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Comparison of the Dispersion Properties of
Several Low-Dispersion Finite-Difference
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~ Abstract—A comparison of the accuracy of several low-disper- in time, fourth-order in space, M(2,4), FDTD scheme [8]. In
sion finite-difference time-domain (FDTD) schemes in two dimen- the M(2,4) scheme, the global dispersion error is minimized
sionsis presented. Each algorithmiis briefly reviewed and its FDTD e 5y propagation angles. Recently, Turkel and Yefet pre-

update equations presented. The dispersion relation of each FDTD ted imolicit d-order in ti fourth-order i
algorithm is also given. The accuracy of each FDTD scheme is com- S€Nted an Implicit second-oraer in ime, tourtn-order in space

pared via direct evaluation of the dispersion relation. Results are  1Y(2,4) FDTD algorithm [9], [10]. Their algorithm uses implicit
presented showing the dispersion errors of each algorithm as a spatial derivatives, while maintaining the standard Yee leapfrog
function of propagation angle and cell size. Tables are shown that timestepping. Meanwhile, Cole utilized nonstandard finite dif-
present for each algorithm the optimal Courant number at a spec- farences to derive a Yee-like EDTD algorithm with low disper-

ified discretization as well as the number of floating point oper- . .
ations needed to update each cell (three fields) at each time step.s'on [11]. Forgy developed an algorithm that uses both the Yee

The advantages and disadvantages of each algorithm are briefly 9rid and the Bi collocated grid. Since these grids have com-
discussed. While some schemes are more wideband than others, alplementary dispersion characteristics, Forgy was able to com-
most all provide substantial improvement in the dispersion errors - pine them in such a way as to eliminate nearly all dispersion
compared with the classical Yee FDTD algorithm. errors at a design frequency [12]-[14]. In 1996, Krumpholz
Index Terms—Finite-difference time-domain (FDTD) methods, and Katehi proposed the multiresolution time-domain (MRTD)
multiresolution time domain (MRTD), numerical dispersion. method [15]. In their scheme, field components are expanded in
scaling and wavelet functions with respect to space. Pulse func-
|. INTRODUCTION tions are used as basis and testing functions with respect to time.

Krumpholz and Katehi chose to work primarily with the cubic
OR ELECTRICALLY large problems, the numerical P P y

di ion inh in the classical Yee finite-diff spline Battle-Lemarie (B—L) scaling and wavelet functions, al-
Ispersion inherent in the classical Yee finite-di erencﬁwough other scaling and wavelet functions are possible. Instead

time-domain (FDTD) algorithm can introduce significaanthe B-L scaling functions, Goverdhananel. [16]-[18] and

errors. Over the past f[en years, there hav_e be_e” se\{eral F[Hdﬂi and Hoefer [19], [20] used Haar scaling functions, which
schemes published with the goal of reducing dispersion err(?ﬁ

Bve much more compact support. Recently, Chestrad, [21
In 1993, Shlageket al. [1] compared the dispersion errors o P PP ¢ . [21]

. ) i ) i “used the compactly supported Daubechies scaling functions to
several FDTD algorithms: Yee's FDTD algorithm [2]; Fang Swoid the nonlocalization of the B—L scaling functions.

second-order in time fourth-order in space (2,4) algorithm In [1], the optimal dispersion characteristics of the Fang(2,4)

FDTD scrlle;neFl[;%_]r;DFanr? S fou:;thrd:er, n tlllme, tfo dulr:tg'_l?gjegcheme were mistakenly identified as occurring at the Courant
in space (4,4) scheme [3]; Bi al.’s callocate stability limit. For this reason, the Fang (2,4) scheme is re-eval-

aTI%T\;'tPanT[‘g;afr;c:.tﬁrzer:t Sa'lﬁcz :Lir;snslsse'?gl rl:ge lrgafg).(s_uated in this paper. In addition, the dispersion relation of the
( .) gon [5]. Si » SEV WHOW-AIS1aL reduced-dispersion scheme, Hadi and Piket-May’s M(2,4)
persion FDTD schemes have been published.

- . cheme, Turkel and Yefet's Ty (2,4) implicit scheme, Cole’s
e et o e e fonsandar schems, orgy s oo Sherne, and e MRTD
P 9 ) Y Ot hemes mentioned previously are all presented. Other low-dis-

wave in the FDTD grid such that the dispersion error was Z%%rsion methods have been introduced which are not consid-
when averaged over all angles [6]. The NJL scheme is smﬂgr

o the “dispersion-optimized” scheme previous! ¢ forwar ed here. Some of these schemes, such as those presented by
ISpersion-optimiz CME Previously put Iotwarkh ;- and castillo [22], Liu [23], Fujii and Hoefer [24], [25],
by Taflove [7, pp. 102—-105]. Starting from the integral form o . ; ;
Maxwell tions in coniunction with Fana’s (2.4 FDTDand Dogaru and Carin [26], may posses certain properties that
axXWell's equations In conjunctio ang's (2,4) re comparable to, or even superior to, those of some of the al-

scheme, Hadi and Piket-May derived a modified SeCOhOl'Ord;%rithms considered here (though certainly no algorithm is uni-

versally superior to the others). Since time and space dictate lim-
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though the results presented here are limited to those obtain L

from the 2-D dispersion analysis, where appropriate the thre 3 — 5: ;ggm .
dimensional (3-D) behavior of each algorithm is also briefly ad— ——- Yec, 40 CPW
dressed 53 I NG NIL,1I0CPW| |
" ; . .8 —.== NIL,20 CPW
To facilitate comparison of the computational effort and sizcg | NIL, 40 CPW

of the spatial stencils, we also provide the update equations f‘\%‘
each scheme. Similar FDTD schemes are compared against (§  |———-—.—._ _. ‘~
another. Results are presented showing the dispersion errorsé" I
each algorithm as a function of propagation angle and cell siz2
Since each of these schemes either permits or requires o;‘\g ____________ L
mization at a particular frequency, curves are presented showi= -1~ 7= -

their performance when optimized at ten cells per wavelengt bt SR TE
In Section X, further comparisons of the dispersion algorithm
are made. The optimal Courant number to be used for each al¢
rithm is given as well as the number of floating point operation._ Angle [degrees]

needed to update each cell(iee fields) at each time stepffy L, £1°% Vs poragatn sle o e vee ane W scheres o
addition, a figure is presented comparing the dispersion err@gs heen optimized for 10 CPW.

