
MATLAB and Systems of Equations

1 Problem Statement
Consider the following circuit where our goal is to determine the power being delivered by each of
the sources. This entails finding the voltage across and the current through each device. In the case
of the 96 V independent source, we will need to determine ig; for the dependent current source, we
need to determine ib and v1; for the dependent voltage source we need to find ib and ic (since the
voltage across the source is given by 11.5ib).
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Let’s use the node-voltage technique to determine the voltages v1, v2, and v3 and from those we
can easily determine all the other circuit parameters. Solving for these voltages requires solving a
3× 3 systems of equations. This can be done by hand, of course, but let’s consider how MATLAB
can aid in this.

First, in terms of the currents, we know that

ib =
v2
R2

. (1)

Thus, the current through the dependent current source and the voltage across the dependent volt-
age source (both of which depend on ib) are

5ib = 5
v2
R2

(A), (2)

11.5ib = 11.5
v2
R2

(V). (3)

Now let’s write the node-voltage equations for v1, v2, and v3 where, for the moment, we will hold
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off on using numeric quantities.
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Regrouping in terms of v1, v2, and v3 yields(
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If we were solving this by hand, at this point we would probably enter numeric values and try to
rearrange things to give us “nice” integer coefficients. For example, considering (7), the node-
voltage equation associated with v1, we have(
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)
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5

)
v2 = 0. (10)

Multiplying through by 40 yields

(2 + 8) v1 − (5 + 8) v2 = 0, (11)

which simplifies to
10v1 − 13v2 = 0. (12)

We could perform similar operations for the other node-voltage equations. This is perfectly rea-
sonable and does make the equations more manageable, but let’s stick with the equations as they
are expressed in (7)–(9) and think about them a bit more.

In (7) the coefficient of v1 is the sum of two conductances (the reciprocal of resistance is
conductance). With node-voltage equations we can express things in terms of conductances times
voltages that are equal to currents (e.g., the right-hand side of (9) is 96 V divided by a resistance
which yields a current). In general, this boils down to a system of equations that looks like this

g11v1 + g12v2 + g13v3 = i1, (13)
g21v1 + g22v2 + g23v3 = i2, (14)
g31v1 + g32v2 + g33v3 = i3. (15)

Comparing (10) and (13), we would have g11 = (1/20 + 1/5) = 0.25, g12 = −(5/40 + 1/5) =
−0.325, g13 = 0, and i1 = 0.
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We can express these node-voltage equations in the form of a matrix equation such as g11 g12 g13
g21 g22 g23
g31 g32 g33

 v1
v2
v3

 =

 i1
i2
i3

 , (16)

or, symbolically,
¯̄Gv̄ = ı̄, (17)

where v̄ is a column vector of unknown voltages, ı̄ is a column vector of known currents, and ¯̄G
is square matrix of known conductances. To solve for the voltages we multiply both sides by the
inverse of ¯̄G, i.e.,

v̄ = ¯̄G−1ı̄. (18)

Let us now consider how MATLAB can do this for us.

2 MATLAB Solution
In MATLAB the elements of a matrix or vector are enclosed in square brackets. When entering
matrices, elements are entered row by row with the elements of each column separated by commas
or spaces. Rows are separated by a semicolon or by a new line (i.e., the <enter> or <return>
character). Assume we want to create the matrix ¯̄A that is given by

¯̄A =

[
1 2 3
4 5 6

]
.

The following are all equivalent ways of creating this 2× 3 matrix:

1 >> A=[1 2 3; 4 5 6]; % columns separated by spaces, rows by semicolon
2 >> A=[1,2,3; 4,5,6]; % columns separated by commas, rows by semicolon
3 >> A=[1 2 3 % columns separated by spaces, rows by newline
4 4 5 6];
5 >> A % Enter A by itself to see how MATLAB displays A.
6 A =
7 1 2 3
8 4 5 6

(Everything to the right of a percent sign is a comment and is ignored by MATLAB.) Although MATLAB
allows you to use spaces to separate elements in a row, I encourage you to stick with commas as it can
reduce ambiguity in certain instances.

In the listing above, note that the statements on lines 1 through 3 do not produce output but the statement
on 5 does. That is not because the statements in lines 1 through 3 have an equal sign1 in them. Instead, it
is because these lines are terminated with a semicolon. Putting a semicolon at the end of a line suppresses
output. If didn’t have semicolons at the ends of those earlier statements, they would have produced the same
output as we see in lines 6 through 8.

To pick out the element of a vector or matrix, we specify the indices enclosed in parentheses. Thus the
value in the second row and third column is specified as follows:

1As with many program languages, in MATLAB the equal sign is actually serving as the “assignment operator”
where the value on the right is assigned to the variable on the left.
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1 >> A(2, 3)
2 ans =
3 6

The elements of a row or column vector are specified with a single index. You can think of a row or
column vector as a one-dimensional matrix. (Unlike in some programming languages, such as C and C++,
in MATLAB the first element of “an array” has an index of 1.)

Assume we want to create a three-element column vector corresponding to the values on the right-hand
sides of (7)–(9). This could be created with the following commands where the statement in line 1 merely
sets the variable rc to 4.

1 >> rc = 4
2 rc =
3 4
4 >> currents = [0; 0; 96/rc] % Note use of semicolons.
5 currents =
6 0
7 0
8 24

The statement in line 4 creates the desired column vector currents. Despite currents being written
on a single line in line 4, owing to the use of semicolons to separate the elements, each succeeding element
actually correspond to a separate row (i.e., there are three rows here, which you could think of as “three
lines”). As shown in line 4, we can use an expression for the elements of a matrix or vector (the value of the
element in the third row is given by 96 divided by rc).

