
Chapter 7

More on for-Loops, Lists, and Iterables

The previous chapter introduced lists, tuples, the range() function, and for-loops. The

reason for introducing these concepts in the same chapter is because either they are closely related

(as is true with lists and tuples) or they are often used together (as is true, for example, with

the range() function and for-loops). In this chapter we want to extend our understanding of the

ways in which for-loops and iterables can be used. Although the material in this chapter is often

presented in terms of lists, you should keep in mind that the discussion almost always pertains

to tuples too—you could substitute a tuple for a list in the given code and the result would

be the same. (This is not true only when it comes to code that assigns values to individual elements.

Recall that lists are mutable but tuples are not. Hence, once a tuple is created, we cannot

change its elements.)

The previous chapter mentioned that a list can have elements that are themselves lists,

but no details were provided. In this chapter we will dive into some of these details. We will also

consider nested for-loops, two new ways of indexing (specifically negative indexing and slicing),

and the use of strings as sequences or iterables. We start by considering nested for-loops.

7.1 for-Loops within for-Loops

There are many algorithms that require that one loop be nested inside another. For example, nested

loops can be used to generate data for a table where the inner loop dictates the column and the

outer loop dictates the row. In fact, it is not uncommon for algorithms to require several levels of

nesting (i.e., a loop within a loop within a loop and so on). As you will see, nested loops are also

useful for processing data organized in the form of lists within a list. We start this section by

showing some of the general ways in which for-loops can be nested. This is presented primarily

in terms of generating various patterns of characters. After introducing lists of lists (in Sec.

7.2) we will consider more practical applications for nested for-loops.

Assume we want to generate the following output:

1 1

2 12

3 123

From the file: more-on-iterables.tex

143

144 CHAPTER 7. MORE ON FOR-LOOPS, LISTS, AND ITERABLES

4 1234

5 12345

6 123456

7 1234567

There are seven lines. The first line consists of a single 1. Each successive line has one more

digit than the previous line. This output can be generated using nested for-loops. Nested for-

loops consist of an “outer” for-loop and an “inner” for-loop. The body of the outer for-loop

is executed the number of times dictated by its header. Of course, the number of times the body of

the inner loop is executed is also dictated by its header. However, the contents of the inner-loop’s

header can change with each pass of the outer loop.

Turning our attention back to the collection of characters above, we can use the outer loop

to specify that we want to generate seven lines of output, i.e., the body of the outer loop will be

executed seven times. We can then use the inner loop to generate the characters on each individual

line.

Listing 7.1 shows nested for-loops that produce the arrangement of characters shown above.

Listing 7.1 Nested for-loops that generate seven lines of integers.

1 >>> for i in range(7): # Header for outer loop.

2 ... for j in range(1, i + 2): # Cycle through integers.

3 ... print(j, end="") # Suppress newline.

4 ... print() # Add newline.

5 ...

6 1

7 12

8 123

9 1234

10 12345

11 123456

12 1234567

Line 1 contains the header of the outer for-loop. The body of this loop executes seven times

because the argument of the range() function is 7. Thus, the loop variable i takes on values 0

through 6. The header for the inner for-loop is on line 2. This header contains range(1, i

+ 2). Notice that the inner loop variable is j. Given the header of the inner loop, j will take

on values between 1 and i + 1, inclusive. So, for example, when i is 1, corresponding to the

second line of output, j varies between 1 and 2. When i is 2, corresponding to the third line of

output, j varies between 1 and 3. This continues until i takes on its final value of 6 so that j

varies between 1 and 7.

The body of the inner for-loop, in line 3, consists of a print() statement that prints the

value of j and suppresses the newline character (i.e., the optional argument end is set to the

empty string). Following the inner loop, in line 4, is a print() statement with no arguments.

This is used simply to generate the newline character. This print() statement is outside the

7.1. FOR-LOOPS WITHIN FOR-LOOPS 145

body of the inner loop but inside the body of the outer sloop. Thus, this statement is executed

seven times: once for each line of output.1

Changing gears a bit, consider the following collection of characters. This again consists of

seven lines of output. The first line has a single character and each successive line has one addi-

tional character.

1 &

2 &&

3 &&&

4 &&&&

5 &&&&&

6 &&&&&&

7 &&&&&&&

How do you implement this? You can use nested loops, but Python actually provides a way to

generate this using a single for-loop. To do so, you need to recall string repetition which was

introduced in Sec. 5.6. When a string is “multiplied” by an integer, a new string is produced that is

the original string repeated the number of times given by the integer. So, for example, "q" * 3

evaluates to the string "qqq". Listing 7.2 shows two implementations that generate the collection

of ampersands shown above: one implementation uses a single loop while the other uses nested

loops.

Listing 7.2 A triangle of ampersands generated using a single for-loop or nested for-loops. The

implementation with a single loop takes advantage of Python’s string repetition capabilities.

1 >>> for i in range(7): # Seven lines of output.

2 ... print("&" * (i + 1)) # Num. characters increases as i increases.

3 ...

4 &

5 &&

6 &&&

7 &&&&

8 &&&&&

9 &&&&&&

10 &&&&&&&

11 >>> for i in range(7): # Seven lines of output.

12 ... for j in range(i + 1): # Inner loop for ampersands.

13 ... print("&", end="")

14 ... print() # Newline.

15 ...

16 &

17 &&

18 &&&

1It may be worth mentioning that it is not strictly necessary to use two for-loops to obtain the output shown in

Listing 7.1. As the code in the coming discussion suggests (but doesn’t fully describe), it is possible to obtain the same

output using a single for-loop (but then one has to provide a bit more code to construct the string that should appear

on each line).

146 CHAPTER 7. MORE ON FOR-LOOPS, LISTS, AND ITERABLES

19 &&&&

20 &&&&&

21 &&&&&&

22 &&&&&&&

What if we wanted to invert this triangle so that the first line is the longest (with seven charac-

ters) and the last line is the shortest (with one character)? The code in Listing 7.3 provides a so-

lution that uses a single loop. (Certainly other solutions are possible. For example, the range()

function in the header of the for-loop can be used to directly generate the multipliers, i.e., integers

that range from 7 to 1. Then, the resulting loop variable can directly “multiply” the ampersand in

the print() statement.)

Listing 7.3 An “inverted triangle” realized using a single for-loop.

1 >>> for i in range(7): # Seven lines of output.

2 ... print("&" * (7 - i)) # Num. characters decreases as i increases.

3 ...

4 &&&&&&&

5 &&&&&&

6 &&&&&

7 &&&&

8 &&&

9 &&

10 &

The header in line 1 is the same as the ones used previously: the loop variable i still varies between

0 and 6. In line 2 the number of repetitions of the ampersand is 7 - i. Thus, as i increases, the

number of ampersands decreases.

As another example, consider the code given in Listing 7.4. The body of the outer for-loop

contains, in line 2, a print() statement similar to the one in Listing 7.3 that was used to generate

the inverted triangle of ampersands. Here, however, the newline character at the end of the line is

suppressed. Next, in lines 3 and 4, a for-loop renders integers as was done in Listing 7.1. Outside

the body of this inner loop a print() statement (line 5) simply generates a new line. Combining

the inverted triangle of ampersands with the upright triangle of integers results in the rectangular

collection of characters shown in lines 7 through 13.

Listing 7.4 An inverted triangle of ampersands is combined with an upright triangle of integers to

form a rectangular structure of characters.

1 >>> for i in range(7): # Seven lines of output.

2 ... print("&" * (7 - i), end="") # Generate ampersands.

3 ... for j in range(1, i + 2): # Inner loop to display digits.

4 ... print(j, end="")

5 ... print() # Newline.

6 ...

7.1. FOR-LOOPS WITHIN FOR-LOOPS 147

7 &&&&&&&1

8 &&&&&&12

9 &&&&&123

10 &&&&1234

11 &&&12345

12 &&123456

13 &1234567

Using similar code, let’s construct an upright pyramid consisting solely of integers (and blank

spaces). This can be realized with the code in Listing 7.5. The first four lines of Listing 7.5 are

identical to those of Listing 7.4 except the ampersand in line 2 has been replaced by a blank space.

In Listing 7.5, the for-loop that generates integers of increasing value (i.e., the loop in lines 3

and 4), is followed by the for-loop that generates integers of decreasing value (lines 5 and 6). In

a sense, the values generated by this second loop are tacked onto the right side of the rectangular

figure that was generated in Listing 7.4.

