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Comparison of the Dispersion Properties of
Several Low-Dispersion Finite-Difference

Time-Domain Algorithms
Kurt L. Shlager, Senior Member, IEEE,and John B. Schneider

Abstract—A comparison of the accuracy of several low-disper-
sion finite-difference time-domain (FDTD) schemes in two dimen-
sions is presented. Each algorithm is briefly reviewed and its FDTD
update equations presented. The dispersion relation of each FDTD
algorithm is also given. The accuracy of each FDTD scheme is com-
pared via direct evaluation of the dispersion relation. Results are
presented showing the dispersion errors of each algorithm as a
function of propagation angle and cell size. Tables are shown that
present for each algorithm the optimal Courant number at a spec-
ified discretization as well as the number of floating point oper-
ations needed to update each cell (three fields) at each time step.
The advantages and disadvantages of each algorithm are briefly
discussed. While some schemes are more wideband than others, al-
most all provide substantial improvement in the dispersion errors
compared with the classical Yee FDTD algorithm.

Index Terms—Finite-difference time-domain (FDTD) methods,
multiresolution time domain (MRTD), numerical dispersion.

I. INTRODUCTION

FOR ELECTRICALLY large problems, the numerical
dispersion inherent in the classical Yee finite-difference

time-domain (FDTD) algorithm can introduce significant
errors. Over the past ten years, there have been several FDTD
schemes published with the goal of reducing dispersion errors.
In 1993, Shlageret al. [1] compared the dispersion errors of
several FDTD algorithms: Yee’s FDTD algorithm [2]; Fang’s
second-order in time fourth-order in space (2,4) algorithm
FDTD scheme [3]; Fang’s fourth-order in time, fourth-order
in space (4,4) FDTD scheme [3]; Biet al. ’s collocated FDTD
algorithm [4]; and Chenet al. ’s transmission line matrix
(TLM)-FDTD algorithm [5]. Since then, several new low-dis-
persion FDTD schemes have been published.

Nehrbass, Jetvic´, and Lee (NJL) presented a simple reduced-
dispersion algorithm that adjusted the numerical velocity of the
wave in the FDTD grid such that the dispersion error was zero
when averaged over all angles [6]. The NJL scheme is similar
to the “dispersion-optimized” scheme previously put forward
by Taflove [7, pp. 102–105]. Starting from the integral form of
Maxwell’s equations in conjunction with Fang’s (2,4) FDTD
scheme, Hadi and Piket-May derived a modified second-order
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in time, fourth-order in space, M(2,4), FDTD scheme [8]. In
the M(2,4) scheme, the global dispersion error is minimized
over all propagation angles. Recently, Turkel and Yefet pre-
sented an implicit second-order in time, fourth-order in space
Ty(2,4) FDTD algorithm [9], [10]. Their algorithm uses implicit
spatial derivatives, while maintaining the standard Yee leapfrog
timestepping. Meanwhile, Cole utilized nonstandard finite dif-
ferences to derive a Yee-like FDTD algorithm with low disper-
sion [11]. Forgy developed an algorithm that uses both the Yee
grid and the Bi collocated grid. Since these grids have com-
plementary dispersion characteristics, Forgy was able to com-
bine them in such a way as to eliminate nearly all dispersion
errors at a design frequency [12]–[14]. In 1996, Krumpholz
and Katehi proposed the multiresolution time-domain (MRTD)
method [15]. In their scheme, field components are expanded in
scaling and wavelet functions with respect to space. Pulse func-
tions are used as basis and testing functions with respect to time.
Krumpholz and Katehi chose to work primarily with the cubic
spline Battle-Lemarie (B–L) scaling and wavelet functions, al-
though other scaling and wavelet functions are possible. Instead
of the B–L scaling functions, Goverdhanamet al.[16]–[18] and
Fujii and Hoefer [19], [20] used Haar scaling functions, which
have much more compact support. Recently, Cheonget al. [21]
used the compactly supported Daubechies scaling functions to
avoid the nonlocalization of the B–L scaling functions.

In [1], the optimal dispersion characteristics of the Fang(2,4)
scheme were mistakenly identified as occurring at the Courant
stability limit. For this reason, the Fang (2,4) scheme is re-eval-
uated in this paper. In addition, the dispersion relation of the
NJL reduced-dispersion scheme, Hadi and Piket-May’s M(2,4)
scheme, Turkel and Yefet’s Ty (2,4) implicit scheme, Cole’s
nonstandard scheme, Forgy’s isotropic scheme, and the MRTD
schemes mentioned previously are all presented. Other low-dis-
persion methods have been introduced which are not consid-
ered here. Some of these schemes, such as those presented by
Omick and Castillo [22], Liu [23], Fujii and Hoefer [24], [25],
and Dogaru and Carin [26], may posses certain properties that
are comparable to, or even superior to, those of some of the al-
gorithms considered here (though certainly no algorithm is uni-
versally superior to the others). Since time and space dictate lim-
iting the number of algorithms reported, we have chosen algo-
rithms based on the interest in the algorithm and/or the perceived
benefits it has relative to others.

