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Comparison of the Dispersion Properties of Higher
Order FDTD Schemes and Equivalent-Sized

MRTD Schemes
Kurt L. Shlager, Senior Member, IEEE, and John B. Schneider

Abstract—The dispersion errors of higher order finite-dif-
ference time-domain (HO-FDTD) algorithms are compared
to those of multiresolution time-domain (MRTD) algorithms
that have equivalent spatial stencil sizes. Both scaling-func-
tion-based MRTD (S-MRTD) and wavelet-function-based MRTD
(W-MRTD) schemes are considered. In particular, the MRTD
schemes considered include the Coifman scaling functions and the
Cohen–Daubechies–Feauveau (CDF) biorthogonal scaling and
wavelet functions. In general, the HO-FDTD schemes are more
accurate than their MRTD counterparts.

Index Terms—Finite-difference time-domain (FDTD), multires-
olution time-domain (MRTD), numerical dispersion.

I. INTRODUCTION

FOR electrically large problems, the numerical dispersion
inherent in the classical Yee finite-difference time-domain

(FDTD) algorithm will introduce significant errors. Over the
past ten years there have been several FDTD schemes published
with the goal of reducing the dispersion error [1].

Oneof thesimplestapproaches to reducing thedispersionerror
is to retain more terms in the Taylor series approximation of the
spatial derivatives than is done when using a second-order central
difference. Because of the additional large storage requirements
when applying a similar approach to the temporal derivatives,
typically the standard second-order central differences are main-
tained in the approximation of the temporal derivatives. Fang [2]
was the first to present this approach in conjunction with solving
Maxwell’s equations. He investigated the use of a second-order
accurate in time, fourth-order accurate in space FDTD algorithm,
which we denote as the (2, 4) FDTD algorithm. A few years
later, Manry et al. [3] investigated the use of a second-order in
time, sixth-order in space (2, 6) FDTD algorithm. More recently,
Zhang and Chen [4] outlined a general procedure for generating
the update-equation coefficients for arbitrary higher order
FDTD schemes. They also presented the corresponding disper-
sion relation for these schemes. The notation denotes the
order in accuracy of time and space of the FDTD scheme, respec-
tively. In this paper, the (2, ) higher order FDTD (HO-FDTD)
schemes are considered.
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In 1995, Krumpholz and Katehi introduced the multireso-
lution time-domain (MRTD) method, a time-domain scheme
where electric and magnetic fields are expanded in terms of
scaling and wavelet functions [5]. When using solely scaling
functions, Krumpholz and Katehi termed the MRTD scheme
an S-MRTD scheme, while when employing wavelet functions,
they termed it a W-MRTD scheme. Krumpholz and Katehi
primarily explored the use of Battle–Lemarie scaling functions,
although other wavelet and scaling functions have since been
used. Because Battle–Lemarie scaling functions suffer from
the undesirable property of having noncompact support, other
MRTD schemes have been proposed. Recently, Dogaru and
Carin [6] proposed using Cohen–Daubechies–Feauveau (CDF)
biorthogonal scaling and wavelet functions, while Wei et al. [7]
proposed using Coifman scaling functions.

In Section II the three-dimensional (3-D) HO-FDTD up-
date equations and dispersion relation are reviewed, while in
Section III those of the S-MRTD are reviewed. The W-MRTD
update equations and dispersion relation are presented in
Section IV. Due to the complexity of the MRTD method
when employing wavelet functions, the update equations and
dispersion relation are presented solely in two dimensions
(2-D) for the TM case where the nonzero fields are , ,
and . In Section V the dispersion errors of the HO-FDTD
schemes are compared with the same size computational stencil
S-MRTD schemes using either the CDF or Coifman scaling
functions. When two schemes have the same spatial stencil
and are run at the same Courant number, they require the same
computational effort. The accuracy of all schemes is compared
via direct evaluation of the dispersion relation governing each
algorithm. For each scheme an “optimal” Courant number is
determined that minimizes, or nearly minimizes, the dispersion
error. Comparisons are made of the dispersion error when each
scheme uses its own optimal Courant number. Additionally,
comparisons are made when the HO-FDTD schemes are not
optimized but rather use the Courant numbers that optimize the
the MRTD scheme with the same stencil size. In Section VI the
dispersion errors of the HO-FDTD schemes are compared with
the CDF W-MRTD schemes requiring similar computational
effort. Conclusions are presented in Section VII.

