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Fig. 5. Computed RCS for a reflector with a cavity-backed dipole feed at a

threat frequency in the antenna operating band. (Feed dimensions are twice
those shown in Fig. 1.)

Fig. 1 could not be scaled up by a factor of 2 along with the feed.
However, Fig. 5 shows the in-band RCS of the feed with a 5 reflector
(f/D = 0.491), which clearly identifies the load contribution.

IV. CONCLUSIONS

A method of moments solution for the scattering from a parabolic
reflector antenna with a cavity-backed dipole feed has been presented.
The solution is valid at any frequency, but because of the need to
include a large number of azimuthal modes for convergence, the
memory requirements are severe. At low out-of-band frequencies,
the dipole is not a significant contributor to the total RCS. To reduce
the computer run time the dipole can be neglected, in which case
the azimuthal modes become independent and each of the diagonal
blocks of Z can be inverted separately. At threat frequencies in the
operating band of the antenna, the dipole contribution is significant,
but only at angles near boresight (§ = 0°).

REFERENCES

[1] J. R. Mautz and R. F. Harrington, “An improved E-field solution
for a conducting body of revolution,” Tech. Rep. TR-80-1, Syracuse
University.

[2] J. F. Shaeffer and L. N. Medgyesi-Mitschang, “Radiation from wire
antennas attached to bodies of revolution: The junction problem,” IEEE
Trans. Antennas Propagat., vol. 29, p. 479, May 1981.

[3] J. E. Fletcher, “Radar cross section of reflector antennas,” master’s
thesis, Naval Postgraduate School, June 1992 (limited distribution).

[4] W. V. T. Rusch, “A comparison of geometrical and integral fields from
high-frequency reflectors,” Proc. IEEE, vol. 62, p. 1603, Nov. 1974,

[5] R. C. Hansen, “Relationship between antennas as scatterers and as
radiators,” Proc. IEEE, vol. 77, p. 659, May. 1989.

The Finite-Difference Time-Domain
Method Applied to Anisotropic Material

John Schneider and Scott Hudson

Abstract— The finite-difference time-domain (FDTD) method has re-
ceived considerable attention recently. The popularity of this method
stems from the fact that it is not limited to a specific geometry and it
does not restrict the constitutive parameters of a scatterer. Furthermore,
it provides a direct solution to problems with transient illumination,
but can also be used for harmonic analysis. However, researchers have
limited their investigations to materials that are either isotropic or that
have diagonal permittivity, conductivity, and permeability tensors. In
this paper, we derive the necessary extension to the FDTD equations to

date nondiagonal tensors. Excellent agreement between FDTD
and exact analytic results is obtained for a one-dimensional anisotropic
scatterer.

accor

I. INTRODUCTION

The finite-difference time-domain (FDTD) method was first pro-
posed by Yee [1] as a direct solution of Maxwell’s time-domain
curl equations. In this algorithm, one begins by making a judicious
discretization of space-time. The temporal and spatial derivatives
in Maxwell’s curl equations are then approximated by difference
equations, and, finally, the resulting difference equations are solved
for the fields at the “next” time step in terms of values at “previous”
time steps. In this manner, a leapfrog algorithm is used to obtain
the fields for all space-time given the incident field and knowledge
of the fields throughout space at some initial time. Taflove and
Brodwin later developed the correct stability criterion for FDTD [2].
Since then, Taflove and his colleagues, as well as many others, have
produced a large body of literature covering many applications of
and enhancements to the FDTD algorithm (for a survey, see [3]).
Part of the success of FDTD is due to the development of absorbing
boundary conditions (ABC’s) that absorb energy propagating from
the interior to the edge of the computational mesh. Currently, two of
the more popular ABC’s are those of Mur [4] and Liao [5], [6].

The majority of FDTD applications have assumed scattering from
or propagation through a material that is both nondispersive and
isotropic. Recently, Luebbers er al. developed an algorithm for
frequency-dependent materials [7], called (FD)ZTD, which was used
to obtain the reflection coefficients from plasma layers [8]. Nickisch
and Franke [9] have also developed an FDTD algorithm for dispersive
materials. Taflove and Umashankar [10], Beker et al. [11], and Strikel
and Taflove [12] have published results using FDTD with anisotropic
materials. However, their work has been restricted to materials with
diagonal tensors, and the resulting equations are nearly identical to
those used in the original Yee algorithm. As will be shown, off-
diagonal terms produce coupling of temporal derivatives in the curl
equations and the resulting difference equations are considerably
different from the diagonal-tensor case.

