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A Monte-Carlo FDTD Technique
for Rough Surface Scattering
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Abstract—A Monte-Carlo finite-difference time-domain (FDTD)
technique is developed for wave scattering from randomly
rough, one-dimensional surfaces satisfying the Dirichlet
boundary condition. Both single-scale Gaussian and multiscale
Pierson-Moskowitz surface roughness spectra are considered.
Bistatic radar cross sections are calculated as a function of
scattering angle for incident angles of 0, 45, 70, and 80 degrees
measured from the vertical. The contour path FDTD method
is shown to improve accuracy for incident angles greater than
45 degrees. Results compare well with those obtained using a
Monte-Carlo integral equation technique.

I. INTRODUCTION

HE finite-difference time-domain (FDTD) method was

originally introduced by Yee in 1966 to calculate near-
field scattering from an object in the time domain [1]. In
recent years the FDTD method has achieved widespread
popularity [2]-[8], and a number of extensions, modifications,
and refinements have been proposed. Among other things,
these allow consideration of both far-field and steady-state
behavior [9]-[19].

In this paper we develop an exact numerical Monte-Carlo
FDTD technique for the problem of wave scattering from ran-
domly rough surfaces. A number of exact numerical techniques
(“exact” meaning that no physical approximations are made)
have been reported for rough surface scattering problems.
These include finite element and finite difference methods
[201-[22] as well as integral equation techniques [23], [24].
Also, resuits using the FDTD method have been presented
by Chan et al. [9], [10], Fung et al. [25], Schneider and
Broschat [26], and Hastings et al. [27], [28]. The integral
equation techniques have been used primarily for determining
the validity of approximate models. In addition to this bench-
marking application, the finite element and finite difference
methods have been proposed as solutions in themselves.
The goal of the present work is to develop an alternate
method for determining the validity of approximate models.
While an integral equation approach is more efficient for
the Dirichlet surface scattering problem, volume scattering,
inhomogeneous media, and complex geometries are more
readily incorporated into the FDTD approach. In addition,
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the three-dimensional (3-D) problem is less expensive to
implement using the FDTD approach, either pulsed or CW
illumination can be used, propagation of both the total and
scattered fields can be observed in the time domain, and
a broad band of frequencies can be considered simultane-
ously.

Results obtained using the contour path FDTD (CPFDTD)
method [11] are compared with results obtained using Yee’s
original FDTD algorithm. Integral equation results are in-
cluded as well. Yee’s algorithm, which we refer to as the
uniform FDTD (UFDTD) method, uses a set of leap-frog
equations that describes the fields at discrete points in a
uniform grid. Because the grid is uniform and constitutive
parameters can only change discretely from one evaluation
point to the next, a smooth, curved interface is approximated
by a discrete stair-stepped function. The CPFDTD method,
introduced by Jurgens et al. [11], applies the integral forms
of Maxwell’s equations for fields near media interfaces. The
paths of the contour integrals conform to the surface so that
stair-stepping is eliminated.

We use both the UFDTD and CPFDTD methods to calculate
the bistatic radar cross sections for one-dimensional (1-D),
Dirichlet surfaces. Results are presented for randomly rough
surfaces with both Gaussian and Pierson-Moskowitz surface
roughness spectra. The latter spectrum represents multiscale
surfaces which approximately model the sea surface [29]. The
Dirichlet problem corresponds to two types of wave scattering:
acoustic scattering from pressure-release surfaces such as the
air-sea interface and TM, polarized electromagnetic wave
scattering from perfectly conducting surfaces.

Initially it was thought that the CPFDTD method would give
better results for all incident angles for the same number of
points per wavelength (ppw). For many surfaces, however, it
was found that the staircase approximation causes significant
errors only for incident angles greater than approximately
45 degrees. The error is largest in the backscatter direc-
tion but is still small relative to the strongest incoherent
scatter. Since the true backscattered energy is large for in-
cident angles near normal, the error is negligible for these
cases.

In the next section, implementation of the Monte-Carlo
FDTD method is described. Included are brief discussions
of the original Yee algorithm, CPFDTD method, absorb-
ing boundary conditions, incident field, surface generation,
far-field conversion, and Monte-Carlo averaging technique.
Equations are given in terms of electric and magnetic field
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Fig. 1. Problem geometry including FDTD computational grid. Only scat-

tered fields propagate on the grid, and the incident field is introduced at the
surface.

components only, but can be adapted easily to their acoustic
analogs. In Section III, numerical results are presented.

