
MATLAB and Complex Numbers

The following provides an introduction to some of the ways MATLAB can be used to work with
complex numbers. After covering some basic concepts, we will work through an example using a
circuit assumed to be in the sinusoidal steady state. We will also illustrate the use of some of the
plotting capabilities of MATLAB.

MATLAB can be used as a calculator that is as comfortable with complex numbers as it is with
real numbers. After starting MATLAB, in the “Command Window” you should see the prompt >>.
You type your input at this prompt and then hit return/enter. For example, the following shows the
result of multiplying 6 and 7, the result of taking the square root of 42, and the result of raising 2
to the 20th power (“ˆ” is the exponentiation operator).

1 >> 6 * 7
2 ans =
3 42
4 >> sqrt(42)
5 ans =
6 6.4807
7 >> 2ˆ20
8 ans =
9 1048576

Note that the numbers shown to the left are line numbers that are provided in these notes merely
for the sake of reference. You will not see these in the Command Window.

When you enter a command at the >> prompt, the result is shown to you and the results is
stored in the variable ans. You can store values or results to names of your own choosing. Vari-
able names must start with a letter which can be followed by any number of letters, digits, or
underscore characters. To suppress results from being shown, end the statement with a semicolon
(;). (Suppression of output will become important latter when you are dealing with large collec-
tions of data.) To see the value of a variable, enter the variable name and hit return. The following
illustrates these behaviors.

1 >> 6 * 7;
2 >> ans
3 ans =
4 42
5 >> a1 = sqrt(42)
6 a1 =
7 6.4807
8 >> two_to_the_20 = 2ˆ20
9 two_to_the_20 =

10 1048576

Notice that line 1 doesn’t generate any output, but behind the scenes the value of ans has been set
to 42. This fact is illustrated in lines 2 through 4.

File: matlab-n-complex-numbers.tex

1

Again, MATLAB is perfectly comfortable with complex numbers. For example, if we want the
square root of −42, we could simply enter either of the following commands.

1 >> sqrt(-42)
2 ans =
3 0.0000 + 6.4807i
4 >> sqrt(-6 * 7)
5 ans =
6 0.0000 + 6.4807i

Line 4 illustrates the fact that we can have an expression as the argument of a function.
The results shown in lines 3 and 6 indicate a real part of zero and an imaginary part of (approx-

imately) 6.4807. Typically we (in engineering) would write
√
−42 = j6.4807 where j =

√
−1.

In physics and math, i is often used to represent
√
−1 and that is the notation MATLAB uses when

it shows results. Also, importantly, in MATLAB the i or j comes at the end of the number, not
the beginning. This is a consequence of variable names starting with a letter. So, if you write i1,
and you haven’t previously defined a variable named i1, you will get an error message. Never-
theless, in MATLAB you can simply write i or j to indicate

√
−1. These are built-in MATLAB

variables1. However, as you may recall from previous programming courses, i is frequently used
as a user-defined variable name (especially in the context of indexing). MATLAB will allow you to
assign values to built-in variable names. It does this “silently” (no warning or error messages are
generated). This can lead to errors that can be avoided if you consistently write either 1i or 1.0j
to represent

√
−1 (you can interchange i and j in these two numeric representations, i.e., 1j or

1.0i also represent
√
−1). More generally, you can enter complex values simply by putting either

an i or a j at the end of the imaginary part. (Despite the fact that MATLAB uses i to indicate the
imaginary part when displaying values, it accepts either i or j for input.) If we are entering a
number that is purely imaginary, there is no need to explicitly indicate the real part is zero. The
following illustrates these behaviors.

1 >> 1i * 1.0j
2 ans =
3 -1
4 >> 6.4807iˆ2
5 ans =
6 -41.9995
7 >> i * j
8 ans =
9 -1

10 >> i = 3;
11 >> j = 2;
12 >> i * j
13 ans =
14 6
15 >> i1
16 Undefined function or variable ’i1’.

1Technically they are built-in functions, but that distinction isn’t really important to us.