After a short review of dispersion error, each of these FDTD
algorithms is reviewed in two dimensions and its two-dimen-
sional (2-D) dispersion relation presented (Sections III–IX). Al-
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though the results presented here are limited to those obtained
from the 2-D dispersion analysis, where appropriate the three-
dimensional (3-D) behavior of each algorithm is also briefly ad-
dressed.

To facilitate comparison of the computational effort and size
of the spatial stencils, we also provide the update equations for
each scheme. Similar FDTD schemes are compared against one
another. Results are presented showing the dispersion errors of
each algorithm as a function of propagation angle and cell size.
Since each of these schemes either permits or requires opti-
mization at a particular frequency, curves are presented showing
their performance when optimized at ten cells per wavelength.
In Section X, further comparisons of the dispersion algorithms
are made. The optimal Courant number to be used for each algo-
rithm is given as well as the number of floating point operations
needed to update each cell (three fields) at each time step. In
addition, a figure is presented comparing the dispersion errors
for all schemes when each scheme is optimized at 30 cells per
wavelength (CPW). Finally, a summary of the advantages and
disadvantages of each algorithm is presented.

II. REVIEW OF FDTD DISPERSION

The dispersion characteristics of an FDTD algorithm are typ-
ically derived by assuming a time harmonic solution to the dis-
cretized form of Maxwell’s equations for an isotropic, homo-
geneous, linear, and lossless medium. The dispersion relations
describe the phase velocity of an electromagnetic plane wave
propagating in the grid and can be used to determine the disper-
sion error per numerical wavelength. This error is a function
of the angle of propagation of the plane wave, the number of
CPW, and the Courant number, which is given by ,
where is the speed of light, is the time step, and is the
spatial increment. Throughout this paper, we assume a 2-D uni-
form grid with spatial increments .

For reference, we include the Yee update equations for the
lossless 2-D transverse magnetic ( ) case

(1)

(2)

(3)

where and are the permittivity and permeability of the
medium. In two dimensions, the algorithm has a Courant
stability relation given by

(4)

For a uniform grid, (4) reduces to .
The dispersion relation is given by

(5)

Fig. 1. Error versus propagation angle for the Yee and NJL schemes for
discretizations of 10, 20, and 40 CPW. For the NJL scheme, the speed of light
has been optimized for 10 CPW.

where and are the and components of the numerical
wavenumber, respectively, andis the angular frequency. For
error analysis it is more convenient to write (5) in the following
form:

(6)
where is the CPW (note that CPW is the number of cells per
the exact wavelength, i.e., CPW and is not the number
of cells per the numeric wavelength),is the direction of prop-
agation with 0 corresponding to propagation along a grid axis,
and is the ratio of the exact to numeric wavenumber. The
dispersion error per wavelength can be obtained through the re-
lation

(7)

Throughout the paper, a simple bisection approach is used to
obtain the ratio from the appropriate dispersion relation.

The Yee FDTD algorithm is second-order accurate. If the
cell size is decreased by a factor, the error decreases by

. This is illustrated in Figs. 1 and 2. Fig. 1 shows the error
versus the propagation angle for discretizations of 10, 20, and
40 CPW. For these discretizations, and, in fact, for all practical
discretizations, waves propagate slower than the speed of light
[7], [27], [28]. At the 2-D Courant limit, which minimizes dis-
persion and is used here, there is no dispersion error for propa-
gation along the cell diagonals ( , 135 , 225 , or 315 )
and the error is maximum along the grid axes ( , 90 ,
180 , or 270 ). The dispersion relation is periodic and sym-
metric about the grid diagonals so that only angles between
0 –45 are shown. Fig. 2 shows the maximum dispersion error
over all angles versus CPW and further illustrates the second-
order behavior of the Yee algorithm.

There are several ways to analyze, interpret, and plot disper-
sion error. Ultimately, individuals must decide if an algorithm
provides acceptable dispersion for their particular application.
From Figs. 1 and 2 and the Yee dispersion relation, clearly the
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Fig. 2. Maximum error versus CPW for the Yee and NJL schemes. For the
NJL scheme, the speed of light has been optimized for 10 CPW.

dispersion error is larger for coarse discretizations (short wave-
lengths) than it is for fine discretizations (long wavelengths).
The algorithms we describe in the following sections all attempt
to provide dispersion characteristics that are superior to that of
the Yee algorithm. However, this does not necessarily equate to
providing improved performance over all discretizations. Since
the Yee algorithm is worse at coarse discretizations than at fine
ones, coarse discretizations are typically where one wants to re-
alize the largest reduction in error. At fine discretizations, the
Yee algorithm performs well and further improvements might
be considered overkill. In fact, an argument can be made that a
linearincreasein dispersion errors for increasing cell density is
acceptable.