Listing 7.5 Pyramid of integers that is constructed with an outer for-loop and two inner for-

loops. The first inner loop, starting on line 3, generates integers of increasing value while the

second loop, starting on line 5, generates integers of decreasing value.

1 >>> for i in range(7):

2 ... print(" " * (7 - i), end="") # Generate leading spaces.

3 ... for j in range(1, i + 2): # Generate 1 through peak value.

4 ... print(j, end="")

5 ... for j in range(i, 0, -1): # Generate peak - 1 through 1.

6 ... print(j, end="")

7 ... print() # Newline.

8 ...

9 1

10 121

11 12321

12 1234321

13 123454321

14 12345654321

15 1234567654321

Let’s consider one more example of nested loops. Here, unlike in the previous examples, the

loop variable for the outer loop does not appear in the header of the inner loop. Let’s write a

function that shows, as an ordered pair, the row and column numbers of positions in a table or

matrix. Let’s call this function matrix indices(). It has two parameters corresponding to the

number of rows and number of columns, respectively. In any previous experience you may have

had with tables or matrices, the row and column numbers almost certainly started with one. Here,

however, we use the numbering convention that is used for lists: the first row and column have

an index of zero.

148 CHAPTER 7. MORE ON FOR-LOOPS, LISTS, AND ITERABLES

Listing 7.6 gives a function that generates the desired output.2

Listing 7.6 Function to display the row and column indices for a two-dimensional table or matrix

where the row and column numbers start at zero.

1 >>> def matrix_indices(nrow, ncol):

2 ... for i in range(nrow): # Loop over the rows.

3 ... for j in range(ncol): # Loop over the columns.

4 ... print("(", i, ", ", j, ")", sep="", end=" ")

5 ... print()

6 ...

7 >>> matrix_indices(3, 5) # Three rows and five columns.

8 (0, 0) (0, 1) (0, 2) (0, 3) (0, 4)

9 (1, 0) (1, 1) (1, 2) (1, 3) (1, 4)

10 (2, 0) (2, 1) (2, 2) (2, 3) (2, 4)

11 >>> matrix_indices(5, 3) # Five rows and three columns.

12 (0, 0) (0, 1) (0, 2)

13 (1, 0) (1, 1) (1, 2)

14 (2, 0) (2, 1) (2, 2)

15 (3, 0) (3, 1) (3, 2)

16 (4, 0) (4, 1) (4, 2)

The function defined in lines 1 through 5 has two parameters that are named nrow and ncol,

corresponding to the desired number of rows and columns, respectively. nrow is used in the

header of the outer loop in line 2 and ncol is used in the header of the inner loop in line 3.

In line 7 matrix indices() is called to generate the ordered pairs for a matrix with three

rows and five columns. The output appears in lines 8 through 10. In line 11 the function is called

to generate the ordered pairs for a matrix with five rows and three columns.

In all the examples in this section the headers of the for-loops have used range() to set

the loop variable to appropriate integer values. There is, however, another way in which nested

for-loops can be constructed so that the iterables appearing in the headers are lists. This is

considered in the next section.

7.2 lists of lists

A list can contain a list as an element or, in fact, contain any number of lists as elements.

When one list is contained within another, we refer to this as nesting or we may say that one

list is embedded within another. We may also refer to an inner list which is contained in a

surrounding outer list. Nesting can be done to any level. Thus, for example, you can have a

list that contains a list that contains a list and so on.

Listing 7.7 illustrates the nesting of one list within another.

2Unfortunately, if the user specifies that the number of rows or columns is greater than 11 (so that the row or

column indices have more than one digit), the ordered pairs will no longer line up as nicely as shown here. When we

cover string formatting, we will see ways to ensure the output is formatted “nicely” even for multiple digits.

7.2. LISTS OF LISTS 149

Listing 7.7 Demonstration of nesting of one list as an element of another.

1 >>> # Create list with a string and a nested list of two strings.

2 >>> al = [’Weird Al’, [’Like a Surgeon’, ’Perform this Way’]]

3 >>> len(al) # Check length of al.

4 2

5 >>> al[0]

6 ’Weird Al’

7 >>> al[1]

8 [’Like a Surgeon’, ’Perform this Way’]

9 >>> for item in al: # Cycle through the elements of list al.

10 ... print(item)

11 ...

12 Weird Al

13 [’Like a Surgeon’, ’Perform this Way’]

In line 2 the list al is defined with two elements. The first element is the string ’Weird

Al’ and the second is a list that has two elements, both of which are themselves strings. The

creation of this list immediately raises a question: How many elements does it have? Reasonable

arguments can be made for either two or three but, in fact, as shown in lines 3 and 4, the len()

function reports that there are two elements in al. Lines 5 and 6 show the first element of al

and lines 7 and 8 show the second element, i.e., the second element of al is itself a complete

two-element list. As before, a for-loop can be used to cycle through the elements of a list.

This is illustrated in lines 9 through 13 where the list al is given as the iterable in the header.

Listing 7.8 provides another example of nesting one list within another; however, here there

are actually three lists contained within the surrounding outer list. Importantly, as seen in

lines 3 through 5, this code also demonstrates that the contents of a list can span multiple lines.

The open bracket ([) acts similarly to open parentheses—it tells Python there is more to come.

Thus, the list can be closed (with the closing bracket) on a subsequent line.3

Listing 7.8 Nesting of multiple lists inside a list. Here the list produce consists of

lists that each contain a string as well as either one or two integers. The contents of a list

may span multiple lines since an open bracket serves as a multi-line delimiter in the same way as

an open parenthesis.

1 >>> # Create a list of three nested lists, each of which contains

2 >>> # a string and one or two integers.

3 >>> produce = [[’carrots’, 56],

4 ... [’celery’, 178, 198],

5 ... [’bananas’, 59]]

3Note, however, that any line breaks in the list must be between elements. One cannot, for instance, have a

string that spans multiple lines just because it is enclosed in brackets. A string that spans multiple lines may appear

in a list but it must adhere to the rules governing a multi-line string, i.e., it must be enclosed in triple quotes or the

newline character at the end of each line must be escaped.

150 CHAPTER 7. MORE ON FOR-LOOPS, LISTS, AND ITERABLES

6 >>> print(produce)

7 [[’carrots’, 56], [’celery’, 178, 198], [’bananas’, 59]]

8 >>> for i in range(len(produce)):

9 ... print(i, produce[i])

10 ...

11 0 [’carrots’, 56]

12 1 [’celery’, 178, 198]

13 2 [’bananas’, 59]

In line 3 the list produce is created. Each element of this list is itself a list. These

inner lists are composed of a string and one or two integers. The string corresponds to a type of

produce and the integer might represent the price per pound (in cents) of this produce. When there

is more than one integer, this might represent the price at different stores. The print() statement

in line 6 displays the entire list as shown in line 7. The for-loop in lines 8 and 9 uses indexing

to show the elements of the outer list together with the index of the element.

Let’s consider a slightly more complicated example in which we create a list that contains

three lists, each of which contains another list! The code is shown in Listing 7.9 and is

discussed following the listing.

Listing 7.9 Creation of a list within a list within a list.

1 >>> # Create individual artists as lists consisting of a name and a

2 >>> # list of songs.

3 >>> al = ["Weird Al", ["Like a Surgeon", "Perform this Way"]]

4 >>> gaga = ["Lady Gaga", ["Bad Romance", "Born this Way"]]

5 >>> madonna = ["Madonna", ["Like a Virgin", "Papa Don’t Preach"]]

6 >>> # Collect individual artists together in one list of artists.

7 >>> artists = [al, gaga, madonna]

8 >>> print(artists)

9 [[’Weird Al’, [’Like a Surgeon’, ’Perform this Way’]], [’Lady Gaga’,

10 [’Bad Romance’, ’Born this Way’]], [’Madonna’, [’Like a Virgin’,

11 "Papa Don’t Preach"]]]

12 >>> for i in range(len(artists)):

13 ... print(i, artists[i])

14 ...

15 0 [’Weird Al’, [’Like a Surgeon’, ’Perform this Way’]]

16 1 [’Lady Gaga’, [’Bad Romance’, ’Born this Way’]]

17 2 [’Madonna’, [’Like a Virgin’, "Papa Don’t Preach"]]

In lines 3 through 5, the lists al, gaga, and madonna are created. Each of these lists consists

of a string (representing the name of an artist) and a list (where the list contains two strings

that are the titles of songs by these artists). In line 7 the list artists is created. It consists

of the three lists of individual artists. The print() statement in line 8 is used to print the

artists lists.4 The for-loop in lines 12 and 13 is used to display the list corresponding to

each individual artist.