We are interested in accurately modeling scattering from composite
materials such as those used in the construction of modern aircraft and
automobiles. These materials often have embedded carbon fibers that
produce a high conductivity in a particular direction and hence are
anisotropic. If sheets of this type of material are sandwiched together
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and the fibers in each sheet are not parallel and/or orthogonal, it is
impossible to model the material with diagonal tensors. Instead, the
off-diagonal elements of the tensor must be accommodated.

In this paper, we outline the steps needed to obtain the FDTD
time-stepping equations for a general three-dimensional anisotropic
scatterer. The simplified equations for a one-dimensional scatterer
are then examined. We use these equations to obtain the reflection
coefficients for a layered material that consists of three slabs of an
anisotropic material. Excellent agreement is shown between FDTD
and exact analytic results.

II. FDTD FOR ANISOTROPIC MATERIAL

In anisotropic material, the electric flux density is related to the
electric field by a permittivity tensor, D = €E, which can be written
as

D, €rx €xy €z | | B
Dy | =leyr eyy €|} Ey|. (€]
D. €2z €29 €z | | E:

Similarly, the conduction current and electric field are related through
a conductivity tensor, J = FE. We will restrict ourselves to
nonmagnetic materials so that the magnetic flux density and the
magnetic field are related by B = poH, where o is the permeability
of free space. For this case, Maxwell’s curl equations are

OH

at’
-0E
VxH=7 E +€ H (3)
The FDTD algorithm assumes that space is discretized so that each
field quantity is available only at a unique location. These locations
are given by the Yee cell shown in Fig. 1. The Yee cell specifies the
spatial location where each field is available, but it is further assumed
that E is temporally available only at integer values of At, while H is
available a half time step away. This discretization leads naturally to
the following notation: assuming the argument (z, y, 2, t) is evaluated
at points (tAz, jAy, kAz,nAt), the function A(z,y,z,t) can be
written Alz;,k‘ Initially, we will use the ¢, j, k spatial subscript as
a “generic” index; i.e., it does not truly give the location where the
field i 1s evaluated For example, in the following equation, the term

H ,] k appears. However, referring to Flg 1, HI is not available
at the locatlon 1,7, k but is found at ¢, j + Jk + . Thus, when the
fields are evaluated, the j and k indices must be mcreased by +1 2
throughout the equation. We will return to this issue after obtaining
the needed difference equations.

An approximation to (2) can be obtained at the point
(iAz, jAy, kAz,nAt) by approximating the derivatives by differ-
ence equations; then the magnetic field at time n + % can be obtained
in terms of previously obtained quantities. For H, we obtain

VXE=—po— 2

vz+-L
Hr|i,j.,k Hr|zjk
At 1 n
1 n n
__A_y(E1|z,j+%,k - EZIi,j—%,k)}' O]

Similar equations can be obtained for H, and H.. Since it was
assumed that the material was nonmagnetic, these equations are the
same as those that apply to isotropic material and are given in any
standard FDTD reference (e.g. [1]-[3]).

Separating (3) into scalar components yields the following three
equations:

0H. 0H,

Jy 0z

=02E: +0.yEy + 0. E.

E
(41,1, k+ 1) 4]
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E X
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x
Fig. 1. The Yee cell used to determine the location of field evaluation points.
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Note that the off-diagonal terms cause each of the three temporal
derivatives of the electric field to appear on the right-hand side of
these equations. When these terms vanish, the temporal derivatives
decouple and the electric field at the next time step can be obtained in
a simple manner from previous values as was done for the magnetlc
fields. We will consider E at the point (iAz, jAy, kAz, (n+ $)At).
Even though the electric fields are not explicitly available at the time
n+ %, they may be approximated, for example, by

