
280 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 49, NO. 2, FEBRUARY 2001

Dispersion of Homogeneous and Inhomogeneous
Waves in the Yee Finite-Difference

Time-Domain Grid
John B. Schneider, Member, IEEE,and Robert J. Kruhlak

Abstract—The numerical dispersion relation governing the
propagation of homogeneous plane waves in a finite-difference
time-domain (FDTD) grid is well known. However, homogeneous
plane waves, by themselves, do not form a complete basis set
capable of representing all valid field distributions. A complete
basis set is obtained by including inhomogeneous waves, where,
in the physical world, constant phase planes must be orthogonal
to constant amplitude planes for lossless media. In this paper,
we present a dispersion analysis for both homogeneous and
inhomogeneous plane waves in the Yee FDTD grid. We show that,
in general, the constant amplitude and constant phase planes of
inhomogeneous plane waves are not orthogonal, but they approach
orthogonality for fine discretization. The dispersion analysis also
shows that, for very coarsely resolved fields, homogeneous waves
will experience exponential decay as they propagate and they may
propagate faster than the speed of light. Bounds are established
for the speed of propagation within the grid, as well as the highest
frequency and the shortest wavelength that can be coupled into
the grid. Analysis is restricted to the classic Yee algorithm, but
a similar approach can be used to analyze other time-domain
finite-difference methods.

Index Terms—FDTD methods.

I. INTRODUCTION

T HE second-order Yee finite-difference time-domain
(FDTD) technique [1] is arguably the most robust and

successful numerical technique available today to solve prob-
lems in electromagnetic-wave propagation. The technique
has been the subject of three books [2]–[4], as well as nearly
3000 journal and conference papers [5], [6]. Despite the
vast attention the FDTD method has received, the dispersion
relation for the complete plane-wave basis set has never been
derived. Rules-of-thumb have been developed for suitable
discretizations (e.g., [7]). However, these rules have been based
solely on consideration of homogeneous (propagating) waves
and may not be useful when inhomogeneous (evanescent) fields
play a significant role in a given problem.

Taflove has previously derived the dispersion relation for ho-
mogeneous waves in the FDTD grid [8] (see also [3]). The equa-
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tion he derived is correct, but the assumption that some coarsely
resolved fields have a phase velocity of zero is not. As Taflove
reported, the phase velocity decreases as the discretization be-
comes more coarse. However, as was shown in [9], a threshold
eventually is reached beyond which a further increase in the
coarseness results in a wavenumber that is complex. The phase
velocity for these waves with complex wavenumbers actually
increases with grid coarseness and at no point is it zero. In fact,
certain spectral components, which we refer to as superluminal,
have a phase velocity greater than the speed of light. One-dimen-
sional (1-D) (or grid-aligned) superluminal FDTD propagation
was explored in [9]. The analysis demonstrating superluminal
behavior in the FDTD grid will be restated in the Section II and
results will be given for obliquely propagating waves.

In Section III, we present the dispersion relation for inhomo-
geneous plane waves (the familiar homogeneous dispersion re-
lation is a special case of the more general inhomogeneous one).
We show that the planes of constant phase and constant ampli-
tude are not necessarily orthogonal in a lossless FDTD grid. We
also demonstrate how the dispersion relation can be used to de-
termine the attenuation constant associated with total internal
reflection in FDTD simulations. This analysis shows how the
dispersion relation can be used to quantify the error in evanes-
cent fields. For the case of total internal reflection, it is found
that the error in the attenuation constant in the rarer medium is
strongly governed by the discretization in the denser medium.

We restrict the analysis to the original Yee algorithm since
it is still one of the most popular and robust time-domain fi-
nite-difference techniques. Although simulations of real (phys-
ical world) wave phenomena are not done near the discretization
limit supported by the Yee grid, in nearly all FDTD simulations
there will be some energy present in this coarsely resolved por-
tion of the spectrum. Our analysis clearly defines the behavior of
the Yee grid at and near the discretization limit for both homo-
geneous and inhomogeneous wave propagation. Although the
Yee algorithm is the focus here, a similar analysis, i.e., one that
does not restrict consideration to real wavenumbers, can be ap-
plied equally well to other techniques.

