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Communications

Inaccuracies in Numerical Calculation of Scattering
near Natural Frequencies of Penetrable Objects

G. L. Hower, R. G. Olsen, J. D. Earls, and J. B. Schneider

Abstract—Calculated scattering from a nonconducting cylindrical ring
shows great variability to small changes in the material or geometric pa-
rameters within certain ranges of these parameters. The observations are
explained by a r e phenomenon in which the operating frequency
is found to lie close to a complex natural frequency of the scattering
object. Note that this resonance is a real, observable effect predicted by
analytical solutions and not the “spurious” numerical resonances which
have been widely discussed and which one wishes to suppress. Attempts
have been made to reproduce near resonance scattering results using
the method of moments and finite-difference time-domain codes. These
have failed despite the use of widely accepted discretization densities.
Thus, the existence of such resonances requires additional care when
interpreting computed results for scattering from similar nonconducting
objects having electric and/or magnetic properties.

L INTRODUCTION

Recent efforts intended to test a method of moments (MOM)
computer code for scattering from two-dimensional objects have
involved computation of scattering from a nonconducting ring. This
object is a convenient choice (used, for example, by Richmond [t
since analytical results are available for comparison. The appropriate
expressions are obtained by a straightforward solution of the boundary
value problem and consist of infinite series of Bessel functions.

For the case of an incident plane wave, the bistatic scattering
patterns obtained with the computer code showed an unexpected
sensitivity to small changes in the material parameters of the ring,
permittivity (¢) and permeability (), within certain ranges of the
parameter values. In addition, the patterns obtained by the computer
code using cell sizes with dimensions of about 0.1\y (where )\,
is the wavelength in the material) compared favorably with values
obtained using the series solution except within these same regions.
For these particular ranges of parameter values, a much finer level of
discretization was required to obtain results comparable to those from
the series solution. The latter results were obtained at the expense of
greatly increased computation times.

In this communication, we present a sample of the observations
mentioned above and an explanation in terms of a “resonance” effect.
Resonance effects for dielectric cylinders of high permittivity have
been suggested earlier by Van Bladel [2], [3]. The results of the
present study have implications whenever it is necessary to interpret
numerical computations of scattering from objects similar to the case
considered here, i.e., nonconductors having electric and/or magnetic
properties.

II. DISCREPANCIES BETWEEN MOM AND EXACT SOLUTION

A method of moments code was developed to study scattering
from conducting and penetrable objects with general cylindrical cross
sections. The problem was formulated in terms of equivalent electric
and magnetic volume polarization currents radiating in free space
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Fig. 1. Geometry of the nonconducting ring.

[4], [5]. The cross section of the object was discretized by dividing it
into rectangular cells, using pulse functions to expand the unknown
polarization currents and point matching at the cell centroids to obtain
linear equations for the unknowns. Since, in general, both electric
and magnetic properties are assumed, the resulting equation is a
combination of the electric (EFIE) and magnetic (MFIE) field integral
equations. Self terms involving integrals of the Hankel function,
Héz) (ko R), required special treatment. The singularity was extracted
by subtracting and adding the small argument approximation to
the Hankel function. This yields two terms. The first has a well-
behaved integrand and may be integrated numerically. The second
(logarithmic) term may be integrated analytically over the rectangular
surface of the self-element. Further details of the numerical method
are given in an earlier report [6].

One problem studied in the process of validating the code was
the hollow nonconducting ring shown in Fig. 1. An incident wave
polarized along the axis of the cylinder is assumed (TM). By duality,
the results also apply directly to a TE incident wave if the values
of ¢ and y are interchanged. The outer and inner diameters of the
ring were 0.6 and 0.5\ respectively where Ao is the free-space
wavelength. The relative permeability (,.) of the object was assumed
to be 4.0 while the relative dielectric constant () was allowed to
take on several values.

Results for the bistatic radar cross section (RCS) generated by
the MOM code for two different dielectric constants are plotted in
Fig. 2. For this figure, the average size of the rectangular cells used
was approximately 0.09A; by 0.09), (where \; is the wavelength
in the medium). This level of discretization (i.e., approximately
100 unknowns per square dielectric wavelength) is recommended
by Peterson and Klock based on calculations of the interior fields
of dielectrics [7]. The total number of cells (i.e., unknowns) used
was 324. Also shown in each plot is the bistatic RCS generated by
the “exact” series solution. Clearly there is good agreement between
the exact and numerical solutions for ¢, = 9.5 but relatively poor
agreement for e, = 10.0. The remainder of this paper is an attempt
to understand the reasons for such discrepancies.

II. ATTEMPTS TO RECONCILE DIFFERENCES

The first attempt to reconcile the differences was to recompute
the numerical solution with smaller rectangular discretizations. The
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Fig. 2. Bistatic RCS plots (MOM): pa = 0.25Aq, pp = 0.30A0, pr = 4.0.