Consider an object with a characteristic length ofcorre-
sponding to wavelengths at the highest frequency of in-
terest. Assume that we require the total phase error be less than

for propagation over the distance, i.e., there should be
no more phase error than per wavelength of propaga-
tion. For the Yee algorithm, the discretization needed to achieve
this level of accuracy is straightforward to determine. For fre-
quencies less than the maximum, the electrical length of the ob-
ject is correspondingly reduced. For example, if the frequency
is halved, the electrical length is also halved so that the object
appears wavelengths long. For this same reduction in
frequency, the per-wavelength dispersion error in the Yee algo-
rithm is reduced by a factor of four resulting in a total phase error
for propagation over the distanceof . If a total phase error
of was deemed to be acceptable at the maximum frequency,
the Yee algorithm will perform much better than that at lower
frequencies, i.e., the phase error will be less thanand exhibit
second-order reduction as the frequency is decreased. Now, con-
sider a hypothetical algorithm where the phase error increases
linearly with decreasing frequency. For that algorithm, the total
phase error associated with propagation a distancewould be

for all frequencies. The error at all frequencies would be
right at the acceptable level (no better, no worse). As we shall
see, many of the new schemes do (or can do) much better than
the Yee algorithm at coarse discretizations. This improvement
sometimes comes at the price of doing worse than the Yee algo-

rithm at lower frequencies. Given the preceding arguments, this
should not necessarily be considered an undesirable trait.

Finally, it is noted that, as shown in [1], the dispersion charac-
teristics of the Yee algorithm are slightly worse in three dimen-
sions than two dimensions due to the decreased Courant stability
limit, i.e., , with the maximum dispersion error still
along the coordinate axes.

III. NJL FDTD ALGORITHM

In [6], Nehrbass, Jevtic´, and Lee modified the FDTD update
coefficients so that the numerical phase velocity for a given dis-
cretization was equal to the speed of light at a propagation angle
of , i.e., halfway between angles corresponding to the
maximum and minimum dispersion errors in the Yee algorithm.
Their algorithm has a wave velocity which is slower than the
speed of light for angles , and a wave velocity
which is faster than light for angles . The dis-
persion error averaged over all angles is zero. Nehrbasset al.
prescribed adjustments that can be used in two or three dimen-
sions. However, the adjustment of the numerical speed of light
to correct for dispersion error was previously put forward by
Taflove [7] who used such a scheme to obtain zero dispersion
errors along the grid diagonals when using a less-than-optimum
Courant number. The NJL dispersion relation is given by

(8)

where is the speed of light in the grid and is given by

(9)

and is the cells per wavelength at the frequency at which the
average error is zero, i.e., the “design frequency.” The dispersion
relation (8) holds for all but in an NJL FDTD simulation, the
design frequency, and, hence, is fixed a priori.

The FDTD update equations for the NJL scheme are identical
to the Yee update equations except for the adjustment of the ma-
terial parameters to yield a speed of light ofgiven in (9). The
NJL scheme prescribes the parameters needed to realize zero
error when averaged over all angles. However, in applications
where the propagation is principally in a known direction, it may
be preferable to adjust the parameters so that the phase velocity
is correct for that direction (see, for example, [7, p. 125]).

The NJL scheme halves the maximum error, compared with
the Yee scheme, at the design frequency. At lower frequencies
(i.e., longer wavelengths or finer discretizations) the maximum
error is nearly identical to that at the design frequency. To illus-
trate why this occurs, Fig. 1 shows the error in the NJL scheme
for discretizations of 10, 20, and 40 CPW. The speed of light has
been adjusted so that the average error at 10 CPW is zero. This
adjustment essentially shifts the Yee curves so that the 10 CPW
curve has zero mean. However, at finer discretizations this offset
is still present. This is also clearly seen in Fig. 2, where the max-
imum dispersion error over all angles is plotted as a function
of the discretization. So, unlike the Yee algorithm which con-
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TABLE I
FLOATING POINT OPERATIONS PERCELL AND OPTIMUM COURANT NUMBER AT

10 AND 30 Cells=�. FOR THEM(2,4) SCHEME,K AND K ARE AS SPECIFIED

IN [8]. FOR THEFANG(2,4), TY(2,4),AND BATTLE-LEMARIE AND DAUBECHIES

MRTD SCHEMES, THE COURANT NUMBERSWEREDETERMINED EMPIRICALLY

TO MINIMIZE MAXIMUM ERROR AT EITHER 10 OR 30 Cells=�

verges to zero error in the limit of vanishing discretization, the
NJL scheme converges to the offset value needed to adjust the
10 CPW curve to zero mean. These results may appear at odds
with the results presented in [6]. However, these results can be
reconciled by keeping in mind that the simulation present in [6]
did not pick out the maximum error for a given discretization.
Furthermore, the angle of propagation in their waveguide simu-
lation was a function of frequency so that they obtained results
at different angles for different frequencies.