II. HOMOGENEOUSWAVES

In this section, we reexamine the dispersion relation for ho-
mogeneous plane waves in the Yee grid. Starting from the fa-
miliar FDTD dispersion relation, it is shown that waves with
complex wavenumbers are supported by the grid for coarse dis-
cretizations. These complex waves attenuate as they propagate

0018–9480/01$10.00 © 2001 IEEE



SCHNEIDER AND KRUHLAK: DISPERSION OF HOMOGENEOUS AND INHOMOGENEOUS WAVES IN THE YEE FDTD GRID 281

and can, depending on the grid resolution, propagate faster or
slower than the speed of light in the physical world. We estab-
lish bounds on the greatest propagation speed within the grid,
as well as on the highest frequency and the shortest wavelength
that can be coupled into the grid. The special cases of prop-
agation along the grid diagonal and propagation along one of
the grid axes are used to establish the limiting behavior of the
grid. Unlike the analysis presented in [9], which only consid-
ered 1-D (grid-aligned) propagation, no restrictions are placed
on the angle of propagation.

In the physical world, the free-space dispersion relation is
, where is the speed of light, is the

frequency, and is the wavenumber. The dispersion relation for
homogeneous waves propagating in the Yee grid is [3], [8]

(1)

where , , and are the spatial step sizes and is the
temporal step size. In (1), the temporal dependence is under-
stood to be and the spatial dependence is given by

, where , , and are the -, -, and -com-
ponents of the numeric wave vector, respectively, given by

(2)

(3)

(4)

and is the position vector that can only take on the discrete
values dictated by the node locations within the Yee grid. In
general, a tilde will be used to distinguish between numeric and
exact (i.e., physical world) quantities.

In an FDTD simulation, one selects the temporal and spa-
tial step sizes. As time-stepping progresses, one has complete
control over the temporal variation of the source functions in-
troducing energy into the grid. Hence, one can establish exact
correspondence between the temporal variations in the grid and
physical world. However, the phase velocity of any propagating
wave is dictated by the grid itself—one cannot establish exact
correspondence between wavenumbers in the grid and physical
world. Therefore, the frequencyin (1) is assumed to be exact
and does not require a tilde, while the wavenumbers, , and

are not exact and require a tilde.
To simplify the analysis, we assume a uniform grid in which

. The argument of the left-hand-side
sine function in (1) can be expressed in terms of the points per
wavelength and the Courant number

where is the points per wavelength, is the exact
wavelength, and is the Courant number (or stability
factor). Thus, for a uniform grid, (1) can be written as

(5)

Equations (2)–(4) can be used in (5) to obtain an expression that
relates the numeric wavenumberto the Courant number ,
points per wavelength, and direction of propagation. Typically,
the numeric wavenumber must be determined from (5) using
a root-finding technique since a general closed-form solution
does not exist. However, closed-form solutions are permissible
in special cases as shown below.

To demonstrate that the numeric wavenumber can be complex
and that the phase velocity can be greater than the speed of light,
we first consider grid-aligned propagation such that two of the
numeric wavenumber components in (2)–(4) are zero and the
third is equal to the numeric wavenumber. For example, when
the direction of propagation is given by , , then

and . In this case, the dispersion relation
can be solved for the numeric wavenumber to yield

(6)

where a subscript one has been added toto indicate this is
for grid-aligned propagation and the argument of the arcsine is
defined for notational convenience to be .

In three-dimensional (3-D) simulations, the Courant number
must be less than or equal to and, hence can be

greater than unity. The threshold between wavenumbers that are
real and ones that are complex is aof unity. If is decreased
such that is greater than unity, there is no realthat satisfies
the dispersion relation; however, a complexdoes permit a
solution. Although will be complex, the corresponding wave
is not inhomogeneous since the amplitude and phase planes will
be parallel. Instead, the complex wavenumber yields a wave that
exponentially decays as it propagates (as if the homogeneous
wave were propagating in a lossy material).

A second case that permits a closed-form solution
for in (5) is propagation along the 3-D grid diag-
onal (i.e., , ) such that

. Solving (5) for the numeric
wavenumber yields

(7)

where and the subscript three is used to
indicate propagation along the diagonal of a 3-D grid. As in (6),
the argument of the arcsine can be greater than one. When
this occurs, the wavenumber is complex.