2

17 >> 1i
18 ans =
19 0.0000 + 1.0000i

Note that in line 1 we uses both i and j to indicate the imaginary part of the number (and these
numbers are purely imaginary). As you can see, that mixture is perfectly fine. In line 4 we square
j6.4807 which was what we were previously told was the square root of −42. As shown in line
6, the result is not what we expected. The problem is that, by default, MATLAB does not display
all its digits of precision (and, even if it did, because the square root of 42 is irrational, we would
never get the true exact result). We’ll return to this point in a moment. In lines 7 through 9 we
see that indeed MATLAB says that i times j is −1. However, in lines 10 and 11 we overwrite the
built-in values of i times j. MATLAB is happy to let us do this! Now, as we see in lines 12 to
14, i times j is 6. Lines 15 and 16 shows that, because we have not previously defined a variable
names i1, we get an error if we try to use that variable name. However, in lines 17 through 19 we
again see that 1i is the same as

√
−1. This will always be true (there is simply no way to change

1i to be anything other than
√
−1).

If we continue with the code we’ve written so far, we now have i and j set to 2 and 3. We can
clear the value of a variable, thus returning it to its built-in value—assuming it has one or making
the variable name undefined if it doesn’t have a built-in value—by using the clear command.
We can clear selected variables by specifying them individually or we can clear all variables by
simply entering the command clear by itself. Before demonstrating this, note that you can put
multiple statements on a single line by separating them with semicolons.

1 >> i = 3; j = 2; abc = 123;
2 >> i * j * abc
3 ans =
4 738
5 >> clear i
6 >> i * j * abc
7 ans =
8 0.0000e+00 + 2.4600e+02i
9 >> clear

10 >> i * j * abc
11 Undefined function or variable ’abc’.
12 >> abc = 123;
13 >> i * j * abc
14 ans =
15 -123

Lines 2 through 4 shows that the product of the current values of i, j, and abc is 738. In line 5, the
current value of i is cleared, returning it to its built-in value corresponding to

√
−1. This is veri-

fied in lines 6 through 8 where we now see this product is equal to j246. Note that MATLAB uses
the standard floating-point notation for the exponential representation used by many programming
languages and calculators where “e+nn” is equivalent to 10nn. Thus, 2.4600e+02i is equal to
j2.46 × 102 = j246. (“e-nn” is equivalent to 10−nn.) In line 9 we use clear to clear all the
variables. Thus, when we attempt to multiply i, j, and abc we get an error because abc is now

3

undefined. In line 12 we reset the value of abc to 123. Now when we multiply i, j, and abc we
get −123 because both i and j are set equal to

√
−1.

Let’s return to the fact that we didn’t get −42 in the previous listing when we thought we
were squaring its square root, i.e., when we squared 6.4807i we didn’t get −42. By using the
“format” command we can tell MATLAB we want to see more (or fewer) digits in the echoed
output. This command does not affect the accuracy of the underlying operations—this merely
affects what is shown.

Before turning to more code, note that a comment in MATLAB is indicated with the percent
sign (%). The percent sign and everything that follows it on a line is ignored. You can start a line
with an expression to be executed and also include a comment on the remainder of the line. So,
let’s try again to obtain −42 via its square root.

1 >> format long % Display more digits of precision.
2 >> sqrt(-42)
3 ans =
4 0.000000000000000 + 6.480740698407860i
5 >> % See what the square of this more accurate value is.
6 >> 6.480740698407860i ˆ 2
7 ans =
8 -42

There! That’s more like it. We get the expected result of −42 when we use the additional digits
of accuracy. As something of an aside, in line 6 space was added between the exponentiation
operator and its operands. This was done merely to demonstrate that MATLAB doesn’t care about
whitespace in such expressions.

Now, let’s set the display (i.e., format) of numbers back to the default value of short and
also illustrate that behind the scenes MATLAB maintains all the digits of accuracy it has available.

1 >> % Return to default display format which is short.
2 >> format short
3 >> life = sqrt(-42)
4 life =
5 0.0000 + 6.4807i
6 >> life * life
7 ans =
8 -42
9 >> format long

10 >> life
11 life =
12 0.000000000000000 + 6.480740698407860i

From what we see in lines 4 and 5, it looks like the variable life has reduced precision. However,
when we square it in line 6, we get the correct value of −42. Furthermore, when we change the
format back to long, in lines 11 and 12 we see that life does indeed contain all the digits of
precision MATLAB can provide.

4

Given the discussion above, something to keep in mind is that if you use the default format
and you copy and paste values, you may be using reduced precision and, in some cases, this may
lead to results that are significantly off. You can reduce the risk of accidentally introducing ad-
ditional errors associated with finite precision if you store results to variables and then use those
variables directly in subsequent calculations.