() e, = 9.5; (b) &, = 10.0.

results of such a study do indeed show an improvement in the
computed curves as the level of discretization is increased. However,
good results can only be obtained at the expense of a considerable
increase in computer time. Thus, this does not appear to be an
acceptable way to solve the problem.

A second option is to borrow the “equal area” or “equal volume”
concept which has been used for studying scattering from perfect
conductors and by Peterson and Klock for dielectric/dielectric inter-
faces [7], [8]. In two-dimensional problems with a surface integral
formulation, this would require that the perimeter of the discretized
interfaces be forced to be equal to the actual perimeters while for
a volume integral formulation, the discretized cross section of the
scattering object should have the same area as the actual object.
These criteria require adjusting the radii (p, and/or p;) for the MOM
calculations. At the level of discretization used in the present study,
such adjustments did not produce any discernible improvements in
the results.

It is also possible that the lack of agreement between the moment
method results and the series solution is an artifact of the moment
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Fig. 3. Bistatic RCS plots (FDTD): pa = 0.25Xq, pp = 0.30A0, pr = 4.0,
e = 10.0.

method code used. To test this hypothesis we used the finite-difference
time-domain (FDTD) methad [9], [10] to independently calculate the
bistatic RCS of the dielectric cylinders. FDTD is a direct solution of
Maxwell’s equations that employs central difference approximations
over a finite grid. Far-field quantities can be easily obtained [11].
The FDTD code used to generate the results in this section employed
the second-order Mur absorbing boundary condition, and the bistatic
RCS was calculated in a manner similar to the one found in [11]. The
code used a uniform grid spacing and we approximated the cylindrical
scatterer by a “staircase” structure.

The scatterer was centered in a square grid that had sides ap-
proximately twice as long as the free-space wavelength (A\g). Fig.
3 presents a comparison of the analytic series solution with results
obtained from the FDTD method when ¢, = 10.0 and u, = 4.0. The
FEDTD calculations were performed using grid spacings of 11 and
20 points per wavelength in the dielectric (Az). An improvement is
evident for the finer grid spacing and these numerical results behave
in a manner similar to those obtained from the moment method. For
er = 9.5 and p = 4.0 the series solution and FDTD results show
good agreement (comparable to the agreement seen in Fig. 2(a)).

IV. SERIES SOLUTION

The analytical solution for scattering from a dielectric ring proceeds
in much the same way as common solutions for scattering from a
perfectly conducting cylinder [12], [13]. The fields in each region
of Fig. 1 are expanded as an infinite series of appropriate Bessel
functions, and the necessary conditions on the tangential fields at the
boundaries are enforced to give a matrix equation of the following
form:

[AA][Cn] = [Sal- M

In this expression [C',] is a column vector of the unknown coeffi-
cients, [Sn] is a column vector of known terms, and [A.] is a square
matrix of known terms. After solving this system of equations, the
scattered field in region three may be expressed as

Foy | —2—cmitB0=n/)
w3op

<[ao 4 jar cos ¢ — ay €08 20 — jus €08 3¢ + a4 COS 4O+ 1. @
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Fig. 4. Bistatic RCS plots (series solution): pa = 0.25X0,05 = 0.30)\q,
#r =40. (@) 9.0 < & < 9.5 (b) 10.0 < & < 10.5.

where p and ¢ are the usual cylindrical coordinates and the RCS
would be proportional to |ES®|?,

This analytical solution has been used to obtain the RCS plots
of Fig. 4. Fig. 4(a) for 9.0 < ¢, < 95 displays the expected
behavior with only small changes in the RCS for small changes in
permittivity. Fig. 4(b), however, exhibits much larger variations in
RCS for similarly small changes in ¢,. For example, the 2% change
of permittivity from 10.0 to 10.2 produces a more than 20 dB variation
in RCS. Additional curves were plotted for 1.0 < ¢, < 11.0. Within
this range of ¢,, regions of high variability were observed in the
vicinity of ¢, = 7.2 and 10.2 (the latter is shown in Fig. 4(b)). The
variations are found to be stronger when e, is near 10.2 and the range
of ¢, values over which significant variability occurs is narrower for
¢, near the 10.2 than for ¢, near 7.2.

For values of ¢, near 10.2 and 7.2, the same variability in scattering
patterns is observed for small changes in g, or in the dimensions,
pa or py. For example, a change in p, from 0.25X, to 0.2495),
produces a significant change in the scattering pattern for the case
€& = 10.2 and p, = 4.0.
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Fig. 5. Location of zeros in normalized complex frequency plane.

