q after the following code has been executed?

q = 20

def calc_q3(x):

q = 4 * x + 1

return q

q = calc_q3(5)
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(a) 24

(b) 21

(c) This produces an error.

(d) None of the above.

6. What is the output produced by the print() statement in the following code?

def calc_q4(x):

q = 4 * x + 1

print(calc_q4(5))

(a) 24

(b) 21

(c) q

(d) This produces an error.

(e) None of the above.

7. What is the output of the print() statement in the following code?

abc = 5 + 6 // 12

print(abc)

(a) This produces an error.

(b) 5 + 6 // 12

(c) 5

(d) 5.5

(e) 6

8. What is the output of the print() statement in the following code?

def = 5 + 6 % 7

print(def)

(a) This produces an error.

(b) 5 + 6 % 7

(c) 11

(d) 4

9. The following code is executed:
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def get_input():

x = float(input("Enter a number: "))

return x

def main():

get_input()

print(x ** 2)

main()

At the prompt the user enters 2. What is the output of this program?

(a) x ** 2

(b) 4

(c) 4.0

(d) This produces an error.

(e) None of the above.

10. The following code is executed:

def get_input():

x = float(input("Enter a number: "))

return x

def main():

print(get_input() ** 2)

main()

At the prompt the user enters 2. What is the output of this program?

(a) get_input() ** 2

(b) 4

(c) 4.0

(d) This produces an error.

(e) None of the above.

11. What is the value of z after the following code is executed?

def f1(x, y):

print((x + 1) / (y - 1))

z = f1(3, 3) + 1
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(a) 3

(b) 3.0

(c) 2

(d) This produces an error.

12. What is the value of z after the following code is executed?

def f2(x, y):

return (x + 1) / (y - 1)

z = f2(3, 3) + 1

(a) 3

(b) 3.0

(c) 2

(d) This produces an error.

(e) None of the above.

13. What is the value of z after the following code is executed?

def f3(x, y = 2):

return (x + 1) / (y - 1)

z = f3(3, 3) + 1

(a) 3

(b) 3.0

(c) 2

(d) This produces an error.

(e) None of the above.

14. What is the value of z after the following code is executed?

def f3(x, y = 2):

return (x + 1) / (y - 1)

z = f3(3) + 1

(a) 3

(b) 3.0

(c) 2



92 CHAPTER 4. FUNCTIONS

(d) This produces an error.

(e) None of the above.

15. The following code is executed.

def inc_by_two(x):

x = x + 2

return x

x = 10

inc_by_two(x)

print("x = ", x)

What is the output produced by the print() statement?

ANSWERS: 1) b; 2) True; 3) d, q is not defined outside of the function; 4) d, the function is a

void function and hence q is None; 5) b; 6) e, the output is None since this is a void function; 7)

c; 8) a, def is a keyword and we cannot assign a value to it; 9) d, the variable x is not defined in

main(); 10) c; 11) d, f1() is a void function; 12) b; 13) b; 14) e, z would be assigned 5.0; 15)

x = 10.

4.11 Exercises

1. Write a function called convert to days() that takes no parameters. Have your func-

tion prompt the user to input numbers of hours, minutes, and seconds. Write a helper func-

tion called get days() that uses these values and converts them to days in float form

(fractions of a day are allowed). get days() should return the number of days. Use this

helper function within the convert to days() function to display the numbers of days

to the user. The built-in function round() takes two arguments: a number and an integer

indicating the desired precision (i.e., the desired number of digits beyond the decimal point).

Use this function to round the number of days four digits after the decimal point.

The following demonstrates the proper behavior of convert to days():

1 >>> convert_to_days()

2 Enter number of hours: 97

3 Enter number of minutes: 54

4 Enter number of seconds: 45

5

6 The number of days is: 4.0797

2. Write a function called calc weight on planet() that calculates your equivalent weight

on another planet. This function takes two arguments: your weight on Earth in pounds and

the surface gravity of the planet of interest with units m/s2. Make the second argument op-

tional and supply a default value of 23.1 m/s2 which is the approximate surface gravity of

Jupiter (Earth’s suface gravity is approximately 9.8 m/s2). To perform the conversion, use
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the equation: weight is equal to mass times suface gravity. Since your weight on Earth is

given and you know the Earth’s surface gravity, have your function use this information to

calculate your mass (it is fine if, at this point, the units of mass are a mix of Imperial and the

MKS system). Then, use your mass and the given surface gravity to calculate your effective

weight on the other planet.

The following demonstrates the proper behavior of this function:

1 >>> calc_weight_on_planet(120, 9.8)

2 120.0

3 >>> calc_weight_on_planet(120)

4 282.85714285714283

5 >>> calc_weight_on_planet(120, 23.1)

6 282.85714285714283

3. Write a function called num atoms() that calculates how many atoms are in n grams of

an element given its atomic weight. This function should take two parameters: the amount

of the element in grams and an optional argument representing the atomic weight of the ele-

ment. The atomic weight of any particular element can be found on a periodic table but make

the default value for the optional argument the atomic weight of gold (Au) 196.97 with units

in grams/mole. A mole is a unit of measurement that is commonly used in chemistry to ex-

press an amount of a substance. Avogadro’s number is a constant, 6.022× 1023 atoms/mole,

that can be used to find the number of atoms in a given sample. Use Avogadro’s number, the

atomic weight, and the amount of the element in grams to find the number of atoms present

in the sample. Your function should return this value.