So far we have only considered purely real or purely imaginary numbers. To get a general
complex number, as implied by the results you have seen above, you add (with the plus sign) the
real and imaginary parts. The following shows how we can multiply 3 + j4 times 5 + j12. Note
that, because multiplication has higher precedence than addition, the parentheses that appear in
the following are necessary.

1 >> (3 + 4j) * (5 + 12j) % Yields desired result.
2 ans =
3 -33.0000 +56.0000i
4 >> % The following does not yield the desired result owing
5 >> % to the multiplication occurring before the addition.
6 >> 3 + 4j * 5 + 12j
7 ans =
8 3.0000 +32.0000i

MATLAB displays complex numbers in rectangular format. To obtain the magnitude and phase
necessary for polar representation, we use the abs() and angle() functions, respectively. This
is illustrated in the following:

1 >> s = (3 + 4j) * (5 + 12j);
2 >> abs(s)
3 ans =
4 65
5 >> angle(s)
6 ans =
7 2.1033

MATLAB typically expresses angles in radians and assumes angles are input as radians. Thus,
the angle we see in line 7 is in radians. To convert between radians and degrees, we can use
rad2deg() (to convert radians to degrees) or deg2rad() (to convert degrees to radians). This
seems the appropriate point to mention that MATLAB provides the built-in variable pi correspond-
ing to π (3.1415...). MATLAB also provides the sine and cosine functions via sin() and cos().
These functions assume arguments in radians.

1 > s = (3 + 4j) * (5 + 12j);
2 >> theta = angle(s)
3 theta =
4 2.1033
5 >> rad2deg(theta)
6 ans =
7 120.5102

5

8 >> cos(theta)
9 ans =

10 -0.5077
11 >> sin(theta)
12 ans =
13 0.8615
14 >> pi
15 ans =
16 3.1416
17 >> cos(pi/2)
18 ans =
19 6.1232e-17
20 >> sin(pi/4)
21 ans =
22 0.7071

In line 2 we set theta equal to the angle of s. In lines 5 through 7, we obtain the angle in degrees.
Lines 8 through 13 show the cosine and sine of this angle (again, the argument is assumed to be
in radians). Lines 14 through 16 show the built-in variable pi (displayed using the default short
format). As shown in lines 17 through 19, taking the cosine of pi/2 yields a very small, but non-
zero, number (the correct value of cos(π/2) is zero). This error is a consequence of finite precision
and there is nothing we can do about this. Lines 20 through 22 provide the sine of π/4 = 45◦.

MATLAB does provide versions of the sine and cosine functions that assume the arguments are
in degrees. These functions are sind() and cosd(). You are, of course, welcome to use these
functions, but please be careful when switching back and forth between radians and degrees as this
is a common source of errors.

Before turning to the circuit example, you should note that you can get help within MATLAB by
typing help followed by the thing on which you want help. In addition to demonstrating the use
of cosd() and sind(), the following shows what help returns for a couple of the MATLAB
features we have been discussing. (For brevity, some of the output has been omitted and the font
size has been reduced to permit mirroring what you would see in the Command Window.)

1 >> % Unlike with cos(pi/2), here we do get the exact result!
2 >> cosd(90)
3 ans =
4 0
5 >> sind(45)
6 ans =
7 0.7071
8 >> help i
9 i Imaginary unit.

10 As the basic imaginary unit SQRT(-1), i and j are used to enter
11 complex numbers. For example, the expressions 3+2i, 3+2*i, 3+2j,
12 3+2*j and 3+2*sqrt(-1) all have the same value.
13

14 Since both i and j are functions, they can be overridden and used

6

15 as a variable. This permits you to use i or j as an index in FOR
16 loops, etc.
17 >> help cosd
18 cosd Cosine of argument in degrees.
19 cosd(X) is the cosine of the elements of X, expressed in degrees.
20 For odd integers n, cosd(n*90) is exactly zero, whereas cos(n*pi/2)
21 reflects the accuracy of the floating point value for pi.

Sinusoidal Steady State Analysis

Consider the following circuits which is assumed to be in the sinusoidal steady state.