The extreme sensitivity to parameters which is evident in Fig. 4(b)
suggests a resonance phenomenon. Natural modes of the scattering
object would occur at frequencies for which the determinant of matrix
[A.] is zero:

| 4| = F(w) = 0. 3)

Although in the present case there are no real values of w that satisfy
this equation because of radiation losses, we note that if |4, | is small
for a particular n, the corresponding a,, in (2) will become large.
Thus, a particular cos ¢ term will dominate. Physically, this implies
a “quasi-resonance” condition of the nonconducting ring inside which
a portion of the energy of the incident wave is nearly “trapped”
even though total reflection at the boundaries does not occur. We
should note that the resonance condition referred to here is in the
exact solution and hence is observable. This is in contrast to the
resonance condition that has been studied in the context of scattering
by perfect conductors [14]. In the latter case, the resonance condition
is an artifact of the mathematical method used to solve the problem
and should be suppressed.

To investigate the resonance possibility in the present problem,
we made use of a zero-search code [15], to see if complex zeros
for (3) exist, for any value of n, near the real frequency used in the
previous calculations (normalized to unity). For the set of parameters,
pr = 4.0, 6 < e, < 11, zeros were found in the complex plane near
the normalized driving frequency for the n = 3, 4, and 5 terms. The
trajectories of these zeros are shown in Fig. 5. Not only do complex
zeros exist in the vicinity of the operating frequency, the closest
approach indeed does occur near the expected values of €, ~ 10.2
and 7.2. Note that in the former case, the approach is much closer,
which would imply a sharper, narrower resonance than for the latter
case, as was also observed.

An observation that further verifies the validity of the interpretation
presented here is the presence of “nodes” in the scattering patterns
of Fig. 4(b), where computed values of RCS remain constant with
respect to changes in €,. For the case of ¢, values near 10.2, the
complex zero that occurs near w = 1 is in the n = 4 term of the
series. This implies a dominance of the cos 4¢ term in the scattered
field expression. Since cos4¢ is zero at ¢ = 22.5°, 67.5°, 112.5°,
and 157.5°, we would expect “nodes” in its RCS pattern at these
angles exactly as observed in Fig. 4(b). For e, X 7.2, the complex
zero is in the n = 3 term so that the cos 3¢ variation would dominate
and the nodal points would be expected at ¢ = 30°, 90°, and 150°,
which was verified by further computations.
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Fig. 6. Backscatter RCS versus frequency (kg py) for a fixed ring: p, = 0.25
m, pp = 0.30 m, g, = 4.0. (a) & = 10.2; (b) &, = 10.2+ jIm(er).

V. FREQUENCY SHIFT OF NUMERICAL RESULTS

We have found that it is possible to obtain agreement between
series and numerical solutions (with & 0.1\, cell size) if geometric
or electrical parameters are slightly altered. Given this, it would be
interesting to know if the numerical results plotted as a function
of frequency are simply a frequency shifted version of the series
solution. To study this question, results from MOM, FDTD, and series
methods have been plotted in Fig. 6, which shows the backscatter
RCS versus ko py,—e.g., backscatter from a particular cylindrical ring
(pa = 0.25m, pp = 0.30m, ¢, = 10.2, p, = 4.0) as the frequency
is varied. The MOM results in this case were obtained for a fixed
number of cells (240) corresponding to a worst case cell size of
about 0.1A\; x 0.16Ay near the right-hand side of the curve. One
observation that can be made is the extremely narrow resonance
that occurs near kopp = 1.9. This behavior is expected given the
results shown in Figs. 4(b) and 5. It is also useful to note that similar
narrow resonances have been observed, for example, in the context
of scattering from dielectric coated spheres {16]. Another observation
is that the MOM result is essentially a frequency shifted version

of the exact result. Further, because the resonances are so narrow,
differences of up to 20 dB in the results may be observed.

The FDTD calculations used 11 points/A; and a computational
domain of approximately 3A¢ x 3Ao at the highest frequency. Third-
order Liao absorbing boundary conditions were used [17], [18]. Like
the MOM results, the FDTD results agree well with the series solution
at the lower frequencies. Additionally, as the frequency is increased,
these results appear to be a shifted form of the exact series results.
However, the shift is in the opposite direction from MOM and the
amount of shift does not appear to be proportional to the frequency.
As the frequency continues to increase, the FDTD results fail to track
the exact results acceptably. This is undoubtedly due in large part
to the staircase approximation of the continuously varying scatterer
surface—the scatterer geometry is too coarsely approximated to
obtain accurate scattered fields in the vicinity of the strong resonance
near kopy = 1.9.