To establish the range of discretizations that will yield com-
plex wavenumbers, we need to determine the minimum wave-
length the grid will support. The highest frequency that can
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be coupled into an FDTD grid is (a sequence
of alternating plus and minus ones has this frequency) implying
a minimum wavelength of . Dividing

by the spatial step size yields the minimum value of

(8)

In 3-D simulations, where stability dictates thatis less than or
equal to , the maximum value of is .
One might expect a discretization of at least two points per
wavelength, otherwise the wave apparently is sampled below the
spatial Nyquist rate. This seeming paradox is resolved by noting
that is defined in terms of the physical-world free-space
wavelength and not the wavelength in the grid. Even when a
given frequency is such that the spatial sampling is less
than two, the energy corresponding to this spectral component
is coupled into the grid—it is not spatially aliased into another
frequency.

Inserting (8) into (6) or (7) yields the wavenumbers at the
highest frequency the FDTD grid supports as follows:

(9)

(10)

In three dimensions, where , the argument of the
arcsine in (9) is greater than unity, thus, is clearly com-
plex. In general, will be complex for all spectral components
that have a resolution . On the
other hand, the argument of the arcsine in (10) will be unity
provided is equal to the 3-D limit of and at this limit

is real. However, off-diagonal propagation requires fields
with complex wavenumbers. Furthermore, if a simulation uses
a Courant number below the 3-D limit, will be complex
and complex wavenumbers will exist at all angles.

When the argument of the arcsine function in (6) or (7) is
greater than unity, the arcsine can be evaluated as follows. The
arcsine function is given by [10]

Assuming is real and greater than one, the argument of the
square root is negative. Thus, the argument of the log function
can be written . This argument
is now purely imaginary with a magnitude of and
a phase of . Employing the identity ,
the arcsine can be written

For grid-aligned propagation, this yields

(11)

where, as before, . For plane-wave propa-
gation given by , where is the spatial index, the
per-cell phase constant isand the per-cell attenuation constant
is . Note that, provided is greater than one,
the phase constant is independent of the discretization.

To compare the numeric and exact phase velocities, we take
the ratio of the numeric phase velocity to the exact velocity for
grid-aligned and diagonal propagation. The numeric phase ve-
locity is given by , where indicates the real part
(this definition holds for any direction of propagation, but the
following discussion focuses on either grid-aligned or diagonal
propagation). In the physical world, the (exact) phase velocity
is related to the wavenumber via and the continuous
wavenumber in free space is given by .
Assuming that a wave is so coarsely sampled that it has a com-
plex wavenumber (i.e., that ), upon canceling terms
and multiplying numerator and denominator by, the ratio of
the numeric to the exact phase velocity for grid-aligned propa-
gation is

(12)

Thus, the numeric phase velocity is related to the exact speed of
light by

(13)

For propagation along the grid diagonal, similar steps can be
followed. For waves with complex wavenumbers, the result is

(14)

Using in (13) and (14) yields the maximum numeric
phase velocities in the FDTD grid for grid-aligned and diagonal
propagation

(15)

(16)

or, using the definition of the Courant number, these bounds on
the speed of propagation can be written as

(17)

(18)

For grid-aligned propagation, (17) dictates that for every time
step some energy will propagate to the adjacent cell, which is

away. Thus, the maximum phase velocity, or inherent “lattice
velocity,” for grid-aligned propagation is . Note that the
lattice velocity is completely determined by the discretization
chosen and is independent of all other physical parameters (i.e.,
it does not depend onor ). Similarly, (18) is consistent with
the fact that it takes three time steps for energy to travel from
one corner of a unit cell to the diagonally opposite corner. Since
the distance between the corners is , the lattice velocity in
the diagonal direction is .

Fig. 1 shows the ratio of the numeric phase velocity to the
exact phase velocity as a function of the grid resolution (i.e.,
the size of the spatial step in fractions of a free-space wave-
length). The Courant number corresponds to the 3-D limit of
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Fig. 1. Ratio of the numeric phase velocity to true phase velocity (~c=c) as
a function of grid resolution (1=N ) for four directions of propagation in the
xy-plane. The Courant number is1=

p
3, which gives aN of 2=

p
3 �

1:155 or a maximum spatial step of0:866�.

