
Chapter 5

Introduction to Objects

In the coming chapters, we want to unleash some of the power of Python. To access this power

we have to introduce something that is syntactically different from what we have seen so far. In

order to understand the reason for this change in syntax, it is best to have a simple understanding

of objects and object oriented programming.

Computer languages, considered as a whole, differ widely in how they allow programmers to

construct a program. There are some languages that permit object oriented programming, often ab-

breviated OOP. Python is one such language (C++, Java, and C# are other popular OOP languages).

As will be described, OOP provides a way of organizing programs that is more similar to the way

people think (i.e., more so than if one uses a non-OOP approach). Thus, in many instances an OOP

approach provides the clearest and simplest route to a solution. However, as you might imagine,

when something attempts to reflect the way humans think, there can be many subtleties and several

layers of complexity. We do not want to explore any of these subtleties and complexities here.

At the conclusion of this chapter you should have a sufficiently clear understanding of a couple

of aspects of OOP—to the point where you should be comfortable with the material in chapters that

follow. But, there is no expectation that this chapter will enable you to write your own programs

that fully exploit the power of OOP. (So, if some questions about OOP linger at the end of this

chapter, it is to be expected and should not be a concern. At the end of the chapter we will revisit

the “take away” message of this material.)

5.1 Overview of Objects and Classes

In previous chapters we considered data such as strings, integers, and floats. We also considered

functions that can accept data via a parameter (or parameters) and can return data via a return

statement. Functions are created to accomplish particular tasks and are invariably restricted in the

type of data they can accept. For example, if we write a function to capitalize the characters in

a string, it doesn’t make sense to pass numeric data to this function. As another example, if a

function calculates the absolute value, it doesn’t make sense to pass this function a string.

When you pause to think about data and functions, you quickly realize they are related in some

way. The fact that only certain forms of data make sense with certain functions ties data and

functions together conceptually. In OOP there is still the ability to work with traditional data and

From the file: object-basics.tex

95



96 CHAPTER 5. INTRODUCTION TO OBJECTS

functions, but OOP introduces an additional construct known as an object. An object is a collection

of data and functions (we’ll see how to create the collection in a moment). Using objects we can

more closely associate functions with the type of data on which the functions can legitimately

operate. To distinguish traditional data from the data contained in an object, we call the data in an

object the object’s attributes. And, to distinguish traditional functions from the functions contained

in an object, we call the functions in an object the object’s methods. So, instead of saying an object

is a collection of data and functions, it is more proper to say an object is a collection of attributes

and methods.1

In Python, as we shall see, essentially everything is an object! The data we have seen so far

are actually objects of a given type (such as str, int, or float). Functions that we create are

objects of a different type. Built-in functions are objects of yet another type. And so on. Replacing

the word “type” with the word “class” in these sentences leads us to the slightly more technical

statement: All objects are members of a class.

What does it mean to say all objects are members of a class? This is actually closely aligned

with the way we naturally think of the world and the objects in it. In the real world, we automat-

ically think in terms of “groups” of “things.” Yes, you are unique, but you are still a member of

the group of humans. We may say you are a unique instance of a human, but you still belong to

the group of humans. Your clothing may be one-of-a-kind; perhaps you made your favorite dress

yourself. Nevertheless, that dress is still a member of, or instance of, the group of dresses.

The ability to group things allows us to make sense of the world more easily than could be

done without these associations. Knowing a thing is a member of a group allows us to make

various assumptions about that thing. For example, if we know a “thing” is a human, we know he

or she shares attributes with all other members of the group of humans, such as blood type, hair

color, gender, and visual acuity. (Although all members of the group share the same attributes, an

individual has specific values for these attributes that are his or her own, such as a blood type of

AB positive, black hair, female, and 20/15 vision.) Knowing something is a car, we know it has a

different set of attributes, such as number of seats, headroom, and miles per gallon. Dresses have

attributes such as type of fabric, size, sleeve length, etc. This grouping also gives us information

about the way in which something functions or interacts with the world. We wouldn’t expect a

human to behave in the same way as a car or a dress. Things in the human, car, and dress groups

all have their own ways of interacting with other things.