for all schemes when each scheme is optimized at 30 cells per

wavelength (CPW). Finally, a summary of the advantages and . - _
disadvantages of each algorithm is presented. wherek, andk, are thez andy components of the numerical

wavenumber, respectively, andis the angular frequency. For
error analysis it is more convenient to write (5) in the following
form:

The dispersion characteristics of an FDTD algorithm are typ-
ically derived by assuming a time harmonic solutiontothedisi _ , /' = o T A o TN
cretized form of Maxwell's equations for an isotropic, homogz <N>\ ) = sin <—7 Cos ¢> +sin (—r sin </>>
geneous, linear, and lossless medium. The dispersion relations
describe the phase velocity of an electromagnetic plane wavkereN, is the CPW (note that CPW is the number of cells per
propagating in the grid and can be used to determine the disptbie exact wavelength, i.e., CPW )/é and is not the number
sion error per numerical wavelength This error is a function of cells per the numeric wavelengtk))js the direction of prop-
of the angle of propagation of the plane wave, the number afation with O corresponding to propagation along a grid axis,
CPW, and the Courant number, which is given$y= cAt/é, and/\/f\ is the ratio of the exact to numeric wavenumber. The
wherec is the speed of lightAt is the time step, and is the dispersion error per wavelength can be obtained through the re-
spatial increment. Throughout this paper, we assume a 2-D uakion
form grid with spatial incrementdz = Ay = 6.

Il. REVIEW OF FDTD DISPERSION

A A

For reference, we include the Yee update equations for the berr = 360° <i _ 1) _ @
lossless 2-D transverse magnefit\(,) case
Bt - |,, n At (H nt1/2 _ pr |n+1/2 Throughout the paper, a simple bisection approach is used to
#lig Flea ey \UY[itL/20 Y]i=1/2.1 obtain the ratio\ /) from the appropriate dispersion relation.
_g.|ntl2 g ntl/2 1 The Yee FDTD algorithm is second-order accurate. If the
Tli,54+1/2 + i,7—1/2 ( ) . .
’ At ’ cell size is decreased by a factor, the error decreases by
H, ,’.“FI/Q =H, ?7‘?1/2 _ = (Ez noo,—E, n) ) m?2. This is illustrated in Figs. 1 and 2. Fig. 1 shows the error
i,j+1/2 i,j+1/2 ,lL(S 1,7+ 1] . X X .
A versus the propagation angle for discretizations of 10, 20, and
n+1/2 n—1/2 n n . [ izati [ i
Hy "5y =H, 10+ — (Ez|i+1,j _ Ezli ) B 40 CPW. For these discretizations, and, in fact, for all practical

b ' discretizations, waves propagate slower than the speed of light
where ¢ and ;. are the permittivity and permeability of thel”]: [27], [28]. Atthe 2-D Courant limit, which minimizes dis-
medium. In two dimensions, the algorithm has a CouraRESion and is used here, there is no dispersion error for propa-

stability relation given by gation along tr_le cell gliagonal$ & 45°, 1_35’, 225, or 315%)
and the error is maximum along the grid axes=£ 0°, 9(°,
1 180C°, or 270). The dispersion relation is periodic and sym-
cAt < . 4) ' L
12 1\ 2 metric about the grid diagonals so that only angles between
(2:)"+ (A_y) 0°-45’ are shown. Fig. 2 shows the maximum dispersion error

_ _ over all angles versus CPW and further illustrates the second-
Fora un_n‘orm grld, (4) .redl.JCG.S < 1/2. order behavior of the Yee algorithm.
The dispersion relation is given by There are several ways to analyze, interpret, and plot disper-
5 \? A P . sion error. Ultimately, individuals must decide if an algorithm
o Lo (WAL o .2 [ Ry
(cAt) sin <—2 > = sin < ) + sin ( ) 5

provides acceptable dispersion for their particular application.
From Figs. 1 and 2 and the Yee dispersion relation, clearly the
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N rithm at lower frequencies. Given the preceding arguments, this
= ] should not necessarily be considered an undesirable trait.

Finally, itis noted that, as shown in [1], the dispersion charac-
teristics of the Yee algorithm are slightly worse in three dimen-
sions than two dimensions due to the decreased Courant stability
limit, i.e., S < 1/\/5, with the maximum dispersion error still
along the coordinate axes.

I1l. NJL FDTD ALGORITHM

In [6], Nehrbass, Jevitiand Lee modified the FDTD update
coefficients so that the numerical phase velocity for a given dis-
cretization was equal to the speed of light at a propagation angle

0,01 o T e of ¢ = 22,59, ie., halfway between angles corresponding to the

maximum and minimum dispersion errors in the Yee algorithm.
Their algorithm has a wave velocity which is slower than the
Fig. 2. Maximum error versus CPW for the Yee and NJL schemes. For t@€€d of light for angle8® < ¢ < 22.5°, and a wave velocity
NJL scheme, the speed of light has been optimized for 10 CPW. which is faster than light for angle®.5° < ¢ < 45°. The dis-
persion error averaged over all angles is zero. Nehrbhak
\;g_escribed adjustments that can be used in two or three dimen-

dispersion error is larger for coarse discretizations (short wa ; . .
P 9 ( ions. However, the adjustment of the numerical speed of light

lengths) than it is for fine discretizations (long wavelengths).  for di ) iousl tf db
The algorithms we describe in the following sections all attem correct for dISpersion error was previously put forward by
flove [7] who used such a scheme to obtain zero dispersion

to provide dispersion characteristics that are superior to that i

the Yee algorithm. However, this does not necessarily equatee{éorS along the grid diagonals when using a less-than-optimum

providing improved performance over all discretizations. Sincct:‘,-ourant number. The NJL dispersion relation is given by

the Yee algorithm is worse at coarse discretizations than at find__ sin2 (L 5)
ones, coarse discretizations are typically where one wants to 1852 Nx

alize the largest reduction in error. At fine discretizations, the Lof ™A Lo ™A

Yee algorithm performs well and further improvements might = s (jr cos ¢> +sin <_§ st (b) (8)
be considered overkill. In fact, an argument can be made thaggerev, is the speed of light in the grid and is given by

0.1 E

[Errorl/A [degree/wavelength]