II. IMPLEMENTATION

The problem geometry is shown in Fig. 1. Each surface
realization is set within a computational grid that conforms to
the scattered field FDTD formulation [8]. This formulation was
found to perform as well as the total field approach, yet it is
much easier to implement. Only scattered fields are computed;
the incident field is introduced by means of the boundary
condition at the surface—that is, the tangential scattered E-
field is set equal to the negative of the incident field. Buffer
zones are included at the surface edges for the absorbing
boundary conditions (see Section II-C).

Our review of the UFDTD method is brief. For a detailed
explanation, the reader is referred to [1]-[8]. The CPFDTD
time-stepping equations are derived specifically for a rough
surface geometry such as shown in Fig. 1. For additional
information on the CPFDTD method, the reader is referred
to [11].

A. The UFDTD Method

The UFDTD method is based on the differential forms of
Ampere’s and Faraday’s laws. For the Dirichlet 1-D surface
TM. problem, only the E.-, H,-, and H,-field components
are nonzero, and Maxwell’s curl equations take the following
form

OE, 1|0H, OH, ()
ot €| oz dy

_BH_x = _1_% 2
ot  p Oy @)
0H, 10FE,

8t  u Or &

where € and p are the permittivity and permeability, re-
spectively. For the Yee algorithm [1], these equations are
approximated- using central differences. In two dimensions,
the E- and H-field quantities are spatially arranged as shown
in Fig. 2(a) to give central differences with second-order
accuracy. Each grid point is specified by coordinates (z,y) =
(iAz,jAy), where the grid spacing is A = Az = Ay.
For simplicity, we refer to points with the reference indexes
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(%,7). In addition to a spatial separation, there is a temporal
separation: the H-field components are evaluated a half time
step later than the E-field components. Using Fig. 2, (1)~(3)
can be rewritten in such a way that all future values can be
expressed in terms of previous values. We obtain

6t 1
n/: N _ pm—17: . n—(1/2){ ; Lo
EZ(i,5) =E7 (3, j) + A [(Hy (z+ 2,})
1 1
n—(1/2 : . n—(1/2 >
~ HJ </>(z—§,])>—(HI (/)<Z,j+§)
- Hy0/% <i,j— %))] 4)

1 |
Hp+(/? (i,j + 5) =Hp~(/? (l-,J + 5)

.} A nys o
—N—A[Ez(z,j+1)—Ez(ZsJ)] ()

1 1
n+(1/2 - Y __gn—(1/2 . -
Hy+</><z+§,g) =H] (/)(z+§,])
St o
+ —[EXi+1,5) — E}(3,5)] (6)
uA

where 6t equals one time step and Az = Ay = A equals one
grid space. Time is indicated by the superscript and position is
given parenthetically. The algorithm is stepped through time,
computing a field component at each grid point based on the
values of the neighboring field components at previous times.
Equation (4), for example, shows how E, at a particular time
step, n, is computed from its own value at a previous time
step, n — 1, and from surrounding magnetic field values at the
previous half time step, n — % A half time step later, n + %,
this value of E, is used to find H, and H, as described by
(5) and (6). This process is repeated to obtain propagation of
the fields.

B. The CPFDTD Method

Several conformal techniques have been proposed. Each
involves altering the grid to better fit a curved surface. In
the method used in this work based on the contour path
approach of Jurgens et al. [11], the grid is deformed only
near a media interface, leaving the remainder of the grid in
its rectangular form. Madsen and Ziolkowski [12] present a
modified finite volume technique that creates time-stepping
equations for any convex polygonal grid. Consequently, it is
possible to apply the technique to the same partially distorted
grid structure used in the contour path method. Yee er al.
[13] introduced a technique that employs two meshes; one
is an undistorted master mesh, and the other is a conformal
mesh used in the vicinity of curved surfaces. Other methods
distort the grid globally. One scheme proposed by Holland
[16] and used by Fusco [15] implements a curvilinear form of
the FDTD equations on a grid distorted to fit the shape of the
scatterer. The same type of grid is used by Shankar et al. [14];
however, the time-stepping equations are developed from a
computational fluid dynamics approach. McCartin and Dicello
[17] propose an extension of the control region approach to the
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Fig. 2. Contours used to approximate the integral forms of Faraday’s and
Ampere’s laws. Each figure represents a plane of the 3-D FDTD grid.
Orientations are indicated by the adjoining axes. (a) Ampere contour for E- .
(b) Faraday contour for H. (c) Faraday contour for H,.

