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Plane Waves in FDTD Simulations and a Nearly
Perfect Total-Field/Scattered-Field Boundary

John B. Schneider, Member, IEEE

Abstract—The total-field/scattered-field (TFSF) boundary
has been successfully used for a number of years to introduce
energy into finite-difference time-domain (FDTD) grids. If the
propagation of the incident field is grid-aligned, a perfect TFSF
implementation can be realized by using an auxiliary one-dimen-
sional FDTD simulation which models propagation of the incident
field. Here “perfect” implies the incident field propagation exactly
matches the way in which the field propagates in the FDTD grid.
However, for propagation which is not grid-aligned, no similarly
perfect implementation has previously been presented. This work
provides a framework for a perfect TFSF boundary for pulsed
plane waves which do not propagate in a grid-aligned fashion. To
achieve this, homogeneous plane-wave propagation is rigorously
quantified. Using this knowledge and a specification of the desired
incident field, the dispersion relation is used to ascertain the
incident field at any point in the grid. It is required to account for,
unlike in the continuous world, the electric field, the magnetic field,
and the wavenumber vector not forming a mutually orthogonal
set. Group velocity is also considered because of its relevance to
the implementation.

Index Terms—Finite-difference time-domain (FDTD) methods.

I. INTRODUCTION

THE total-field/scattered-field (TFSF) boundary formula-
tion, first described in [1] in terms of Huygen’s surfaces,

provides a relatively simple method for introducing arbitrary in-
cident fields into finite-difference time-domain (FDTD) grids. A
detailed discussion of the implementation of TFSF boundaries
for pulsed plane waves can be found in [2], [3]. The framework
presented here will use the context of the standard Yee FDTD
scheme [4] although the same concepts should apply equally
well to any scheme for which the dispersion relation is known
exactly. TFSF boundaries have recently been adapted to work
when partially embedded within a perfectly matched layer [5].
It is also possible to apply the TFSF concept to stratified media
as shown in [6]. In this work the boundary is assumed to lie in
a homogeneous medium (which may enclose an arbitrary scat-
terer) and the incident field is a pulsed plane wave.

The TFSF boundary is a fictitious boundary which encloses a
portion of the computational domain. Nodes inside the boundary
are in the total-field (TF) region, i.e., incident field plus any
scattered field, and nodes outside it are in the scattered-field
(SF) region. The TFSF boundary works by adjusting the value of
nodes adjacent to the boundary, i.e., nodes whose neighboring
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nodes lie on the other side of the boundary. For a total-field node
adjacent to the boundary, one or more neighboring nodes lack
the incident field. When applying the update equation to this TF
node, the incident field must be added to the neighbors which
lack it in order to get a consistent equation. On the other hand,
when updating a scattered-field node, the incident field must be
subtracted from neighbors which lie in the TF region (see [2],
[3] for implementation details).

One must specify the incident field at all the electric and
magnetic field nodes adjacent to the TFSF boundary. If one
uses the analytic form for the incident field (i.e., the one which
describes propagation in the continuous world), numerical
artifacts will be introduced since the way in which the fields
propagate in the FDTD grid differs from how they propagate in
the continuous world. Since all propagating waves in the FDTD
grid travel slower than in the continuous world, this mismatch
will cause fields to leak across the boundary. This leakage can
be reduced by using a finer discretization, but it cannot be
eliminated. A simple and elegant way to overcome this problem
for grid-aligned propagation is to use a one-dimensional (1-D)
auxiliary FDTD computation to model the propagation of the
incident field [2], [3]. By using the same parameters (i.e.,
spatial-step size in the direction of propagation, temporal-step
size, Courant number, etc.) in the 1-D grid and the grid in
which the TFSF boundary is to be realized, one can ensure
that the incident field given by the 1-D grid exactly matches
how the incident field propagates in the other grid. Thus, for
grid-aligned propagation there will be no leakage across the
boundary.