Cells/A

linearincreasen dispersion errors for increasing cell density is i ( - S)
sSin | w7
accepta.ble. | | N v, = NT 9)
Con_S|der an object with a character_lstlc IengthLotorre-_ S\/sin2 (NL oS §> 1+ sin? (]\L sin %)
sponding toV,,,., wavelengths at the highest frequency of in- 2 A

terest. Assume that we require the total phase error be less taadN{ is the cells per wavelength at the frequency at which the
¢° for propagation over the distandg i.e., there should be average erroris zero, i.e., the “design frequency.” The dispersion
no more phase error tha N,.x° per wavelength of propaga- relation (8) holds for allV,, butin an NJL FDTD simulation, the
tion. For the Yee algorithm, the discretization needed to achiestesign frequency, and, hend¥; is fixeda priori.

this level of accuracy is straightforward to determine. For fre- The FDTD update equations for the NJL scheme are identical
guencies less than the maximum, the electrical length of the abthe Yee update equations except for the adjustment of the ma-
ject is correspondingly reduced. For example, if the frequentsrial parameters to yield a speed of lightefgiven in (9). The

is halved, the electrical length is also halved so that the objé¢iL scheme prescribes the parameters needed to realize zero
appearsVmax /2 wavelengths long. For this same reduction irrror when averaged over all angles. However, in applications
frequency, the per-wavelength dispersion error in the Yee algeshere the propagation is principally in a known direction, it may
rithmis reduced by a factor of four resulting in a total phase errbe preferable to adjust the parameters so that the phase velocity
for propagation over the distanéeof (/8. If a total phase error is correct for that direction (see, for example, [7, p. 125]).

of ¢° was deemed to be acceptable at the maximum frequencyThe NJL scheme halves the maximum error, compared with
the Yee algorithm will perform much better than that at lowehe Yee scheme, at the design frequency. At lower frequencies
frequencies, i.e., the phase error will be less thamd exhibit (i.e., longer wavelengths or finer discretizations) the maximum
second-order reduction as the frequency is decreased. Now, aamer is nearly identical to that at the design frequency. To illus-
sider a hypothetical algorithm where the phase error increaseste why this occurs, Fig. 1 shows the error in the NJL scheme
linearly with decreasing frequency. For that algorithm, the totédr discretizations of 10, 20, and 40 CPW. The speed of light has
phase error associated with propagation a distdne®uld be been adjusted so that the average error at 10 CPW is zero. This
¢ere for all frequencies. The error at all frequencies would badjustment essentially shifts the Yee curves so that the 10 CPW
right at the acceptable level (no better, no worse). As we shallrve has zero mean. However, at finer discretizations this offset
see, many of the new schemes do (or can do) much better tiestill present. This is also clearly seen in Fig. 2, where the max-
the Yee algorithm at coarse discretizations. This improvementum dispersion error over all angles is plotted as a function
sometimes comes at the price of doing worse than the Yee algbthe discretization. So, unlike the Yee algorithm which con-
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TABLE | faaaaa B e B
FLOATING POINT OPERATIONS PERCELL AND OPTIMUM COURANT NUMBER AT E
10AND 30 Cellg A. FOR THEM(2,4) SCHEME, K; AND K5 ARE AS SPECIFIED ]
IN [8]. FOR THEFANG(2,4), Tv(2,4),AND BATTLE-LEMARIE AND DAUBECHIES = 3
MRTD SCHEMES THE COURANT NUMBERS WERE DETERMINED EMPIRICALLY 0 7
TO MINIMIZE MAXIMUM ERROR AT EITHER 10 0R 30 Cellg/ A % L -
o 2 o E
_ g t | A Fang(2,4) 3
Method FLOPs Optimum Courant Number at S ok X/ ——— Ty24)
10 cells/A 30 cells/A g 10E il M)
1 1 by [ — ’
Yee 11 5 =0.7071 % @ .. - V——e . R
NIL 11 ~ L = 07071 ~ L =0 BN -7 ! N -7 i
ruaTY ~ v < N N 7
Fang (2,4) 22 0.166 0565 = s v N/ 1
M24 31 | ————=0.6257 | 0.6296 g0E i Al
\/2(3—4K,)(3-4K1—~2K2) i} E '
Ty2.4) 32 0.1323 0.0441 = o 1 i
V3 6 /3 10°F ! E
Forgy 20 ¥3 = 0.8660 o E
Cole 23 $in G/4) — .8098 2G4 ) A I B A B N D B P
o | Battlc-Lemaric | 144 0.2575 0.1414 0 5 10 15 20 2 30 35 40 4
£ | Daubechies 48 0.033 0.0141 Angle [degrees]
= ’ L —0.707 1 . .
Haar 1 v = 07071 v Fig. 3. Error versus propagation angle for the Yee, Fang(2,4), M(2,4), and

Ty(2,4) schemes for a discretization of 10 CPW. The higher order schemes have
been optimized for 10 CPW.

verges to zero error in the limit of vanishing discretization, the
NJL scheme converges to the offset value needed to adjust the

n+1/2 —H n—1/2 _Q_At(E |n' _E |n)
10 CPW curve to zero mean. These results may appear at oddd?= |ij+172 =He|i 4172 8u * lhatl #lisg
with the results presented in [6]. However, these results can be At . N
reconciled by keeping in mind that the simulation present in [6] + 24016 (Ez ij+2 E2|i,j—1) (11)
did not pick out the maximum error for a given discretization. 9A+
. . . . . n+1/2 n—1/2 n n
Furthermore, the angle of propagation in their waveguide simu- Hy i+1/2,j =H, iv1/25 T % (Ez|i+1,j - Ez|”)

lation was a function of frequency so that they obtained results At
at different angles for different frequencies.

There is essentially no additional computational cost associ-
ated with the NJL scheme compared to the Yee scheme; hdlire dispersion relation for this scheme is given by
ever, the Courant number must be reduced slightly from that