FDTD formulation. A rigorous comparison of the efficiency,
advantages, and disadvantages of each method is not yet avail-
able in the literature, although comparisons have been made
of the dispersive properties of some of the techniques [18].

The CPFDTD method is based on the integral forms of
Ampere’s and Faraday’s laws

d
H-dl=e— .
/C dl edt/sE ds (7

d
/E~dl:—ﬂ—/H-ds (8)
c dt Js
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where, as before, only E,, H,, and H, are nonzero for the
TM, problem. It is possible to evaluate (7) and (8) over the
contours shown in Fig. 2 which represent grid cells located
away from a media interface. The contour of Fig. 2(a) is used
to evaluate (7), and the contours of Fig. 2(b) and (c) are used to
evaluate (8). In each case, a contour C surrounds a square area
S=AZ2TIn general, each contour includes four field quantities,
but for the problem considered here, E,, E,, and H. are zero.
The field value at the center of S is assumed to be the average
value over this area. Also, the field values on each segment of
C are assumed to be constant. With these simplifications it is
easy to show that (7) and (8) reduce to (4)—(6). Hence, there
is no difference between the UFDTD and CPFDTD methods
for grid points away from a media interface.

The difference in the contour path implementation becomes
apparent when it is applied near an interface. Contours can
be deformed to follow a surface profile, leading to equations
more accurate than those used in the UFDTD method. The
undistorted contours that would extend beneath the surface
are truncated to form new contours bounded on one edge by
the surface. For the 1-D surface problem, a surface profile
f(z) does not vary with z, so for each value of z, the
surface height is constant for all z. For this reason, contours
lying in the z-z or z-y planes are truncated uniformly by
the surface, producing new rectangular contours. The Faraday
contours—that is, those contours associated with Faraday’s
law (8)—shown in Fig. 2(b) and (c) are of this type, and the
manner in which they are deformed is shown in Fig. 3(a) and
(b), respectively. The top portion of Fig. 3 shows one edge of
each of the Faraday contours (the dashed lines) in addition
to a surface profile. As will be discussed later, we define
each surface profile by a set of real numbers corresponding to
the surface height at discrete horizontal locations. Therefore,
piecewise linear segments are used to depict the surface in
Fig. 3. The bottom portion of Fig. 3 shows the geometry of the
two new contours. Using the appropriate deformations and the
fact that the tangential component of the electric field vanishes
on a perfectly conducting surface, (8) can be used to solve for
the magnetic fields in terms of previously obtained values

1 1
H:+(1/2) (1,3 + 5) = H;l‘(1/2) (2] + 5)

ot
- —E7(4,j+1) 9
ly

1 (.1
HH 0/ <w+§> = g0/ w+§>

St
+op B+ LG) a0

or

1 1
n+(1/2 - - _ n—(1/2 - .
Hy (/)<’L+§,]) —Hy (/)(2+§,])
St
_—Ez(zvj)

il (v

where I, and [, are dimensions of the truncated contour as
shown in Fig. 3. Equation (10) corresponds to Fig. 3(b) with
truncation of the contour occurring on the “left” side as shown.
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Two views of the Faraday contour truncation. Orientations are specified by the adjoining axes. (a) Contour for finding H;‘Hl/ 2)(1'. J+ %). (b)

Contour for finding H;’+(l/ 2)(1' + %, 7). The latter contour can also be truncated on the opposite side.

If the path were truncated on the right side, (11) would be the
appropriate equation.

Unfortunately, (7) cannot be used to compute F-field com-
ponents which have truncated Ampere contours; the tangential
H-field is not known along the surface and is, therefore,
unknown along part of the Ampere contour shown in Fig. 4.
Hence, these E.-field values are not used, and H, and H,
values dependent on the unused E,-grid points must also
be computed using (9)—(11). For such cases, [, and [, are
extended beyond one grid space to reach the surface. It should
be emphasized that (9)—(11) are used only along the surface;
the UFDTD equations are used elsewhere. The implementa-
tion is straightforward and does not add significantly to the
computational cost.