Fig. 2. Ratio of the numeric phase velocity to true phase velocity (~c=c) as a
function of grid resolution (1=N ) for five different directions of propagation.
For each curve,� is held fixed at 45�while� takes on the values of 90�, 80�, 70�,
or 60�. The result for propagation along the grid diagonal (� = 45 ; cos(�) =
1=
p
3), which overlaps the ideal result, is also plotted. The Courant number is

1=
p
3.

implying a of or a maximum
spatial step size of approximately . Results are shown
for four different directions of propagation in the-plane, i.e.,

is held fixed at . The angle is either 0 (grid-aligned),
15 , 30 , or 45 . The dispersion is symmetric and periodic in
such that results at an angle are the same as those
at . Each curve is continuous, but there is a dis-
continuity in slope, which occurs when the wavenumber transi-
tions from being purely real to complex. Discretizations to the
left-hand side of the discontinuity yield purely real wavenum-
bers.

Fig. 2 is similar to Fig. 1, except is held constant
at 45 and takes on the values 90, 80 , 70 , 60 , or

. This last angle corresponds to
propagation along the 3-D grid diagonal and produces ideal
dispersion since the 3-D Courant limit was used. Had a Courant

Fig. 3. Per-cell attenuation constant=(~��) as a function of grid resolution
(1=N ) for four directions of propagation in thexy-plane. The Courant number
is 1=

p
3.

Fig. 4. Per-cell attenuation constant=(~��) as a function of grid resolution
(1=N ) for four directions of propagation. For each curve,� is held fixed at
45� while � takes on the values of 90�, 80�, 70�, or 60�. The Courant number is
1=
p
3.

number less than the limit been used, the phase velocity along
the grid diagonal would not be ideal.

Although Figs. 1 and 2 include superluminal waves, the re-
sults shown in these figures are consistent with the standard as-
sumption that dispersion error is maximum along the grid axes
and is minimum along the diagonals for the Yee FDTD grid.
Furthermore, it is still true that dispersion errors are minimum
in the Yee algorithm at the Courant limit (i.e., for a fixed angle
of propagation, a reduction in the Courant number results in an
increase in error).

Figs. 3 and 4 show the “per-cell attenuation constants” as a
function of grid resolution for the same directions of propaga-
tion considered in Figs. 1 and 2. We define the per-cell attenua-
tion constant as , where indicates the imaginary part
of the argument. The rate of decay typically decreases as the di-
rection of propagation approaches the grid diagonal. There is no
attenuation associated with propagation along the grid diagonal
( ).
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Since FDTD simulations typically employ a “reasonable”
discretization (such as 20 cells per wavelength), it may appear
that these waves with complex wavenumbers are mostly of
pedagogic interest and may have little practical implications.
However, nearly all FDTD simulations start with no energy
in the grid. Sources, whether they are embedded within the
grid, lining a total-field/scattered-field (TF/SF) boundary, or
distributed throughout a scatterer in a SF formulation, must
be turned on at some initial time. When these sources turn
on, they introduce some energy across the entire spectrum.
In a well-designed simulation, the amount of energy at the
coarse discretizations will be small, but it is, nevertheless,
nonzero. Additionally, there may be other practical reasons
for the incorporation of complex wavenumbers into FDTD
analysis. For example, it was shown in [9] that the fields at a
point in the grid can be predicted from knowledge of the source
function and the dispersion relation. It should be possible,
therefore, to construct an “exact” TF/SF formulation where
there is no leakage of fields across the boundary even when
the incident field is propagating obliquely. (Currently, if the
incident field is propagating along one of the axes, an exact
TF/SF formulation can be obtained using an auxiliary 1-D
grid that mimics the dispersion the incident field suffers [11].
However, when the field is obliquely incident, no formulation
has been presented that does not leak some energy [3], [12],
[13].) As another example, it is rather simple to show that,
for complex wavenumbers, the reflection coefficient for the
Higdon absorbing boundary condition (ABC) is greater than
unity. This growth at the terminal boundary of the grid may
explain some aspects of the late-term instability of this ABC.

III. I NHOMOGENEOUSWAVES

In this section, we obtain the dispersion relation for inhomo-
geneous waves in the Yee FDTD grid. First, we review the equa-
tions governing inhomogeneous waves in the physical world to
establish a notational convention. The 2-D FDTD dispersion re-
lation is then derived in the context of a polarized wave
(the magnetic field is transverse to the-direction). Finally, the
dispersion relation governing 3-D propagation is presented and
the case of total internal reflection is analyzed.