+

−

R1=5 Ω L=2 HC1=0.1 F

vg(t) =

5sin(10t) V

v1(t)

R2=25 ΩC2=0.2 F

Our goal is to obtain the voltage v1(t). To accomplish this, we first redraw the circuit in the
frequency domain, showing the impedance of each element. As a reminder, the impedance of a
resistor is its resistance, the impedance of an inductor is jωL, and the impedance of a capacitor is
1/(jωC). In this particular case, we see from the source that ω is 10 rad/s. Also, for convenient
conversion to the frequency domain, we can rewrite the source as vg = 5 cos(10t − π/2). The
circuit now becomes:

+

−

R1=5 Ω L=j20 Ω C1=1/j Ω

R2=25 ΩC2=1/j2 Ω
5 −π/2 V

V1

Vg =

To find the phasor V1, we can use voltage division. Let’s say the series combination of R1 and
C1 is the impedance Z1 while the inductor, R2, and C2 form the impedance Z2. The voltage V1 is
then given simply by

V1 =
Z2

Z1 + Z2

Vg. (1)

Noting that Vg = 5 −π/2 = −j5, let’s turn to MATLAB to do the dirty work. The following
illustrates one approach to obtaining a solution.

7

1 >> % z1 is the series impedance of R1 and C1.
2 >> z1 = 5 + 1/1j;
3 >> % Let zc be the impedance of C2 and zlr be the impedance of
4 >> % of the series combination of the inductor and R2.
5 >> zc = 1/2j;
6 >> zlr = 25 + 20j;
7 >> % Calculate z2 via the reciprocal of the reciprocals.
8 >> z2 = 1 / (1/zc + 1/zlr);
9 >> % Define the source voltage.

10 >> vg = -5j;
11 >> % Now obtain the desired voltage V1.
12 >> v1 = z1 / (z1 + z2) * vg
13 v1 =
14 -0.4607 - 0.1447i
15 >> % Obtain the magnitude and phase.
16 >> abs(v1)
17 ans =
18 0.4829
19 >> angle(v1)
20 ans =
21 -2.8373

We’re done! We now know the phasor voltage V1 is 0.4829 −2.8373 V. Converting this to the
time domain, we obtain v1(t) = 0.4829 cos(10t− 2.8373) V.

Note: Everything above was presented as having been entered into the Command Window.
You will likely find that, if you ever need to change anything (such as may happen when you
discover you’ve entered a typo), your life will be much easier if you enter the results in the “Live
Editor.” When you do that, nothing happens until you click the “Run” button. Once you do that,
MATLAB executes the commands you wrote “all at once.” The nice thing is if you need to change
anything, you simple make the desired changes and click “Run” again.

Plotting the Results

Let’s assume we also want to plot the results of our calculation. First, let’s determine the period
of the source function. The frequency is ω = 2πf = 10 rad/s. Thus, the frequency f is 10/(2π) =
1.5915 cycles/second (i.e., in one second the source passes through 1.5915 cycles). The reciprocal
of the frequency is the period, which we typical write as T . Hence, we have T = 1/f = 0.6283 s.
Let’s plot the source over three periods going from −T to 2T .

In MATLAB we can use the plot() command to create an x-y plot where we have to provide
two “vectors” (arrays of numbers) corresponding to x values and y values. Here we want the x
values to be evenly spaced time samples between −T and 2T . We can use the linspace()
command to provide these. This take three arguments: the starting point, the ending point, and the
total number of samples. The following demonstrates the use of linspace() to generate eight
values between −2 and 4.

8

1 >> linspace(-2, 4, 8) % Start = -2; end = 4; number of points = 8.
2 ans =
3 -2.0000 -1.1429 -0.2857 0.5714 1.4286 2.2857 3.1429 4.0000

With that background, and keeping in mind we can use a semicolon to suppress output, let’s gen-
erate 200 time samples between −T and 2T . Note that MATLAB is case sensitive so that t and T
are different variables.2

1 >> T = 0.6283; % Period.
2 >> t = linspace(-T, 2*T, 200); % An array of 200 time samples.

We can now use the sin() function to obtain the voltages vg(t) that correspond to each of these
time samples. MATLAB will distribute the sine function over each of the time samples and put
the result in a new array that we can store to a variable. Once we have that, we can simply call
plot() with the “x” and “y” arrays. The following will generate the desired plot.