C. Absorbing Boundary Conditions

Rough surface scattering is by nature an unbounded prob-
lem. FDTD simulations, however, must be restricted to a finite
computational domain such as the one shown in Fig. 1. The
resulting boundaries present a problem. This can be seen if
we attempt to evaluate (4)-(6) for the edge grid points. By
construction, the H-field points have the necessary adjacent
field points for their computation, but the E-field points lack
at least one neighboring H-field component. This deficiency
indicates that the basic FDTD equations cannot be used
alone to model an unbounded scattering problem. A standard
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Fig. 4. Illustration of a truncated Ampere contour.

solution is to use auxiliary equations for the boundary points.
These equations, known as absorbing boundary conditions
(ABC’s), force the E, values at the edges of the grid to
behave as if no boundary exists. The scattered field is, in effect,
absorbed as it radiates onto the grid boundary. Since the ABC’s
are imperfect, however, nonphysical reflections can occur that
significantly reduce the performance of the FDTD method.
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For this work, both the modified third-order Liao ABC
[30], [31] with superabsorption [19] and the perfectly matched
layer (PML) ABC [32]-[34] were used. Both approaches gave
similar performance, but because the PML ABC is easier to
implement, it was used for the examples presented. For the
PML ABC, the FDTD grid is enclosed within a perfectly
matched layer 16 grid cells deep. This layer simulates a lossy
material that is impedance matched to the free space medium
of the grid interior. Flat buffer zones are included at the surface
edges to provide space for the PML, and the incident field is
set to zero within these zones.

D. The Incident Field

In numerical simulations of rough surface scattering, finite-
length surfaces must be used to model scattering from infinite
surfaces. When a single plane wave strikes a finite-length
surface, edge diffraction occurs. One way of minimizing
diffraction effects is to construct an incident wave that tapers to
very small values at the surface edges. Diffraction still occurs,
but it makes negligible contributions to the scattered field.

Tapered incident waves have been introduced by Thorsos
[35] and Chan and Fung [36]. The tapered incident field used
by Thorsos is an approximation to an incident field, consisting
of an angular spectrum of plane waves, that satisfies the wave
equation exactly. Presented in a form consistent with Fig. 1,
the field is given by

Ei(r) = exp{~jk; - r[14+ w(r)] — (z — ytan 0:)/9°} (12)

where

w(r) = [2(z — ytan6;)*/g* — 1]/(kg cos 6;)* (13)
r = (z,y) is a point above the surface, 6; is the incident
angle measured from the vertical, and k; = k(sin 6;, — cos 6;)
is the incident wave vector in the z-y plane. The phasor
expression in (12) is implemented in its time-dependent form
for ¢ > 0. Equation (12) satisfies the wave equation to
order 1/(kgsin6;)? for kgsin6; > 1. The parameter g
controls the tapering, and care must be taken in its choice.
Angular resolution, edge effects, and accuracy in satisfying
the wave equation all depend on g [35]. In addition, for
the Monte-Carlo results to be useful for testing the validity
of approximate rough surface scattering models, the tapering
must be accomplished in such a way that differences between
the finite surface, tapered plane wave results and infinite
surface, single plane wave results are negligible. For the
numerical examples presented in this paper, g = L/4 and
L/4.5 are used, where L is the horizontal extent of each
surface.

To reduce transients caused when the incident field is turned
on, (12) is multiplied by a ramp of the form 1 — exp (—g:t?).
The constant g; is chosen such that the field is one-half its
maximum amplitude five cycles after the incident field is
switched on. This value of g; yields an incident field with a
narrow bandwidth. The use of this ramp significantly reduces
the time needed to converge to steady state.
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E. Surface Generation

For each numerical study, 50 finite-length surfaces are gen-
erated using the method proposed by Thorsos [35]; equations
are given here for completeness. We wish to generate surfaces
f(z) that satisfy either a Gaussian or Pierson-Moskowitz
surface roughness spectrum. The general procedure is to ran-
domly generate a surface spectrum that has Gaussian statistics
and then inverse transform the spectrum to obtain a surface
profile. This approach produces Gaussian distributed heights
and slopes for either of the two spectra. Each surface consists
of N discrete points spaced Az apart over a surface length
L. Horizontal locations are specified by z, = nAz for
1 < n < N. The surfaces are generated using [35]

N/2-1
flzn) = }, Z F(K¢)exp[—jKexy] (14)
=—N/2
where, for £ > 0
F(K() = QWLW(K[)
1 .
V2 (15)
forl << N/2-1
N(0,1) for{ =0,N/2
and for £< 0,F(K_;) = F(K,)*. In (15), we use either a

Gaussian or Pierson-Moskowitz surface roughness spectrum.
For the Gaussian spectrum
W(Ke)

exp[ K21%/4] (16)

2\/_
where Ky = 2nf/L,h is the rms surface height, [ is the
correlation length, and N(0,1) is a number sampled from a
Gaussian distribution with zero mean and unity variance. For
the Pierson—-Moskowitz spectrum [29]

—e 3 exp [=(892) /(KUY (17
where o = 0.0081, 8 = 0.74, g. = 9.81, m/s’, and U is the
wind speed specified at a height of 19.5 m above the surface
mean.