If we go back to the previous two paragraphs and replace the word “thing” with “object” and

“group” with “class,” we have the start of viewing the world in an OOP way. Instead of “all things

are members of a group” we have “all objects are members of a class.” A class defines what the

attributes are that members of the class share. However, when it comes to an individual object

(i.e., an instance of a class), the values of these attributes are those of that particular object. Again,

even though people share common attributes, the values of attributes such as blood type, hair color,

gender, visual acuity, etc., can vary significantly from one individual to the next.

With that said, in the next section we show how to define a class (a “group”) and create an

instance of the class (a “thing”) in Python.

1One thing that can be somewhat confusing about OOP is that different languages use different terms for the same

underlying concept. For example, what we are calling a method in Python, would be called a member function in C++.

Also, different authors may use different terms to describe the same things even in the same language!



5.2. CREATING A CLASS: ATTRIBUTES 97

5.2 Creating a Class: Attributes

In OOP, the programmer uses a class statement to provide something of a blueprint for the attributes

an object has (we’ll turn our attention to an object’s methods in the next section). Let’s use a

slightly contrived scenario to help illustrate the creation of a class. Assume a programmer works

for a hospital and needs to develop a program that deals with patients. These patients have only

three attributes: name, age, and malady. To tell Python what constitutes a patient, the programmer

creates a class with a statement that follows the template shown in Listing 5.1.2

Listing 5.1 Basic template for creating a class.

1 class <ClassName>:

2 <body>

Line 1 provides the class header which starts with the keyword class. This is followed by

<ClassName> which is the name of the class and can be any valid identifier.3 The header is

terminated with a colon. The header is followed by the <body> which provides statements that

specify the attributes and methods in the class (we defer consideration of methods to the next

section). As was the case for a function definition, the <body> must be indented. The body can

consist of any number of statements and is terminated by halting indentation of the code (or by

entering a blank line in the interactive environment or in IDLE).

Although there are various ways to implement a Patient class, a programmer might use the

class statement shown in lines 1 through 4 of Listing 5.2.4 This statement creates the attributes

name, age, and malady simply by using the assignment operator to assign default values to these

identifiers. Keep in mind that this class statement itself does not actually create a Patient.

Rather, it tells us what attributes a Patient has. In some ways this is similar to what we do with

functions. We define a function with a def statement, but this doesn’t invoke the function. After

the function is defined, we are free to call it as needed. The creation of a class is somewhat similar.

After we create a class with a class statement, we are free to call the class to create as many

objects (of that class) as needed. (Creating an object is often called instantiation and we will use

the terms object and instance synonymously.) The rest of the code in Listing 5.2 is discussed in

more detail following the listing.

Listing 5.2 class statement that defines the Patient class where a Patient has a name,

age, and malady. Each of these attributes is given a default value.

1 >>> class Patient:

2 ... name = "Jane Doe"

3 ... age = 0

2A more complicated class statement is available that allows one class to inherit properties from another, but we

have no need for it here.
3The class identifier is usually written using the “CapWords” convention where the first letter of each word is

capitalized and, of course, there are no spaces between the words (since there can be no spaces in an identifier).
4A construct like this would almost certainly not be used in practice, but this implementation is useful for the sake

of illustration. In subsequent examples in this chapter we provide improved class statements.



98 CHAPTER 5. INTRODUCTION TO OBJECTS

4 ... malady = "healthy"

5 ...

6 >>> # Create an instance of a Patient with identifier of sally.

7 >>> sally = Patient()

8 >>> # Show sally’s name attribute.

9 >>> sally.name

10 ’Jane Doe’

11 >>> # Set the name, age, and malady attributes for sally.

