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Fig. 4. Normalized backscattering cross section ol(ra2) in range ka = 1.6- 
4.4, for metal sphere (7 = 0) and for perfectly absorbing sphere (11 = 1). 
Solid line: M = 21: dashed line: M = 41. 

eliminates some of the spurious internal resonances of the scatterer 
[281. 

IV. CONCLUSION 

We have developed and tested a computer code for calculating the 
surface electric current density induced by a plane wave axially 
incident on a body of revolution with an impedance boundary 
condition. Apart from internal resonances, the computations yield 
accurate results well into the high-frequency region, where asymp- 
totic techniques become applicable. If the surface impedance varies 
along the profile of the scatterer, the code can still be used by using a 
(piecewise) linear approximation for the relative surface impedance 11 
on the (M - 1) intervals of the profile. A formula has been obtained 
for the bistatic far field. 
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Differential Cross Section of a Dielectric Ellipsoid by the 
T-Matrix Extended Boundary Condition Method 
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Abstract-The extended boundary condition method (EBCM) is 
applied to the ellipsoidal dielectric scatterer, thus making possible the 
analytical treatment of a broader class of targets than has been previously 
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available under a rotational symmetry constraint. Expressions are 
presented and calculated results provided for an ellipsoid in the resonant 
range; comparison is made with an oblate spheroid that is comparable in 
terms of volume. 

I. INTRODUCTION 

There is considerable current interest in the detection and 
identification of dielectric targets over a wide range of physical 
dimensions. Applications include scattering from raindrops, hail- 
stones, or other ice objects of varying sizes and degrees of 
irregularity, optical fibers, imperfections in dielectric substrates, 
buried cavities, tunnels, plastic pipes, and other objects having 
geophysical, military, biological, or other practical significance. The 
ellipsoidal formulation shows promise for categorizing some irregu- 
lar dielectric target shapes and may be particularly useful when such 
targets are buried in lossy materials, given that higher frequencies are 
preferentially attenuated in such media with possible related loss of 
information about scattering from portions of the boundary having 
small radii of curvature. The ellipsoidal result is applicable when 
three-dimensional scattering problems are to be addressed or approxi- 
mated. 

The extended boundary condition method (EBCM) has been used 
successfully to solve for the electromagnetic fields scattered from a 
single object when its size is on the order of a wavelength of the 
illumination. The class of dielectric objects reported has been 
restricted to those having rotational symmetry about an axis, e.g., 
prolate and oblate spheroids. Waterman [l], Barber [2], Yeh et al. 
[3], Barber et al. [4], and Holt [5], [6] are among those who have 
reported such results. Mugnai and Wiscombe [7] used EBCM to 
solve for the scattering cross section of a particle whose radius was 
given by a Chebyshev polynomial. 

The presence of a dielectric body is associated with volume 
distributions of currents in the medium. The resulting volume integral 
equations are applicable to arbitrary inhomogeneous dielectrics, but 
they require solution of six scalar three-dimensional integral equa- 
tions. The EBCM provides an alternative to the surface integral 
formulation and its variants by focusing attention on the interior 
integral equation. Reduction of the computational effort is an 
important issue in dealing with integral equations. To this end, 
integral equation methods have been combined with finite difference 
techniques. Kristensson and Strom [8] and Karlsson and Kristensson 
[9] are among those who have obtained solutions for a general three- 
dimensional treatment of electromagnetic scattering for an inhomoge- 
neity inside a stratified half-space by means of the related T matrix 
method. 

This communication describes the result of applying the EBCM to 
dielectric ellipsoids which, in general, have no rotational symmetry. 
It represents a step in a more general study of single-object scattering 
in the resonant range that has the goal of extending the practical 
applications to a wider class of targets, including irregular shapes that 
can be described in terms of a "best fit" ellipsoid. 

II. GENERAL METHOD 

Following Tsang et al. [lo], the incident and scattered fields are 
first expanded in a series of basis functions, with vector spherical 
wave functions, regular at the origin, used to represent the incident 
field. 

+- 
kr dkr 

- j m  I> + 4  - P r  (cos e )  ejm4 
sin 0 

where 

k is the free-space wavenumber, j ,  is the spherical Bessel function, 
and P y  is the associated Legendre polynomial. The mn subscript is 
uniquely mapped into a single numerical subscript by means of the 
expression 

I = n ( n + l ) + m .  

Further practical considerations dictate limiting n to N-, which 
remains to be selected in any given case. 