Unfortunately when propagation is not grid-aligned, it is
not possible to model exactly the way the field propagates in
the higher-dimensional grid using a 1-D grid. One correction,
proposed in [2], [3], adjusts the phase velocity in the 1-D aux-
iliary grid so that a single spectral component will match the
phase velocity in the higher-dimensional grid. This correction
might be done at the frequency component corresponding to
the most energetic spectral component of the pulse or some
other frequency which is of particular interest. However, the
phase velocity would only be correct at that single frequency.
All other spectral components would be subject to leakage
across the boundary. Another scheme for using a 1-D auxiliary
grid was proposed by Guiffaut and Mahdjoubi [7]. In their
approach the auxiliary grid uses the same temporal-step size
and speed of propagation as the higher-dimensional grid but
the spatial-step size is chosen to ensure the phase speeds are
matched at some suitable discretization. Despite the title of their
work, Guiffaut and Mahdjoubi’s scheme does have inherent
approximations—the phase velocities are not exactly the same
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in the two grids (although they are indeed very close for most
practical discretizations).

If one chooses to use a 1-D auxiliary-grid scheme, one must
interpolate the fields of the 1-D grid to points corresponding
to the projected locations of the nodes in the higher-dimen-
sional grid. This interpolation comes with its own set of artifacts
which has been addressed in [8] and [9]. Additionally, to date, no
TFSF scheme has accounted for the fact that for nongrid-aligned
propagation of a homogeneous plane wave, the electric field,
the magnetic field, and the direction of propagation (i.e., the
wavenumber vector) do not form a mutually orthogonal set (as
they do in the continuous world). Failure to account for this can
introduce additional numeric artifacts.

This work attempts to provide a framework which is perfect
(or in which the errors can be made arbitrarily small without
resorting to a smaller discretization). Perfect should not be
taken to mean corresponding to the continuous-world but rather
we seek a way to obtain the exact incident field as would be
found at an arbitrary point in the FDTD grid without performing
an FDTD simulation. For the sake of implementation, some
compromises will be made (and noted accordingly). The exact
scheme starts with an incident angle, a specified incident time
series, and a reference point at which that time series is assumed
to exist. Then the dispersion relation [10] is used to obtain a
time series at an arbitrary point in the FDTD space (incidently,
this point does not have to correspond to an actual grid node). In
this way it is possible to specify exactly what the incident field
should be, in the time domain, at any node in the grid. The use
of the dispersion relation to describe propagation of a pulsed
field in FDTD grids, without actually doing an FDTD simula-
tion, was discussed in [11]. The dispersion relation was further
explored in [12] where it was speculated that it would be pos-
sible to construct a perfect TFSF boundary. Missing from those
two papers was consideration of the nonorthogonality of the
fields and the wavenumber vector. This issue was explored in
[13] and had been considered previously by Celuch-Marcysiak
and Gwarek [14] in the context of the divergence properties of
FDTD schemes.

The technique presented here does not necessarily claim to
be faster than previously proposed 1-D auxiliary schemes (but
does make the claim of significantly improved accuracy). Nev-
ertheless, the code written to realize the perfect TFSF boundary
is very fast and employs the FFTw software suite (i.e., Fastest
Fourier Transform in the West, [15] or see www.fftw.org for fur-
ther details). The code permits the a priori calculation of the
fields adjacent to the TFSF boundary so that they can be stored
in a data file and read during an FDTD simulation (and used
multiple times if desired). Alternatively, another version of the
code is designed for incorporation directly into the main FDTD
code where a single function call initializes the incident fields
and then one other function is called at each time step to per-
form the necessary operations on fields adjacent to the TFSF
boundary.

The following section provides the necessary background
material to construct the exact TFSF boundary. Section III
presents implementation details. Results are given in Sec-
tion IV and finally conclusions are presented in Section V.