There is essentially no additional computational cost associ-
ated with the NJL scheme compared to the Yee scheme; how-
ever, the Courant number must be reduced slightly from that
of the Yee limit to prevent numerical instabilities. The results
shown in Figs. 1 and 2 used a Courant number of for both
algorithms since the slight amount of reduction required to ob-
tain stable results for the NJL scheme has almost no effect on
these results.

The NJL adjustments to the Yee algorithm in 3-D result in
behavior similar to the 2-D case with the maximum dispersion
error halved at the design frequency and nearly constant error at
all frequencies lower than the design frequency.

IV. FANG(2,4) FDTD ALGORITHM

The first higher-order FDTD scheme was presented by Fang
in 1989 [3]. He used fourth-order centered spatial differences
and timestepping based on second-order centered differences.
Such expressions can be obtained via Taylor series expansions
and lead to increased spatial stencils in both the electric and
magnetic fields compared to the Yee algorithm. As shown in
Table I, these larger stencils require twice the number of floating
point operations (FLOPs) per cell and per time step as the Yee
algorithm. The Fang(2,4) update equations are given by

(10)

Fig. 3. Error versus propagation angle for the Yee, Fang(2,4), M(2,4), and
Ty(2,4) schemes for a discretization of 10 CPW. The higher order schemes have
been optimized for 10 CPW.

(11)

(12)

The dispersion relation for this scheme is given by

(13)

Fang showed that the 2-D Courant stability limit for this
scheme was equal to 67 2 . In [1], the dispersion errors
of (13) were evaluated at the Courant stability limit. Upon
re-evaluation of the dispersion relation, it was realized that this
was not the optimal Courant number for minimum dispersion.
Since the method is fourth order in space and second order in
time, the time step must be reduced from the Courant limit
in order to ensure the errors associated with the temporal
discretization are comparable with the spatial errors. Thus,
to minimize the dispersion error at 10 CPW, the Courant
number should be approximately 0.166 (i.e., 0.2352). Fig. 3
shows the dispersion error versus propagation angle using a
Courant number of 0.166. Unlike the Yee algorithm, which has
minimum dispersion at 90intervals, the Fang(2,4) algorithm
has minimum dispersion at 45intervals. Fig. 4 shows the
maximum dispersion error versus discretization. It can be seen
from the curve that for frequencies with discretizations greater
than 10 CPW the scheme has second-order behavior.

In three dimensions, it can be shown that for a discretization
of 10 CPW the dispersion error is minimized with a Courant
number of approximately 0.155. At this Courant number, the
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Fig. 4. Maximum error versus CPW for the Yee, Fang(2,4), M(2,4), and
Ty(2,4) schemes. The higher order schemes have been optimized for 10 CPW.

dispersion error is equal along the coordinate axes and grid diag-
onals, with approximately 0.12of error per wavelength, which
is roughly the maximum dispersion error in the 2-D case.

Fang’s higher order methods have been the subject of several
studies. For example, Young [29] recently presented a similar
method that can be generalized to any order. Fang’s method, as
with all higher-order methods that have extended spatial sten-
cils, requires careful implementation of boundaries which re-
quire a discontinuity in the field. Yefet and Petropoulos [30],
[31] and Hwang and Cangellaris [32] present schemes to im-
plement boundary conditions that preserve the accuracy of the
higher-order method.

V. HADI AND PIKET-MAY M(2,4) FDTD ALGORITHM

Starting with Fang’s (2,4) scheme and utilizing Maxwell’s
equations in integral form, Hadi and Piket-May showed that
Fang’s (2,4) update equations could be written as a weighted
sum of two different Ampere’s law contours [8]. They also
showed that by splitting the outer contour into two distinct
loops an additional degree of freedom is obtained that provides
greater flexibility in reducing the global error. For their scheme,
they provided update equation parameters and that
minimized the dispersion error over all angles at a given design
frequency. The updates (10)–(12) are now modified and given
by

(14)

(15)

(16)

As noted in [8], when , and , these equations
reduce to the Fang(2,4) update equations, while they reduce to
the Yee update equations when . As shown in
Table I, for nonzero and the FLOPs per cell and per time
step is roughly three times that of the Yee algorithm. Hadi and
Piket-May give the optimum values of and for CPWs
of 5 where is an integer in the range 1 7. For other
discretizations, one must first determine the optimum values via
the dispersion relation.