II. HIGHER ORDER FDTD SCHEMES

In 3-D the Cartesian coordinate higher order finite difference
time-domain update equation for the -component of the electric
fieldcanbeobtainedfrom(1)shownat thebottomof thenextpage
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TABLE I
COEFFICIENTS FOR THE HIGHER ORDER FDTD SCHEMES

where is half the size of the total number of terms in the
computational stencil, is the temporal step size, and
are the spatial step sizes in the - and -directions, respectively,

is the permittivity, and the coefficients are given in Table I.
Similar equations hold for the other five field components and
can be found in the Appendix. Note that Table I only includes
coefficients that correspond to the same size stencil as either the
CDF or Coifman S-MRTD schemes, which will be considered
in Section V.

The dispersion characteristics are typically derived by as-
suming a time harmonic plane-wave solution in an isotropic,
homogeneous, linear, and lossless medium. The dispersion re-
lation for the higher order FDTD scheme can be written as

(2)
where

(3)

(4)

(5)

(6)

is the frequency, , , is the numeric wave number
inthe -, -,and -directions, respectively,andwehaveassumeda

uniformspatial stepsizewhere .Foragiven
numberofcellsperwavelength ,Courantnumber ,
anddirectionofpropagationspecifiedbythesphericalpolarangle

and the equatorial angle , the arguments of each of the terms
in (3)–(6) can be rewritten such that the only unknown is the ratio
of the exact wavelength (i.e., the wavelength in the continuous
world) to the numeric wavelength . (For example, the argument

2 can be rewritten as , while 2 2 could
be expressed as 2 .) The quantity

canbesolvednumericallyusingtechniquessuchasbisection.
The dispersion error per wavelength, as later shown in Figs. 2–10,
is then 360 1).

III. SCALING-FUNCTION-BASED MRTD SCHEMES

In the 3-D scaling-function-based MRTD (S-MRTD) tech-
nique, the field at a point is a weighted sum of scaling functions.
For example, the -component of the electric field is given by

(7)

where is the appropriate scaling function for the particular
scheme being used, is a rectangular pulse function, and

is the scaling-function coefficient. Rather than
updating the fields directly, one updates the coefficients for
the scaling functions. For example, from the -component
of Ampere’s law, one obtains (8) shown at the bottom of the
page, where is again half the size of the computational

(1)

(8)
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TABLE II
COEFFICIENTS FOR THE S-MRTD SCHEMES.

stencil, and the coefficients are given in Table II for the
CDF schemes (2, 2), (2, 4), and (2, 6) and Coifman-4 and -8
schemes. The Coifman coefficients are as given in [7]. Note
the similarity between (8) and (1). This similarity holds for the
update equations for the other scaling-function coefficients,
and hence they will not be shown.

Unlike the HO-FDTD schemes, for the CDF schemes the
notation relates to the lengths of the reconstruction and

decomposition filters of the wavelet family. By comparing the
number of coefficients used in each algorithm, it can be seen
that the HO-FDTD (2, 6) scheme has the same computational
stencil as the CDF (2, 2) S-MRTD scheme, the HO-FDTD (2,
10) scheme has the same computational stencil as the CDF (2,
4) scheme, the HO-FDTD (2, 14) scheme has the same stencil
as the CDF (2, 6) scheme, the HO-FDTD (2, 12) scheme has
the same stencil as the Coifman-4 scheme, and the HO-FDTD
(2, 16) scheme has the same stencil as the Coifman-8 scheme.
Thus, these combinations of schemes will be compared in Sec-
tion V.

The dispersion relation for the S-MRTD scheme is essentially
identical to that of the HO-FDTD scheme except the coefficients
used in (4)–(6) would be taken from Table II instead of Table I.