II. BACKGROUND

It is necessary to quantify rigorously the way in which plane
waves, which are eigen functions of the FDTD method, propa-
gate in the grid. To this end we adopt the notation developed by
Forgy [16]. The electric and magnetic fields are given by

(1)

(2)

where, for a plane wave propagating at an angle of relative to
the axis and the angle relative to the axis when projected
in the plane, the numeric wavenumber vector is given by

(3)

the vector gives the temporal and spa-
tial indices of a node, is the temporal-step size,

are the spatial-step sizes, and is the frequency. The
vectors and are constant for any given frequency. A tilde
will be used to indicate a numeric quantity, i.e., one that exists
in the FDTD grid and which typically differs from its corre-
sponding value in the continuous world. A caret over an electric
or magnetic field implies it is in the frequency domain. Let the
shift operator shift the th index by . For example

(4)

Conversely, shifts the th index by . The discrete dif-
ferential operator is defined as

(5)

Using this notation, the Yee FDTD version of Ampere’s and
Faraday’s equations can be stated succinctly as

(6)

(7)

where the shift matrix is given by

(8)

while uses negative shift operators along the diagonal,
and the discrete nabla operator is defined as the vector

. For plane-wave propagation the discrete
differential operators become

(9)

(10)

We define and as

(11)

(12)
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so that for a plane wave the discrete nabla operator is given by
.

A. Non-Orthogonality of , and

In a source-free region, it can be shown that the Yee grid is
identically divergence free [2], [3]. Hence

(13)

(14)

Equation (13) dictates that and the electric field are orthog-
onal while (14) requires and the magnetic field to be orthog-
onal. Additionally, the curl operator can be expressed in terms
of . Returning to the Yee algorithm given by (6) and (7), can-
celing the shift operators, and substituting the plane-wave form
of the differential operators, one obtains

(15)

(16)

Either of these equations, coupled with (13) and (14), shows that
, and form a mutually orthogonal set. However, in

general is not parallel to (i.e., the direction of wave propa-
gation). For a given discretization one can solve for from the
dispersion relation. Given , the components of can be found
via (11) and hence the angle between and can be found.
The angle is, however, frequency dependent.

B. Dispersion Relation

The dispersion relation for the Yee algorithm is well es-
tablished [10] and has been studied over the entire range of
frequencies which can be coupled into the grid [11], [12]. The
dispersion relation plays a central role in the work to follow
and is derived here by solving (15) for and using that
to eliminate from (16). The result is

(17)

Rearranging and expanding the cross products yields

(18)

From (14) is zero. Since appears on both sides
of (18) and the equation is true for each component, it can be
eliminated from (18) to obtain the dispersion relation

(19)

In order to simplify the expressions to follow, we will assume
a uniform spatial-step size so that but
we note that a similar approach would hold for a nonuniform
grid. Expanding the terms in (19), the dispersion relation can be
written in the more familiar form of

(20)

where is the Courant number .

C. Impedance

Taking the magnitude of both sides of (15) yields

(21)

Because and are orthogonal and all fields have the same
spatial dependence, the spatial dependence can be removed
leaving

(22)

Taking the square root of (19) gives the magnitude of in terms
of , i.e., . Plugging this into (22) and rearranging
yields

(23)

Thus the grid characteristic impedance is exact independent of
the direction of propagation or discretization. However this does
not imply, for instances, that the magnetic field components
can be obtain in the usual manner from the electric field given
the direction of propagation and polarization. Instead one must
account for the lack of orthogonality as stated above (and as
considered when polarization is discussed).

D. Group Velocity

The FDTD phase velocity can be obtained from the
numeric wavenumber, i.e., , while the grid group
velocity is given by (the FDTD group velocity
has previously been discussed in [17] and [18]). It is helpful to
place bounds on both the numeric phase and group velocities.
For the second-order Yee scheme, the worst dispersion occurs
for grid-aligned propagation and hence closed-from bounds
can be obtained (in general the multidimensional dispersion
relation does not permit a closed-form solution).

