454

IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 5, 2006

Analytic Field Propagation TFSF Boundary for
FDTD Problems Involving Planar Interfaces:
Lossy Material and Evanescent Fields

Kakhkhor Abdijalilov and John B. Schneider, Member, IEEE

Abstract—Recently, total-field scattered-field (TFSF) bound-
aries have been developed for the finite-difference time-domain
(FDTD) method which are essentially perfect. The implementation
requires an analytic description of the incident field and hence is
termed the analytic field propagation (AFP) TFSF method. Pre-
vious papers described the implementation for problems involving
homogeneous as well as layered media. In this work we provide
the details for problems involving lossy media. Additionally, the
case of fields incident beyond the critical angle are considered (i.e.,
when, for lossless material, there is total reflection of the incoming
wave and the fields in the second medium are evanescent).

Index Terms—Finite-difference time-domain (FDTD) methods.

1. INTRODUCTION

HE total-field/scattered-field (TFSF) boundary, first pro-

posed in [1], is a method for introducing incident fields
into finite-difference time-domain (FDTD) grids. The TFSF
boundary separates FDTD grids into a total-field (TF) and a
scattered-field (SF) region. The nodes in the TF region represent
the sum of the incident and any scattered field while the nodes
in the SF region corresponds to only scattered fields. Nodes
tangential to the TFSF boundary will have a neighboring node
on the other side of the boundary. To obtain consistent update
equations, the incident field will either have to be subtracted
from or added to the value of that neighbor. The TFSF boundary
requires that one specify the incident field for all nodes tangen-
tial to the boundary for all time-steps. An excellent description
of the implementation of the TFSF boundary can be found in
[2].

Here we build upon the work presented in [3]-[5] which we
term the analytic field propagation (AFP) technique. This tech-
nique uses the dispersion relation to obtain an analytic descrip-
tion of the fields on the TFSF boundary. The goal is again to
model halfspace problems but to introduce loss into the second
medium while maintaining the simplicity presented in the pre-
vious work. Loss necessitates the use of complex wavenumbers
in the second medium. Having made the transition to complex
wavenumbers it is a simple matter to consider problems where
the incoming field is incident beyond the critical angle, i.e., the
fields in the second medium are evanescent.
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II. LOSSY MATERIALS

Here we consider a plane wave (identified as the incoming
wave) obliquely incident on a lossy halfspace. The incoming
wave is assumed to travel in a lossless medium. The boundary
between the two media is assumed to be planar insofar as the
calculation of the incident field is concerned. For the remainder
of this work the term “incident field” implies the sum of the
incoming and reflected waves in the lossless medium and the
transmitted field in the lossy medium.

The AFP TFSF boundary requires that one calculate ana-
Iytically the incident field at an arbitrary point. This necessi-
tates calculation of the numeric wavenumbers as well as the nu-
meric reflection and transmission coefficients. We start by de-
scribing the equations which govern FDTD propagation in a
lossy medium.

Consider a harmonic field polarized in the z direction propa-
gating in the 2y plane of an FDTD grid, i.e., TM? polarization.
Using the notation of [4] and [5], the electric and magnetic fields
can be written
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where ¢ is the spatial step size (assumed uniform), A; is the
temporal step size, (m,n) are the spatial indices in the = and
y directions, respectively, ¢ is the temporal index, w is the fre-
quency, k = a,k, +a, I;y is the wave vector, r = a,mé+a,nod
is the position vector, and E’O is an arbitrary amplitude. A tilde
indicates a numeric quantity, i.e., one whose value in the grid
differs from that in the continuous world. A hat indicates a quan-
tity is in the frequency domain. The amplitudes Ho, and f[gy
are dictated by the impedance of the grid.

Discretizing time, Ampere’s law expanded about the time-
step ¢ + 1/2 is

Etl _ E¢ E?tl + E¢

€ A, + o 5 3)
where the superscript indicates the time step, o is the conduc-
tivity, € is the permittivity, and time-averaging is used to obtain
the conduction current at the necessary temporal location. For
the given harmonic fields, the temporal finite difference can be
expressed as
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whereas the time-average term can be written

<£) BiH/2 = AR, )
2

The discretized form of the curl operation is unchanged from

that presented in [4], [5]. For a harmonic field, the finite differ-

ences in the = and y directions, identified as 0, and 0,, respec-

tively, can be represented by multiplicative operators, i.e.,

~ 2 ked
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where ¢ € {z,y}. Thus, Ampere’s law can be written

—j Ko Hoy + jK,Ho, = (jeQ + 0 A)Eq
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The phase term e/“(4+1/2)A¢ was common to all terms and
hence dropped.

Defining K = a, K, +a, K, the discrete form of Faraday’s
law can be written

—jK x E? = —juQHY ®)

where p is the permeability (it is assumed the magnetic con-
ductivity is zero although this is not required). This yields two
equations

- K
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0 0 0 9
R K, .