12 >>> sally.name = "Sally Smith"

13 >>> sally.age = 21

14 >>> sally.malady = "bruised ego"

15 >>> # Show sally’s name, age, and malady attributes.

16 >>> print(sally.name, sally.age, sally.malady, sep="; ")

17 Sally Smith; 21; bruised ego

18 >>> def show(patient):

19 ... print(patient.name, patient.age, patient.malady, sep="; ")

20 ...

21 >>> show(sally)

22 Sally Smith; 21; bruised ego

Following the class statement, a Patient is created in line 7 and assigned to the identifier

sally. sally is simply a variable, but of a new data type, i.e., a Patient. We say that sally

is a Patient or sally is an instance of the Patient class. In general, to create an instance of a

class, we provide the class name followed by parentheses (similar to how we call a function—later

we will see what one might put in the parentheses). Thus, the right side of line 7 instructs Python

to create a Patient and the assignment operator associates this patient with the identifier

sally.

In order to access attributes of an object, we use what is sometimes called dot notation: we

write the variable name then a “dot” and then the attribute.5 This is illustrated in line 9 where we

access sally’s name attribute. More technically, in this context the period (or dot) is actually

serving as the access attribute operator (which we may refer to as either the access operator or the

attribute operator).

We can access an attribute either to see what it is, as is done in line 9, or to assign a value to

it, as is done in lines 12 through 14 where new values are assigned to name, age, and malady.

The output from the print() statement in line 16 shows that all of sally’s attributes have been

changed from the default values.

If we want to display several Patients, it could be cumbersome to write several print()

statements such as in line 16. To help streamline displaying Patients, we could write a function

as shown in lines 18 and 19. The show() function takes a Patient as a parameter and then

displays the Patient’s attributes. Note that the variable name used for the formal parameter,

patient, can be any valid identifier, but patient is nicely descriptive of the fact that this

function should be passed a Patient object as the actual parameter. Lines 21 and 22 show what

happens when sally is passed to this function.

5This dot notation actually works with literals too as will be seen later.



5.3. CREATING A CLASS: METHODS 99

The show() function defined in lines 18 and 19 is quite specialized—it is only designed to

work with Patients. Thus, it would be more logical if this function were bundled with the

Patient class. Again, when a function is incorporated into a class, it is known as a method. We

consider how to create a method in the next section.

Referring to Listing 5.2, with the introduction of the access attribute operator, it is tempting

to think that something like sally.name is a valid identifier. However, it is not. The rules

that dictate what constitutes a valid identifier have not changed from before (see Sec. 2.6). Thus,

sally is a valid identifier: it is a Patient object. And, name is a valid identifier: it is an

attribute of the Patient object. However, sally.name is not a valid identifier. This does not

imply that sally.name is not a legitimate lvalue. In fact, it is a valid lvalue—we can assign

values to it. But, we cannot, for example, use sally.name as the name of a function or the name

of an integer variable.

5.3 Creating a Class: Methods

In lines 18 and 19 of Listing 5.2 a function is defined to show a Patient’s attributes. Although

this function only works for Patients, it is not truly affiliated with the Patient class—the

function stands on its own. We could, perhaps, accidentally call the show() function with a

string as the parameter. If we did, an error would occur (since strings don’t have attributes of

name, age, and malady).

Instead of defining a function such that it exists outside the class, we can include a function

as a method within the class if we move the associated def statement into the class statement.

By doing this, we can ensure the method only operates on the objects for which it is designed to

operate. A method is almost exactly like a function but there are a couple of notable differences:

one affects how we define a method and the other affects how we invoke it. Let us first consider

the difference in invocation.