For very coarsely resolved fields, the FDTD grid supports
complex wave numbers which experience exponential decay
[11], [12]. Although such waves should be considered in the
construction of a completely exact TFSF boundary, they will
be discarded in the implementation to come because : 1) owing
to their exponential decay, such waves are typically of little
practical concern and 2) by restricting consideration to real
wavenumbers the root-finding which must be used to solve the
multi-dimensional dispersion relation is greatly simplified.

For grid-aligned propagation [equivalent to discarding two of
the terms on the right side of (20)] the dispersion relation can be
used to solve for the ratio of the grid phase velocity to the speed
of light

(24)

where is the number of cells per wavelength. [Here we have
used and .] The smallest
discretization which yields a real wavenumber is

(25)
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Using this value in (24) yields the minimum phase speed

(26)

Using the three-dimensional (3-D) Courant limit of
yields a minimum phase velocity of approximately .

Solving the dispersion relation for and calculating
yields the group velocity which, when normalized by , can be
expressed as

(27)

The minimum group velocity can be found by using (25) and
(26) in (27). Using these minimum values the arguments of the
trigonometric functions become

(28)

Thus, the group velocity at this discretization is identically zero!
This explains why high frequency energy may persist in the
FDTD grid for inordinately long times despite the fairly rea-
sonable phase velocity: the group velocity may be very small or
even zero. Fig. 1 shows a plot of the normalized phase and group
velocities for grid-aligned propagation using a Courant number

of . These curves provide bounds on the worst velocity
errors since obliquely propagating waves will suffer less errors.
The relevance of group velocity to the TFSF boundary will be
discussed below. As shown in [12], the coarsest discretization
which can exist in an FDTD grid, independent of direction of
propagation, is

(29)

This can be shown by considering the highest frequency which
can be coupled into the grid which is . Ex-
pressing this in terms of the shortest wavelength and the
discretization one obtains from which
(29) follows directly.

III. TFSF BOUNDARY

Having a complete quantification of the way in which plane
waves propagate in the FDTD grid, the field at any point in the
grid can be determined given an incident-field time-series at a
reference point and the direction of propagation. For notational
simplicity, consideration will be restricted to oblique propaga-
tion in two dimensions but the extension to three dimensions
is straightforward with the one complication being polarization
which will be discussed. For 3-D simulations in which the inci-
dent field propagates obliquely to two of the axes but perpendic-
ular to the third, the derivation presented here pertains directly.

Assume one wants the incident time series to be at the
reference point . We take this field to correspond
to the component of the electric field in a simulation (i.e.,
nonzero fields are , and ). In the frequency domain
this field is given by

(30)

Fig. 1. Normalized phase and group velocity for grid-aligned propagation
versus the discretization. The Courant number is the 3-D limit of 1=

p
3.

The coarsest discretization for which the wavenumbers are real, N , is
approximately 2.946 97. At this discretization the group velocity goes to zero.
The ideal normalized velocity is unity.

where is the discrete Fourier transform. The field at any
other node in the grid is simply given by

(31)

where

(32)

gives the phase shift associated with prop-
agation from the point to the arbitrary point

. In the time domain the field is given by

(33)

where is the inverse Fourier transform. In two dimensions
one can write the and components of the magnetic field
directly in terms of the components of the electric field. From
(16) one obtains

(34)

(35)

In the time domain these correspond to

(36)

(37)

where . The staggering of the field components is
inherently accounted for by the values of m which are not re-
stricted to integer values (i.e., an offset of one half is used when
appropriate).
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Equations (33), (36), and (37) comprise the heart of the exact
TFSF boundary scheme. They give the incident field at any point
in the grid and are used for the incident field in the TFSF update
equations as given in [2], [3]. To use this technique for an FDTD
method other than the Yee method, the numeric wave numbers
appropriate for that method would be used in these equations.
The length of the discrete Fourier transforms will be discussed
in Section IV.