IV. WAVELET-FUNCTION-BASED MRTD SCHEMES

Due to the complexity of wavelet-based MRTD schemes,
we limit our discussion of the W-MRTD CDF schemes to

2-D TM polarization where the nonzero fields are , ,
and . The -component of the electric field is represented
by the expansion shown in (9) at the bottom of the page [6],
[8], while the - and -components of the magnetic field are
given by (10)–(11) shown at the bottom of the page, where

is the dual scaling function and is the corresponding dual
wavelet. The arrangement of the basis function coefficients
is shown in Fig. 1.

The update equation for the basis function coefficient for
can be obtained from (12) shown at the bottom of the next

page, where is half of the total size of the spatial stencils
involving the coefficients. As shown in the Appendix, similar
expressions hold for the remaining basis function coefficient up-
dates. Equation (12) utilizes the two sets of coefficients and

. As shown in the Appendix, two other sets of coefficients,
namely, and , are required in the complete set of 2-D
W-MRTD update equations. For completeness the coefficients

, , and as given in [6] are shown in Table III for the
CDF (2, 2), (2, 4), and (2, 6) schemes. The coefficients are
simply those given in Table II.

The equations governing the update of the magnetic field
basis function coefficients are also given in the Appendix. Note
that the S-MRTD scheme is recovered if only the terms are
retained.

The dispersion relation for the 2-D W-MRTD scheme can be
shown to be given by setting the determinant of a 12 12 matrix

(9)

(10)

(11)
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Fig. 1. Arrangement of basis-function coefficients in the W-MRTD grid.

to zero. That matrix is given by (13) shown at the bottom of the
page, where, assuming

(14)

(15)

Prior to expanding the terms, the determinant was found
symbolically using Mathematica [9]. The terms were then
expanded in accordance with (14) and (15) and, as before, the re-
sulting equation was solved numerically for the ratio , which
was then used to obtain the dispersion error per wavelength.

TABLE III
THE b(`), c(`), AND d(`) COEFFICIENTS FOR THE CDF W-MRTD SCHEME

V. COMPARISONS BETWEEN HIGHER ORDER FDTD AND

S-MRTD-BASED SCHEMES

Fig. 2 shows the maximum numerical dispersion error in
3-D (evaluated over all propagation angles) versus the Courant
number for the (2, 6), (2, 10), and (2, 14) HO-FDTD schemes
as well as for the S-MRTD schemes with the same size spatial
stencil, namely, the CDF (2, 2), CDF (2, 4), and CDF (2, 6)

(12)

(13)
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Fig. 2. Dispersion error versus Courant number for three HO-FDTD schemes
and the CDF S-MRTD schemes with the same spatial stencils. The discretization
is held fixed at ten cells per wavelength. As a point of reference, the dispersion
for the FDTD (2, 2) scheme, i.e., the classic Yee algorithm, is shown as the
dashed line that appears at the top of the plot.

schemes, respectively. The error is defined as the absolute value
of the phase error in degrees per wavelength of propagation.
Each scheme is evaluated at a resolution of ten cells per
( ). The HO-FDTD schemes can, depending on the
Courant number, yield propagation that is either faster or
slower than the speed of light. The optimal Courant number
occurs at the distinct dip in each HO-FDTD curve. At this
Courant number the mean of the dispersion error (with the
sign preserved) is zero when measured over all propagation
directions. The errors from the CDF S-MRTD schemes are seen
to decrease asymptotically with decreasing Courant number.
Note that the HO-FDTD schemes have lower dispersion than
the corresponding S-MRTD scheme. In fact the HO-FDTD
error can be several orders of magnitude less than the S-MRTD
error. However, to realize such performance in the HO-FDTD
methods the Courant number would have to be so small that
it essentially precludes practical use. Therefore, later in this
section comparisons will be made using a common Courant
number.