4Line breaks have been added to the output to aid readability. In the interactive environment the output would

7.2. LISTS OF LISTS 151

7.2.1 Indexing Embedded lists

We know how to index the elements of a list, but now the question is: How do you index the

elements of a list that is embedded within another list? To do this you simply add another set

of brackets and specify within these brackets the index of the desired element. So, for example, if

the third element of xlist is itself a list, the second element of this embedded list is given

by xlist[2][1]. The code in Listing 7.10 illustrates this type of indexing.

Listing 7.10 Demonstration of the use of multiple brackets to access an element of a nested list.

1 >>> toyota = ["Toyota", ["Prius", "4Runner", "Sienna", "Camry"]]

2 >>> toyota[0]

3 ’Toyota’

4 >>> toyota[1]

5 [’Prius’, ’4Runner’, ’Sienna’, ’Camry’]

6 >>> toyota[1][0]

7 ’Prius’

8 >>> toyota[1][3]

9 ’Camry’

10 >>> len(toyota) # What is length of outer list?

11 2

12 >>> len(toyota[1]) # What is length of embedded list?

13 4

14 >>> toyota[1][len(toyota[1]) - 1]

15 ’Camry’

In line 1 the list toyota is created with two elements: a string and an embedded list of

four strings. Lines 2 and 3 display the first element of toyota. In lines 4 and 5 we see that the

second element of toyota is itself a list. In line 6 two sets of brackets are used to specify

the desired element. Interpreting these from right to left, these brackets (and the integers they

enclose) specify that we want the first element of the second element of toyota. The first set

of brackets (i.e., the left-most brackets) contains the index 1, indicating the second element of

toyota, while the second set of brackets contains the index 0, indicating the first element of

the embedded list. Despite the fact that we (humans) might read or interpret brackets from

right to left, Python evaluates multiple brackets from left to right. So, in a sense, you can think

of toyota[1][0] as being equivalent to (toyota[1])[0], i.e., first we obtain the list

toyota[1] and then from this we obtain the first element. You can, in fact, add parentheses

in this way, but it isn’t necessary or recommended. You should, instead, become familiar and

comfortable with this form of multi-index notation as it is used in many computer languages.

Lines 10 and 11 of Listing 7.10 show the length of the toyota list is 2—as before, the

embedded list counts as one element. Lines 12 and 13 show the length of the embedded list

is 4. Line 14 uses a rather general approach to obtain the last element of a list (which here

be wrapped around at the border of the screen. This wrapping is not because of newline characters embedded in the

output, but rather is a consequence of the way text is handled that is wider than can be displayed on a single line. Thus,

if the screen size changes, the location of the wrapping changes correspondingly.

152 CHAPTER 7. MORE ON FOR-LOOPS, LISTS, AND ITERABLES

happens to be the embedded list given by toyota[1]). This approach, in which we subtract 1

from the length of the list, is really no different from the approach first demonstrated in Listing

6.7 for accessing the last element of any list.

As you may have guessed, a for-loop can be used to cycle through the elements of an embed-

ded list. This is illustrated in the code in Listing 7.11.

Listing 7.11 Demonstration of cycling through the elements of an embedded list using a for-

loop.

1 >>> toyota = ["Toyota", ["Prius", "4Runner", "Sienna", "Camry"]]

2 >>> for model in toyota[1]: # Cycle through embedded list.

3 ... print(model)

4 ...

5 Prius

6 4Runner

7 Sienna

8 Camry

Line 1 again creates the toyota list with an embedded list as its second element. The for-

loop in lines 2 and 3 prints each element of this embedded list (which corresponds to a Toyota

car model).

Let us expand on this a bit and write a function that displays a car manufacturer (i.e., a brand

or make) and the models made by each manufacturer (or at least a subset of the models—we won’t

bother trying to list them all). It is assumed that manufacturers are organized in lists where the

first element is a string giving the brand name and the second element is a list of strings giving

model names. Listing 7.12 provides the code for this function as well as examples of its use. The

code is described following the listing.

Listing 7.12 A function to display the make and list of models of a car manufacturer.

1 >>> def show_brand(brand):

2 ... print("Make:", brand[0])

3 ... print(" Model:")

4 ... for i in range(len(brand[1])):

5 ... print(" ", i + 1, brand[1][i])

6 ...

7 >>> toyota = ["Toyota", ["Prius", "4Runner", "Sienna", "Camry"]]

8 >>> ford = ["Ford", ["Focus", "Taurus", "Mustang", "Fusion", "Fiesta"]]

9 >>> show_brand(toyota)

10 Make: Toyota

11 Model:

12 1 Prius

13 2 4Runner

14 3 Sienna

15 4 Camry

16 >>> show_brand(ford)

7.2. LISTS OF LISTS 153

17 Make: Ford

18 Model:

19 1 Focus

20 2 Taurus

21 3 Mustang

22 4 Fusion

23 5 Fiesta

The show brand() function is defined in lines 1 through 5. This function takes a single argu-

ment, named brand, that is a list that contains the make and models for a particular brand of

car. Line 2 prints the make of the car while line 3 prints a label announcing that what follows

are the various models. Then, in lines 4 and 5, a for-loop cycles through the second element of

the brand list, i.e., cycles through the models. The print() statement in line 5 has four blank

spaces, then a counter (corresponding to the element index plus one), and then the model. Lines

7 and 8 define lists that are appropriate for the Totoya and Ford brands of cars. The remaining

lines show the output produced when these lists are passed to the show brand() function.

Listing 7.13 presents the function show nested lists() that can be used to display all

the (inner) elements of a list of lists. This function has a single parameter which is assumed

to be the outer list.

Listing 7.13 Function to display the elements of lists that are nested within another list.

1 >>> def show_nested_lists(xlist):

2 ... for i in range(len(xlist)):

3 ... for j in range(len(xlist[i])):

4 ... print("xlist[", i, "][", j, "] = ", xlist[i][j], sep="")

5 ... print()

6 ...

7 >>> produce = [[’carrots’, 56], [’celery’, 178, 198], [’bananas’, 59]]

8 >>> show_nested_lists(produce)

9 xlist[0][0] = carrots

10 xlist[0][1] = 56

11

12 xlist[1][0] = celery

13 xlist[1][1] = 178

14 xlist[1][2] = 198

15

16 xlist[2][0] = bananas

17 xlist[2][1] = 59

The function is defined in lines 1 through 5. The sole parameter is named xlist. The for-loop

whose header is in line 2 cycles through the indices for xlist. On the other hand, the for-

loop with the header in line 3 cycles through the indices that are valid for the lists nested within

xlist. The body of this inner for-loop consists of a single print() statement that incorporates

the indices as well as the contents of the element. Importantly, note that the nested lists do not

154 CHAPTER 7. MORE ON FOR-LOOPS, LISTS, AND ITERABLES

have to be the same length. The first and third elements of xlist are each two-element lists.

However, the second element of xlist (corresponding to the list with "celery") has three

elements.

7.2.2 Simultaneous Assignment and lists of lists

We have seen that lists can be used with simultaneous assignment (Sec. 6.8). When dealing

with embedded lists, simultaneous assignment is sometimes used to write code that is much

more readable than code that does not employ simultaneous assignment. For example, in the code

in Listings 7.11 and 7.12 the list toyota was created. The element toyota[0] contains the

make while toyota[1] contains the models. When writing a program that may have multiple

functions and many lines of code, it may be easy to lose sight of the fact that a particular element

maps to a particular thing. One way to help alleviate this is to “unpack” a list into parts that

are associated with appropriately named variables. This unpacking can be done with simultaneous

assignment. Listing 7.14 provides an example.5

Listing 7.14 Demonstration of “unpacking” a list that contains an embedded list. Simul-

taneous assignment is used to assign the elements of the toyota list to appropriately named

variables.

1 >>> toyota = ["Toyota", ["Prius", "4Runner", "Sienna", "Camry"]]

2 >>> make, models = toyota # Simultaneous assignment.

3 >>> make

4 ’Toyota’

5 >>> for model in models:

6 ... print(" ", model)

7 ...

8 Prius

9 4Runner

10 Sienna

11 Camry

In line 1 the toyota list is created with the brand name (i.e., the make) and an embedded

list of models. Line 2 uses simultaneous assignment to “unpack” this two-element list to two

appropriately named variables, i.e., make and models. Lines 3 and 4 show make is correctly set.

The for-loop in lines 5 and 6 cycles through the models list to produce the output shown in

lines 8 through 11.