For arbitrary 3-D propagation one merely has to add the third
wave-vector component term to the argument of the exponen-
tial in (32) (and find six field components rather than three).
Additionally one must account for the “polarization” although,
as described below, there is no unique orientation for the fields
since the orientation is frequency dependent.

A. Polarization

For the general 3-D problem one would have to specify a po-
larization in additional to giving the direction of propagation,
a reference point, and the desired time series. Assume this po-
larization is specified by a unit vector . This vector should
be chosen to be orthogonal to the direction of propagation. The
direction of propagation is represented by unit vector . The
orientation of vector is dictated by the dispersion relation and
corresponds to unit vector . Note that in the limit as the dis-
cretization goes to zero and will be parallel.

The orientation of the magnetic field can now be specified by

(38)

Knowing the impedance in the grid is exact, one can obtain the
magnetic field components from the scalar incident electric field
as

(39)

With the orientations of and now fixed, the orientation
of the electric field is fixed by the orthogonality condition given
in Section II-A. Thus

(40)

(41)

where the second equation is obtained by substituting (38) into
the first. As mentioned, is parallel to the direction of propa-
gation in the limit of small discretization. Since the polarization

is chosen to be orthogonal to the direction of propagation,
the term in brackets in (41) goes to zero in this limit leaving

. Thus in the limit, the electric field is oriented
with the desired polarization.

B. Delay

It is possible to have the reference point interior to the TF
region as shown in Fig. 2. In the implementations used by the
author, one specifies a time series starting at time zero without
regard to the reference location. The transforms are then done in
such a way as to ensure the field at the reference point will take
on the values of the specified time series. However, unless the
reference point was at one of the corners of the TFSF boundary,
the fields have to propagate to the reference point and hence they

Fig. 2. Placement of the reference point interior to the total-field region. The
plane wave must propagate over a distance D before reaching the reference
point. The angle � is between the x axis and a line from the lower-left corner
to the reference point. The incident wave is assumed to propagate at an angle �
with respect to the x axis. The point Q corresponds to the upper right corner
while Q is slightly above and to the right of the TF region.

will be delayed. To determine the amount of delay, the distance
the fields have to travel is divided by the speed of propagation.
However this speed must be the group velocity, not the phase
velocity. As stated previously, the group velocity goes to zero
at the coarsest discretization supported by the grid (at the lower
bound of grid-aligned propagation). This would indicate an in-
finite delay. However, such coarsely discretized components are
typically not of practical interest and hence a delay based on the
group velocity at a discretization that is some small multiple
of is used to calculate the delay (the code written thus
far uses an of ).

From Fig. 2 the distance from the reference point to a phase
front collocated with the lower-left corner is defined to be and
given in number of cells by

(42)

where is the angle between the axis and a line from the
lower-left corner to the reference point, and is the direction of
propagation. The delay (or time) associated with propagation
over this distance is, to be conservative, calculated using the
grid-aligned group velocity and a discretization of .
The result in terms of time steps is

(43)

(This is obtained by dividing the distance by the group ve-
locity (27) using a discretization ). Instead of taking
the Fourier transform of one would take the transform of
the delayed function .

Note that delay is only of interest when the reference point
is not a corner of the TFSF boundary. This provides the rather
novel ability to ensure the time series at a given interior point
is as specified (albeit with some small errors), but if one does
not have the need for such behavior it would be best to make the
reference point correspond to one of the corners.
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Fig. 3. Normalized spectrum of the Ricker wavelet where the most energetic
frequency f is 1 Hz. The inset shows the time-domain form with a delay
of 1=f . Changes of f rescale the horizontal scales but do not change the
fundamental shapes of the curves.