Fig. 3 shows the maximum numerical 3-D dispersion error
versus Courant number for the (2, 12) and (2, 16) HO-FDTD
schemes and their S-MRTD counterparts with the same
size spatial stencils; namely, the Coifman-4 and Coifman-8
S-MRTD schemes, respectively. Again, each scheme is eval-
uated at a resolution of ten cells per . Once again, the errors
from the Coifman S-MRTD schemes are seen to decrease
asymptotically with decreasing Courant number. Similarly,
the HO-FDTD schemes are capable of producing significantly
lower levels of error at small Courant numbers. However, as
noted before, the Courant numbers required to produce this
level of performance are so small that they preclude use in most
applications.

For the remaining plots in this section, in each S-MRTD
scheme we will use a Courant number that yields a maximum
error that is 1.5 times the asymptotic limit of error for that
particular scheme. Thus, the Courant number is reasonably
large while still yielding errors close to the asymptotic limit. We

Fig. 3. Dispersion error versus Courant number for two HO-FDTD schemes
and the Coifman S-MRTD schemes with the same spatial stencils. The
discretization is held fixed at ten cells per wavelength.

TABLE IV
COURANT NUMBERS THAT OPTIMIZE THE VARIOUS SCHEMES AT TEN

CELLS PER WAVELENGTH. THE SCHEMES ARE GROUPED ACCORDING TO

THEIR SPATIAL STENCIL SIZE (THE MULTIPLICITY OF THE W-MRTD
STENCILS NOTWITHSTANDING)

denote this as the “optimal” Courant number for the S-MRTD
scheme. The optimal Courant numbers for the S-MRTD
schemes are typically much larger than the optimal Courant
number for the corresponding HO-FDTD scheme. The optimal
Courant numbers used in this work are listed in Table IV.

Fig. 4 shows the maximum dispersion error versus the cells
per wavelength for the three CDF S-MRTD schemes and the
HO-FDTD schemes when each uses a time-step that optimizes
its performance at ten cells per wavelength, i.e., each scheme
uses the Courant number given in Table IV. The HO-FDTD
schemes are clearly superior to their corresponding CDF
S-MRTD counterparts, although to achieve this superiority the
HO-FDTD schemes require a much smaller Courant number.
In fact, the size of the Courant number for the HO-FDTD
schemes is so small as to be prohibitive, and thus these curves
serve primarily to show the lower bound on the error. Fig. 5
shows the same set of plots, but comparing the HO-FDTD
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Fig. 4. Dispersion error versus cells per wavelength for three HO-FDTD
schemes and the CDF S-MRTD schemes with the same spatial stencils. The
Courant number for each scheme is the one which optimizes the performance
at ten cells per wavelength. Again, for reference, the dispersion for the FDTD
(2, 2) scheme is shown as the dashed line appearing at the top of the plot.

Fig. 5. Dispersion error versus cells per wavelength for two HO-FDTD
schemes and the Coifman S-MRTD schemes with the same spatial stencils.
The Courant number for each scheme is the one that optimizes the performance
at ten cells per wavelength.

schemes with their Coifman S-MRTD counterparts. The same
conclusions are drawn. (We note that some improvement in the
Coifman results may be possible if more digits were used in
the update coefficients than those provided by [7], but results
are not likely to be significantly different.).

Fig. 6 again shows the maximum dispersion versus dis-
cretization; however, here the HO-FDTD schemes use the
Courant number that optimizes the CDF S-MRTD scheme with
the same spatial stencil. Because the S-MRTD and HO-FDTD
schemes use the same Courant numbers and have the same
spatial stencils, they require the same computational effort.
Using this larger Courant number, the HO-FDTD schemes
are still superior to S-MRTD at coarse discretizations while
S-MRTD converges to the HO-FDTD error as the discretization
becomes more fine. Fig. 7 shows that the HO-FDTD schemes

Fig. 6. Dispersion error versus cells per wavelength. Here the HO-FDTD
schemes use the Courant numbers that are optimum for the corresponding CDF
S-MRTD schemes.

Fig. 7. Dispersion error versus cells per wavelength. The HO-FDTD schemes
use the Courant numbers that are optimum for the Coifman S-MRTD schemes.

are superior to the Coifman S-MRTD schemes over all dis-
cretizations.