1
ElTi~ l(Ez

E e s (B L) @®

where similar approximations apply to E. and E,. The temporal
derivatives may be approximated by

n+l
#liyg,k

OF, 1(

Al 9
at At - ,1,) ®

Again, similar approximations apply to the derivatives of E. and
E,. Using these discretizations, the 2 component of Ampere’s law
(5) can be written

ntd
Sl T = (E ) e
- (Zi "”)E et (B + 552) BT
(&%) Bl (Z;“—;i)Ez i
-(%- UQZ)E 7k (10)

Similar expressions hold for the y and z components. In these
expressions, only quantities at time step n+ 1 are unknown while all
other values are either known explicitly or can be interpolated from
other known values. These equations can be written in matrix form
and solved for the electric field at the next time step. We obtain
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Although the solution to this equation is rather cumbersome, it can be obtained in a straightforward manner. We will limit ourselves here

to consideration of the E. component.

e = Hl(E+ NS+ %) - (5 5)E %))
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where 6 is the determinant of the matrix (

A€+ 17). When the off-diagonal terms are zero, (12) reduces to the standard FDTD equation

for E.. As mentioned previously, the 7, j, k indices used in the previous equations were not meant to give the true location where the fields
are available. To implement these equations we must consider the actual locations of the field quantities. In the Yee cell (Fig. 1), electric
field quantities are only found at the following locations:

E, at ((i + %)Ar,jﬁy,k&:,n.ﬁt}, (13)

E, a (iAr,,(j+1)Ay,kAz,nAt), (14)

E. at (iAz, jAy, (k + YAz, nAt). (15)

1
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Therefore, (12) would be used to find E. |"+]1c 1

E

which requires the use of E.|" Uz |
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quantities. Thus, the following approximations are used for £, and E,:

and , but these values are not available directly from the FDTD grid. Instead, they must be interpolated from neighboring

Eellyy = (E e + Eellypu+ Bellg ag + Eoly ) (16)
Ey|?,j.k+§ = (E |u+1 w1 T E |1,+1 vt By} =kl + Ey |1, %k) a7
Magnetic field quantities are only found as follows:
H, at (iAzx, (j + 1)Ay (k+ %)A:, (n+ %)Af) (18)
H, ((t+ YA, jAy, (k+%)L\z,(n+%)At) (19)
H. at ((i + §)A:L’, (7 + i)Ay.kA:,(n + —;)At) (20)
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Therefore, the spatial derivatives of the magnetic field can be obtained using the following approximations:
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The remaining two derivatives, n
ke F 1 dx

igk+d

(17), and (21)~(24) in (12) yields the complete expression for E. | k +1 Similar expressions can easily be obtained for E. and E,.

III. ONE-DIMENSIONAL CASE
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@n

(22)

23)

(24)

|- are obtained in the usual manner directly from the FDTD grid. Using (16),

The equations outlined in the previous section can be greally simplified for a one-dimensional scatterer. In the remainder of this paper we
will restrict spatial variation to the x-direction so that o = 5 = 0. The Yee cell then reduces to points along a line as shown in Fig. 2.
Furthermore, we will assume that there is no coupling from the & component into the y and > components, and vice versa. Therefore, for a

y- or z-polarized incident wave, there will be no & component of the electric and magnetic fields.
Using these assumptions, the magnetic field is given by

n+i
H:|; > =0
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and the electric field is given by
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where 6 is still the determinant of (
equations.

(25)
(26)

27

(28)

29

(30)

AL? + %?) Note that these equations are only marginally more complicated than the isotropic FDTD
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TABLE I
MATERIAL PARAMETERS.
L . s s Conductivity
ayer Thickness Permeability Permittivity S/m
0.0 0.0 0.0
1 .
375 mm #o 43¢0 <0,0 12.0 0‘0)
0.0 0.0 0.0
0.0 0.0 0.0
2 3.75
mm #o 43e0 (0.0 8.5 8.5)
0.0 83 85
0.0 0.0 0.0
3 3.75
mm #o 43c0 <0.0 0.0 0.0)
0.0 0.0 120

The permeability and permittivity of the sample are isotropic while the conductivity is anisotropic. The ordering
of the elements in the conductivity tensor is the same as in (1).
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Fig. 3. The z-polarized incident field and the reflected fields. The y compo-
nent of the reflected field has been scaled by a factor of 10.