Hy[) = — —F,. (10)
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Using (9) and (10) in (7), one obtains the dispersion equation
for lossy media
A
K2+ K2 = Q%pe [1-;"’—] (11)
v €2
This is the dispersion relationship for lossy material which was

previously considered in [6] and more recently studied in [7].
We define the complex permittivity to be
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where the loss-factor L, is defined as 0 A;/(2¢), the real quan-
tity € is given by €€, and €q is the permittivity of free space.
Expressed in terms of the underlying functions the dispersion
relation is

r€r . A
sin?(k,) + Sinz(,‘iy) = NSC; sin? <w2 t)

X [1 — L, cot <“’2At>} (14)

where k¢ is k¢6/2 and € € {z,y}.

In the construction of the AFP TFSF boundary the frequency
and the wave vector components in the first medium can be
easily calculated. Due to phase matching along the boundary,
the tangential component of the wave number must be the same

in both media, i.e., l;yg = Inyl when the interface corresponds
to a constant x plane. We ignore superluminal wave numbers
and hence ];Iyg is purely real. (Throughout the analysis we ig-
nore superluminal propagation which is inherently present but
of little practical concern. See [8], [9] for further details.) Since
the frequency is known, the only unknown in (14) is l~cx, the
normal component of the wavenumber which is complex due
to the loss. We separate the real and imaginary parts of ky as
k. = k., + jk” or, correspondingly, k,8/2 = iy = K., + jK".
Plugging this into (14), expanding terms, and separating real and
imaginary parts yields

cos(k.,) cosh(kl) =C’ (15)
sin(x!,) sinh(x)) =C" (16)
where
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Solving (15) and (16) for «/, and !’ (and using physical argu-
ment to eliminate nonphysical solutions) yields

! _1 —1 uv
Ky = 5 cos [\/gC’] (19)
no_ 1 —1 E
Ky 5 cosh [\/ﬂ (20)
where
1/2
U= (M+\/(M—20’)(M+20’)) @1
V=M—\/(M-2C")(M +2C") (22)
M=1+C"?+C". (23)

The numeric reflection and transmission coefficients for
TM?* polarization were presented in [5], [10] for isotropic
media and in [3] for uniaxial media. We assume an interface
which is aligned with the F, and H, nodes as shown in Fig. 1.
The FDTD reflection and transmission coefficients which were
derived in [5] still pertain to the lossy case—the only difference
is that the permittivity and wavenumber in the second medium
become complex. When the electric-field nodes on the interface
use the arithmetic average of the values to either side for the
conductivity and the real part of the permittivity while the mag-
netic-field nodes on the interface use the harmonic mean for
the permeability (i.e., pa = 2p1p2/(111 + p2)), the reflection
and transmission coefficients are, respectively

ftm _ 2 S%H(Qlﬁx) — S%D(QI:%‘M) 24)
o Sin(2k1,) + p1 sin(2fka,)
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If one does not use the average material properties at the in-
terface, an additional term appears as was described in [5]. This
additional term can cause the agreement between the FDTD and
continuous-world values to be better than when using averaging.
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However, this improvement only exists over a very narrow band
of frequencies and the agreement is worse at all other frequen-
cies. Hence we continue to assume that the mean values are used
for the interface material parameters.

The same results pertains to TE* polarization, i.e., (19) and
(20) still pertain. The reflection and transmission coefficients
derived in [5] are still pertinent provided one allows the permit-
tivity and wavenumber to be complex. The assumed TE* grid
is shown in Fig. 2. If the arithmetic mean is used for the con-
ductivity and permittivity on the boundary, the reflection and
transmission coefficients are [5]

po_a sin(Apo) cos(kz1) — €2 8in(kKy1) cos(Rpo) 26)
T e sin(fz2) cos(kz1) + € sin(kz1) cos(fzz)
fte _ 2¢€9 sin(Kz1) cos(kz1) o

€1 8in(Rz2) cos(ky1) + €2 sin(ry1) cos(Ra2)

Using the wavenumbers as well as the reflection and transmis-
sion coefficients described here, the implementation of the AFP
TESF boundary then follows the implementation described in
[5].

III. INCIDENCE BEYOND THE CRITICAL ANGLE

By allowing the normal component of the wave number in
the second medium to be complex, the capability is inherently
present to model incoming fields which are incident beyond
the critical angle, i.e., the fields are evanescent in the second
medium. The critical angle in the FDTD world differs from that
in the continuous world [9] and is, in fact, a function of fre-
quency. Nevertheless, we will refer to the critical angle as if it
were a constant.

When modeling incidence beyond the critical angle, one must
keep in mind the unusual behavior of the incident field. The
geometry assumed here is of an infinite, pulsed incoming plane
wave propagating obliquely toward an infinite planar interface
separating two half spaces in which the speed of propagation in
the second medium is faster than in the first. Roughly speaking,
fields in the second medium will move tangentially along the
boundary faster than they move in the first. However, to satisfy
the boundary conditions along the interface, these faster fields
will couple energy back into the first medium. These fields will
be in advance of the incoming wave. These “advanced fields,”
despite arriving at any given point before the incoming wave,
are causal. A good discussion of these fields can be found in
[11], [12].