Similar to the show() function in Listing 5.2, assume we have written a method that shows

the attributes of a Patient. To distinguish this from the show() function, let’s call this method

display(). In Listing 5.2, the function to show the object’s attributes is invoked with an argu-

ment of sally using this statement:

show(sally)

Since display() is a method, where it is defined in the class statement, we invoke it using

this statement:

sally.display()

We’ll discuss this in more detail in a moment, but we want to state up front that this invocation

does pass sally as a parameter to the display() method.6 To invoke a method, we provide an

instance of the class (which is sally here) and then, using dot notation, specify the method. The

parentheses are necessary. sally “knows” her attributes but she also “knows” her methods; hence

the dot notation allows us to access not only the attributes, but also the methods within sally’s

class.

6The fact that sally is passed as a parameter to the display() method is done implicitly when the method is

called, but, as will be shown soon, is indicated explicitly in the method definition.



100 CHAPTER 5. INTRODUCTION TO OBJECTS

Notice that in the invocation of the method it appears that the method has no parameters.

However, this is not the case. When working with methods, Python always passes the instance on

which the method is invoked (sally in this example) as the first parameter of the method. When

defining the method (with a def statement), the convention is to call this first (formal) parameter

self. An example helps to clarify this.

In Listing 5.3 the class statement starts with the same attributes in Listing 5.2. For the sake

of readability, line 5 is semi-blank (in that there is an indentation but nothing else on the line).

This is followed by the definition of the method display() (which is slightly fancier than the

show() function in Listing 5.2 but ultimately displays the same data).

The template for a method is the same as the template for a function as given in Listing 4.2.

The one thing that must be kept in mind, though, is that Python always provides an instance of the

class as the first parameter to the method (in this case the method only has a single parameter—

later we will consider a method with multiple parameters). In some sense, although we might write

sally.display(), Python effectively translates this to display(sally). Thus, when we

write sally.display(), line 6 instructs Python that the formal parameter self is assigned

the actual parameter sally and then the body of the method is executed. There is nothing unique

about the identifier self. Any valid identifier will work. Although it seems patient would be

a more descriptive identifier in this particular case than self, the convention is to use self and

we will follow this convention. Discussion of Listing 5.3 continues below the listing.

Listing 5.3 A class statement that includes a method definition. The first parameter of a method

is always the object on which the method is invoked. Although any valid identifier can be used for

this parameter, it is convention to call this first parameter self.

1 >>> class Patient:

2 ... name = "Jane Doe"

3 ... age = 0

4 ... malady = "healthy"

5 ...

6 ... def display(self):

7 ... print("Name = ", self.name)

8 ... print("Age = ", self.age)

9 ... print("Malady = ", self.malady)

10 ...

11 >>> samuel = Patient()

12 >>> samuel.name = "Samuel Sneed"

13 >>> samuel.age = 18

14 >>> samuel.malady = "broken heart"

15 >>> samuel.display()

16 Name = Samuel Sneed

17 Age = 18

18 Malady = broken heart

After the close of the class statement, a Patient is created in line 11 and assigned to samuel

(i.e., the variable samuel is an instance of the Patient class). In lines 12 and 13, new values



5.4. THE DIR() FUNCTION 101

are assigned to samuel’s name, age, and malady. Then, in line 15, the display() method

is invoked.

5.4 The dir() Function

When we create a class, we create a new type of data. (We can see this if we use the type()

function to check on the type of one of the Patient’s we created above.) Given that all data in

Python are actually objects of classes means that all data are collections of attributes and methods.

This is indeed the case and the built-in function dir() provides a way to see this collection, albeit

not necessarily in the prettiest form. You can think of dir() as providing a directory of sorts.

Listing 5.4 is a continuation of Listing 5.3 in which the Patient class is defined and samuel

is an instance of this class. In line 19 we use the type() function to ask what the type is of the

Patient class. In line 20 we see that a Patient’s type is type! This tells us that a Patient

is its own (new) form of data.

In line 21 we ask for samuel’s type. We see that samuel is a Patient but we are also given

some additional information. This additional information relates to where the class is defined, but

this doesn’t concern us now.7 In lines 23 and 24, type() shows that samuel’s age attribute is

an integer. Lines 25 and 26 show that samuel.display is a method. The rest of this code is

discussed following the listing.