Let us consider another example where the goal now is to write a function that cycles through

a list of artists similar to the list that was constructed in Listing 7.9. Let’s call the function

show artists(). This function should cycle through each element (i.e., each artist) of the

list it is passed. For each artist it should display the name and the songs associated with the

artist. Listing 7.15 shows a suitable implementation of this function.

5This is somewhat contrived in that a list is created and then immediately unpacked. Try instead to imagine

this type of unpacking being done in the context of a much larger program with multiple lists of brands and lists

being passed to functions.

7.2. LISTS OF LISTS 155

Listing 7.15 A function to display a list of artists in which each element of the artists list

contains an artist’s name and a list of songs.

1 >>> def show_artists(artists):

2 ... for artist in artists: # Loop over the artists.

3 ... name, songs = artist # Unpack name and songs.

4 ... print(name)

5 ... for song in songs: # Loop over the songs.

6 ... print(" ", song)

7 ...

8 >>> # Create a list of artists.

9 >>> performers = [

10 ... ["Weird Al", ["Like a Surgeon", "Perform this Way"]],

11 ... ["Lady Gaga", ["Bad Romance", "Born this Way"]],

12 ... ["Madonna", ["Like a Virgin", "Papa Don’t Preach"]]]

13 >>> show_artists(performers)

14 Weird Al

15 Like a Surgeon

16 Perform This Way

17 Lady Gaga

18 Bad Romance

19 Born This Way

20 Madonna

21 Like a Virgin

22 Papa Don’t Preach

The show artists() function is defined in lines 1 through 6. Its sole parameter is named

artists (plural). This parameter is subsequently used as the iterable in the header of the for-

loop in line 2. The loop variable for this outer loop is artist (singular). Thus, given the pre-

sumed structure of the artists list, for each pass of the outer loop, the loop variable artist

corresponds to a two-element list containing the artist’s name and a list of songs. In line 3

the loop variable artist is unpacked into a name and a list of songs. Note that we don’t

explicitly know from the code itself that, for example, songs is a list nor even that artist is

a two-element list. Rather, this code relies on the presumed structure of the list that is passed

as an argument to show artists(). Having obtained the name and songs, these values are

displayed using the print() statement in line 4 and the for-loop in lines 5 and 6.

Following the definition of the function, in lines 9 through 12, a list named performers

is created that is suitable for passing to show artists(). The remainder of the listing shows

the output produced when show artists() is passed the performers list.

Perhaps somewhat surprisingly, simultaneous assignment can be used directly in the header of

a for-loop. To accomplish this, each item of the iterable in the header must have nested within

it as many elements as there are lvalues to the left of the keyword in. Listing 7.16 provides a

template for using simultaneous assignment in a for-loop header. In the header, there are N

comma-separated lvalues to the left of the keyword in. There must also be N elements nested

within each element of the iterable.

156 CHAPTER 7. MORE ON FOR-LOOPS, LISTS, AND ITERABLES

Listing 7.16 Template for a for-loop that employs simultaneous assignment in the header.

1 for <item1>, ..., <itemN> in <iterable>:

2 <body>

Listing 7.17 provides a demonstration of this form of simultaneous assignment. In lines 1

through 3 a list is created of shoe designers and, supposedly, the cost of a pair of their shoes.

Note that each element of the shoes list is itself a two-element list. The discussion of the

code continues following the listing.

Listing 7.17 Demonstration of simultaneous assignment used in the header of a for-loop. This

sets the value of two loop variables in accordance with the contents of the two-element lists that

are nested in the iterable (i.e., nested in the list shoes).

1 >>> shoes = [["Manolo Blahnik", 120], ["Bontoni", 96],

2 ... ["Maud Frizon", 210], ["Tinker Hatfield", 54],

3 ... ["Lauren Jones", 88], ["Beatrix Ong", 150]]

4 >>> for designer, price in shoes:

5 ... print(designer, ": $", price, sep="")

6 ...

7 Manolo Blahnik: $120

8 Bontoni: $96

9 Maud Frizon: $210

10 Tinker Hatfield: $54

11 Lauren Jones: $88

12 Beatrix Ong: $150

The header of the for-loop in line 4 uses simultaneous assignment to assign a value to both the

loop variables designer and price. So, for example, prior to the first pass through the body of

the loop it is as if this statement had been issued:

designer, price = shoes[0]

or, thought of in another way

designer, price = ["Manolo Blahnik", 120]

Then, prior to the second pass through the body of the for-loop, it is as if this statement had been

issued

designer, price = ["Bontoni", 96]

And so on. The body of the for-loop consists of a print() statement that displays the designer

and the associated price (complete with a dollar sign).

As illustrated in Listing 7.18, this form of simultaneous assignment works when dealing with

tuples as well. In line 2 a list of two-element tuples is created. The for-loop in lines 3

7.3. REFERENCES AND LIST MUTABILITY 157

and 4 cycles through these tuples, assigning the first element of the tuple to count and the

second element of the tuple to fruit. The body of the loop prints these values.

Listing 7.18 Demonstration that tuples and lists behave in the same way when it comes to

nesting and simultaneous assignment in for-loop headers.

1 >>> # Create a list of tuples.

2 >>> flist = [(21, ’apples’), (17, ’bananas’), (39, ’oranges’)]

3 >>> for count, fruit in flist:

4 ... print(count, fruit)

5 ...

6 21 apples

7 17 bananas

8 39 oranges

9 >>> # Create a tuple of tuples.

10 >>> ftuple = ((21, ’apples’), (17, ’bananas’), (39, ’oranges’))

11 >>> for count, fruit in ftuple:

12 ... print(count, fruit)

13 ...

14 21 apples

15 17 bananas

16 39 oranges

Lines 10 through 16 are nearly identical to lines 2 through 8. The only difference is that the data

are collected in a tuple of tuples rather than a list of tuples.

7.3 References and list Mutability

In Sec. 4.4 we discussed the scope of variables. We mentioned that we typically want to pass data

into a function via the parameters and obtain data from a function using a return statement.

However, because a list is a mutable object, the way it behaves when passed to a function is

somewhat different than what we have seen before. In fact, we don’t even have to pass a list

to a function to observe this different behavior. In this section we want to explore this behavior.

The primary goal of the material presented here is to help you understand the cause of bugs that

may appear in your code. We do not seek to fully flesh out the intricacies of data manipulation and

storage in Python.

First, recall that when we assign a value, such as an integer or float, to a variable and then

assign that variable to a second variable, changes to the first variable do not subsequently affect

the second variable (or vice versa). This is illustrated in the following (please read the comments

embedded in the code):

1 >>> x = 11 # Assign 11 to x.

2 >>> y = x # Assign value of x to y

3 >>> print(x, y) # Show x and y.

4 11 11

158 CHAPTER 7. MORE ON FOR-LOOPS, LISTS, AND ITERABLES

5 >>> x = 22 # Change x to 22.

6 >>> print(x, y) # Show that x has changed, but not y.

7 22 11

8 >>> y = 33 # Now change y to 33.

9 >>> print(x, y) # Show that y has changed, but not x.

10 22 33

This is not how lists behave. In Python a list may have hundreds, thousands, or even mil-

lions of elements—the data within a list may occupy a significant amount of computer memory.

Thus, when a list is assigned to a new variable the default action is not to make an independent

copy of the underlying data for this new variable. Instead, the assignment makes the new variable

a reference (or an alias) that points to the same underlying data (i.e., it points to the same memory

location where the original list is stored). This is demonstrated in Listing 7.19 which parallels

the code above except now the data is contained in a list.

Listing 7.19 Demonstration that when a list is assigned to a variable, the variable serves as a

reference (or alias) to the underlying data in memory.

1 >>> xlist = [11] # Create xlist with a single element.

2 >>> ylist = xlist # Make ylist an alias for xlist.

3 >>> print(xlist, ylist) # Show xlist and ylist.

4 [11] [11]

5 >>> xlist[0] = 22 # Change value of the element in xlist.

6 >>> print(xlist, ylist) # Change is visible in both xlist and ylist.

7 [22] [22]

8 >>> ylist[0] = 33 # Change value of the element in ylist.

9 >>> print(xlist, ylist) # Change is visible in both xlist and ylist.

10 [33] [33]

11 >>> # Use built-in is operator to show xlist and ylist are the same.