1t is evident that the accuracy of numerical methods for scattering
calculations depends on the proximity of the driving frequency to
complex natural frequencies of the object. Since real materials are
lossy, it is important to also study the effect of losses on these
conclusions. It is well known that the natural frequencies plotted in
Fig. 5 will generally be moved further from the real axis as the loss
is increased. This results in a corresponding decrease in the influence
of natural frequencies on scattering. The quantitative effect of loss
can be observed in Fig. 6(b). Here, the loss of the hollow ring with
the (otherwise) same parameters ‘as Fig. 6(a) was increased and the
scattering recomputed. Clearly if the imaginary part of the relative
dielectric constant has a value less than —0.01, the results shown
earlier are still valid. Since many common materials are less lossy
than this at microwave frequencies [19], the inaccuracies described
here should be observable. According to Fig. 6(b), however, larger
values of loss can cause the resonance effect to be greatly reduced
and result in a significant change in the scattering.

VI. CONCLUSIONS

The extreme variability in results observed in moment method
and finite-difference time-domain computations of scattering from a
nonconducting ring are well explained by the resonance phenomenon
discussed above. The possibility of these resonances requires care
in interpreting numerical results for scattering from similar objects.
This is because the use of widely accepted discretization densities
and/or the equal area criteria do not guarantee correct results. While
the use of conformal elements may resolve the problem [20], [21],
this has not yet been demonstrated for near resonant scattering. For
practical cases where no a priori knowledge of a complex resonance
frequency exists, computed results over a small range of one of the
parameters should be examined. If considerable variation occurs, the
results should be interpreted cautiously.
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Efficient Method for Analysis and Design of
Aperture-Coupled Rectangular Microstrip Antennas

Mohammad A. Saed

Abstract—This paper describes a method for the analysis and design
of rectangular microstrip antennas coupled through a small aperture
to a microstrip feed line in a two-layer configuration. The technique is
numerically efficient, making it suitable for computer-aided design. The
analysis takes into account higher order modes excited underneath the
patch. Analysis results were implemented in two computer programs: an
analysis program and a design program based on optimization techniques.
Experimental results are presented to validate this method.
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I. INTRODUCTION

Microstrip patches can be fed using one of four techniques: a
microstrip line directly connected to the patch [1]-[4], probe feeding
[5]-[71, aperture or slot coupling [8]-[12], and electromagnetic
coupling [13], [14]. Aperture- or slot-coupled patches have the
advantage that they are amenable to multilayer structures where
integration of the feed network and necessary electronic control
components is feasible, without the need for drilling holes, as in
probe-fed patches. This paper concerns the analysis and design of
aperture-coupled patches, which have been analyzed mainly using
full-wave analysis techniques. Most of these techniques use an
integral equation formulation [9] or a mode matching approach [12]
coupled with a numerical method such as the method of moments
to allow computer implementation. Even though these techniques
are rigorous, their main disadvantage is that they are complex,
computationally extensive, and time consuming, and they are not
amenable to computer-aided design. However, using these techniques
is a must when the simplifying assumptions of other methods break
down (such as when the frequency operation is extended to the
millimeter-wave region).

The method presented in this paper is an efficient method for
analyzing and designing aperture-coupled microstrip patches when
the patch substrate is electrically thin and the aperture is electrically
small. Its results can also serve as a starting point for full-wave anal-
ysis techniques when more accuracy is needed. First, expressions are
derived to allow the computation of the input impedance seen by the
microstrip feed line for given aperture dimensions, aperture location,
and feed line extension beyond the aperture. This is presented in
Section II. The inverse process, which is the evaluation of aperture
dimensions, location, and length of feed line extension to yield a
desired input impedance, is described in Section III. Experimental
results are presented in Section IV. Finally, some conclusions and
observations are given in Section V.

II. CALCULATION OF INPUT IMPEDANCE

The structure under consideration is shown in Fig. 1. The analysis
of this structure uses the theory of coupling through small apertures
originally proposed by Bethe [15]. Coupling through small apertures
can be accounted for by using an equivalent electric current dipole,
J, and a magnetic current dipole, 7, located at the center of the
aperture. The aperture is then replaced by a perfect conductor, thus
splitting the structure into two regions: the feed line region (region
a) and the patch region (region b). The current dipoles are related to
the fields in the feed line region as follows:

J= J'ufﬁaCEQ,Lé($—zo)b(y—yo)é(:) 0]

M = —jopoamBay 6(x — 20)6(y — Y0)b(z), 2

where E,, and H,; are the normal component of the electric field
and the tangential component of the magnetic field to the aperture in
region a (the feed line region), €® is the effective dielectric constant
in region a, . is the electric polarizability of the aperture, «,, is
the magnetic polarizability of the aperture, 6 is the impulse function,
and (o, yo, 0) are the coordinates of the center of the aperture. The
electric and magnetic polarizabilities of a circular aperture of radius r
are given by e = 2r*/3, a, = 41 /3, and those for a rectangular
aperture of length [, and width d are e = a,, = wl,d?/16. The
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