Consider a wave in the physical world with spatial de-
pendence given by , where is the position
vector and the complex vector has components

. Let and be the real and imaginary parts,
respectively, of such that

(19)

Temporal dependence is understood to be . Note that
constant amplitude planes are orthogonal toand constant
phase planes are orthogonal to. We subsequently call the
attenuation constant andis identified as the phase constant.
Applying the wave equation to any component of the wave
yields, in a source-free region, the following constraint equa-
tion:

(20)

or more succinctly

(21)

where and is the conductivity. Using
(19) in (21) and rearranging yields

(22)

Since and are, by definition, real, the real and imaginary
parts of (22) can be equated to obtain

(23)

(24)

For a lossless material, the conductivityis zero and, thus, (24)
dictates that and are orthogonal, i.e., the constant amplitude
planes are orthogonal to the constant phase planes.

One is naturally led to ask if the orthogonality of constant
phase and amplitude planes is maintained in the FDTD grid. The
answer is no, but they become orthogonal as the grid resolution
goes to zero. To derive the dispersion relation for inhomoge-
neous waves, consider a plane wave given by

(25)

(26)

(27)

where and are the - and -components of the complex
numeric wavenumber,and are spatial indexes, is the tem-
poral index, and , , and are amplitudes, only one
of which may be set arbitrarily. In the Yee algorithm, the dis-
cretized version of the-component of Faraday’s Law is

(28)

We assume from the outset that the wave is propagating in a
lossless medium. Using the assumed plane wave (25)–(27) in
(28) and solving for the ratio of the amplitudes and
yields

(29)

An equation similar to (28) can be written for the-component
of Faraday’s Law from which one can relate the amplitudes
and . The result is

(30)
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Finally, writing the discrete from of the-component of Am-
pere’s Law and using (29) and (30) to replace the amplitudes
yields

(31)

We expand and into explicit real and imaginary parts
using and . In contrast to the
previous section, where (wavenumber)could be complex, in
this section, we will restrict consideration to (phase constant)

’s, which are real. Expanding the terms in (31) and
equating the real parts of the left- and right-hand sides yields

(32)

Equating imaginary parts in (31) yields

(33)

Equation (32) is the FDTD analog of (23), while (33) is the
analog of (24) with a conductivity of zero.

The relationship between planes of constant phase and planes
of constant amplitude in (lossless) FDTD grids is dictated by
(33). Unlike in the physical world, these planes are not neces-
sarily orthogonal. However, employing the small argument ap-
proximations for sine and hyperbolic sine, one can write

Thus, the difference between (33) and the exact relation is
second order, so that in the limit of small discretization, the
constant phase and amplitude planes are orthogonal.

The 3-D version of the inhomogeneous dispersion relation is
similar to (32) and (33)—one merely has to add one more term
like the ones already appearing on the right-hand side, except

Fig. 5. Assumed geometry for total internal reflection.

is used instead of or . For a uniform grid in which
, the dispersion relation can be written as follows:

(34)

(35)

Equation (34) appears to be different from the familiar FDTD
dispersion relation for propagating waves [see (1) or (5)]. How-
ever, setting the ’s to zero and employing the identity

shows that (34) reduces to the disper-
sion relation for homogeneous waves.

To illustrate how one might use the dispersion relation to
guide the construction of an FDTD simulation, we consider the
case of total internal reflection. As shown in Fig. 5, a plane wave
is incident from a dielectric to free space. We further assume

, ( ), and the incident angle is be-
yond the critical angle.

In the physical world, the magnitude of the phase constant
in the dielectric is given by . The

-component of the phase constant is and governs
the phase propagation tangential to the interface. Continuity
of the fields at the interface requires that this phase constant
also pertain in the free-space region. When is greater
than , the fields in the free-space region will be inhomo-
geneous—constant phase planes will be perpendicular to the

-axis and constant amplitude planes will be perpendicular to
the -axis. The phase and attenuation constants must satisfy the
following:

(36)

Using the -component of the phase constant, as dictated by the
incident field and solving for , yields

(37)
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At the critical angle, is zero and for all angles beyond the
critical angle, is real and positive.