Finally, note that the plots have shown only the maximum
error when considering all propagation angles. If a scheme has
the same dispersion error at all angles, the scheme is isotropic.
For such a scheme it may be possible via postprocessing to re-
move the dispersion error even if that error is large. In prac-
tice all schemes suffer some anisotropy, but if the anisotropy is
small relative to the mean dispersion error, postprocessing may
be used to remove the mean error and thus significantly improve
the quality of the results. Thus, it is instructive to determine the
degree of anisotropy for each of the schemes, or, said another
way, the difference between the dispersion in the direction with
most error and the dispersion in the direction with least error.
Table V shows this anisotropy for each of the schemes at ten
cells per wavelength when using the Courant numbers, which
optimize the S-MRTD schemes at this discretization. Again the
schemes are grouped by their spatial stencil size. In all cases
the HO-FDTD schemes are much more isotropic than the cor-
responding S-MRTD scheme.
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TABLE V
DEGREE OF ANISOTROPY AT TEN CELLS PER WAVELENGTH FOR THE

HO-FDTD AND S-MRTD SCHEMES WHEN EACH SCHEME USES THE

COURANT NUMBER WHICH OPTIMIZES THE PERFORMANCE OF THE MRTD
SCHEME. THE DEGREE OF ANISOTROPY IS DEFINED AS THE ABSOLUTE VALUE

OF THE DIFFERENCE BETWEEN THE MAXIMUM AND MINIMUM ERRORS

(WHERE SIGN IS PRESERVED IN DETERMINING THE MINIMUM AND MAXIMUM)
WHEN MEASURED OVER ALL PROPAGATION ANGLES. HENCE THE SMALLER

THE NUMBER, THE MORE ISOTROPIC THE ALGORITHM IS

Fig. 8. Dispersion error versus Courant number for three HO-FDTD
schemes and the CDF W-MRTD schemes with the same spatial stencils. The
discretization is held fixed at 10 cells per wavelength.

VI. COMPARISONS BETWEEN HIGHER ORDER FDTD AND

W-MRTD SCHEMES

Fig. 8 shows the maximum 2-D dispersion error versus
Courant number for the three CDF W-MRTD schemes and
their three 2-D HO-FDTD counterparts. Note that unlike the
S-MRTD schemes, the W-MRTD schemes have a well-defined
optimum Courant number. Fig. 9 shows the maximum disper-
sion error versus discretization for all six schemes when each
scheme uses the Courant number that optimizes its performance
at ten cells per .

Fig. 10 also shows the maximum dispersion error versus dis-
cretization. Once again, the W-MRTD results were obtained
using the Courant numbers that optimize their performance at
ten cells per . The same caveat concerning the small Courant
numbers for the HO-FDTD schemes discussed in Section V per-
tains here as well.

By comparing the update equations for the W-MRTD method
with those that govern the HO-FDTD or S-MRTD methods, it

Fig. 9. Dispersion error versus cells per wavelength for three HO-FDTD
schemes and the CDF W-MRTD schemes with the same spatial stencils. The
Courant number for each scheme optimizes its performance at 10 cells per
wavelength.

Fig. 10. Dispersion error versus cells per wavelength for three HO-FDTD
schemes and the CDF W-MRTD schemes with the same spatial stencils. The
Courant number for each CDF scheme optimizes its performance at 10 cells
per wavelength. For the HO-FDTD the Courant number is that which yields
the same “computational effort” as the CDF scheme with the same size spatial
stencil.

is evident that the W-MRTD method involves much more com-
putation than either HO-FDTD or S-MRTD. This is because
the update equations of the W-MRTD method typically involve
summations over four sets of coefficients , , , and