There are a couple other ways we could specify this column vector as shown in the following.

1 >> rc = 4;
2 >> % Use newlines to separate rows.
3 >> currents = [0
4 0
5 96/rc]
6 currents =
7 0
8 0
9 24

10 >> % Create a row vector and then transpose it.
11 >> currents = [0, 0, 96/rc]’
12 currents =
13 0
14 0
15 24

In lines 3 through 5, each value of current is provided on a new line. This serves to place each value in
a new row, thus creating the column vector. In line 11, the values are given as a row vector. However that
row vector is then transposed into a column vector. This is accomplished with the transpose operator which
is simply an apostrophe (’) that appears at the end of the row vector.2

2The transpose operator actually performs the conjugate transpose, i.e., it changes a row to a column vector (or
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Provided matrices are “conformal” (i.e., they have the proper dimensions for a given operation), we can
add, subtract, and multiply them in the usual way. These operations are performed using the usual keyboard
symbols: +, -, and *. We can also calculate the inverse of a matrix using the inv() function. So, assuming
we have a 3× 3 matrix of conductances called G and the currents defined in a three-element column vector
as shown in the previous code, we could obtain the corresponding voltages via “inv(G)*currents”.
However, the operation of inverting a matrix and multiplying it by a vector is so common in MATLAB, that
there is a special symbol for this operation: backslash (\).3 The following demonstrates this (using a ¯̄G
matrix that is rather arbitrary).

1 >> G = [2, 3, 0; 3, -2, 15; 0, 3, 1]
2 G =
3 2 3 0
4 3 -2 15
5 0 3 1
6 >> inv(G) * currents
7 ans =
8 -10.4854
9 6.9903

10 3.0291
11 >> G \ currents
12 ans =
13 -10.4854
14 6.9903
15 3.0291

We can, of course, store the results of such operations to a variable.4

Now let’s return to the circuit problem we described earlier. We want to obtain the node voltages via
the known conductance matrix and the known current vector. The following shows one way to obtain the
voltages using MATLAB where we start by setting the resistances (lines 1 and 2) and then calculate all the
terms of the conductance matrix using the expressions from (7)–(9) (lines 5–7).

1 >> r1 = 20; r2 = 40; r3 = 5; % Define the resistances.
2 >> ra = 5; rb = 10; rc = 4;
3 >> currents = [0; 0; 96/rc]; % Define currents.
4 >> % Create the conductance matrix.
5 >> G = [1/r1 + 1/ra, -(5/r2 + 1/ra), 0;
6 -1/ra, 1/r2 + 1/ra + 1/rb, -1/rb;
7 0, -(11.5/r2/r3 + 1/rb), 1/r3 + 1/rb + 1/rc]
8 G =
9 0.2500 -0.3250 0

10 -0.2000 0.3250 -0.1000
11 0 -0.1575 0.5500

vice versa), and it takes the complex conjugate of the values. Since we are only considering real values here, the
conjugation is not relevant to us.

3There is a computational difference between the backslash operator and the inv() function. Although the results
are the same, the backslash operator is more efficient so it is best to stick with that if you do not otherwise need to
calculate the full inverse.

4Although we are only working with real numbers here, were we working in the frequency domain and had complex
numbers (phasors and impedance), MATLAB handles those perfectly well.
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12 >> voltages = G \ currents % Solve for voltages.
13 voltages =
14 156.0000
15 120.0000
16 78.0000

In general, you will find that when working with problems such as this, your life will be much easier
if you work in the “Live Editor” and clicking “Run” when desired, rather than working directly in the
“Command Window.” Note that all the results that are generated via the “Live Editor” are subsequently
available in the “Command Window.” So, do the bulk of your entry in the “Live Editor” and then perform
whatever addition calculations may be necessary in the “Command Window.”

At this point, MATLAB has informed us, in lines 13 through 16 in the previous listing, that the voltages
are v1 = 156 V, v2 = 120 V, and v3 = 78 V. These voltages are stored in MATLAB as voltages(1),
voltages(2), nad voltages(3), respectively.

However, our interest was not in these voltages. Instead, we were asked for the power associated with
each of the sources. We now have all the information we need to obtain these values. For the independent
source, ig is (v3 − 96)/Rc and the power is 96ig. For the dependent current source, the current is 5ib =
5v2/R2 so the power is given by −v15v2/R2. The current associated with the dependent voltage source
is ic = (v3 − 11.5v2/R2)/R3 while the voltage itself is 11.5v2/R2. Thus, the power for this source is
(v3 − 11.5v2/R2)11.5v2/(R2R3). We can have MATLAB perform these calculations as follows:

1 >> % Power of 96 V voltage source.
2 >> p96 = 96 * (voltages(3) - 96) / rc
3 p96 =
4 -432
5 >> % Power of dependent current source.
6 >> p5i = -voltages(1) * 5 * voltages(2) / r2
7 p5i =
8 -2.3400e+03
9 >> % Power of dependent voltage source.

10 >> p115i = (voltages(3) - 11.5 * voltages(2) / r2) / r3 ...
11 * 11.5 * voltages(2) / r2
12 p115i =
13 300.1500

From line 4 we see that the independent voltage source is delivering 432 W. Line 8 shows the dependent
current source is delivering 2, 340 W (2.34 kW). And line 13 shows that the dependent voltage source is
consuming 300.15 W.

Notice that line 7 is terminated with “...” This is the way to indicate line continuation in MATLAB.
So, the complete expression is the combination of lines 7 and 8.
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