In the FDTD grid, we again assume an incident angle ofthat
is greater than the critical angle (although, as described below,
the precise value of the critical angle will be different in the
grid than it is in the physical world). The phase constant in the
dielectric is , which must be obtained via the FDTD disper-
sion relation. We continue to equate the Courant numberwith

, where is the speed of propagation in free space. There-
fore, the dispersion relation that pertains in the dielectric should
have both and scaled by . Defining ,
the (homogeneous) dispersion relation governingis

(38)

For a given set of parameters (i.e.,, , , and ), (38) can be
solved for or, more precisely, for . In free space, the
wave is assumed to be inhomogeneous such that and

, i.e., the -component of the phase constant is nonzero
and there is no decay associated with propagation in the-direc-
tion. Thus, the “orthogonality condition” (33) is satisfied in free
space provided the-component of the phase constant is zero.
Note that in this limiting (grid-aligned) case the orthogonality
condition yields the same behavior as in the physical world—the
constant phase and amplitude planes are orthogonal. The atten-
uation constant must be obtained via (32). Recognizing that
continuity of the fields at the interface dictates that the phase
constant in the -direction be the same in both media and using
the identity , is found to be

(39)

Within the FDTD grid, the critical angle can again be defined
as the angle at which the attenuation constantis zero, but,
rather than (37), this angle must be determined from (39), where

is obtained from (38).
To facilitate comparison between the physical and discretized

worlds, we multiply both sides of (37) byto obtain

(40)

Fig. 6 shows both the exact and FDTD values for as a func-
tion of the points per wavelength in free space. We have chosen
the dielectric relative permittivity to be nine so that the points
per wavelength in the dielectric is one-third of the free-space
value. The Courant number is and the incident angle is ei-
ther 50, 70 , or 90 . For each incident angle, the exact solution

Fig. 6. Attenuation constant� � as a function of free-space points per
wavelengthN . The incident angle is 50�, 70�, or 90�. The relative permittivity
of the dielectric medium is nine and the Courant number is1=

p
3. The exact

solutions are shown as solid lines.

Fig. 7. Attenuation constant� � as a function of incident angle. The relative
permittivity of the dielectric medium is nine and the Courant number is1=

p
3.

The points per wavelength is 10, 20, or 30. Exact solutions are shown as solid
lines.

is shown as a solid line. As would be expected, the agreement
between the exact and FDTD values improves as the discretiza-
tion increases. Note that, as shown in (39), the phase constant
in the dielectric is intimately related to the attenuation constant
in free space. Since the error in the dielectric phase constant is
dictated by the (coarser) sampling within the dielectric, the error
in the attenuation constant is governed not so much by the sam-
pling in free space, as by the discretization within the dielectric.

Fig. 7 shows the exact and FDTD values for as a func-
tion of the incident angle. The relative permittivity and Courant
number are the same as Fig. 6 and the points per wavelength is
either 10, 20, or 30. For each , the exact solutions are shown
as solid lines. The exact critical angle is approximately 19.47.
All the exact curves, independent of the discretization, go to zero
at this angle. The FDTD critical angles, on the other hand, do
not correspond to this value. For example, with a discretization
of , the FDTD critical angle is approximately three
degrees less than the exact value (the agreement between the
FDTD and exact critical angles is better at the finer discretiza-
tions). For , one clearly sees that the FDTD attenua-
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tion constant can be greater than or less than the exact value de-
pending on the incident angle. This also holds true at the other
discretizations.

IV. CONCLUSION

The FDTD dispersion relation for homogeneous waves
permits solutions with complex wavenumbers. These complex
waves experience exponential decay as they propagate and they
can propagate faster than the speed of light. Consistent with
previous assumptions, the dispersion errors associated with
these waves are maximum along the grid axes and minimum
along the grid diagonal.

The dispersion relation for inhomogeneous plane waves was
derived. Unlike in the physical world, the constant amplitude
and constant phase planes are not necessarily orthogonal. For
the case of total internal reflection, the FDTD grid may intro-
duce too much or too little attenuation, depending on the specific
values of the incident angle, relative permittivity, and discretiza-
tion. Furthermore, the critical angle in the grid will differ from
the true critical angle. Using the dispersion relation, it is pos-
sible to precisely determine the critical angle and attenuation
constant for any given set of parameters.
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