Listing 5.4 Illustration that a class is a type of data (and hence a new class is a new type of data).

Also, this code demonstrates the use of the dir() function. This is a continuation of Listing 5.3.

19 >>> type(Patient)

20 <class ’type’>

21 >>> type(samuel)

22 <class ’__main__.Patient’>

23 >>> type(samuel.age)

24 <class ’int’>

25 >>> type(samuel.display)

26 <class ’method’>

27 >>> dir(samuel)

28 [’__class__’, ’__delattr__’, ’__dict__’, ’__doc__’, ’__eq__’,

29 ’__format__’, ’__ge__’, ’__getattribute__’, ’__gt__’, ’__hash__’,

30 ’__init__’, ’__le__’, ’__lt__’, ’__module__’, ’__ne__’, ’__new__’,

31 ’__reduce__’, ’__reduce_ex__’, ’__repr__’, ’__setattr__’,

32 ’__sizeof__’, ’__str__’, ’__subclasshook__’, ’__weakref__’, ’age’,

33 ’malady’, ’name’, ’display’]

In line 27 dir() is used to show all the attributes and methods associated with Patient. We

are shown a collection of strings.8 Notice the last four strings correspond to the attributes and the

7Since we used the interactive environment to define the Patient class, this class is said to have been created in

main which is Python’s name for the “top-level script environment.”
8This particular collection is known as a list and will be described in a later chapter.



102 CHAPTER 5. INTRODUCTION TO OBJECTS

method we put in the Patient class statement (these are shown in slanted bold type to help

differentiate them from the other strings in the list).

All the other strings in this list are attributes or methods associated with the class, but we did not

establish this connection. This is something Python did for us. We will mostly ignore these other

entries, but there is one notable exception which is also shown in slanted bold type: init .

This is a method that allows us to initialize an object when it is created. We will illustrate the use

of this method in the next section. Before doing so, we consider another example of the use of the

dir() function.

We now know that integers, floats, and strings are instances of classes. As a preview of what

is discussed in detail in the chapter on strings, let’s create a string and then use dir() to see its

list of attributes and methods, as is done in Listing 5.5. In line 1 the string s is created. In line 2

the dir() function is applied to this string which reveals a rather lengthy list!

Listing 5.5 Using dir() to list the attributes and methods of a string.

1 >>> s = "hello!"

2 >>> dir(s)

3 [’__add__’, ’__class__’, ’__contains__’, ’__delattr__’, ’__doc__’,

4 ’__eq__’, ’__format__’, ’__ge__’, ’__getattribute__’,

5 ’__getitem__’, ’__getnewargs__’, ’__gt__’, ’__hash__’, ’__init__’,

6 ’__iter__’, ’__le__’, ’__len__’, ’__lt__’, ’__mod__’, ’__mul__’,

7 ’__ne__’, ’__new__’, ’__reduce__’, ’__reduce_ex__’, ’__repr__’,

8 ’__rmod__’, ’__rmul__’, ’__setattr__’, ’__sizeof__’, ’__str__’,

9 ’__subclasshook__’, ’capitalize’, ’center’, ’count’, ’encode’,

10 ’endswith’, ’expandtabs’, ’find’, ’format’, ’format_map’, ’index’,

11 ’isalnum’, ’isalpha’, ’isdecimal’, ’isdigit’, ’isidentifier’,

12 ’islower’, ’isnumeric’, ’isprintable’, ’isspace’, ’istitle’,

13 ’isupper’, ’join’, ’ljust’, ’lower’, ’lstrip’, ’maketrans’,

14 ’partition’, ’replace’, ’rfind’, ’rindex’, ’rjust’, ’rpartition’,

15 ’rsplit’, ’rstrip’, ’split’, ’splitlines’, ’startswith’, ’strip’,

16 ’swapcase’, ’title’, ’translate’, ’upper’, ’zfill’]

17 >>> help(s.upper)

18 Help on built-in function upper:

19

20 upper(...)