- — (E.|», . —E.
2416 (B[4,

) (12)

of the Yee limit to prevent numerical instabilities. The results 3 sin? <l5>

shown in Figs. 1 and 2 used a Courant numbér/qf’i for both S Nx

algorithms since the slight amount of reduction requiredtoob- . o/ ™ A 1 . ,(7A 2
tain stable results for the NJL scheme has almost no effect on™ (ET o8 ¢> (1 e <_AT cos ¢>>

these results. Y r 2
The NJL adjustments to the Yee algorithm in 3-D result in ~ + sin® (N—r sin ¢> (1+— sin? (FT sin <Z>>> -
behavior similar to the 2-D case with the maximum dispersion A A A 13
error halved at the design frequency and nearly constant error at (13)

all frequencies lower than the design frequency. Fang showed that the 2-D Courant stability limit for this
scheme was equal to/67\/§). In [1], the dispersion errors
of (13) were evaluated at the Courant stability limit. Upon
re-evaluation of the dispersion relation, it was realized that this
The first higher-order FDTD scheme was presented by Famgs not the optimal Courant number for minimum dispersion.
in 1989 [3]. He used fourth-order centered spatial differenc&nce the method is fourth order in space and second order in
and timestepping based on second-order centered differentiese, the time step must be reduced from the Courant limit
Such expressions can be obtained via Taylor series expansiongrder to ensure the errors associated with the temporal
and lead to increased spatial stencils in both the electric amidcretization are comparable with the spatial errors. Thus,
magnetic fields compared to the Yee algorithm. As shown to minimize the dispersion error at 10 CPW, the Courant
Table |, these larger stencils require twice the number of floatimymber should be approximately 0.166 (i.e., 0./2(5@). Fig. 3
point operations (FLOPs) per cell and per time step as the Yg®ws the dispersion error versus propagation angle using a
algorithm. Thel' M, Fang(2,4) update equations are given byCourant number of 0.166. Unlike the Yee algorithm, which has
OAL minimum dispersion at 90intervals, the Fang(2,4) algorithm

IV. FANG(2,4) FDTD ALGORITHM

E. |t =g |7, + 2= (H n+l/2 - ppo|ntl/2 has minimum dispersion at 45ntervals. Fig. 4 shows the
z|i,j5 z|i,j 8ed Y|i+1/2,5 Yli—1/2,5 . . h . . .

maximum dispersion error versus discretization. It can be seen

—H, Z‘ﬁ{% +H, f;ﬂ%) from the curve that for frequencies with discretizations greater

At’ ' than 10 CPW the scheme has second-order behavior.

~ oies (Hy ey = Hy MY In three dimensions, it can be shown that for a discretization

€n+1/2 12 of 10 CPW the dispersion error is minimized with a Courant

—Hy ;50 + Ha ,L-J»_g/g) (10)  number of approximately 0.155. At this Courant number, the
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B B o o A nt1/2 I

10 Yo —Ha|; 1 5ya0 — He i+1,j+3/2> (14)

E ....... Fang(2,4) ] _ KAt
— x o n+1/2 n—1/2 1
z k& Tl Mo | Heli iy =Heliiapy = =5 (Bl = B:[1)
5 RN, E 1— Ky)At
2 E \\\\ E + ( 1) (Ez ?j+2 - Ez ?]‘—1) (15)
E \\\:\.. ] wo ) )
Q LA
8 L N _ n+1/2 ;5 |n—1/2 KAt
éﬁ‘o EONN D E Hylil1sy =Hyliv1ja; + I (EZ|?+1,J' _Ezmj)
= = \ P ST LTI E
< \ /" \\~:':~'1:'~‘::-_- _____ ] (1 — Kl)At
= \ SSIITEseal - U (B, —E|",.). (16
u% 02k \I!' ‘~~§§_:'::z-::.,:§ Né ( i+2,j5 “le 1;]) ( )
3 i E
N
:: 1 As noted in [8], wherK; = —1/8,andK, = 0, these equations
] S S R E N B S S reduce to the Fang(2,4) update equations, while they reduce to
> 10 15 0 » 0 ¥ “ " the Yee update equations whé& = K, = 0. As shown in
Cells/A Table I, for nonzerd<; andK, the FLOPs per cell and per time

Eig. 4. Maximum error versus CPW for the Yee, Fang(2,4), M(2,4), angtep is roughly three times that of the Yee algorithm. Hadi and
y(2,4) schemes. The higher order schemes have been optimized for 10 CPIWket-May give the optimum values df, and K, for CPWs
of 5n wheren is an integer in the range 4 n < 7. For other
dispersion error is equal along the coordinate axes and grid didipcretizations, one must first determine the optimum values via
onals, with approximately 0.22f error per wavelength, which the dispersion relation.
is roughly the maximum dispersion error in the 2-D case. The dispersion relation for this scheme is given by
Fang’s higher order methods have been the subject of several
studies. For example, Young [29] recently presented a similal9 . , [ «
method that can be generalized to any order. Fang’s method, g8 s (N_/\S) -
with all higher-order methods that have extended spatial sten 31 A _—
cils, requires careful implementation of boundaries which re-[Kl sin (FT cos ¢> +3(1 — Ky)sin <FT cos ¢>]
quire a discontinuity in the field. Yefet and Petropoulos [30], A A A A
[31] and Hwang and Cangellaris [32] present schemes to imLSin (3_”3 COS ¢> <K1 + K cos (Li sin ¢>>
plement boundary conditions that preserve the accuracy of th Na X TA A

higher-order method. 131 = Ky — K»)sin <Nl%cos ¢>
A

+ [Kl sin <3_7ri sing/)) +3(1 — Ky)sin <lé Sin(/>>}
V. HADI AND PIKET-MAY M(2,4) FDTD ALGORITHM Nx X Ny X
. (3T A T A
Starting with Fang’s (2,4) scheme and utilizing Maxwell's |sin { 3= sin¢ | | Ky + Kpcos [ = cos ¢
; o . ) Nx A Nx A
equations in integral form, Hadi and Piket-May showed that -\
Fang’s (2,4) update equations could be written as a weighted-3(1 — K; — K3)sin <—7 sin ¢>>} . a7
sum of two different Ampere’s law contours [8]. They also A

showed that by splitting the outer contour into two distinct

loops an additional degree of freedom is obtained that providedt @ design frequency of 10 CPW, the optimum valuesf
greater flexibility in reducing the global error. For their schem@,r?dK_2 are_—O._116192765 and 0.0734445091, rt_'-zspectlvely. Al
they provided update equation parametéfs and K, that this discretization, the optimum Courant number is 0.6257. Plots

minimized the dispersion error over all angles at a given desigﬁthe dispersion error versus propagation angle and discretiza-

frequency. The updates (10)=(12) are now modified and givlfn €rror, when optimized at 10 CPW, are shown in Figs. 3 and
4, respectively. These figures clearly demonstrate that the dis-