12 >>> xlist is ylist

13 True

In line 1 a single-element list is created and assigned to the variable xlist. In line 2 xlist is

assigned to ylist. This assignment makes ylist point to the same location in the computer’s

memory that xlist points to, i.e., they both point to the single-element list that contains the

integer 11. The print() statement in line 3 and the subsequent output in line 4 show that the

contents of xlist and ylist are the same. In line 5 the value of the element in xlist is

changed to 22. The print() statement in line 6 shows this change is reflected in the contents of

both xlist and ylist! In line 8 the value of the element within ylist is changed to 33. The

subsequent print() statement in line 9 shows this change is also evident in both lists. This

behavior is a consequence of the fact that there is really only one location in memory where this

list is stored and both xlist and ylist point to this location.

There is a built-in operator called is that can be used to determine whether two variables point

to the same memory location. The is operator is used in line 12 to ask if xlist and ylist point

to the same memory location. The answer, shown on line 13, is True—they do point to the same

7.3. REFERENCES AND LIST MUTABILITY 159

memory location. Thus, because a list is mutable, a change to the list made using one of the

variables will affect the underlying data seen by both variables.

Now, let’s consider code that may initially look the same as the code in Listing 7.19; however,

there is an important distinction. The first four lines of Listing 7.20 are identical to those of Listing

7.19. A single-element list is created and assigned to the variable xlist which, in turn, is

assigned to ylist in line 2. The is operator is used in line 5 to show that xlist and ylist

are aliases for the same data. The discussion continues following the listing.

Listing 7.20 As demonstrated in the following, although two variables may initially be aliases

for the same underlying data, if one of the variables is assigned new data, this will not affect the

original data.

1 >>> xlist = [11] # Create xlist with a single element.

2 >>> ylist = xlist # Make ylist an alias for xlist.

3 >>> print(xlist, ylist) # Show xlist and ylist.

4 [11] [11]

5 >>> xlist is ylist # See that xlist and ylist are aliases.

6 True

7 >>> xlist = [22] # Change xlist to point to a new list.

8 >>> print(xlist, ylist) # See that xlist changes, but not ylist.

9 [22] [11]

10 >>> xlist is ylist # See that xlist and ylist are no longer the same.

11 False

In line 7 xlist is assigned to a new one-element list, i.e., xlist now points to a new list.

Note, importantly, that in line 7 we are not changing the value of an element in the list that was

assigned to xlist in line 1. (Please compare line 7 of Listing 7.20 to line 5 of Listing 7.19.)

Instead, we are assigning xlist to an entirely new list. This assignment does not affect where

ylist points in memory. Thus, the output of the print() statement in line 8 shows that xlist

and ylist are now different. The is operator is used in line 10 to test if xlist and ylist are

aliases for the same underlying data. The result of False in line 11 shows they are not.

With the understanding that assignment of a list to a variable actually creates a reference

(or alias) to the underlying data in the computer’s memory, let us consider passing a list to a

function and the consequences of changing the elements of the list within the function. Listing

7.21 starts by defining a function in lines 1 through 3. This function takes a single argument which

is assumed to be a list. The function contains a for-loop that multiplies each of the elements

by 2 and assigns this value back to the original location in the list. Note that this function has

no return statement. Thus, it is a void function—it does not return anything useful. Instead, we

would call this function for its side effects, i.e., its ability to double the elements of a list. The

discussion continues below the listing.

Listing 7.21 Demonstration that changes to a list that occur inside a function are visible outside

the function.

1 >>> def doubler(xlist):

160 CHAPTER 7. MORE ON FOR-LOOPS, LISTS, AND ITERABLES

2 ... for i in range(len(xlist)):

3 ... xlist[i] = 2 * xlist[i]

4 ...

5 >>> zlist = [1, 2, 3] # Create list of integers.

6 >>> print(zlist) # Check contents.

7 [1, 2, 3]

8 >>> doubler(zlist) # Call doubler().

9 >>> print(zlist) # See that contents have doubled.

10 [2, 4, 6]

In line 5 zlist is created with three integer elements. The print() statement in line 6 displays

the contents of the list. The doubler() function is called in line 8. Thus, within the function

itself, xlist (the formal parameter of the function) serves as an alias for zlist. We see, with

the print() statement in line 9, that the elements of zlist were indeed doubled.

To further illustrate how lists behave when involved in assignment operations, Fig. 7.1 de-

picts the contents of a namespace as various statements involving a list are executed. Recall

that the “Name” portion of a namespace is a collection of identifiers and it is the role of the name-

space to associate these identifiers with objects. In Python, a list is a form of “container.” As

such, each element of a list can reference (i.e., be associated with) any other type of object. In

Fig. 7.1(a) we assume the statement x = [2, "two"] has been issued. The literal list [2,

"two"] is stored in memory by creating a container of two elements. This is depicted by [·,·]

where the dots can be references to any other object. The first element of this container refers to

the integer 2 while the second element refers to the string two. The assignment operator is used

to associate the indentifier x with this list.

Figure 7.1(b) indicates the effect of using the append() method to append an object to the

list: the container grows by an additional element. Note that the expression that appears in the

argument of the append() method is evaluated prior to appending the object to the end of the

list. In Fig. 7.1(c) the identifier y is assigned x. This merely serves to associate y with the same

object to which x currently refers. In Fig. 7.1(d) the second element of y is assigned x the sum of

the first and third elements of x. But, there is only one list stored in memory so we would have

used any combination of the identifiers x and y in this statement and the outcome would have been

the same. In Fig. 7.1(e), the identifier x is assigned the integer value 5. Thus, x no longer refers to

the list, but this assignment does not affect the value of y.

Now consider the namespace depicted in Fig. 7.2 where the statement that gave rise to this

arrangement of objects is given above the namespace. To the right of the assignment operator is a

list of lists. Thus, some of the elements of the various containers refer to other containers.

The object associated with any element of any of these lists can be changed because lists are

mutable and there are no restrictions to what an element of a container refers. Furthermore, the

lengths of the lists may be changed using the appropriate methods.6

6The methods append() and extend() will increase the length of a list while pop() and remove() can

be used to remove elements from a list and hence decrease the length.

7.3. REFERENCES AND LIST MUTABILITY 161

x = [2, “two”]
(a)

x = [2, “two”]

x.append(4 / 2)

(b)

Namespace
Names Objects

x

“two”
2

[,]

x = [2, “two”]

x.append(4 / 2)

y = x

(c)

x = [2, “two”]

x.append(4 / 2)

y = x

y[1] = x[0] + x[2]

(d)

x = [2, “two”]

x.append(4 / 2)

y = x

y[1] = x[0] + x[2]

x = 5

(e)

Namespace
Names Objects

x [, ,]

2
“two”
2.0

Namespace
Names Objects

x [, ,]

y
2

“two”
2.0

Namespace
Names Objects

x [, ,]

y
2

4.0
2.0

Namespace
Names Objects

x [, ,]

y
2

4.0
2.0
5

Figure 7.1: Depiction of the behavior of a namespace when various statements are issued involving

a list.

162 CHAPTER 7. MORE ON FOR-LOOPS, LISTS, AND ITERABLES

xlist = [”one”, [2, [3, 4]], [5, 6, 7]]

Namespace
Names Objects

xlist

“one”

[, ,]

[,]

[,]

[, ,]

2

7
6

5

43

Figure 7.2: Depiction of a namespace after the assignment of a list of lists to the identifier

xlist. The statement corresponding to the depiction is shown above the namespace.

7.4 Strings as Iterables or Sequences

We will have much more to say about strings in Chap. 9, but it is appropriate now to consider a

couple of aspects of strings. As you know, strings are a sequential collection of characters. As such,

each character has a well defined position within the string. This is similar to the elements within

lists and tuples. Thus, it may come as no surprise that we can access individual characters

in a string by indicating the desired character with an integer index enclosed in square brackets

following the string. As with lists and tuples, an index of 0 is used for the first character of

a string—the index represents the offset from the beginning. Additionally, the len() function

provides the length of a string, i.e., the total number of characters. The individual characters of a

string are themselves strings (with lengths of 1).7

Listing 7.22 illustrates accessing individual characters of a string by explicit indexing.

Listing 7.22 Explicit indexing used to access the characters of a string. As with tuples and

lists, the index represents the offset from the beginning.

1 >>> hi = "Hello World!"

2 >>> hi[0] # First character.

3 ’H’

4 >>> hi[6] # Seventh character.

5 ’W’

6 >>> len(hi) # Length of string.

7 12

8 >>> hi[len(hi) - 1] # Last character.

9 ’!’

10 >>> print(hi[0], hi[1], hi[5], hi[7], hi[9], hi[10], hi[11], sep = "")

11 He old!

7In some computer languages individual characters have a different data type than strings, but this is not the case

in Python.