21 S.upper() -> str

22

23 Return a copy of S converted to uppercase.

24

25 >>> s.upper()

26 ’HELLO!’

One of the strings in the list returned by dir() is highlighted. This is the upper() method. We

already know that help() can be used to provide information on various things, including built-

in functions. Similarly, we can often use help() to obtain information about a class’s methods.

In line 17, we see how we can obtain help on the upper() method: We provide an instance, a



5.5. THE INIT () METHOD 103

dot, and then the method of interest (without parentheses—if we included parentheses we would

invoke the method). The output in lines 18 through 24 indicates that this method returns a copy of

the string, but all in uppercase. Lines 25 and 26 show this works as advertised!

We will not provide further examples of the dir() function here, but it is worth mentioning

that one doesn’t have to create a variable first in order to see the list of attributes and methods

associated with a class. One can obtain the same output shown in Listing 5.5 by writing, for

instance, dir(str) (where the class name is the parameter) or dir("hello!") or even just

dir("") (where the latter provides an empty string as the parameter). If you are curious about

the attributes and methods for an integer or float, you can, for example, type dir(42) or

dir(1.0), respectively.

Before moving on to the next section of this chapter, we want to mention that methods can

be applied to literals. This is illustrated in Listing 5.6. If you enter dir(int) you will see that

one of the methods in the integer class is bit length(). This returns the minimum number of

binary digits (bits) needed to represent an integer. However, if we want to know the “bit length”

of the number 42, we cannot write 42.bit length() because “42.” looks like a float.

Instead, we have to enclose the numeric literal in parentheses as shown below.

Listing 5.6 Demonstration that methods can be applied to literals.

1 >>> "hello!".upper() # Convert "hello!" to uppercase.

2 ’HELLO!’

3 >>> # Determine minimum number of bits to represent 42.

4 >>> (42).bit_length()

5 6

5.5 The init () Method

We now return to the init () method mentioned in connection with Listing 5.4.9 (Depending

on the display device you use to read this material, it may not be obvious, but this method starts and

ends with two underscores.) If a programmer defines this method, it is called automatically when

an object is created. Hence init () serves as the initialization method. Using this method

we can set the values of an object’s attributes when the object is created (this is in contrast to the

examples in Figs. 5.2 and 5.3 where the objects are created first and then their attributes are set

using additional statements). Any parameters given to the class are passed along to init ().

This is best illustrated with an example.

In Listing 5.7 we have a new Patient class statement. It may appear we have eliminated

the name, age, and malady attributes. However, we have just moved their creation to statements

inside the init () method that starts on line 2. In this example the init () method

takes four parameters. In general init () must have at least one parameter but could have

arbitrarily more. We have no choice about the first parameter: Python dictates that it is the object

under creation, i.e., it is the object itself. The other three parameters are used to specify the desired

9Technically init () is a “method wrapper” but as far as we are concerned it is indistinguishable from a

method.



104 CHAPTER 5. INTRODUCTION TO OBJECTS

name, age, and malady. The values that are passed as parameters are assigned to the attributes

of the object itself in lines 4 through 6. When we have a statement such as

self.<attribute> = <value>

this automatically creates the attribute (if it didn’t exist before) and assigns “<value>” to it. If

the attribute previously existed, its old value is replaced with the new value to the right of the

assignment operator.

Listing 5.7 A new implementation of the Patient class (previous implementations were given

in Figs. 5.2 and 5.3). Here the init () method is used to initialize attributes when an object

is created. The display() method is unchanged from Listing 5.3. A cure() method has also

been added to the class.

1 >>> class Patient:

2 ... def __init__(self, name, age, malady):

3 ... """Initialize the Patient’s name, age, and malady."""

4 ... self.name = name

5 ... self.age = age

6 ... self.malady = malady

7 ...

8 ... def display(self):

9 ... """Display the Patient’s attributes."""