The dispersion relation for this scheme is given by

(17)

At a design frequency of 10 CPW, the optimum values of
and are 0.116192765 and 0.0734445091, respectively. At
this discretization, the optimum Courant number is 0.6257. Plots
of the dispersion error versus propagation angle and discretiza-
tion error, when optimized at 10 CPW, are shown in Figs. 3 and
4, respectively. These figures clearly demonstrate that the dis-
persion error is greatly reduced at the design frequency. Fig. 3
shows that for most angles, the error has been reduced by more
than two orders of magnitude relative to the Fang(2,4) scheme.
In addition, the dispersion error is now minimum at 22.5in-
tervals, instead of the 45intervals of the Fang scheme. Fig. 4
also shows that at high discretizations—well beyond the design
frequency—the dispersion errors asymptotically approach that
of the Fang(2,4) scheme.

The implementation of this technique in three dimensions and
the treatment of boundary conditions can be found in [33] and
[34]. It is noted that the appropriate optimization coefficients for
the 3-D case are not given in [33]. Thus, we have not attempted
to characterize the dispersion properties of the M(2,4) scheme
for the full 3-D algorithm.
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VI. TURKEL AND YEFET’S TY(2,4) IMPLICIT FDTD
ALGORITHM

Turkel and Yefet explored the use of a staggered grid with
fourth-order implicit spatial derivatives to reduce the numerical
dispersion of Yee’s FDTD algorithm [9], [10]. The algorithm
is more complex than the explicit FDTD algorithms described
previously, since a matrix inversion needs to be computed at
each time step for each field component.

The Ty(2,4) update equations are given by

(18)

(19)

(20)

where the difference operator acting on the field is defined
to be the solution for in the following:

(21)

A similar definition holds for . Since depends
on which, in turn, depends on (which
depends on , and so on), the method is im-
plicit—one must solve for all the derivatives simultaneously.
However, since each derivative depends only on its neighboring
derivatives, the resulting matrix equation is tightly banded and
can be solved efficiently.

As shown in Table I, the computational cost of the Ty(2,4)
scheme is larger than that of the explicit Fang(2,4) method. In
addition, to minimize the numerical dispersion at a design fre-
quency of 10 CPW, the Ty(2,4) method requires the use of a
much smaller Courant number than used in the Yee algorithm.
At 10 CPW, the optimal Courant number is 0.1323, which is
roughly the same as the optimal value for the Fang(2,4) scheme.

The dispersion relation is given by

(22)

The dispersion error versus propagation angle is shown in
Fig. 3. The dispersion properties are similar to the Fang(2,4)
algorithm with minimum dispersion occurring at 45intervals.
The error is slightly less than that of Fang’s. The maximum error
versus discretization is shown in Fig. 4. Again, its characteris-
tics are similar to the Fang(2,4) algorithm; its dispersion error

behaves as second order for discretizations above the design fre-
quency.

The presentation of this algorithm in [9], [10] was limited
to two dimensions. For this reason, we have not attempted to
extend the algorithm to three dimensions nor to characterize its
dispersion properties in three dimensions. Note that the Ty(2,4)
algorithm is similar to the approach suggested by Younget al.
[35].

VII. COLE’S NONSTANDARD FDTD ALGORITHM

Employing a different approach to reduce numerical disper-
sion, Cole developed an FDTD algorithm that employed non-
standard finite differences [11]. The update equations in the

case are given by

(23)

(24)

(25)

where and

(26)

(27)

(28)

(29)

(30)

and is the discretization at which performance is optimum.
Cole presented dispersion results in [11], but these were ob-
tained by performing simulations and measuring errors. An an-
alytic dispersion relation was not given. The parameterwas
incorrect in [11] as was pointed out in [36]. Unfortunately, [36]
contained a typographical error [37].

It can be seen that Cole’s scheme uses an increased spatial
stencil in the computation of the magnetic fields, but uses the
same stencil as the standard Yee update equation in the compu-
tation of the electric field. As shown in Table I, this increased
stencil roughly doubles the computational cost. In addition, the
update equations have tunable coefficients,and , which
serve to eliminate almost all dispersion errors at a given design
frequency. However, Cole states that because the magnetic fields
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Fig. 5. Error versus propagation angle for the Yee, Forgy, and Cole schemes for
a discretization of 10 CPW. The Forgy and Cole schemes have been optimized
for 10 CPW. The curve labeled Forgy (3-D) was obtained using the� of (38),
while the Forgy (2-D) curve was obtained using the� of (39).