7.4. STRINGS AS ITERABLES OR SEQUENCES 163

Listing 7.23 demonstrates how a for-loop can be used with explicit indexing to loop over all

the characters in a string. In line 1 the string "Hey!" is assigned to the variable yo. The header

of the for-loop in line 2 is constructed to cycle through all the valid indices for the characters of

yo. The body of the for-loop, in line 3, prints the index and the corresponding character.

Listing 7.23 Use of a for-loop and explicit indexing to loop over all the characters in a string.

1 >>> yo = "Hey!"

2 >>> for i in range(len(yo)):

3 ... print(i, yo[i])

4 ...

5 0 H

6 1 e

7 2 y

8 3 !

There is another way to loop over the individual characters of a string. Another feature that

strings share with lists and tuples is that they are iterables8 and thus can be used directly as

the iterable in the header of a for-loop. This is demonstrated in Listing 7.24.

Listing 7.24 Demonstration that a string can be used as the iterable in the header of a for-loop.

When a string is used this way, the loop variable is successively set to each individual character of

the string for each pass of the for-loop.

1 >>> yo = "Hey!"

2 >>> for ch in yo:

3 ... print(ch)

4 ...

5 H

6 e

7 y

8 !

Note that individual characters of strings can be accessed via an index. Similarly, individual

elements of tuples and lists can be accessed via an index. Objects whose contents can be

accessed in this way are known as sequences.9 Recall that a tuple differs from a list in that a

tuple is immutable while a list is mutable (its elements can be changed). A string is similar to

a tuple in that the individual characters of a string cannot be changed, i.e., a string is immutable.

8Technically, an iterable is any object that has either a iter () or getitem () method. Behind the scenes

Python uses these methods to get the values of the iterable. But, this sort of detail really doesn’t concern us.
9A sequence is an object that has a getitem () method. Thus, sequences are automatically iterables, but the

converse is not true: not all iterables are sequences. Assume s is a sequence (whether a string, list, or tuple).

When we write s[i] Python essentially translates this to s. getitem (i). You can, in fact, use this method call

yourself to confirm that the brackets are really just providing a shorthand for the calling of getitem ().

164 CHAPTER 7. MORE ON FOR-LOOPS, LISTS, AND ITERABLES

7.5 Negative Indices

In addition to the positive indexing we have been using, an element of a sequence can also be

specified using a negative index. In terms of negative indexing, the last element of a sequence has

an index of -1. When the last element of a sequence is desired, it is generally more convenient to

use negative indexing. For example, if one is interested in the last element of the list xlist, it

is certainly more convenient to write xlist[-1] than xlist[len(xlist) - 1].

Listing 7.25 shows the positive and negative indices for the string "Hello!". The positive

indices vary between zero and one less than the length (corresponding to the first and last char-

acters, respectively). The negative indices vary between the negative of the length to -1 (again,

corresponding to the first and last characters, respectively).

Listing 7.25 Positive and negative indices for the string "Hello!".

0 1 2 3 4 5 <=> Positive indices

+---+---+---+---+---+---+

| H | e | l | l | o | ! |

+---+---+---+---+---+---+

-6 -5 -4 -3 -2 -1 <=> Negative indices

Listing 7.26 demonstrates negative indexing to access characters of a string. A six-character

string is created in line 1 and assigned to the variable hi. The first element is accessed in line 2

by explicitly putting the negative index corresponding to the first character. In line 4 the len()

function is used to obtain an expression that, in general, produces the first character of a string of

arbitrary length. In line 6 the last character of the string is accessed.

Listing 7.26 Demonstration of negative indexing for a string. Elements of a tuple or a list

can also be accessed using negative indexing.

1 >>> hi = "Hello!" # Create a six-character string.

2 >>> hi[-6] # Explicitly access first element.

3 ’H’

4 >>> hi[-len(hi)] # General construct for accessing first element.

5 ’H’

6 >>> hi[-1] # Last element of string.

7 ’!’

8 >>> for i in range(1, len(hi) + 1):

9 ... print(-i, hi[-i])

10 ...

11 -1 !

12 -2 o

13 -3 l

14 -4 l

15 -5 e

16 -6 H

7.6. SLICING 165

The for-loop in lines 8 and 9 cycles through all the negative indices which are displayed in the

output together with the corresponding character.

Although these examples used strings, negative indexing behaves the same way when accessing

the elements of tuples and lists.

7.6 Slicing

Slicing provides a convenient way to extract or access a subset of a sequence. In many ways

slicing is akin to the two-argument or three-argument forms of the range() function. To obtain

a slice of a sequence, one specifies an integer start value and an integer stop value. These

values are given in square brackets following the sequence (where one would normally provide a

single index). These start and stop values are separated by a colon. The resulting slice is the

portion of the original sequence that starts from the index start and ends just before stop. For

example, assuming xlist is a list and that the start and stop values are both non-negative,

the expression

xlist[start : stop]

returns a new list with elements

[xlist[start], xlist[start + 1], ..., xlist[stop - 1]]

If start is omitted, it defaults to 0. If stop is omitted, it defaults to the length of the sequence.

As a slight twist on the description above, positive or negative indices can be used for either the

start or stop value. As before, when one index is positive and the other negative, the resulting

slice starts with the specified start index and progresses up to, but does not include, the stop

index. However, when using indices of mixed sign, one cannot interpret the resulting slice in terms

of the indexing shown above (where the index of successive elements is incremented by +1 from

the start). Instead, one has to translate a negative index into its equivalent positive value. This

fact will become more clear after considering a few examples.

Listing 7.27 provides various examples of slicing performed on a string. The comments in the

code provide additional information.

Listing 7.27 Demonstration of slicing a string.

1 >>> # 0123456789012345 -> index indicator

2 >>> s = "Washington State" # Create a string.

3 >>> s[1 : 4] # Second through fourth characters.

4 ’ash’

5 >>> s[: 4] # Start through fourth character.

6 ’Wash’

7 >>> s[4 : 6] # Fifth and sixth characters.

8 ’in’

9 >>> s[4 :] # Fifth character through the end.

10 ’ington State’

11 >>> s[-3 :] # Third character from end to end.

166 CHAPTER 7. MORE ON FOR-LOOPS, LISTS, AND ITERABLES

12 ’ate’

13 >>> # Fifth from start to (but not including) third from end.

14 >>> s[4 : -3] # Equivalent to s[4 : 13]

15 ’ington St’

16 >>> # Tenth from end through tenth from start.

17 >>> s[-10 : 10] # Equivalent to s[6 : 10]

18 ’gton’

19 >>> s[-9 : -2] # Negative start & stop.

20 ’ton Sta’

21 >>> s[7 : 14] # Positive start & stop; equiv. to previous expression.

22 ’ton Sta’

23 >>> s[:] # The entire sequence.

24 ’Washington State’

In line 14 and line 17 slices are obtained that use indices with mixed signs. The slice of s[4 :

-3] is equivalent to the slice s[4 : 13]. Note that if the range() function were passed

these start and stop values, i.e., range(4, -3), it would not produce any integers. Thus,

although slicing is closely related to the range() function, there are some differences.

Note the expression in line 23. Both the start and stop values are omitted so that these take

on the default values of 0 and the length of the string, respectively. Thus, the resulting slice, shown

in line 24, is the entire string. This last expression may seem rather silly, but it can actually prove

useful in that slices return copies of the original sequence. If the slice is specified by [:], then

Python will make a copy of the entire sequence. This can come in handy when one needs to make

a copy of an entire list.

Listing 7.28 provides an example where an “original” list is assigned to xlist in line 1. A

slice that spans all of xlist is assigned to ylist in line 2. In line 3 zlist is simply assigned

the value xlist. As we know from Listing 7.19, zlist is an alias for xlist. But, ylist

is a completely independent copy of the original data. As lines 6 through 11 illustrate, changes

to xlist do not affect ylist and, likewise, changes to ylist do not affect xlist. The is

operator is used in line 15 to confirm what we already know: xlist and ylist point to different

memory locations.

Listing 7.28 Demonstration that a slice can be used to obtain an independent copy of an entire

list.

1 >>> xlist = [1, 2, 3] # Original list.

2 >>> ylist = xlist[:] # Independent copy of list.

3 >>> zlist = xlist # Alias for original list.

4 >>> print(xlist, ylist, zlist) # Show lists.

5 [1, 2, 3] [1, 2, 3] [1, 2, 3]

6 >>> xlist[1] = 200 # Change original list.

7 >>> print(xlist, ylist, zlist) # See change in original but not copy.