, while those of S-MRTD and HO-FDTD typically are over
only one set of coefficients . (Under the assumption of equal
stencils , , , and , this would be a factor of eight
in computation.) Therefore, in Fig. 10, the HO-FDTD schemes
use a Courant number that would result in approximately the
same number of computations (and hence run time) as the corre-
sponding W-MRTD scheme. For example, in the TE polariza-
tion case, to update the CDF (2, 2) field component requires
four stencils of size , , , and ,
while the HO-FDTD (2, 6) simply utilizes two of size .
Similar ratios of operation counts exist between the and
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field components for the two schemes. The stencil size is pro-
portional to the floating point operation count; thus the CDF (2,
2) W-MRTD results in 44/6 as many operations per time step
as the HO-FDTD. Therefore, using an FDTD Courant number
3/22 that of the CDF (2, 2) W-MRTD scheme results in the same
amount of computation. This is the HO-FDTD Courant number
used in the HO-FDTD (2, 6) case. Similarly, for the HO-FDTD
(2, 10) results shown in Fig. 10, a Courant number 5/38 that of
the CDF (2, 4) W-MRTD is used. Lastly, for HO-FDTD (2, 14),
a Courant number 1/8 that of CDF (2, 6) is used in Fig. 10. As
can be seen from Fig. 10, except perhaps over a very small range
of discretizations, HO-FDTD (2, 6) has better dispersion than
CDF (2, 2) W-MRTD, HO-FDTD (2, 10) performs better than
CDF (2, 4) W-MRTD, and HO-FDTD (2, 14) performs better
than CDF (2, 6) W-MRTD.

From Table IV it is observed that at ten cells per wavelength
the optimum Courant number for the CDF (2, 2) W-MRTD
scheme is 0.1110 while for the HO-FDTD (2, 6) scheme it
is 0.035 68. Taking the optimum W-MRTD Courant number
and reducing it by a factor of 3/22 yields a Courant number
of 0.015 14. Note that this Courant number is less than the
one that yields optimum behavior at ten cells per wavelength
for the HO-FDTD (2, 6) scheme. Nevertheless, since, as is
evident from Fig. 8, the suboptimal Courant number does not
significantly degrade the performance of the HO-FDTD (2, 6)
scheme and since this Courant number does yield the same
computational effort as the W-MRTD scheme, it is the Courant
number used in Fig. 10. Reducing the Courant number from the
value that optimizes the performance at ten cells per wavelength
merely changes the discretization at which the behavior is
optimum (from Fig. 10 it appears the smaller Courant number
provides optimum behavior near 16 cells per wavelength). If
one were truly interested in optimizing behavior at ten cells

per wavelength, a Courant number of 0.035 68 could be used
for the HO-FDTD (2, 6) scheme. In that case the curve shown
in Fig. 9 is the pertinent one and the HO-FDTD (2, 6) scheme
would require less computational effort than the corresponding
optimized W-MRTD scheme.

VII. CONCLUSION

Comparisons in accuracy, due to numerical dispersion,
have been made between higher order FDTD schemes and
equivalent computational stencil MRTD schemes. The MRTD
schemes investigated include the Cohen–Daubechies–Feau-
veau S-MRTD schemes, the Coifman S-MRTD schemes, and
the CDF W-MRTD schemes. In all cases investigated, the
HO-FDTD provides better dispersion characteristics than their
corresponding MRTD counterparts, even when the HO-FDTD
schemes utilize a Courant number that is optimal for the MRTD
schemes. It is noted that our comparisons here solely compare
the dispersion error of the various schemes in a homogeneous
space. Easier implementation of an MRTD scheme over an
HO-FDTD scheme due to difficulties at material interfaces
may warrant MRTD usage over an HO-FDTD scheme.

APPENDIX

The equations that can be used to obtain the update equations
for the remaining 3-D components of the HO-FDTD scheme are
shown in (16)–(20) at the bottom of the page. The form of the
equations is unchanged for the S-MRTD scheme—merely the
value of the coefficients changes.

For the 2-D W-MRTD TM polarization case, the remaining
basis function coefficients for the -component of the electric
field can be updated using (21)–(23) shown at the top of next
page.

(16)

(17)

(18)

(19)

(20)
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(21)

(22)

(23)

Meanwhile, the 2-D W-MRTD magnetic field basis function
coefficients are updated using (24)–(31) that follow:

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)
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