In theory, the advanced fields are nonzero throughout space
and this could be problematic for implementation of a TFSF
boundary which assumes the fields are initially zero throughout
the computational domain. However, in practice the advanced
fields are small and can be made arbitrarily small by delaying
the incoming wave. Additionally, if there is loss present in the
second medium, this serves to diminish the advanced fields.

The AFP TFSF implementation is oblivious to the advanced
field—the same code can be used for all incident angles. To il-
lustrate the case of incidence beyond the critical angle, Fig. 3
shows the magnitude of the H, field in a TE® simulation where
11 = po = po, €1 = 2, €49 = 1, the incident angle is 60°, and
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Fig. 1. Depiction of a TM?* grid with two dielectric halfspaces. The interface,
corresponding to # = 0, is aligned with £, and H, nodes. The second
medium is assumed lossy. Along the interface the electric-field nodes use the
arithmetic average of the permittivity and conductivity to either side while
the magnetic-field nodes use the harmonic mean of the permeabilities. The
dashed line represents the TFSF boundary. The nodes enclosed in rounded
rectangles are tangential to the TFSF boundary and hence must have their
updates corrected using the incident field associated with the other node in the
box.
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Fig. 2. Depiction of a TE* grid with two dielectric halfspaces. The interface,
corresponding to 2 = 0, is aligned with £, nodes. For the interface nodes the
conductivity and permittivity use the arithmetic mean of the values to either side.

the Courant number S.. is 1/ V2. The computational domain is
180 x 200 cells, the interface runs vertically through the middle
of the grid, and the TFSF boundary is offset 15 cells from the
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in the surface. The incident angle is 60° with respect to horizontal.

edge for the grid. The incoming wave is a Ricker wavelet dis-
cretized such that there are 20 cells per wavelength (in the first
medium) at the frequency with the greatest spectral content.
Fig. 3(a) shows the field at time-step 180. The incoming
wave has unit peak amplitude and the images use logarithmic
scaling so that fields are essentially visible over three decades.
In Fig. 3(a) one can see the distinct incoming field as well as
the “haze” associated with the field which arrives in advance

200

180

160

140

120

100

80

60

40

20

200

180

160

140

120

100

80

60

40

20

457

TFSF boundary

: :

1 1
: L

<

g: €1 = €2 Vs
g i incoming = , §
3! field 1.5
1 Vo,
I 1A
= =

F 1

transmitted |

field 1

;

1

1

1

1

1

1

1

1

1

1

1

]

1

1

1

:

TFSF boundary
20 40 60 80 100 120 140 160 180
(®)
TFSF boundary

TFSF boundary

TFSF boundary

2
T

g
&
=
w2
e
F

20 40 60

80 100 160

(d

120 140

180

Snapshots of the magnetic field at time-steps (a) 180, (b) 330, and (c) 460. (d) Magnetic field at time-step 460 showing the field scattered from a notch

of the incoming wave. This leading field exists throughout the
computational domain but falls off as one moves away from the
incoming wave.

Fig. 3(b) and (c) shows the field at time-steps 330 and 460,

respectively. No field is visible in the SF region. For this partic-
ular simulation, the peak leaked field is less than 6 X 10~2. This
is much greater than the leaked field found in the typical prop-
agating case where the leaked field is on the order of 10~ for
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reasonable discretizations. The amount of leaked field can be re-
duced further by delaying the incoming wave or by changing the
source function so that it is has less low-frequency content. Loss
in the second medium can also significantly reduce the leaked
field.

Fig. 3(d) is also a snapshot at time-step 460. However, to il-
lustrate that the contents of the TF region can be arbitrary, a
notch has been placed in the interface. The notch is 20 x 20
cells where the second medium now protrudes into the first. Be-
cause of this notch the fields in the second medium are no longer
purely evanescent. One can see the field scattered by the notch
and how it has passed into the SF region at this particular time
step.

IV. CONCLUSION

As discussed elsewhere, for problems which can be solved
both by the AFP technique and the traditional one-dimensional
auxiliary-grid approach, the AFP technique yields far greater
accuracy (except in the case of grid-aligned propagation). Fur-
thermore, as demonstrated here, the AFP TESF technique pro-
vides the ability to study many problems which cannot be solved
using the traditional one-dimensional (1-D) auxiliary-grid ap-
proach. For incident angles beyond the critical angle, the so-
lution obtained from the AFP technique is compromised some-
what by the inherent nature of the field which arrives in advance
of the incoming wave. This degradation is unavoidable given the
seemingly acausal incident field and it is believed that no other
TEFSF method could provide better fidelity.
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