The following demonstrates the proper behavior of this function using 10 grams and the

atomic weight of gold (default), carbon, and hydrogen:

1 >>> num_atoms(10)

2 3.0573183733563486e+22

3 >>> num_atoms(10, 12.001)

4 5.017915173735522e+23

5 >>> num_atoms(10, 1.008)

6 5.97420634920635e+24

4. The aspect ratio of an image describes the relationship between the width and height. Aspect

ratios are usually expressed as two numbers separated by a colon that represent width and

height respectively. Common aspect ratios in photography are 4:3, 3:2, and 16:9. An image

that has an aspect ratio of x : y means that for every x inches of width you will have y inches

of height no matter the size of the image (and, of course, you can use any unit of length, not

just inches, and even abstract units such as pixels). Suppose you are writing a blog and you

have an image that is m units wide and n units high but your blog only has space for an image

that is z units wide (where z is less than m). Write a function called calc new height()

that returns the height the image must be in order to preserve the aspect ratio (i.e., a height

that will not distort the image). This function takes no arguments and prompts the user for

the current width, the current height, and the desired new width. In addition to returning the
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new height, this function also prints the value. The new height is a float regardless of the

types of the values the user entered.

The following demonstrates the proper behavior of this function:

1 >>> calc_new_height()

2 Enter the current width: 800

3 Enter the current height: 560

4 Enter the desired width: 370

5

6 The corresponding height is: 259.0

7 259.0

5. Write a function called convert temp() that takes no arguments. This function obtains

a temperature in Fahrenheit from the user and uses two helper functions to convert this tem-

perature to Celsius and Kelvin. Write a helper function called convert to celsius()

that takes a single argument in Fahrenheit and returns the temperature in Celsius using the

formula

Tc =
5

9
(Tf − 32).

where Tc is the temperature in Celsius and Tf is the temperature in Fahrenheit. Write another

helper function called convert to kelvin() that takes a single argument in degrees

Celsius and returns degrees Kelvin using the formula

Tk = Tc + 273.15.

where Tk is the temperature in Kelvin. Use these two functions within your convert temp()

function to display (i.e., print) the temperatures for the user. The convert temp() does

not return anything.

The following demonstrates the proper behavior of this function:

1 >>> convert_temp()

2 Enter a temperature in Fahrenheit: 32

3

4 The temperature in Fahrenheit is: 32

5 The temperature in Celsius is: 0.0

6 The temperature in Kelvin is: 273.15

7 >>> convert_temp()

8 Enter a temperature in Fahrenheit: 80

9

10 The temperature in Fahrenheit is: 80

11 The temperature in Celsius is: 26.666666666666668

12 The temperature in Kelvin is: 299.81666666666666



Chapter 5

Introduction to Objects

In the coming chapters, we want to unleash some of the power of Python. To access this power

we have to introduce something that is syntactically different from what we have seen so far. In

order to understand the reason for this change in syntax, it is best to have a simple understanding

of objects and object oriented programming.

Computer languages, considered as a whole, differ widely in how they allow programmers to

construct a program. There are some languages that permit object oriented programming, often ab-

breviated OOP. Python is one such language (C++, Java, and C# are other popular OOP languages).

As will be described, OOP provides a way of organizing programs that is more similar to the way

people think (i.e., more so than if one uses a non-OOP approach). Thus, in many instances an OOP

approach provides the clearest and simplest route to a solution. However, as you might imagine,

when something attempts to reflect the way humans think, there can be many subtleties and several

layers of complexity. We do not want to explore any of these subtleties and complexities here.

At the conclusion of this chapter you should have a sufficiently clear understanding of a couple

of aspects of OOP—to the point where you should be comfortable with the material in chapters that

follow. But, there is no expectation that this chapter will enable you to write your own programs

that fully exploit the power of OOP. (So, if some questions about OOP linger at the end of this

chapter, it is to be expected and should not be a concern. At the end of the chapter we will revisit

the “take away” message of this material.)

5.1 Overview of Objects and Classes

In previous chapters we considered data such as strings, integers, and floats. We also considered

functions that can accept data via a parameter (or parameters) and can return data via a return

statement. Functions are created to accomplish particular tasks and are invariably restricted in the

type of data they can accept. For example, if we write a function to capitalize the characters in

a string, it doesn’t make sense to pass numeric data to this function. As another example, if a

function calculates the absolute value, it doesn’t make sense to pass this function a string.

When you pause to think about data and functions, you quickly realize they are related in some

way. The fact that only certain forms of data make sense with certain functions ties data and

functions together conceptually. In OOP there is still the ability to work with traditional data and
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