8 [1, 200, 3] [1, 2, 3] [1, 200, 3]

9 >>> ylist[2] = 300 # Change copy.

10 >>> print(xlist, ylist, zlist) # See change in copy but not "original."

11 [1, 200, 3] [1, 2, 300] [1, 200, 3]

7.6. SLICING 167

12 >>> zlist[0] = 100 # Change original via the alias.

13 >>> print(xlist, ylist, zlist) # See change in original but not copy.

14 [100, 200, 3] [1, 2, 300] [100, 200, 3]

15 >>> xlist is ylist # Use is to show original and copy are different.

16 False

A slice can be specified with three terms (or three arguments). The third term is the step or

increment and it is separated from the stop value by a colon. So, for the list xlist, one can

write

xlist[start : stop : increment]

When the increment is not provided, it defaults to 1. The increment may be negative. When

the increment is negative, this effectively inverts the default values for start and stop. For a

negative increment the default start is -1 (i.e., the last element or character) and the default

start is the negative of the quantity length plus one (e.g., -(len(xlist) + 1)). As will be

demonstrated in a moment, by doing this, if one uses an increment of -1 and the default start

and stop, the entire sequence is inverted.

Listing 7.29 demonstrates slicing where an increment is specified. In lines 2, 4, and 7 an in-

crement of 2 is used to obtain every other character over the specified start and stop values.

In lines 9, 11, and 13 the increment is -1 so that characters are displayed in reverse order. The

expression in line 9 inverts the entire string as does the expression in line 13. However the expres-

sion in line 9 relies on the default start and stop values while the expression in line 13 gives

these explicitly.

Listing 7.29 Demonstration of slicing where the increment is provided as the third term in brack-

ets.

1 >>> s = "Washington State"

2 >>> s[: : 2] # Every other character from the start.

3 ’Wsigo tt’

4 >>> s[5 : : 2] # Every other character from the sixth.

5 ’ntnSae’

6 >>> # Every other character from sixth, excluding last character.

7 >>> s[5 : -1 : 2]

8 ’ntnSa’

9 >>> s[: : -1] # Negative increment -- invert string.

10 ’etatS notgnihsaW’

11 >>> s[10 : 1 : -1] # Eleventh character to third; negative increment.

12 ’ notgnihs’

13 >>> s[-1 : -len(s) - 1 : -1]

14 ’etatS notgnihsaW’

For slices it is not an error to specify start or stop values that are out of range, i.e., specify

indices that are before the beginning or beyond the end of the given sequence. It is, however, an

error to specify an individual index that is out of range. This is demonstrated in Listing 7.30. A

168 CHAPTER 7. MORE ON FOR-LOOPS, LISTS, AND ITERABLES

three-element list is created in line 1. In line 2 a slice is created that specifies the start is the

second element and the stop value is beyond the end of the list. The result, shown in line 2,

starts at the second element and goes until the end of the list. Similarly, in line 4, the start value

is before the first element and the stop value says to stop before the second element. The result,

in line 5, is simply the first element of the list. In line 6 the start value is before the start of the

list and the stop value is beyond the end. In this case, the result is the entire list as shown

in line 7. The next two statements, in lines 8 and 12, show that if we try to access an individual

element outside the range of valid indices, we obtain an IndexError.

Listing 7.30 Demonstration that out-of-range values can be given for a slice but cannot be given

for an individual item in a sequence.

1 >>> xlist = [’a’, ’b’, ’c’]

2 >>> xlist[1 : 100] # Slice: Stop value beyond end.

3 [’b’, ’c’]

4 >>> xlist[-100 : 1] # Slice: Start value before beginning.

5 [’a’]

6 >>> xlist[-100 : 100] # Slice: Start and stop out of range.

7 [’a’, ’b’, ’c’]

8 >>> xlist[-100] # Individual element out of range.

9 Traceback (most recent call last):

10 File "<stdin>", line 1, in <module>

11 IndexError: list index out of range

12 >>> xlist[100] # Individual element out of range.

13 Traceback (most recent call last):

14 File "<stdin>", line 1, in <module>

15 IndexError: list index out of range

7.7 list Comprehension (optional)

We often need to iterate through the elements of a list, perform operation(s) on those elements,

and store the resulting values in a new list, leaving the original list unchanged. Although this

can be accomplished using a for-loop, to make this pattern easier to implement and more concise,

Python provides a construct known as list comprehension. The syntax may look strange at first,

but if you understand the fundamentals of lists and for-loops you have all the tools you need

to understand list comprehensions!10

Recall the function doubler() from Listing 7.21 that doubled the elements of a list. This

doubling was done “in place” such that the list provided as an argument to the function had its el-

ements doubled. Now we want to write a function called newdoubler() that, like doubler(),

doubles every element of the list provided as an argument. However, newdoubler() does not

modify the original list argument. Instead, it returns a new list whose elements are double

10Despite the elegance and utility of list comprehensions, they will not be used in the remainder of this book and

hence the material in this section is not directly relevant to any material in the subsequent chapters.

7.7. LIST COMPREHENSION (OPTIONAL) 169

those of the list argument while the elements of the original list are unchanged. (You can

think of the “new” of newdoubler() as being indicative of the fact that this function returns a

new list.) Listing 7.31 provides the code for newdoubler() and demonstrates its behavior.

The code is discussed further following the listing.

Listing 7.31 A modified version of doubler() from Listing 7.21 that returns a new list.

1 >>> def newdoubler(xlist):

2 ... doublelist = []

3 ... for x in xlist:

4 ... doublelist.append(2 * x)

5 ... return doublelist

6 ...

7 >>> mylist = [1, 2, 3]

8 >>> newdoubler(mylist)

9 [2, 4, 6]

10 >>> doubledlist = newdoubler(mylist)

11 >>> doubledlist

12 [2, 4, 6]

13 >>> mylist

14 [1, 2, 3]

In line 1 we see that newdoubler() has a single formal parameter xlist. In line 2, the first

statement of the body of the function, doublelist is assigned to the empty list. doublelist

serves as an accumulator into which we append the doubled values from xlist. This is ac-

complished with the for-loop in lines 3 and 4. Finally, after the loop is complete, in line 5

doublelist is returned.

Outside the function, in line 7, mylist is set equal to a list of three integers. In line 8

mylist is passed to newdoubler() and we see the returned list in line 9. The values of

this list are double those of mylist. newdoubler() is called again in line 10 and the return

value stored as doubledlist. Lines 11 through 14 demonstrates that doubledlist contains

the doubled values from mylist.

Now that we understand newdoubler() consider the code shown in Listing 7.32 where we

now use list comprehension to obtain the doubled list. The code is discussed following the

listing.

Listing 7.32 Demonstration of list comprehension in which a new list is produced where the

value of its elements are twice that of an existing list.

1 >>> mylist = [1, 2, 3]

2 >>> # Use list comprehension to obtain a new list where the values are

3 >>> # twice that of mylist.

4 >>> [2 * x for x in mylist]

5 [2, 4, 6]

6 >>> def lcdoubler(xlist):

170 CHAPTER 7. MORE ON FOR-LOOPS, LISTS, AND ITERABLES

7 ... return [2 * x for x in xlist]

8 ...

9 >>> doubledlist = lcdoubler(mylist)

10 >>> doubledlist

11 [2, 4, 6]

12 >>> mylist

13 [1, 2, 3]

In line 1 we again assign mylist to a list of three integers. Line 4 provides a list com-

prehension expression that produces a new list where the values are double those of mylist.

(The details of this expression will be considered further below.) Given that we can create a new

list this way, in lines 6 and 7 we define the function lcdoubler() that has a single argument

xlist. The body of the function is merely a return statement that returns the list produced

by the list comprehension expression. Lines 9 through 13 demonstrate that lcdoubler()

behaves in the same way as newdoubler() (ref. Listing 7.31).

Both lcdoubler() and newdoubler() accomplish the same task, doubling the elements

in a list and returning a new list, but using list comprehension lcdoubler() accom-

plishes in two lines what newdoubler() did in five! list comprehensions can make code

smaller, cleaner, and more readable. Of course, until you become comfortable with the syntax of

list comprehensions, you may not find them “more readable” than the for-loop constructs we

have previously discussed. But, you don’t need to work with list comprehensions for long be-

fore you realize they are really just a slight syntactic variation on using accumulators, for-loops,

and lists to construct a new list from the elements of an existing list. Now, however, is an

appropriate time to point out we are not restricted to constructing the new list from an existing

list. As will be shown, the new list can be constructed from any iterable (such as a tuple

or a string).