IV. RESULTS

The incident pulse is assumed to be a Ricker wavelet which
corresponds to the second derivative of a Gaussian (but note
any incident pulse is permitted). We define the most energetic
frequency of the pulse to be and the discretization at this
frequency to be cells per wavelength. The time-series form
of the wavelet is

(44)

The negative ones correspond to a delay of the pulse such that
the peak will occur at a time or in discretized form at a
time step (notwithstanding that this may not be an
integer value). A plot of the Ricker wavelet spectrum is shown
in Fig. 3 which also shows the time-domain form as an inset
plot. The plot shows the wavelet for an of 1 Hz. Were one
interested in a different the horizontal axes would be scaled
according (with unity corresponding to in the spectral plot
and unity corresponding to in the temporal plot), but the
shape of the curves would be unchanged. Note that if the Ricker
wavelet has its most energetic frequency at 10 cells per wave-
length, there is still significant energy present at (5 cells
per wavelength) and even nonvanishing energy at (4 cells
per wavelength) and beyond. Thus one anticipates a pulse dis-
cretized in such a way would, in general, suffer a great deal of
dispersion. Since the goal of this section is to demonstrate the
capabilities of the exact TFSF formulation, using such a poorly
discretized pulse is ideal.

To illustrate how the selection of the reference point affects
the fields, we plot the electric field at three points interior to a
2-D TF region which is 102 102 cells . The three points are
indicated in Fig. 2 and correspond to the lower-left corner, the
center, and the upper right corner (labeled ). The Courant
number is (so the fields associated with this simulation
could pertain to a 3-D simulation) and the Ricker wavelet is dis-
cretized with 10 cells per wavelength at its most energetic fre-
quency. The incident field is propagating at 30 relative to the

Fig. 4. Electric field versus time step at the lower-left corner, center, and
upper-right corner of the TF region. Incident field is a Ricker wavelet discretized
at 10 cells per wavelength at its most energetic frequency and the Courant
number is 1=

p
3. Here the reference point is the lower-left corner.

Fig. 5. Same as Fig. 4 except the reference point has been moved to the center
of the TF region.

axis. Fig. 4 shows the electric field at these points as a func-
tion of the time step when the reference point is the lower-left
corner. Note that the field at the lower-left corner corresponds to
the given sampled version of the Ricker wavelet. At the center,
owing to the rather coarse discretization being used, the effects
of dispersion have clearly distorted the pulse. These effects are
even more clearly pronounced when the field reaches the upper
right corner. The amount of leakage into the scattered-field re-
gion will be considered shortly.

Fig. 5 shows the electric field at the same three points when
the reference point is at the center of the computational domain.
The same time series was supplied to the program which gen-
erated the results for both Figs. 4 and 5—only the reference
point was change. As described in Section III-B, the program
calculated an appropriate delay when the reference point was
moved from the corner. The leading time-steps which had ex-
ceedingly small field values are not shown in Fig. 5. Note that
the field in the lower-left corner now is distorted—the leading
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Fig. 6. Field leaked into the scattered-field region (point Q ) using a Ricker
wavelet discretized at 10 cells per wavelength at the most energetic frequency.
The leakage is essentially 100 dB down from the peak value of the incident field.

field corresponds to the coarsely discretized components of the
pulse. Since these components propagate more slowly than the
more finely discretized components, they must be introduced
into the grid first if the field at the reference point is to be
correct. Fig. 5 does show that the field at the reference point
now corresponds to an undistorted Ricker pulse. The field at the
upper-right corner is distorted but by an amount commensurate
with what was seen at the center point in Fig. 4.