10 ... print("Name = ", self.name)

11 ... print("Age = ", self.age)

12 ... print("Malady = ", self.malady)

13 ...

14 ... def cure(self):

15 ... """Cure the Patient."""

16 ... self.malady = "healthy"

17 ...

18 >>> sally = Patient("Sally Smith", 21, "bruised ego")

19 >>> sally.display()

20 Name = Sally Smith

21 Age = 21

22 Malady = bruised ego

23 >>> sally.cure()

24 >>> sally.display()

25 Name = Sally Smith

26 Age = 21

27 Malady = healthy

After defining the Patient class, we create the Patient sally in line 18. In this case, we

set her name, age, and malady when she is created. Although we are not explicitly invoking

the init () method, Python calls it for us. All the parameters given to Patient are passed

along to init (). So, although it isn’t strictly true, when we write

sally = Patient("Sally Smith", 21, "bruised ego")



5.6. OPERATOR OVERLOADING 105

in many respects we can think of it as being equivalent to a function call that looks like

__init__(sally, "Sally Smith", 21, "bruised ego")

Line 19 uses the display() method to show sally’s attributes. In line 23 we use the new

cure() method to bring sally back to a healthy state. Line 24 again uses display() to show

that sally has now recovered.

5.6 Operator Overloading

If you are shown a plus sign and asked what it does or what it represents, the first answer that

springs to mind will probably pertain to the addition of two numbers. But, when you think about it

a bit more, you realize the plus sign can mean different things in different contexts. For example, if

you see +5.234, the plus sign is not indicating a sum: rather, it is indicating 5.234 is a positive

number. Graffiti that says “pat + chris” indicates the existence of a couple where there is a lot of

room for further interpretation. So, we should recognize that not only is the plus sign a convenient

and familiar symbol, it can mean different things in different contexts.

Although we haven’t dwelt on it, we’ve already seen that symbols in computer languages can

mean different things in different “contexts.” We’ve seen that a plus sign can mean addition (with

the need for two operands) but it can also indicate sign (with a single operand). We’ve seen that a

minus sign can mean subtraction, but it can also indicate sign (as in -5.234) or produce a change

in sign (as in -x).

We’ve seen that a plus sign can be put between two ints or two floats or between an

int and a float. We typically think of these operations as simply the sum of two numbers,

but because of the way numbers are represented in a computer and the implementation of the

underlying hardware, summing two ints requires actions on the part of the computer that are

different from the actions involved in summing two floats. Also, when we sum an int and

float, the computer must first promote the int to a float and then perform the sum. In

Python, when we place the plus sign between two operands, the interpreter is aware of the class to

which the operands belong (or, said another way, the types of the operands). Thus, Python will do

“the right thing” whether we are summing ints or floats or anything else. In some cases, “the

right thing” is to report an error if, for example, we try to sum an int and a string.

When we say a symbol can mean different things in different contexts, we take it as understood

that the “context” is determined by the associated operand or operands for the symbol. For exam-

ple, when a plus sign appears between two integers, the context is one involving integers and the

plus sign needs to be interpreted in a way that is appropriate for integers. When a plus sign appears

between an integer and a float, the context is now one of mixed types and the plus sign must be

interpreted in a way that is appropriate for these specific types. With OOP, it is typically possible

to specify what a symbol means or does in a given context, e.g., the programmer can dictate what

should be done when a plus sign is used in a particular context. Defining a new interpretation of a

symbol and how it should behave in a given context is known as operator overloading. We won’t

consider how one implements operator overload, but we do want to be aware of its existence.10

10Although the details aren’t import to us and hence won’t be covered, we will say that when objects appear to the

left and right of a plus sign, Python will call the add () method for the class of the object to the left of the operand

and provide both objects as parameters to this method. So, for example, an expression such as “obj1 + obj2” is



106 CHAPTER 5. INTRODUCTION TO OBJECTS

We have seen (line 1 of Listing 3.2) that we cannot “add” a string and a numeric value. The

fact that such an operation produces an error intuitively makes sense. But, can we “add” two

strings? Can we “multiply” a string by an integer or by a float? At this point we can only guess

the answers, but we can certainly try these operations and see what happens. The results, shown

in Listing 5.8, may seem odd at first, but with a bit of explanation (which is provided below the

listing) they make sense and demonstrate some of the power and flexibility of Python.