b
y persion error is greatly reduced at the design frequency. Fig. 3
gl N (1 - K; — K2)At nt1/2 shows that for most angles, the error has been reduced by more
E2|z',j :E2|i,j + Py (Hy i+1/2,5 than two orders of magnitude relative to the Fang(2,4) scheme.
g |y g |z g |2 ) In addition, the dispersion error is now minimum at 22is-
Y]i-1/2,j Tlii+1/2 Tlij—1/2 tervals, instead of the 45ntervals of the Fang scheme. Fig. 4
n KAt (H ntl/2 g |nd1/2 also shows that at high discretizations—well beyond the design
3ed Y]it+3/2,4 Y]i=3/2,j frequency—the dispersion errors asymptotically approach that
_ . |nt1/2 n+1/2 of the Fang(2,4) scheme.
Hl' i,j+3/2 +H$ i,j—3/2 . . . . . . .
") " The implementation of this technique in three dimensions and
+ KaAt (Hy 7}+31/22_ L+ H, 7+31/22, ) the treatment of boundary conditions can be found in [33] and
6ed HH8/25- /2% [34]. Itis noted that the appropriate optimization coefficients for
~H, ff;/;j_l —H, Z’f;/;_jﬂ the 3-D case are not given in [33]. Thus, we have not attempted
n+1/2' n+1/2’ to characterize the dispersion properties of the M(2,4) scheme
+H, i—1,j—3/2 +H, i+1,j—3/2 for the full 3-D algorithm.
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VI. TURKEL AND YEFETS TY(2,4) IMPLICIT FDTD behaves as second order for discretizations above the design fre-
ALGORITHM quency.

Turkel and Yefet explored the use of a staggered grid with The presentation of this algorithm in [9], [10] was limited

fourth-order implicit spatial derivatives to reduce the numerick WO dimensions. For this reason, we have not attempted to

dispersion of Yee's FDTD algorithm [9], [10]. The algorithme xtend the algorithm to three dimensions nor to characterize its

is more complex than the explicit FDTD algorithms describe spersion properties in three dimensions. Note that the Ty(2,4)
orlthm is similar to the approach suggested by Yoengl.

previously, since a matrix inversion needs to be computed
each time step for each field component.

The Ty(2,4) update equations are given by
VIl. COLE'S NONSTANDARD FDTD ALGORITHM

E, _E. At D.H n+1/2 Do |12 Employing a different approach to reduce numerical disper-
| P ( Y Ty ) sion, Cole developed an FDTD algorithm that employed non-
(18) standard finite differences [11]. The update equations in the
n41/2 _ gp |n—172 At n TM., case are given by
H, i,j+1/2 =H, i,j4+1/2 EDHEZ i,5+1/2 (19)
n+1/2 n—1/2 At n na1 Atsw(At) n+1/2
H, i+1/2,5 =H, i+1/2,5 + EDsz i+1/2,5 (20) Ez + =k, | W (HU i+1/2,5
—H M2 g |2 g |2 ) (23
where the difference operatbr, acting on the field/ is defined Y|i-1/2.5 (Z ”)1/2 ”*1/2) (23)
to be the solution fofoU /9z)|; in the following: n+1/2 4y |n-1/2 Ats,, (At n
(U /9) g Heliiviye =Hel; 4172 — uT(é) (B:|3je1 — E:]7)
Uit1/2,; = Ui1)2,5 +(1 = o) (EZ|?+1J+1 + Ez|?—l7j+1
11 U L ToU U —E. |?+1j - EZ|72'171.,]')) (24)
i ol 1 n+1/2 n—1/2 Ats,, (At) N .
= Tarl tog | gt T gy 1”} 21 m, vliv1/25 =Hylit1/o; +W(“0 (B[P — E:[7)
+(1 — Qg Ez ? + Ez ;7 G
A similar definition holds forD,.. Since(0U /ox)|; ; depends el (_ | +;,J+1)) [ 5)
on (80U /dx)|i41,; which, in turn, depends of; 5/ ; (Which Zlij+l #lij—1
depends on(0U /0zx)|i4+2,;, and so on), the method is im-
plicit—one must solve for all the derivatives simultaneouslyvheres,(b) = 2sin(ab/2)/a and
However, since each derivative depends only on its neighboring
derivatives, the resulting matrix equation is tightly banded and 1 ) 26
can be solved efficiently. _5( +70) (26)

As shown in Table I, the computational cost of the Ty(2,4) cos(kL6) 005(1;;5) — cos(k'6)
scheme is larger than that of the explicit Fang(2,4) method. In Y0 = N A T =
addition, to minimize the numerical dispersion at a design fre- 1+ cos(k8) cos(ky ) — cos(k,6) — cos(k )

quency of 10 CPW, the Ty(2,4) method requires the use of a @7)
much smaller Courant number than used in the Yee algorithm. }’s :2_7r (28)
At 10 CPW, the optimal Courant number is 0.1323, which is Ny
roughly the same as the optimal value for the Fang(2,4) scheme. 15;5 =k c0s(0.182 03) (29)
The dispersion relation is given by /;;5 =k’6sin(0.182 03r) (30)
1 e sin (%% cos ¢) ’ andNj is the discretizati_on at Which_ performance is optimum.
(129)° sin (—S) = — Cole presented dispersion results in [11], but these were ob-
A 11 + cos (N—” 5 cos ¢>) tained by performing simulations and measuring errors. An an-
2 alytic dispersion relation was not given. The parametewas
sin (NLA 3 s 45) incorrect in [11] as was pointed out in [36]. Unfortunately, [36]

contained a typographical error [37].

It can be seen that Cole’s scheme uses an increased spatial
stencil in the computation of the magnetic fields, but uses the

The dispersion error versus propagation angle is shownsame stencil as the standard Yee update equation in the compu-
Fig. 3. The dispersion properties are similar to the Fang(2@Yion of the electric field. As shown in Table I, this increased
algorithm with minimum dispersion occurring at4fitervals. stencil roughly doubles the computational cost. In addition, the
The erroris slightly less than that of Fang’s. The maximum errapdate equations have tunable coefficienig,and o, which
versus discretization is shown in Fig. 4. Again, its characteriserve to eliminate almost all dispersion errors at a given design
tics are similar to the Fang(2,4) algorithm; its dispersion errfrequency. However, Cole states that because the magnetic fields
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at the design frequency. This null is fairly narrowband, as indi-
cated by the steep rise in the error at discretizations away from
the design frequency.

Cole has also outlined a procedure to ensure negligible dis-
persion at the design frequency in three dimensions. Since the
procedure is similar to the 2-D case, the dispersion error prop-
erties in 3-D will be similar to those obtained here in three di-
mensions.