IV. RESULTS FOR ONE-DIMENSIONAL CASE

To demonstrate the capability of the anisotropic FDTD algorithm,
we will consider a layered material that consists of three slabs of
anisotropic material. The parameters chosen for this example are
based on those of an actual carbon fiber composite material used
in modern aircraft. In each layer, we will assume the conductivity
is high in the direction parallel to the fibers and negligible in the
perpendicular direction. It is also assumed that the fiber orientation
in each layer is rotated by 45° relative to the preceding layer. It is
further assumed that the only variation is in the x direction; i.e., the
planar boundaries between layers are perpendicular to the « axis. The
specific parameters for this case are given in Table 1. These values
indicate that the fibers are parallel to the y direction in the first layer
and parallel to the z direction in the third. In the second layer, the
fiber orientation forms a 45° angle with both the y and z axes. The
permittivity and permeability are isotropic.

the reflection coefficient I'. ., which is the ratio of the z component
of the scattered field to the = component of the incident field, and the
reflection coefficient I'y., which is the ratio of the y component of
the scattered field to the = component of the incident field. Using the
FDTD equations given in Section III, the fields reflected from this
material sample can be easily calculated. Furthermore, by illuminating
the material with a pulse and recording the transient incident and scat-
tered fields, the frequency dependence of the reflection coefficients
can be determined through the use of Fourier transforms.

Fig. 3 shows the incident z-polarized wave that was used to
illuminate the sample described in Table I. This is a Gaussian pulse
that falls off to one ten-thousandth of the peak value after 800 time
steps and each time step, At, is 156.25 fs. The spatial step size, Az,
used in the FDTD calculation was 93.75 um so that each layer was
40Az thick. Fig. 3 also shows the = component of the reflected field
obtained from the anisotropic FDTD code. For the sake of clarity,
the y component of the reflected field in Fig. 3 has been multiplied
by a factor of 10; i.e., actual values are one-tenth those shown in
the figure.

Using the permittivity and conductivity tensors for a given layer of
anisotropic material, one can calculate the propagation constants and
polarizations of the two eigenmodes of plane-wave propagation [13].
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Expanding both the 4+ and —z traveling components of the field in
terms of these eigenmodes and requiring continuity of tangential field
components at each interface, we arrive at a linear system which can
be solved to give the exact reflection coefficients I'.. and 'y ..

Fourier transforming the temporal signals shown in Fig. 3 and
then normalizing the reflected field transforms by the incident field
transforni yields the spectral description of the reflection coefficients.
Fig. 4 shows the exact and FDTD-obtained values of the magnitude
of I'.. and I'y.. The FDTD computation was performed over 32 768
time steps to yield a frequency resolution of approximately 195.3
MHz. Fig. 4 shows excellent agreement between the two results.
There is a slight offset between the FDTD and exact analytic results at
higher frequencies, which can be attributed to the inherent dispersion
in the FDTD algorithm [3]. Fig. 5 shows the phase of I'.. and
I'y. obtained from FDTD and the exact analytic formulation. Again,
excellent agreement is seen and the only difference is a slight offset
that occurs at higher frequencies.

Many other trials using different material parameters were run to
further compare the FDTD and analytic results. The two methods
consistently showed agreement as good as that shown in Figs. 4
and 5.

V. CONCLUSIONS

We have extended the FDTD algorithm to accommodate nonzero
off-diagonal elements in the permittivity and conductivity tensors.
This permits the study of a much broader class of materials than
was previously possible. Excellent agreement is obtained between
an exact analytic method and the anisotropic FDTD algorithm for a
one-dimensional scatterer. Although the traditional FDTD algorithm
can accommodate anisotropic materials, it is restricted to anisotropies
that produce diagonal tensors. For diagonal tensors, the resulting
equations are substantially unchanged from those originally used
by Yee. However, many situations can arise, such as the example
considered in this paper, where the tensors cannot be diagonalized.
Therefore, the extensions provided here become essential for any
FDTD analysis of general anisotropic materials.
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