The outgoing vector spherical waves A?,,,(kr, 8 ,  4) and N,,,(kr, 
0 ,  4) are used as the basis functions for the scattered field, with the 
spherical Hankel function h, replacing j ,  in (1) and (2). The 
relationship of the unknown scattered field coefficients to those of the 
incident field, which are known, is expressed as follows: 

(3) 

7 is the transition or T matrix, and din' and ds are column vectors of 
incident and scattered field coefficients, respectively, with dimen- 
sions 2L, x 1 where L, = N,(N, + 2); the dimensions of 
are2L, x 2L,. 

The T matrix depends only on properties of the scattering object 
and the frequency of illurnination. Determination of the T matrix 
provides a solution to the scattering problem. To obtain it, the 
incident and scattered fields are individually related to the surface 
fields of the scattering object and the resulting equations combined to 
yield the expression 

ds= Tdi"c. 

where Qf is 

and 

Qf= [ p  R ]  s u  
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J z ; i j n t  =(- 1)" 1, dSii(P) . RgNm,,,(k,r, 0,  4) 

XA?-mn(kr, 8, 4) (12) 

J:2n)m,,, =(-l),,, [ , dSA( i )  . RgNm,,,(ksr, 0,  4) 

xN-m,(kr, 6,  9). (13) 

S is the surface bounding the object, ii is the outward normal, and 
k, is the wavenumber of the scattering object. RgQ' is the same as Q' 
but with A?,,,, and N,,,,, replaced by RgMm, and RgN,,,, , respectively. 

For objects whose surface points are given by r(0, 4), an in- 
cremental area of the surface is given by 

dSii(P)=r2 sin 8a(r)dedq5 (14) 

where 

Waterman [l] has shown that the scattering matrix for a lossless 
particle is unitary. The scattering and T matrices are related by 

S = 1 + 2 T  

where I is the unit matrix. It follows that a check of the unitarity of 
the scattering matrix provides a quick check of a computer program 
written to obtain the T matrix for a lossless particle. 

m. FORMULATION FOR AN ELLIPSOID 

Making use of the equation for an ellipsoidal surface, r(0, q5) is 
given by 

which leads to 

+$r2 (-$+$) sin 4 cos 4 sin e. 

The T matrix is then found by incorporating these two equations in 
(4)-( 14). Symmetry in the integrands of (lo)-( 13) can be exploited to 
reduce the computation as explained in the next section. 

The terms $I1), #I2) ,  J(21) ,  and J(22) can be written for the 
ellipsoid as follows: 
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The terms for RgQI are obtained by replacing h,(kr) by j , (kr) in 

IV . CALCULATIONS 

A computer program was written in Fortran 77 and implemented 
on a VAX 11/730 and a Cray X-MP/48 to obtain the T matrix for 
dielectric ellipsoids. The method used to calculate the integrals of 
(18)-(21) was Gauss quadrature [ll].  The order of quadrature and 
the value of N,,, must be chosen for each particular case weighing 
computation time against error. 

A number of computational advantages are realized by using the 
ellipsoidal scatterer instead of the general three-dimensional scat- 
terer. These advantages are implicitly expressed in (18)-(21). In 
these equations one aspect of the symmetry is accounted for by the 
bracketed terms multiplying the integrals. These terms, which take on 
the values of either zero or two, indicate when the integrals need not 
be carried out. The term [l + ( -  1)"' -"I multiplies each of the 
integrals in (18)-(21) so that none of these integrals needs to be 
performed when m 1  - m is odd. The bracketed terms involving 
n' + n dictate that the integrals in only the and J(21)  expressions 
should be carried out when n' + n is even, and the integrals in only 
the J(") and J(22) expressions should be carried out when n ' + n is 
odd. Equations (18)-(21) also show that when the expressions are 
nonzero, the integral need only be carried out over one-fourth of the 
total surface area. These symmetry properties were fully utilized in 
the computer program to effect a large savings in computation time. 

The largest problem undertaken by this program was one involving 

(18)-(21). 

A ~ ~ ; ; ~ ; ~  ~ ~ 

~ ~ ~ Path 1 
(in 17 plane) 

I /  Direction ""' 

Polarizatioir 

Fig. 1 .  Diagrammatical representation of scattering problem. 

an N,,, of 10 and a quadrature order in 0 and 4 of 20. This required 
approximately 38 s of CPU time when run on a single processor of 
the four available on a Cray X-MP/48. The majority of this CPU time 
was spent in the calculations of the elements of Q' and RgQ'. 
Unfortunately, very little of the code involved in calculating these 
elements vectorized. Therefore, the supercomputing power of the 
Cray was not fully realized and this machine essentially served as a 
powerful mainframe for this program. 