VIIl. FORGY' SISOTROPICFDTD ALGORITHM

Although starting with a different approach than Cole, Forgy
developed an FDTD algorithm that has dispersion properties
similar to Cole’s scheme [12]-[14]. Forgy recognized that the
dispersion errors of the Yee staggered grid and the Bi collocated
grid were complimentary—the angles where the Yee algorithm

Fig.5. Errorversus propagation angle for the Yee, Forgy, and Cole schemedi@s minimum dispersion are where the Bi algorithm has max-
a discretization of 10 CPW. The Forgy and Cole schemes have been optimiggflim dispersion, and vice versa. By using a simple linear com-

for 10 CPW. The curve labeled Forgy (3-D) was obtained usinghef (38),
while the Forgy (2-D) curve was obtained using thgof (39).

Wgr—T— 7T 1T T

L

[Errorl/A [degree/wavelength]

bination (one-third Bi, two-thirds Yee) of the two schemes, he
was able to develop an algorithm which was isotropic to fourth
order. He also determined he could obtain a further reduction in
the dispersion errors by 1) setting the error along the coordinate
diagonals equal to the error along the main axis and 2) setting
the error along the main axis equal to zero. By doing this, Forgy
produced an algorithm that has almost no dispersion at a given
design frequency. The resulting Forgy FDTD update equations
are given by

—== Yee = ["T==—.__ §
——— Cole o At
Forgy (2D) 3 n+l_ n “o e n+1/2
« Fouy (D) E E:lij =E:i; + ( 3t al) e (Hy i+1/2,j
b n+1/2 n+1/2 n+1/2
4 —Hy|; "y )5 = Hal; 1170 + He i,jfl/Z)
ag At n+1/2 n+1/2
e e ] 2 aged ( vjir1/z,g+1 T Hyliv1/2,5-1
20 30 40 n+1/2 n+1/2
Cells/A —Hyliziy2 500 = Hyliciyaj1
. n+1/2 . n+1/2
Fig. 6. Maximum error versus CPW for the Yee, Forgy, and and Cole schemes. s, i+1,5+1/2 He i—1,j+1/2
Parameters for the higher-order schemes have been optimized for 10 CPW. n+1/2 n+1/2
+H, i+1,5-1/2 + H, 1‘71,1'71/2) (32)
are computed first they contain an anisotropic error; thus, onIyH nt1/2 _ g n=1/2 At (E |n _E |n) (33)
the electric fields have high accuracy. Pl 2T LG/ s VAT #lg
The dispersion relation for Cole’s scheme is given by nt1/2 n—1/2 At
) H, i+1/27j:Hy i+1/2,5 + ) (Ez ?+1,j - E. 73) (34)
sin” () .
— " gin? (FS> = whereqyg, a1, andasy are given by
sin? (:5) X
A 7ra6
2T A\ . o f ™A o = (35)
ap + (1 — «ap) cos N sin¢ | | sin N cos ¢ N sin (]\%)
21 A A m(l - og
+ |:Ol0 + (1 — ag) cos (—Wr cos (b)} sin? <L7 sin ¢>> . a1 = ( 0) (36)
Nx A Ny A N sin ()
A
(31) S an
. . Qo =
Fig. 5 shows the error versus propagation angle when the al- N! sin [ =5
. ; > ? . A S 7
gorithm is optimized at 10 CPW. Note that the dispersion error 2
is small over all angles and, thus, we consider this schemeltd13], «, is given as
be “highly isotropic” (i.e., highly isotropic does not imply the
error is nearly constant but rather it is consistently small). Fig. 6 V3sin (1 ,’T\/g) — sin (NL;)
shows the maximum error versus the discretization, again op- o = 2 - : (38)
timized at 10 CPW. Note the deep null in the dispersion error 3sin (N;\/g)
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This value ensures that the error for propagation along the gridn general, the behavior of the error versus discretization is
axes is the same as for propagation along the 3-D grid diagdmilar to Cole’s algorithm, showing a deep null at the design
nals (i.e., the diagonals that connect opposite corners of a culbequency and a steep rise at discretizations away from this fre-
However, since we are considering only 2-D propagation, a diuency. At the design frequency, the maximum error of the Cole
ferent value ofef, should be used to ensure that the error facheme is approximately one-fifth as large as the M(2,4) scheme
propagation along the grid axes is the same as that for profahich has the smallest maximum of all the (2,4) methods).
gation along the 2-D grid diagonals. This value can be deriv@the maximum error of the 2-D Forgy scheme is approximately
by following the procedure outlined in [13, Sec. 6.1] with thene-third that of the M(2,4) scheme. One major advantage of
wavenumber setto zero along one of the grid axes. The resultthg Forgy scheme over the Cole scheme is that, unlike Cole’s
2-D value ofaj is scheme, Forgy’s scheme is accurate in both the electric and
magnetic fields.
9 gin? ( - ) 2 (L) Since the Forgy algorithm ensures the errors along the coor-
sin Sin o7 . . . . L
NiV2 Ny (39) dinate diagonals and axes are zero, the dispersion behavior in

9 sin ( 7r ) ' three dimensions is similar to that of the 2-D case investigated
NiV2 here.

I
g =

As YVI|| be shown, both the 2-D .and 3-D versionsdf yield IX. MRTD ALGORITHM
similar results except at the design frequency.

It is interesting to note that in the 2-D case, this scheme usedn 1996, Krumpholz and Katehi developed a new approach to
the same spatial stencil as the Yee scheme in computation oftige-domain analysis, termed the MRTD approach [15]. They
magnetic fields, but uses a larger stencil in the computation @fpanded the electric and magnetic field components in terms
the electric field. Thus, the stencils for the electric and magnefi scaling and wavelet basis functions with respect to space.
fields are complimentary in nature to that of Cole’s schem&imilar functions were used as testing functions in space. Pulse
In addition, it can be seen that like the Cole scheme, there &dBctions were used as both basis and testing functions in time.
coefficients of the fornsin(z)/z in the update equations. As The MRTD coefficients for the field expansions, when solely
indicated in Table 1, the Forgy scheme also uses slightly fewesing scaling functions, are given by
floating point operations than the Cole scheme, while having a

slightly larger optimal Courant number. At [Hrat
n n . n+1/2
The dispersion relation is given by Ez,¢|i,;‘rl =B 47 + T3 Z a(i) Hy.g i’—lé‘z,j
2 Jtn.—1
ay .o f T . n+1/2
i’ (1-5) = Y e[ (@1
J'=j—na
:((MQ~|—(¥1) <OZOCOS2 <lism¢) —}—(11) n+1/2 n—1/2
Ni A He o i,j+1/2 =Hz 4 i,j+1/2
.of ™A > j4na.—1
X sin” [ — = cos At . n
<N)\ by ¢ - E Z a(.]l)Ez,du i,j’l/2 (42)
A i'=i=na
+ (g + 1) (ao cos? (—Tcosd)> +a1> nt1/2 n-1/2
) Na A Hy i+1/2,5 — Y lit1/2,5
.2 Vs . i+n,—1
X sin (—rsm (/)) i (40) At T
N =y ! n+1/2
A A + /1,6 Z a(L )Ez,d> i’ (43)