Fig. 6. Maximum error versus CPW for the Yee, Forgy, and and Cole schemes.
Parameters for the higher-order schemes have been optimized for 10 CPW.

are computed first they contain an anisotropic error; thus, only
the electric fields have high accuracy.

The dispersion relation for Cole’s scheme is given by

(31)

Fig. 5 shows the error versus propagation angle when the al-
gorithm is optimized at 10 CPW. Note that the dispersion error
is small over all angles and, thus, we consider this scheme to
be “highly isotropic” (i.e., highly isotropic does not imply the
error is nearly constant but rather it is consistently small). Fig. 6
shows the maximum error versus the discretization, again op-
timized at 10 CPW. Note the deep null in the dispersion error

at the design frequency. This null is fairly narrowband, as indi-
cated by the steep rise in the error at discretizations away from
the design frequency.

Cole has also outlined a procedure to ensure negligible dis-
persion at the design frequency in three dimensions. Since the
procedure is similar to the 2-D case, the dispersion error prop-
erties in 3-D will be similar to those obtained here in three di-
mensions.

VIII. F ORGY’S ISOTROPICFDTD ALGORITHM

Although starting with a different approach than Cole, Forgy
developed an FDTD algorithm that has dispersion properties
similar to Cole’s scheme [12]–[14]. Forgy recognized that the
dispersion errors of the Yee staggered grid and the Bi collocated
grid were complimentary—the angles where the Yee algorithm
has minimum dispersion are where the Bi algorithm has max-
imum dispersion, and vice versa. By using a simple linear com-
bination (one-third Bi, two-thirds Yee) of the two schemes, he
was able to develop an algorithm which was isotropic to fourth
order. He also determined he could obtain a further reduction in
the dispersion errors by 1) setting the error along the coordinate
diagonals equal to the error along the main axis and 2) setting
the error along the main axis equal to zero. By doing this, Forgy
produced an algorithm that has almost no dispersion at a given
design frequency. The resulting Forgy FDTD update equations
are given by

(32)

(33)

(34)

where , , and are given by

(35)

(36)

(37)

In [13], is given as

(38)
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This value ensures that the error for propagation along the grid
axes is the same as for propagation along the 3-D grid diago-
nals (i.e., the diagonals that connect opposite corners of a cube).
However, since we are considering only 2-D propagation, a dif-
ferent value of should be used to ensure that the error for
propagation along the grid axes is the same as that for propa-
gation along the 2-D grid diagonals. This value can be derived
by following the procedure outlined in [13, Sec. 6.1] with the
wavenumber set to zero along one of the grid axes. The resulting
2-D value of is

(39)

As will be shown, both the 2-D and 3-D versions of yield
similar results except at the design frequency.

It is interesting to note that in the 2-D case, this scheme uses
the same spatial stencil as the Yee scheme in computation of the
magnetic fields, but uses a larger stencil in the computation of
the electric field. Thus, the stencils for the electric and magnetic
fields are complimentary in nature to that of Cole’s scheme.
In addition, it can be seen that like the Cole scheme, there are
coefficients of the form in the update equations. As
indicated in Table I, the Forgy scheme also uses slightly fewer
floating point operations than the Cole scheme, while having a
slightly larger optimal Courant number.

The dispersion relation is given by

(40)

Figs. 5 and 6 show the dispersion errors versus propagation
angle and discretization when optimized at 10 CPW, respec-
tively. As can be seen from Fig. 5, when using the 2-D value of

the dispersion error is highly isotropic, with no dispersion at
0 , 45 , and integer multiples of 45. Using the 3-D value of
yields zero error only along the grid axes and yields a maximum
error which is more than two orders of magnitude larger than
that obtained using the 2-D value. This figure indicates that a
substantial improvement can be realized at the design frequency
in a 2-D simulation by using the given in (39) instead of the
one given in (38). However, away from the design frequency, the
difference in errors is almost imperceivable as shown in Fig. 6.
In Fig. 6, the 2-D Forgy scheme is plotted with a solid line while
the 3-D scheme is plotted using Xs. The 3-D results are almost
identical to the 2-D ones except at the design frequency of 10
CPW where a single X can be seen hovering in the null.

In general, the behavior of the error versus discretization is
similar to Cole’s algorithm, showing a deep null at the design
frequency and a steep rise at discretizations away from this fre-
quency. At the design frequency, the maximum error of the Cole
scheme is approximately one-fifth as large as the M(2,4) scheme
(which has the smallest maximum of all the (2,4) methods).
The maximum error of the 2-D Forgy scheme is approximately
one-third that of the M(2,4) scheme. One major advantage of
the Forgy scheme over the Cole scheme is that, unlike Cole’s
scheme, Forgy’s scheme is accurate in both the electric and
magnetic fields.

Since the Forgy algorithm ensures the errors along the coor-
dinate diagonals and axes are zero, the dispersion behavior in
three dimensions is similar to that of the 2-D case investigated
here.