The nature of the discrete spectrum causes correlation of the
ends of each surface. To circumvent this, an extended surface
much longer than the N required points is generated. Each
surface realization used is then cut from the longer surface so
correlation is negligible. For the numerical examples presented
in Section III, each surface of length L is taken from a surface
with total length L’ which is at least 20 correlation lengths
longer than L.

Surfaces generated as described above potentially have
different statistical properties when used in the UFDTD al-
gorithm. For the UFDTD algorithm, space is partitioned into
a uniform Cartesian grid, and surface heights are “quantized”
to coincide with grid points. This produces a modified surface
with a vertically discrete, stair-stepped appearance, with each
step equal to an integral number of grid spaces. We wish to
know if the quantization of the surface heights affects the
statistical parameters so that they differ from those of the con-
tinuous surface realizations. The relative statistical accuracy of
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the two different types of surface realizations—that is, contin-
uous and vertically discrete—can be determined by estimating
rms heights and correlation lengths. Using the definitions for
the mean square surface height h2 = ((f(z) — (f(z)))?) and
the correlation function Bf(z, z0) = (f(z)f(z+zo))—where
xg is the horizontal distance between surface points, z is the
absolute location, and the angle brackets indicate averaging
over the surface—correlation lengths and rms surface heights
were computed for 50 Monte-Carlo surface realizations for
a Gaussian spectrum. These data show that variations in the
statistical parameters of the continuous and vertically discrete
generated surfaces are typically less than 1%.

F. Far-Field Conversion and Monte-Carlo Averaging

The UFDTD and CPFDTD results presented in the next
section are given in terms of the bistatic radar cross section.
The bistatic radar cross section for a plane wave incident on
a 1-D surface is [37]

Lsp

0’(93,(9,') = 27(I-L

(18)

where p is the distance to the far-field observation point, L
is the length of the surface, I, is the scattered intensity, I; is
the incident intensity, 6, is the angle of observation measured
from the vertical, and 6; is the angle of incidence measured
from the vertical. To find the bistatic radar cross section, it is
necessary to convert near-field values to far-field values.

For each surface realization, far-field values are found as
described in [5] using source equivalence concepts. It can be
shown that

ko[t
= &mp /0 dz[~cosO,E.(z, Ly) + cuH,(z, L))

X exp {—jk(Ly cosf, — zsinf,)}

(19)

where E.(z,L,) and H,(z,L,) are field values found as
shown in Fig. 5. Along the dashed path in this figure phasor
quantities for F, and H, are obtained from the FDTD
algorithm. For our choice of path, E, is averaged between
grid points, and a correction must also be made for the fact
that the electric field is available at a different time than the
magnetic field. In (19), p is as shown in Fig. 5(b), x and ¢
are the permeability and speed of light in free space, and k
is the radiation wavenumber. The observation angle is given
by 85 = 90 degrees — ¢ for the angle ¢ shown in Fig. 5(b).
Note that (19) utilizes only the field values collected on the
horizontal portion of the dashed path; the contributions from
the vertical edges of the path are neglected. This is a reasonable
approximation since the field is smallest at the surface edges,
and the length of the discarded portion is a small percentage of
the length of the total integration path. An alternate approach
used by Lee er al. [38] is also available for finding far fields.

Equation (19) is further modified to include the effects
of numerical dispersion present on the FDTD grid. This
dispersion causes a wave traveling on the grid to have a speed
which is slower than its theoretical speed in free space. For CW
illumination, the amount of dispersion depends on the number
of grid ppw and the direction of propagation. A dispersion
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Fig. 5. (a) Computational domain in which the scattered fields propagate.
(b) Contour over which currents are found from the scattered field to obtain
far-field results.

curve can be obtained [6} which gives the ratio vp/c as a
function of propagation angle for a fixed ppw where v, is the
phase velocity on the FDTD grid and ¢ is the speed of light in
free space. A modified k£ given by knoq = k/(vp/c) is used
in (19), where the value of v, is chosen to match propagation
at the incident angle. This choice is based on the assumption
that most of the scattered energy is in the specular direction.
In addition, it is necessary to use knoq in the incident field
(12) to accurately couple the incident energy into the grid and
to produce the correct specular scattering angle. Finally, to
match the surface geometry to the shortened wavelength of the
computed field, a reduced wavelength A\, = A(v,/c) is used in
the surface generation process. These changes permit the use
of a sparser FDTD grid, thereby reducing computational cost.

