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On the Analysis of Resonators Using
Finite-Difference Time-Domain Techniques

Christopher L. Wagner and John B. Schneider

Abstract—Because a resonator with perfect electrically
conducting (PEC) walls has no complications with absorbing
boundary conditions and, for canonical geometries, the resonant
frequencies are trivial to find, resonators are often used for ana-
lyzing the performance of finite-difference time-domain (FDTD)
methods. However, when testing the performance of boundary
implementations in an FDTD scheme, one should compare to the
resonant frequencies of a “perfect” discretized resonator (not to
the mode frequencies in the continuous world). On the other hand,
when testing the dispersion properties of a method, the resonant
frequencies for some structures can be obtained directly from the
dispersion relation, thus obviating the need for any simulation.
Here, we demonstrate how the dispersion relation can be used
to obtain all the resonant frequencies of a rectangular resonator
modeled with the Yee algorithm. Furthermore, it is shown that
modes that are degenerate in the continuous world can split into
distinct modes in FDTD resonators, while modes that are separate
in the continuous world can combine in FDTD resonators, thus
yielding extra or missing modes. Analytic results are verified using
numerical simulations.

Index Terms—Finite-difference time-domain (FDTD).

I. INTRODUCTION

CANONICAL resonators have been used to quantify the
performance of finite-difference time-domain (FDTD)

methods designed to model boundaries that are not aligned
with the grid (e.g., [1] and [2]). Resonators or resonant-like
structures have also been used in simulations to demonstrate
the dispersion properties of a scheme (e.g., [3] or [4], where a
parallel plate waveguide was used). When the goal is to ascer-
tain the quality of the implementation of boundary conditions
(such as the use of a locally conformal scheme to realize a PEC
boundary), one should try to separate the errors introduced by
inherent grid dispersion from those introduced by the boundary
conditions themselves. To accomplish this, the resonant fre-
quencies obtained in a simulation should be compared not to
frequencies of the corresponding resonator in the continuous
world, but rather to the frequencies of a “perfect” discretized
scatterer, i.e., one that suffers the inherent anisotropy and
dispersion of the grid, but does not have any boundary errors.
We show that the dispersion relation for the Yee algorithm can
be used to predict precisely the frequencies at which modes
will oscillate in a rectangular resonator. Due to the anisotropic
dispersion of the Yee algorithm, modes that have degenerate
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frequencies in the continuous world may split into distinct
frequencies in the discretized world. Conversely, other modes
that one would anticipate are distinct may combine in an FDTD
simulation. Given the ability to obtain the resonant behavior
of some structures directly from the dispersion relation, it
seems unnecessary to perform simulations using a resonator
to quantify the dispersion properties of a given method. These
simulations yield no insight into the method that is not already
implicitly contained in the dispersion relation itself.

We start by reviewing the Yee dispersion relation. We then
show how it can be used to predict the resonances that will be
present in a rectangular structure. Mode shifting, splitting, and
combining are illustrated with simulations and with use of a
frequency-versus-wavenumber diagram.

The Yee dispersion relation, in rectangular coordinates, is
given by [5]

(1)

where is the time step, is the numeric frequency, , ,
and are the wavenumber components, and, , and
are the cell lengths in the respective directions. For cubic cells,
this reduces to

(2)
where is the Courant number equal to , and is the
cell length. Note, that the resonant wavenumbers are dictated
by the physical size of the structure and this can be controlled
precisely in the FDTD simulation. Thus, the wavenumbers in the
continuous and discrete worlds correspond exactly. However,
the frequencies that gives rise to those wavenumbers differ.

A resonator with PEC walls has resonant mode frequencies
given by

(3)

where , , and are the mode indices, and , , and
are the size of the resonator in the, , and directions, re-
spectively. In terms of the wavenumber components, (3) can be
written as follows:

(4)
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Fig. 1. Continuum and predicted resonant frequencies as well as observed spectrum for a 2� 2� 1 resonator. Continuum and FDTD predicted frequencies are
indicated with symbols drawn with arbitrary amplitudes.

That is, given the mode indices, the corresponding wavenum-
bers are given by

(5)

Putting (2) and (5) together, and solving for , we
obtain the following:

(6)

This gives the resonant frequencyfor a particular set of mode
indices for any FDTD rectangular resonator. When a resonator
has the same size in more than one dimension, modes with per-
mutations of indices will be degenerate. For example, if

, modes (1,7,0) and (7,1,0) are degenerate. When a mode has
this type of degeneracy we will refer to the mode in the plural
even if a single set of indices is given.