To demonstrate the level of accuracy that can be expected
with the TFSF boundary proposed here, the field at a point five
cells to the right and five cells above the upper-right corner of
the TF region is recorded. This point is shown as in Fig. 2.
The incident field is as described above with the reference
point in the lower-left corner. The measured field is shown in
Fig. 6. The peak amplitude of the incident pulse is unity so
these “leaked fields” are typically more than 100 dB down
from the peak value. Fig. 7 shows the field at the same point
and with the same incident field except now the Ricker wavelet
has been discretized such that there are 20 cells per wavelength
at the most energetic frequency. Here the leaked fields are
more than 180 dB down from the peak value of the incident
field. These error levels are such that in nearly all practical
simulations one can be assured the dominant error is caused by
something other than the TFSF boundary. For these simulations
the total computational domain was 141 141 cells and no
absorbing boundary conditions were implemented (hence any
energy leaked into the SF region will persist). In both Figs. 6 and
7 some acausal energy is observed at the scattered field point.
This is caused by the truncation in the Fourier transforms. Were
the Fourier transform to be performed with all wavenumbers
(real and complex), the field would effectively be causal (i.e.,
zero in the scattered field region except for errors caused by
the wavenumber root-finding and numerical errors inherent in
the finite precision of the floating-point numbers used).

Note that Figs. 6 and 7 show time out to 600 time steps. How-
ever the TFSF code only calculated the incident field to 500
steps at which point the incident field was effectively declared
zero (one should keep in mind group velocity rather than phase

Fig. 7. Field leaked into the scattered-field region (point Q ) using a Ricker
wavelet discretized at 20 cells per wavelength at the most energetic frequency.
The leakage is less than 180 dB down from the peak incident field.

velocity when determining the time needed for the incident field
to traverse the TF region). An FDTD simulation can be run to
any number of time steps and yet this does not require that the
TFSF code calculate the incident field beyond the time it is ef-
fectively zero over the TFSF boundary. Since the incident field
was only needed for 500 time steps, the Fourier transforms were
performed using a 512-point fast Fourier transform (FFT). The
length of the FFT must be sufficiently long to contain the en-
tire incident time series but need not be longer (in this case after
performing the inverse FFT 12 points were discarded).

One of the reasons errors are still present in these simu-
lation is that all wavenumbers whose discretizations are less
than are discarded (i.e., in the interest of avoiding
complex root-finding, all wavenumbers are guaranteed to be
real if one discards those with discretizations in the range from

to ). Since was determined under
the assumption of grid-aligned propagation, for obliquely
propagating waves there will be some discretizations less than

which yield real wavenumbers. By discarding them
the energy associated with those components is lost and this
introduced some error. Another source of error is introduced
by using root-finding (Newton’s method was used) to solve the
dispersion equation since it lacks a closed-form solution.

Programs to realize this TFSF boundary can be found in the
code section of the Web site www.fdtd.org or can be obtained
by contacting the author. The programs are written in C and can
either produce an incident-field file or can be incorporated di-
rectly into a program. The user specifies such things as the time
series (actually a function which can be called to obtain the time
series), a reference point, the Courant number, the impedance,
the direction of propagation, and the desired number of time
steps. The incident field is calculated and a function is sup-
plied which applies these fields to nodes adjacent to the TFSF
boundary. All calculations are in double precision. The FFTs are
performed using the FFTw routines noted in the Introduction.
For the examples presented here, which required the calcula-
tion of roughly 816 FFTs of 512 points, the computation time
was roughly 0.11 s on a 2 GHz Apple G5 running OS X 10.3.
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V. CONCLUSION

Since it is possible to quantify exactly how a plane wave prop-
agates in the Yee FDTD grid, it is possible to calculate the time
series at an arbitrary point given the incident field at a reference
point and the direction of propagation. This allows one to realize
an exact TFSF boundary for arbitrary directions of propagation.
For the sake of implementation simplicity, only waves with real
wavenumbers were considered. This provides nearly 180 dB of
accuracy for reasonably discretized waves, essentially ensuring
any errors present in a simulation are dominated by something
other than the TFSF implementation. Were one to desire addi-
tional accuracy, a complex root-finding algorithm could be em-
ployed to quantify the behavior of all field components down to
the coarsest discretization which can exist in the grid. The TFSF
implementation described here lacks some of the simplicity of
alternative 1-D auxiliary-grid approaches, but the code neces-
sary to realize the implementation was straightforward to write,
is relatively fast, and has been made available to the public under
the GNU General Public License.
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