1 >> vg_time = 5 * sin(10 * t);
2 >> plot(t, vg_time)

We’re calling the voltages here vg time because these are the time-domain voltages rather than
the phasor value vg used above. Rather than showing you the result of these commands, let’s
first tweak things to make the plot a bit prettier. We can add labels to the x and y axes with the
xlabel() and ylabel() commands. The arguments are the strings we want to have associated
with the x and y axes. Strings in MATLAB are enclosed in single quotes.3

We can have the plot display a grid by issuing the command “grid on”. Finally, we can
modify the “properties” of the plot by providing additional arguments to the plot() command
where we provide the property name (as a string) and its corresponding value. We can make the
plot line thicker via the LineWidth property. With this background, let’s revisit the previous two
commands and issue these commands instead:

1 >> vg_time = 5 * sin(10 * t);
2 >> plot(t, vg_time, ’LineWidth’, 2)
3 >> xlabel(’Time [seconds]’)
4 >> ylabel(’Voltage [volts]’)
5 >> grid on

This produces the figure shown below.

2Best practices would dictate that we use longer and more descriptive variable names, i.e., rather than T and t, we
should use names such as period and t samples. But we’ll momentarily ignore best practices.

3In more recent versions of MATLAB you can also enclose strings in double quotes. Technically, single quotes
create an N × 1 character array where N is the number of characters in the string while double quotes create a 1× 1
string array, but none of that matters to us and I’ll stick with single quotes.

9

-1 -0.5 0 0.5 1 1.5

Time [seconds]

-5

-4

-3

-2

-1

0

1

2

3

4

5

V
o
lt
a
g
e
 [
v
o
lt
s
]

Of course, plotting the source function isn’t very interesting because we knew that all along. So,
let’s add the voltage v1(t) to the plot. If we want to plot multiple lines on the same plot, we issue
the command “hold on” (we can turn off this feature with “hold off”).

You will notice that our plot window extended beyond the times for which we had results. We
can manually control the extend of the plot using the axis() function that has an argument that
is an array that specifies four values: the minimum and maximum values in x and the minimum
and maximum values in y. The syntax is a little mysterious for now, but because the argument is
an array, you have to enclose the values in square brackets (“[· · ·]”).

Don’t forget that you can use help to obtain a load of information about MATLAB’s various
functions. Looking at the help for plot(), you will see that we can also change a plot’s color
by providing yet another argument. The color (and line style) is specified rather cryptically via a
short string, but help provides all the information you need to decipher things. For now, we’ll
simply note that ’r’ produces a red plot.

We can add a legend to the plot with the command legend() that takes a string argument
describing each plot. We can control the font size for the legend with the ’FontSize’ property
(I find the default font size too be too small).

The following puts all this information together to generated a plot of both the input voltage
and the voltage v1. We assume that the phase v1 has been calculated as shown previously and do
not repeat those commands here.

1 >> % Plot the source function over three periods.
2 >> T = 0.6283;
3 >> t = linspace(-T, 2*T, 200);
4 >> vg_time = 5 * sin(10 * t);
5 >> plot(t, vg_time, ’LineWidth’, 2)
6 >> xlabel(’Time [seconds]’)
7 >> ylabel(’Voltage [volts]’)
8 >> grid on

10

9 >> axis([-T, 2*T, -5, 5])
10 >> % Obtain the magnitude and phase of v1.
11 >> mag = abs(v1);
12 >> phase = angle(v1);
13 >> % Generate the time-domain values of v1 and plot
14 >> % the results on the same plot as vg.
15 >> v1_time = mag * cos(10 * t + phase);
16 >> hold on
17 >> plot(t, v1_time, ’r’, ’LineWidth’, 2)
18 >> % Add a legend with an enlarged font.
19 >> legend(’v_g’, ’v_1’, ’FontSize’, 16)

These commands produce the following plot where you see the voltage v1 is significant smaller
than vg and, as we know from the previous calculations, significantly out of phase.

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2

Time [seconds]

-5

-4

-3

-2

-1

0

1

2

3

4

5

V
o
lt
a
g
e
 [
v
o
lt
s
]

v
g

v
1

Again, you will find life much more pleasant when doing things like this (i.e., plot generation
and the like) if you issue the commands in the “Live Editor.” This will allow you to easily make
changes that might otherwise be very cumbersome to realize in the “Command Window.”

11