Figs. 5 and 6 show the dispersion errors versus propagation
angle and discretization when optimized at 10 CPW, respegheren,, is the size of the computational stencil, and the coeffi-
tively. As can be seen from Fig. 5, when using the 2-D value ofentsa(i’) anda(j') depend on the choice of scaling functions
ay, the dispersion error is highly isotropic, with no dispersion atsed. The electric and magnetic fields are obtained from these
0°, 45, and integer multiples of #5Using the 3-D value o, field expansions. Equations (41)—(43) show that the amount of
yields zero error only along the grid axes and yields a maximueomputation per update is directly related to the choice of the
error which is more than two orders of magnitude larger thataling function used in the field expansion. Scaling functions
that obtained using the 2-D value. This figure indicates thatvéth large support use large spatial stencils and require extensive
substantial improvement can be realized at the design frequenoynputation, while those with compact support require much
in a 2-D simulation by using the{, given in (39) instead of the less computation.
one given in (38). However, away from the design frequency, theWhen only scaling functions are used (as opposed to using
difference in errors is almost imperceivable as shown in Fig. @avelets and scaling functions), the MRTD dispersion relation
In Fig. 6, the 2-D Forgy scheme is plotted with a solid line whilés given by
the 3-D scheme is plotted using Xs. The 3-D results are almost
identical to the 2-D ones except at the design frequency of 10 1 | T ~ 2 ~ 2
CPW where a single X can be seen hovering in the null. 52 ’ ( ) - [D¢ (k‘”‘s)} + [D;) (kyﬁ)} (44)
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TABLE I
COEFFICIENTSUSED IN THE UPDATE EQUATIONS FOR THEMRTD METHODS
BASED ONB-L, DAUBECHIES, OR HAAR SCALING FUNCTIONS
=
a(i) 2
i B-L Daubechies Haar % : .
0| 1.2918462 | 1.22916661202745 | 1.00 § L — ]gee/;iagll' \\ /'
1| -0.1560761 | -0.09374997764764 2 07k o B;‘:l:fb;e;adc i
2| 0.0596391 | 0.01041666418309 5 F ‘"’
3 | -0.0293099 & W
4| 00153716 2 0tk i
5| -0.0081892 S
6| 0.0043788 g L
7 | -0.0023433 ST B
8 | 0.0012542
sl b b b by b b L
107, 5 10 15 20 25 30 35 40 45

Angle [degrees]

n
~ - T A 1
Df (km(S) = a(i) sin <—7 <L + —) cos qS) (45) Fig. 7. Error versus propagation angle for the MRTD schemes employing
; A 2 either Haar, Battle-Lemarie, or Daubechies scaling functions. Parameters have
been optimized for 10 CPW. The Haar results are identical to those of the Yee

o (7 _ N m A LY scheme.
Dy (kyﬁ) =, a(i) sin <NA 3 <L + 2) sin ¢>> . (46)

T B B B N R BN B

Yee/Haar

A. Krumpholz and Katehi’'s MRTD Using Battle—Lemarie 1: Cin Davbechies
Scaling Functions

Although many possibilities exist for the choice of the
wavelet or scaling functions, Krumpholz and Katehi orig-
inally developed their MRTD scheme using cubic spline $
Battle—Lemarie scaling functions and wavelet functions [15]%’1
When performing a dispersion analysis on the Battle—Lemarg
wavelet functions, the authors determined that the use of theTg
wavelet functions lead to spurious modes. They, therefore, co® 107
centrated their efforts on the Battle—Lemarie scaling functions i

Krumpholz and Katehi noted that although the
Battle—-Lemarie scaling functions have infinite support
the functions have exponential decay and, thus, can be apprc Cells/A
imated by functions with compact support. The use of 9-12 ) o

.. . . .. Fig. 8. Maximum error versus CPW for the MRTD schemes employing either
coefficients have been reported. Using nine coefficients res r, Battle—Lemarie, or Daubechies scaling functions. Parameters have been
in Battle—Lemarie scaling functions with 18 terms. This was th@timized for 10 CPW. The Haar results are identical to those of the Yee scheme.
case considered in Krumpholz and Katehi’'s original paper and

also used here. The(i) for the Battle-Lemarie scaling func- paupechies scaling functions, the authors were able to reduce
tionS are giVen in the firSt Column Of Table 1. F|g 7 ShOWS thﬂ’]e amount Of Computation required by the Batﬂe_Lemarie
dispersion error of the MRTD scheme using the Battle—Lemaid@gajing functions. This is because the Daubechies scaling
scaling functions versus propagation angle when optimizedfghctions requires only three coefficients, rather than the 9-12
10 CPW. This curve used the optimal Courant number for 1=gquired by the Battle—Lemarie scaling functions. Ti(e)
CPW of 0.2575. The maximum dispersion error versus CPWdgefficients used in (45) and (46) are given in the second
shown in Fig. 8. The use of Battle-Lemarie scaling functiong|umn of Table II. As shown in Table I, the FLOPs per cell per
in the MRTD method results in good dispersion behavior fqfme step is 48 for the Daubechies scaling functions in contrast
high frequencies. to 144 FLOPs for the Battle—Lemarie scaling functions.

The dispersion properties of the 3-D MRTD scheme using A plot of the dispersion error versus propagation angle when
Battle-Lemarie scaling functions was presented in [38], wheg@timized at 10 CPW is given in Fig. 7. An optimal Courant
it was shown that the 3-D dispersion behavior is similar to thglmper of 0.033 was used to generate this curve. It can be seen
of the 2-D case. from Fig. 7 that the Daubechies MRTD scheme has more error

, ) ) ) . than the B-L MRTD scheme. The maximum dispersion error

B. Cheong etal.’s MRTD Using Daubechies Scaling Functiogg s s cpw is shown in Fig. 8. It is interesting to note that

Motivated by a desire to increase the localization of the fielthe Daubechies MRTD is much more wideband than the B—L
components, Cheorgf al. developed a scheme they called th&#RTD. Itis also interesting that the Daubechies MRTD scheme
Wavelet—Galerkin MRTD method, which is based on compacthehaves as third order, which greatly reduces the dispersion er-
supported Daubechies scaling functions [21]. By using thiers at high discretizations.