Equation (19) is used in (18) to compute the radar cross
section. Using energy flux through the surface produced by
the tapered incident field (12), it can be shown that [35]

2v2rI,p
g[1 —0.5(1 + 2tan?6;)/(kg cos 6;)]

The Monte-Carlo results for the bistatic radar cross section are
obtained by averaging the results over 50 surface realizations.

0'(93, 01) =

(20)

III. NUMERICAL RESULTS

In this section, the results of the Monte-Carlo simulations
are presented. For the Gaussian roughness spectrum, four in-
cident angles are considered. Two grazing incidence cases are
shown for the Pierson-Moskowitz spectrum. The total bistatic
radar cross sections, both coherent and incoherent parts, are
plotted as a function of the scattering angle. Fluctuations in
the results are due to the finite number of surface realiza-
tions used in the Monte-Carlo ensemble average. Dispersion
correction, as discussed in Section II-F, has been included
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Fig. 7. For the same comparison, the incident angle has been increased to
45 degrees.

in all results shown. For the examples studied, it was found
that the CPFDTD method gives no significant enhancement
for incident angles less than 45 degrees. Hence, UFDTD is
sufficient for the smaller angles. Results were obtained using
desktop workstations.

In Figs. 6-9 we compare integral equation (IE) results
provided by Thorsos [35] with UFDTD and CPFDTD results
calculated at 16 ppw. The surface roughness parameters are
kh = 1.00, kIl = 4.24, and v = 18.4 degrees where k is the
radiation wavenumber, h is the rms surface height, [ is the
correlation length, and v is the rms surface slope angle. This
surface is fairly rough as indicated by the small specular peak.
For incident angles up to 70 degrees, we use 80\ surfaces,
but we increase this value to 160\ for 80 degrees incidence.
In Fig. 6 we see that the agreement with IE results is good
for both the UFDTD and CPFDTD methods. Hence UFDTD
is sufficient for this case. In Fig. 7 the same comparison is
made for §; = 45 degrees. Once again it is apparent that
UFDTD is in agreement over most angles with the IE results;
however, a slight overprediction is beginning to occur in the
grazing backscatter direction. In Figs. 8 and 9 we increase the
incident angles to 70 degrees and 80 degrees, respectively,
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Fig. 8. For the same comparison, the incident angle has been increased to
70 degrees.
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Fig. 9. For the same comparison, the incident angle has been increased to
80 degrees.

for the same surface parameters. For these cases the CPFDTD
method offers enhanced performance.

In Figs. 10 and 11, scattering is calculated for a Pier-
son-Moskowitz spectrum with kh = 179 where h =
alU*/(4f3¢%) and U is the wind speed in m/s. In these figures,
the incident angles are 6; = 70 degrees and §; = 80 degrees,
respectively. The surfaces are 180X long, and the incident
field taper factor is g = L/4.5. The IE and 16 ppw CPFDTD
results are in good agreement.

IV. SUMMARY

An implementation of the FDTD algorithm incorporating
the contour path method is used to develop a Monte-Carlo
technique for wave scattering from rough surfaces. Results for
the bistatic radar cross section are presented for the Dirichlet
boundary condition for 1-D surfaces with Gaussian statistics
satisfying a Gaussian roughness spectrum and for surfaces
satisfying a Pierson-Moskowitz spectrum. Angles of incidence
in the range O degrees < 6; < 80 degrees are considered.
The results show the CPFDTD method provides improved
performance over the UFDTD method for incident angles
greater than 45 degrees.
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Fig. 10. IE versus CPFDTD using a Pierson-Moskowitz spectrum with U =
20 m/s, §; = 70 degrees.
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Fig. 11. IE versus CPFDTD using a Pierson-Moskowitz spectrum with U =
20 m/s, §; = 80 degrees.

In future work, we will consider a combination of vol-

ume and surface scattering geometries as well as penetrable
surfaces. The CPFDTD method will be used to study these
problems directly, but it will also be used to benchmark
approximate stochastic models.
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