IX. MRTD A LGORITHM

In 1996, Krumpholz and Katehi developed a new approach to
time-domain analysis, termed the MRTD approach [15]. They
expanded the electric and magnetic field components in terms
of scaling and wavelet basis functions with respect to space.
Similar functions were used as testing functions in space. Pulse
functions were used as both basis and testing functions in time.

The MRTD coefficients for the field expansions, when solely
using scaling functions, are given by

(41)

(42)

(43)

where is the size of the computational stencil, and the coeffi-
cients and depend on the choice of scaling functions
used. The electric and magnetic fields are obtained from these
field expansions. Equations (41)–(43) show that the amount of
computation per update is directly related to the choice of the
scaling function used in the field expansion. Scaling functions
with large support use large spatial stencils and require extensive
computation, while those with compact support require much
less computation.

When only scaling functions are used (as opposed to using
wavelets and scaling functions), the MRTD dispersion relation
is given by

(44)
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TABLE II
COEFFICIENTSUSED IN THE UPDATE EQUATIONS FOR THEMRTD METHODS

BASED ON B–L, DAUBECHIES, OR HAAR SCALING FUNCTIONS

where

(45)

(46)

A. Krumpholz and Katehi’s MRTD Using Battle–Lemarie
Scaling Functions

Although many possibilities exist for the choice of the
wavelet or scaling functions, Krumpholz and Katehi orig-
inally developed their MRTD scheme using cubic spline
Battle–Lemarie scaling functions and wavelet functions [15].
When performing a dispersion analysis on the Battle–Lemarie
wavelet functions, the authors determined that the use of these
wavelet functions lead to spurious modes. They, therefore, con-
centrated their efforts on the Battle–Lemarie scaling functions.

Krumpholz and Katehi noted that although the
Battle–Lemarie scaling functions have infinite support,
the functions have exponential decay and, thus, can be approx-
imated by functions with compact support. The use of 9–12
coefficients have been reported. Using nine coefficients results
in Battle–Lemarie scaling functions with 18 terms. This was the
case considered in Krumpholz and Katehi’s original paper and
also used here. The for the Battle–Lemarie scaling func-
tions are given in the first column of Table II. Fig. 7 shows the
dispersion error of the MRTD scheme using the Battle–Lemarie
scaling functions versus propagation angle when optimized at
10 CPW. This curve used the optimal Courant number for 10
CPW of 0.2575. The maximum dispersion error versus CPW is
shown in Fig. 8. The use of Battle–Lemarie scaling functions
in the MRTD method results in good dispersion behavior for
high frequencies.

The dispersion properties of the 3-D MRTD scheme using
Battle–Lemarie scaling functions was presented in [38], where
it was shown that the 3-D dispersion behavior is similar to that
of the 2-D case.

B. Cheong et al.’s MRTD Using Daubechies Scaling Functions

Motivated by a desire to increase the localization of the field
components, Cheonget al.developed a scheme they called the
Wavelet–Galerkin MRTD method, which is based on compactly
supported Daubechies scaling functions [21]. By using the

Fig. 7. Error versus propagation angle for the MRTD schemes employing
either Haar, Battle–Lemarie, or Daubechies scaling functions. Parameters have
been optimized for 10 CPW. The Haar results are identical to those of the Yee
scheme.

Fig. 8. Maximum error versus CPW for the MRTD schemes employing either
Haar, Battle–Lemarie, or Daubechies scaling functions. Parameters have been
optimized for 10 CPW. The Haar results are identical to those of the Yee scheme.

Daubechies scaling functions, the authors were able to reduce
the amount of computation required by the Battle–Lemarie
scaling functions. This is because the Daubechies scaling
functions requires only three coefficients, rather than the 9–12
required by the Battle–Lemarie scaling functions. The
coefficients used in (45) and (46) are given in the second
column of Table II. As shown in Table I, the FLOPs per cell per
time step is 48 for the Daubechies scaling functions in contrast
to 144 FLOPs for the Battle–Lemarie scaling functions.

A plot of the dispersion error versus propagation angle when
optimized at 10 CPW is given in Fig. 7. An optimal Courant
number of 0.033 was used to generate this curve. It can be seen
from Fig. 7 that the Daubechies MRTD scheme has more error
than the B–L MRTD scheme. The maximum dispersion error
versus CPW is shown in Fig. 8. It is interesting to note that
the Daubechies MRTD is much more wideband than the B–L
MRTD. It is also interesting that the Daubechies MRTD scheme
behaves as third order, which greatly reduces the dispersion er-
rors at high discretizations.
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The dispersion errors of the Daubechies MRTD scheme in
three dimensions is similar to the 2-D errors presented. It is
noted that the dispersion properties of the Daubechies MRTD
using higher order moments was recently published in [24].