Listing 5.8 Demonstration of operator overloading.

1 >>> s1 = "Hello" + " World!" # Concatenation.

2 >>> print(s1)

3 Hello World!

4 >>> s2 = "&" * 70 # Repetition.

5 >>> print(s1)

6 &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

7 >>> 10 * "EI" + "-OH!" # Repetition and concatenation.

8 ’EIEIEIEIEIEIEIEIEIEI-OH!’

9 >>> s3 = "#" * 70.0

10 Traceback (most recent call last):

11 File "<stdin>", line 1, in <module>

12 TypeError: can’t multiply sequence by non-int of type ’float’

The expression on the right side of line 1 has a plus sign with two string operands. When Python

sees a “sum” of two strings, the plus sign is interpreted as the concatenation operator, i.e., it

produces a new string that is obtained by adding the second string to the end of the first string. (To

concatenate things is to link them together.) The output of the print() statement in line 2 shows

that s1 is indeed the concatenation of the two strings.

The expression on the right side of line 4 has the multiplication symbol with operands of a

string and an integer. In this case Python interprets the multiplication as implying repetition. So,

in this case the variable s2 is assigned the string value consisting of & repeated 70 times. Lines 7

and 8 show another example of the repetition and concatenation operators.

Line 9 shows Python does not allow multiplication of a string and float. It makes sense to

repeat a string an integer number of times but it generally doesn’t make sense to repeat a string a

fractional amount. Thus, Python requires that repetition be expressed as the product of a string and

an int.

In the coming chapters we exploit the operator overloading already built into Python. This

overloading is part of the power of OOP—the language is aware of the classes of the operands and

will do what is appropriate for the given combination of operands and symbols.

5.7 Take-Away Message

This chapter seemingly provides quite a bit of material and the initial exposure to OOP nomencla-

ture can be, shall we say, challenging. However, there are really just three messages you need to

evaluated by invoking add (obj1, obj2) where add () is defined in obj1’s class statement. There are

similar special methods associated with the other symbols, such as mul () for the * symbol.



5.8. CHAPTER SUMMARY 107

take away from this chapter. First, you should remember that instead of always invoking functions

with an expression such as

<func>(<params>)

we will sometimes work with methods for which we write expressions of the form

<object>.<method>(<params>)

where <object> is a variable, literal data, or, in fact, any expression that evaluates to an object.

Second, remember that the dir() function can be useful for reminding you of the attributes and

methods in a particular class. And, third, remember that the meaning of a symbol can change

depending on the class (or type) of the operands.

5.8 Chapter Summary

An object is a collection of attributes (data) and

methods (functions).

Objects are said to be instances of a class.

A class statement provides a blueprint for cre-

ating objects.

In Python all data are objects. An object’s type

corresponds to its class.

To access an object’s attributes or methods, one

writes the object followed by the access at-

tribute operator, i.e., a dot (.), followed by the

desired attribute or method. (Keep in mind that

the dot is an operator and cannot be part of an

identifier.)

dir(): provides a listing of the attributes and

methods of an object.

Operators, such as the plus sign, can be over-

loaded so that the operation performed depends

on the types of the operands. For example,

strings can be concatenated if they are “added”

together.



108 CHAPTER 5. INTRODUCTION TO OBJECTS


	Introduction to Objects
	Overview of Objects and Classes
	Creating a Class: Attributes
	Creating a Class: Methods
	The dir() Function
	The __init__() Method
	Operator Overloading 
	Take-Away Message
	Chapter Summary