Let’s take another look at the list comprehension in line 4 of Listing 7.32 which is repeated

below:

[2 * x for x in mylist]

Given the output on line 5, we know that this list comprehension produces a new list with

values double that of mylist. Now let’s consider the various components of this expression and

see how it works.

The syntax for a list comprehension consists of brackets containing an expression followed

by a for clause. Although this clause can be followed by any number of additional for and

if clauses,11 we will only consider the simplest form of list comprehension with a single for

clause. Recall the pattern we are trying to implement: the creation of a new list based on the

values in an existing list (or the values from some other iterable). Assuming this new list has

the “placeholder” name of <accumulator>, the following is a template for implementing this

pattern using a for-loop:

<accumulator> = []

for <item> in <iterable>:

11The initial for clause can actually be preceeded by an if clause to perform a form of filtering. if statements

are considered in Chap. 11, but not in the context of list comprehensions.

7.8. CHAPTER SUMMARY 171

<accumulator>.append(<expression>)

In contrast to this, the following is the template for accomplishing the same thing using list

comprehension where everything to the right of the assignment operator (equal sign) is the actual

list comprehension:

<accumulator> = [<expression> for <item> in <iterable>]

Of course, with list comprehension, we aren’t obligated to assign the list to an accumulator.

We could, for example, have the list comprehension entered directly at the interactive prompt

(such as in line 4 of Listing 7.32), or be part of a return statement (such as in line 7 of Listing

7.32), or appear directly as the argument of a print() statement.

In the list comprehensions in Listing 7.32 we didn’t use explicit indexing, but this is certainly

an option just as it is within for-loops. This is illustrated in Listing 7.33. In line 2 a list

comprehension is again used to double the values of list, but here explicit indexing is used. As

we saw from the previous examples, we do not need to use indexing to accomplish this doubling.

However, in lines 4 and 5 we define a function called scaler() that “scales” each element of a

list based on its index (elements are scaled by the sum of their index plus one). Lines 7 through

10 demonstrate that this function returns the proper result whether passed a list of numbers or

strings.

Listing 7.33 Demonstration of the use of explicit indexing within list comprehensions.

1 >>> mylist = [1, 2, 3]

2 >>> [2 * mylist[i] for i in range(len(mylist))]

3 [2, 4, 6]

4 >>> def scaler(xlist):

5 ... return [(i + 1) * xlist[i] for i in range(len(xlist))]

6 ...

7 >>> scaler(mylist)

8 [1, 4, 9]

9 >>> scaler([’a’, ’b’, ’c’, ’d’])

10 [’a’, ’bb’, ’ccc’, ’dddd’]

7.8 Chapter Summary

One for-loop can be nested inside another.

One list can be nested inside another. Ele-

ments of the outer list are specified by one

index enclosed in brackets. An element of an in-

terior list is specified by two indices enclosed

in two pairs of brackets. The first index spec-

ifies the outer element and the second element

specifies the inner element. For example, if x

corresponds to the list [[1, 2], [’a’,

’b’, ’c’]], then x[1] corresponds to

[’a’, ’b’, ’c’] and x[1][2] corre-

sponds to ’c’.

Nesting can be done to any level. Specification

of an element at each level requires a separate

172 CHAPTER 7. MORE ON FOR-LOOPS, LISTS, AND ITERABLES

index.

Simultaneous assignment can be used to assign

values to multiple loop variables in the header

of a for-loop.

lists are mutable, i.e., the elements of a list

can be changed without creating a new list.

When a list is assigned to a variable, the vari-

able becomes a reference (or alias) to the list.

If one list variable is assigned to another, both

variables point to the same underlying list.

When a list is changed, it is changed glob-

ally.

Strings can be used as the iterable in a for-

loop header in which case the loop variable is

assigned the individual characters of the string.

Negative indexing can be used to specify an el-

ement of a sequence (e.g., a string, list, or

tuple). The last element of a sequence has an

index of -1. The first element of a sequence s

has an index of -len(s).

Slicing is used to obtain a portion of a sequence.

For a sequence s a slice is specified by

s[<start> : <end>]

or

s[<start> : <end> : <inc>]

The resulting sequence takes elements from s

starting at an index of <start> and going up

to, but not including, <end>. The increment

between successive elements is <inc> which

defaults to 1. The start and end values can be

specified with either positive or negative index-

ing. <start> defaults to 0. <end> defaults to

the length of the sequence. inc may be nega-

tive. When it is negative, the default <start>

is -1 and the default <end> is -len(s) - 1.

Reversal of a sequence can be achieved using [

: : -1], and a list, e.g., xlist, can be

copied using xlist[:].

7.9 Review Questions

1. What output isproduced by the following code?

xlist = [1, [1, 2], [1, 2, 3]]

print(xlist[1])

2. What output is produced by the following code?

xlist = [1, [1, 2], [1, 2, 3]]

print(xlist[1][1])

3. What output is produced by the following code?

xlist = [1, [1, 2], [1, 2, 3]]

print(xlist[1] + [1])

4. What output is produced by the following code?

def sum_part(xlist, n):

sum = 0

for x in xlist[n]:

7.9. REVIEW QUESTIONS 173

sum = sum + x

return sum

ylist = [[1, 2], [3, 4], [5, 6], [7, 8]]

x = sum_part(ylist, 2)

print(x)

5. Assume xlist is a list of lists where the inner lists have two elements. The second

element of these inner lists is a numeric value. Which of the following will sum the values

of the second element of the nested lists and store the result in sum?

(a) sum = 0

for item in xlist:

sum = sum + item[1]

(b) sum = 0

for one, two in xlist:

sum = sum + two

(c) sum = 0

for i in range(len(xlist)):

sum = sum + xlist[i][1]

(d) All of the above.

6. What output is produced by the following code?

for i in range(3):

for j in range(3):

print(i * j, end="")

(a) 123246369

(b) 0000012302460369

(c) 000012024

(d) None of the above.

7. What output is produced by the following code?

s = "abc"

for i in range(1, len(s) + 1):

sub = ""

for j in range(i):

sub = s[j] + sub

print(sub)

174 CHAPTER 7. MORE ON FOR-LOOPS, LISTS, AND ITERABLES

(a) a

ba

cba

(b) a

ab

abc

(c) a

ab

(d) This code produces an error.

8. What output is produced by the following code?

s = "grasshopper"

for i in range(1, len(s), 2):

print(s[i], end="")

(a) gasopr

(b) gr

(c) rshpe

(d) rshper

9. What output is produced by the following code?

x = [7]

y = x

x[0] = x[0] + 3

y[0] = y[0] - 5

print(x, y)

10. What output is produced by the following code?

x = [7]

y = x

x = [8]

print(x, y)

11. What output is produced by the following code?

x = [1, 2, 3, 4]

y = x

y[2] = 0

z = x[1 :]

x[1] = 9

print(x, y, z)

7.9. REVIEW QUESTIONS 175

12. What output is produced by the following code?

s = "row"

for i in range(len(s)):

print(s[: i])

(a)

r

ro

(b) r

ro

row

(c) ro

row

(d) None of the above.

13. What output is produced by the following code?

s = "stab"

for i in range(len(s)):

print(s[i : 0 : -1])

(a) s

ts

ats

bats

(b)

t

at

bat

(c)

s

st

sta

(d) None of the above.

14. What output is produced by the following code?

s = "stab"

for i in range(len(s)):

print(s[i : -5 : -1])

176 CHAPTER 7. MORE ON FOR-LOOPS, LISTS, AND ITERABLES

(a) s

ts

ats

bats

(b)

t

at

bat

(c)

s

st

sta

(d) None of the above.

15. What output is produced by the following code?

s = "stab"

for i in range(len(s)):

print(s[0 : i : 1])

(a) s

ts

ats

bats

(b)

t

at

bat

(c)

s

st

sta

(d) None of the above.

ANSWERS: 1) [1, 2]; 2) 2; 3) [1, 2, 1]; 4) 11; 5) d; 6) c; 7) a; 8) c; 9) [5] [5];

10) [8] [7]; 11) [1, 9, 0, 4] [1, 9, 0, 4] [2, 0, 4]; 12) a; 13) b; 14) a; 15)

c.

	More on for-Loops, Lists, and Iterables
	for-Loops within for-Loops
	lists of lists
	Indexing Embedded lists
	Simultaneous Assignment and lists of lists

	References and list Mutability
	Strings as Iterables or Sequences
	Negative Indices
	Slicing
	list Comprehension (optional)
	Chapter Summary
	Review Questions