It may be of more interest that when using an N,,, of 6, giving a T 
matrix of 96 x 96, and using a quadrature order in 0 and 4 of 20, the 
T matrix was obtained after 5 1 min of CPU time on a VAX 11/730. 
For purposes of comparison, the MicroVAX U, which has approxi- 
mately three times the computing power of the 11/730, would require 
roughly 17 min of CPU time to solve this problem. 

V. RESULTS 

Calculated results are given in this section in terms of the 
differential cross section of a dielectric ellipsoid under two different 
polarization conditions. Comparison is made in each case with a 
dielectric spheroid whose dimensions are comparable to that of the 
ellipsoid. The size parameter of the ellipsoid is taken to be kl,  where 
k is the wavenumber and / is twice the largest dimension a, b, c of the 
ellipsoid (Fig. 1). 

The calculation time required to obtain the T matrix for an axially 
symmetric object is much less than that for an ellipsoid since one is 
characterized by a block-diagonal and the other by a full T matrix. It 
would seem that an ellipsoid that is nearly axially symmetric might be 
well approximated as a spheroid. However, this approach could lead 
to unacceptable results, as will be indicated. 

A spheroid whose relative permittivity is 2.14-jO.036 is as- 
sumed to have dimensions in the ratio a/c = b/c  = 4.912, with k /  
= 3.432. An ellipsoid having the same relative permittivity but with 
the a dimension ten percent greater and b dimension ten percent less 
than that of the spheroid is used for comparison; the volume of the 
ellipsoid is 99 percent of the volume of the spheroid. A plane wave is 
incident on the scatterer, propagating in the negative x direction and 
polarized along the z axis as illustrated in Fig. 1. Evaluation of the 
differential cross section is done along two paths, the first lying in the 
xy plane, proceeding from the negative to the positive x axis, and the 
second lying in the xz plane with the same endpoints. The 
independent variable x is the angle of arc, in degrees, along the 
evaluation paths. The differential cross sections of the two objects are 
shown in Fig. 2. They are seen to be quite similar when x is less than 
approximately 90". However, the difference is marked for larger 
angles. Therefore, when backscattering is of interest, approximating 
this ellipsoid as a spheroid may lead to results which are in error by as 
much as a factor of two. 

Fig. 3 shows the differential cross section for the same situation, 
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2. Differential cross section when incident wave is polarized along z 
axis. 
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Fig. 3. Differential cross section when incident wave is polarized along y 
axis. 

except the incident plane wave is now polarized along the y axis. As 
before, the two scatterers appear quite similar in differential cross 
section when the angle is less than a certain amount, approximately 
105” in this case, but strong differences appear beyond this value. 

VI. SUMMARY 

The extended boundary condition method has been summarized 
and the dielectric ellipsoid scattering problem formulated in the 
resonant range. It is thus possible to consider scattering properties of 
a broader class of targets than those previously found in the literature, 
specifically those that lack rotational symmetry. Calculated results 
have been included, and the importance of this extension beyond the 
rotationally symmetric scatterer is emphasized in terms of a 
comparison between a dielectric ellipsoid and a spheroid having 
approximately the same total volume. The importance of differences 
in the surface and internal propagation paths provided by the two 
scatterers is evident. More specific interpretations of the differences 
are difficult to achieve in the resonance region. For example large 
particle approximations can explain some of the results; small particle 
approximations interpret others. The inconsistencies appear to be 
inherent to this region and will be a topic for further study. 

The work reported here can provide a basis for further extension to 

multiple body scattering and also shows promise for categorizing 
some irregular dielectric shapes in terms of their inclusion in best-fit 
ellipsoids. This latter aspect is being pursued, as is the immersion of 
the scatterer in lossy media where it may be especially appropriate for 
target classification and identification. 
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Scattering from the Perfectly Conducting Cube 

MARC G. COTE, MEMBER, IEEE, MARGARET B. WOODWORTH, 
MEMBER, IEEE AND ARTHUR D. YAGHJIAN, SENIOR MEMBER, IEEE 

Abstract-The scattering cross sections in the E-plane, H-plane, and 
45O-plane of the perfectly conducting cube illuminated broadside by an 
incident plane wave are computed using both a uniform high-frequency 
diffraction solution and magnetic-field integral equations. The computed 
cross sections are compared with measured cross sections for cube 
perimeters of 3, 6, 12, and 20 wavelengths. The total scattering cross 
section versus the perimeter of the cube is also computed and compared to 
that of the sphere. 
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