C. MRTD Using Haar Scaling Functions

In order to avoid the undesirable noncompact support of the
B–L scaling functions, Goverdhanamet al. [16] and Fujii and
Hoefer [19], [20] independently explored the use of Haar scaling
functions. As shown by the coefficients given in the third
column of Table II, use of the Haar scaling functions results
in very compact support [39]. These coefficients are, in fact,
the coefficients for the standard Yee update equations. Thus,
the dispersion relation of the MRTD method using Haar scaling
functions is identical to that of the Yee algorithm. Its dispersion
properties are also shown in Figs. 7 and 8 for comparison against
the other MRTD schemes.

X. COMPARISON OFFDTD ALGORITHMS

In this section, we summarize the computation involved
and the numerical dispersion of all the previously described
FDTD algorithms. Column 2 of Table I gives the number of
floating point operations to update each cell (three fields) per
time step. It can be seen that the simple NJL scheme requires
no additional operations over the Yee algorithm. Most of the
other schemes require roughly two to three times as many
operations. Excluding the Haar-based MRTD scheme, the
MRTD schemes require substantially more computation than
the Yee algorithm due to their large spatial stencils. The MRTD
method using Daubechies scaling functions requires over four
times as many operations as the Yee scheme, while MRTD
using Battle–Lemarie scaling functions requires roughly 13
times as many. Column 3 of Table I gives the optimum Courant
number for each scheme at a resolution of 10 CPW, while
column 4 gives the optimum Courant number at a resolution
of 30 CPW. As can be seen from Table I, the Forgy algorithm
permits the largest time step, which translates into the fewest
number of updates for a simulation of a given duration. The
Battle–Lemarie MRTD, Daubechies MRTD, Fang(2,4), and
Ty(2,4) approaches all require the smallest time steps and hence
the greatest number of updates.

Figs. 2, 4, 6, and 8 show the maximum dispersion error
versus grid spacing when each scheme was optimized at a
design frequency of 10 cells per wavelength. These figures,
along with Figs. 3 and 5, show that the Cole and 2-D Forgy
optimized dispersion schemes produce the lowest levels of
dispersion at the design frequency, but have higher errors than
most of the other schemes away from the design frequency. The
Battle–Lemarie MRTD scheme behaves well for high frequen-
cies but has the greatest error at low frequencies. The Cole,
Forgy, Battle–Lemarie MRTD, and NJL schemes all actually
have worse dispersion errors at the lower frequencies than the
Yee algorithm. However, the conclusions which one draws
from these figures can be altered by changing the frequency
at which optimization occurs. For example, Fig. 9 shows the

Fig. 9. Maximum error versus CPW when the methods have been optimized
for 30 CPW.

maximum dispersion versus grid spacing for each scheme
when evaluated at a resolution of 30 CPW and an optimal
Courant number at this resolution (see column 4 of Table I).
As in the 10 CPW case, the Cole and 2-D Forgy algorithms
have deep nulls at the design frequency (results for the 3-D
Forgy scheme are not shown). Similar to these schemes, the
M(2,4) algorithm has a deep null, but it also possesses the best
dispersion behavior over nearly all frequencies. The Fang(2,4),
Ty(2,4), and Daubechies MRTD have excellent dispersion
properties over all frequencies. In fact, at all frequencies in
the plot, every scheme except for MRTD using B–L scaling
functions now behaves better than the Yee scheme. As in the
10 CPW case, the B–L MRTD scheme performs better than the
Yee scheme only at higher frequencies.

Table III summarizes the advantages and disadvantages of
each of the FDTD schemes. Clearly, there are advantages and
disadvantages to each, and, depending on whether narrowband
or wideband results are desired, one scheme may be preferred
over another. Table III is based solely upon the dispersive prop-
erties of the schemes in two dimensions. We have not attempted
to characterize other important issues such as the ability of the
schemes to model general inhomogeneous material or the suit-
ability of the scheme for full 3-D modeling.

XI. CONCLUSION

We have analyzed the 2-D dispersion properties of several
new low-dispersion FDTD algorithms. Almost all provide sub-
stantial improvement in the reduction of dispersion errors com-
pared with the classical Yee algorithm. In almost all cases, these
improvements add additional computational cost to the algo-
rithm. In addition, for several of the algorithms, a much smaller
Courant number must be used to obtain the added benefit of
highly reduced dispersion. Depending on the particular appli-
cation, one of the low-dispersion FDTD schemes may be pre-
ferred over another. Although a 3-D dispersion analysis was not
presented, for most of the algorithms discussed here similar dis-
persion behavior occurs in the 3-D case.
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TABLE III
ADVANTAGES AND DISADVANTAGES
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