/wavelength]

T =T T

=)

Sl b e by e b b b e by
5 10 15 20 25 30 35 40
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The dispersion errors of the Daubechies MRTD scheme | N "
three dimensions is similar to the 2-D errors presented. It :
noted that the dispersion properties of the Daubechies MRT

10° K%
using higher order moments was recently published in [24]. h

O\

C. MRTD Using Haar Scaling Functions

[Errorl/A [degree/wavelength]

In order to avoid the undesirable noncompact support of tr v N ”\;M ¥
B-L scaling functions, Goverdhanast al. [16] and Fujii and I S o) \\%Tﬁ\"
Hoefer[19], [20] independently explored the use of Haar scalin g - ;‘;(rzgi) N l’j”“‘“”:“”:“::w
functions. As shown by the(:) coefficients given in the third o[ |-+~ Battle-Lemarie \ H// ]
column of Table I, use of the Haar scaling functions result E | pes \w
in very compact support [39]. These coefficients are, in fac T I I | PN
the coefficients for the standard Yee update equations. Tht 3 10 15 20 » 30 3 40
the dispersion relation of the MRTD method using Haar scalin_ Cells/A

functions is identical to that of the Yee algorithm. Its dispersion _ o

properties are also shown in Figs. 7 and 8 for comparison agaiﬁggg. Maximum error versus CPW when the methods have been optimized
or 30 CPW.

the other MRTD schemes.

maximum dispersion versus grid spacing for each scheme
when evaluated at a resolution of 30 CPW and an optimal
Courant number at this resolution (see column 4 of Table I).

In this section, we summarize the computation involve@is in the 10 CPW case, the Cole and 2-D Forgy algorithms
and the numerical dispersion of all the previously describd@ve deep nulls at the design frequency (results for the 3-D
FDTD algorithms. Column 2 of Table | gives the number oforgy scheme are not shown). Similar to these schemes, the
floating point operations to update each cell (three fields) pdl(2.4) algorithm has a deep null, but it also possesses the best
time step. It can be seen that the simple NJL scheme requifégPersion behavior over nearly all frequencies. The Fang(2,4),
no additional operations over the Yee algorithm. Most of thE/(2:4), and Daubechies MRTD have excellent dispersion
other schemes require roughly two to three times as map,gppertles over all frequencies. In fact, at a!l frequenmes_ in
operations. Excluding the Haar-based MRTD scheme, tHe Plot, every scheme except for MRTD using B-L scaling
MRTD schemes require substantially more computation thiynctions now behaves better than the Yee scheme. As in the
the Yee algorithm due to their large spatial stencils. The MRTE) CPW case, the B—L MRTD scheme performs better than the
method using Daubechies scaling functions requires over fo(f€ Scheme only at higher frequencies. .
times as many operations as the Yee scheme, while MRTDTable Ill summarizes the advantages and disadvantages of
using Battle—Lemarie scaling functions requires roughly 1&2ch of the FDTD schemes. Clearly, there are advantages and
times as many. Column 3 of Table | gives the optimum Courafisadvantages to each, and, depending on whether narrowband
number for each scheme at a resolution of 10 CPW, whifé wideband results are desired, one scheme may be preferred
column 4 gives the optimum Courant number at a resoluti@Yer another. Table lil is based solely upon the dispersive prop-
of 30 CPW. As can be seen from Table I, the Forgy algorith&ities of the ;chemes_ln two d|m§n3|ons. We have not g_ttempted
permits the largest time step, which translates into the fewd@tcharacterize other important issues such as the ability of the
number of updates for a simulation of a given duration. TH¢hemes to model general inhomogeneous material or the suit-
Battle—Lemarie MRTD, Daubechies MRTD, Fang(2,4), an@Pility of the scheme for full 3-D modeling.

Ty(2,4) approaches all require the smallest time steps and hence
the greatest number of updates.

Figs. 2, 4, 6, and 8 show the maximum dispersion error XI. CONCLUSION
versus grid spacing when each scheme was optimized at a
design frequency of 10 cells per wavelength. These figures We have analyzed the 2-D dispersion properties of several
along with Figs. 3 and 5, show that the Cole and 2-D Forgyew low-dispersion FDTD algorithms. Almost all provide sub-
optimized dispersion schemes produce the lowest levels sténtial improvement in the reduction of dispersion errors com-
dispersion at the design frequency, but have higher errors thgared with the classical Yee algorithm. In almost all cases, these
most of the other schemes away from the design frequency. Thmrovements add additional computational cost to the algo-
Battle—Lemarie MRTD scheme behaves well for high frequenithm. In addition, for several of the algorithms, a much smaller
cies but has the greatest error at low frequencies. The CdBmurant number must be used to obtain the added benefit of
Forgy, Battle—Lemarie MRTD, and NJL schemes all actuallyighly reduced dispersion. Depending on the particular appli-
have worse dispersion errors at the lower frequencies than dation, one of the low-dispersion FDTD schemes may be pre-
Yee algorithm. However, the conclusions which one drawsrred over another. Although a 3-D dispersion analysis was not
from these figures can be altered by changing the frequermesented, for most of the algorithms discussed here similar dis-
at which optimization occurs. For example, Fig. 9 shows theersion behavior occurs in the 3-D case.

X. COMPARISON OFFDTD ALGORITHMS
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TABLE 1l
ADVANTAGES AND DISADVANTAGES
Scheme Advantages Disadvantages
NJL simple to implement only minor improvement
no added computation anisotropic
no added storage
Fang(2,4) good wideband performance small Courant number
not very isotropic
M(2,4) good wideband performance large stencil
good narrowband performance not as isotropic as Forgy or Cole
nearly isotropic
Ty(2,4) good wideband performance complicated (matrix inversion)
small Courant number
not very isotropic
Cole excellent narrowband performance | not as wideband as many other schemes
highly isotropic accurate only in electric fields
large Courant number
Forgy excellent narrowband performance | not as wideband as many other schemes

highly isotropic
largest Courant number

good performance at high freq.

extremely large stencil
extremely large FLOP count
not very isotropic

small Courant number

good wideband performance
third-order behavior

large stencil

large FLOP count

not very isotropic

very small Courant number

simplest MRTD scheme

same dispersion as Yee

Battle-Lemarie
=
g
Daubechies
Haar
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