In the continuum, any resonator has an infinite number of
modes. In a discrete space there will be a finite number due
to the spatial sampling of the grid. The highest frequency
that may be coupled into the grid, i.e., the grid Nyquist
frequency, is [6]. In the continuum, there are modes
whose frequencies are below the grid Nyquist frequency but
that have wavenumber components that are complex [6], [7].
The transition between purely real and complex wavenumbers
occurs where there are exactly two grid points per numeric
wavelength. Complex wavenumber components experience
exponential decay, and hence, the corresponding mode does not
resonate. Therefore, the continuum theory is applied here with
the understanding that the wavenumbers do not extend beyond
those that are real in the FDTD grid. From (6), it appears that

one can use any value for the mode indices and still obtain a
real result (assuming is less than the stability limit of ).
This is true of this equation, but that observation masks, to
some extent, the true behavior of the grid and what is realizable.
Regardless of the direction of propagation, there must be at
least two samples per numeric wavelength, i.e., the minimum
wavelength , is . The wavenumber corresponding to
this discretization is . Using this
as a bound on a single wavenumber component, say the
component, and equating with the expression given in (5),
we obtain . This places a bound on the
mode index such that . Therefore, if the resonator
size is cells, then can be no larger than . Similar
arguments hold in the other directions.

II. FDTD SIMULATIONS

Here, we demonstrate the agreement of measured and pre-
dicted values for FDTD resonators. The rectangular resonators
are excited by a single element current source in thedirec-
tion, centered in the domain. The source is a unit amplitude cur-
rent of duration , giving a spectral null at the grid Nyquist
frequency. The component of the electric field is sampled at
the location of the source. This data is Fourier transformed to
produce the mode spectral plots shown below. With this geom-
etry, the excited and detectable modes will have oddand
mode indices, while the axis index will be even. To maintain
the source at the center of the domain, there must be an even
number of cells in the and directions and an odd number
in the direction. For simplicity, the domain is kept as nearly
cubic as possible so the number of cells in thedirection is
one less than in and . Unit cells are cubic, with fields
along the cell edges. Without loss of generality, unit cells are
assigned a size of m. The simulations use the Courant
limit ( ) and are run for 65 536 time steps. An FFT was



WAGNER AND SCHNEIDER: ON THE ANALYSIS OF RESONATORS USING FDTD TECHNIQUES 2887

Fig. 2. Continuum and FDTD predicted resonant frequencies as well as observed spectrum for a 4� 4� 3 resonator. Note the good performance of the FDTD
method for the highest frequency mode. This mode is (3,3,2) which is almost along the major diagonal. Continuum and FDTD predicted frequencies are plotted
with arbitrary amplitude.

used to obtain spectral information. Using these parameters, the
Nyquist frequency is 259.6278 MHz and the spectral resolution

is 7.923 211 kHz. In the spectral plots to follow, symbols
are used to designate continuum and FDTD predicted resonant
frequencies while a line shows the result of the FDTD simula-
tion (i.e., a solid line shows the entire spectrum obtained from
the simulation). Specifically, plus signs are used to indicate the
continuum frequencies obtained via (3), while X’s are used to
indicate FDTD frequencies obtained via (6).

The difference between the continuum resonance and the
FDTD resonance, as well as the ability to predict the FDTD
resonant frequency, can be demonstrated with a trivially
small resonator. The smallest possible resonator with the ge-
ometry described above has a volume of 22 1 cells.
Such a resonator has only one mode, the (1,1,0) mode. The
continuum frequency is 105.9927 MHz. Equation (6) pre-
dicts the FDTD frequency will be 101.7291 MHz, and this
agrees within of the observed FDTD results, as shown
in Fig. 1.

To illustrate more clearly nonlinear effects, a resonator with
a size of 4 4 3 is considered next. The amplitude spectrum
is shown in Fig. 2. Note that the FDTD predicted values match
the observed spectral peaks, whereas the continuum frequencies
do not. The (1,3,0) modes are dispersion shifted to a frequency
lower than the (1,1,2) mode, and the (3,3,0) mode is shifted to
below the (1,3,2) modes as shown in Table I. There is a large dc
line [8] due to the charge deposited by the pulsed source. A dc
line does not exist for the previous resonator because that small
resonator did not provide ample room to store charge to either
side of the source (i.e., the charge was effectively shorted by the
walls of the resonator).

TABLE I
4� 4� 3 RESONATORFREQUENCIES. THE OBSERVEDFREQUENCIESARE

WITHIN ��f OF THE PREDICTED VALUES.
ALL FREQUENCIESARE IN MEGAHERTZ

In Fig. 2, note the relatively good agreement between the
FDTD resonance and the continuum theory at the highest res-
onant frequency. This is, at first, somewhat counter-intuitive
since this resonance occurs in a region with coarse discretiza-
tion where one might expect the worst dispersion errors. How-
ever, this peak corresponds to the (3,3,2) mode whose associated
wavevectors are nearly aligned with the grid diagonals. Since
these simulations are run at the Courant limit, there is no grid
dispersion along the grid diagonals regardless of the discretiza-
tion. This illustrates that, due to the anisotropy of the grid, the
amount of dispersion is a function of both the discretization and
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Fig. 3. Continuum and FDTD predicted resonant frequencies as well as observed spectrum for an 8� 8� 7 resonator. Continuum and FDTD predicted frequencies
are plotted with arbitrary amplitude. The dc line is not shown.

the direction of propagation. For a general resonator in which
one does not know the orientation of the associated wavevec-
tors, one would be unable to say if the agreement between the
FDTD-generated resonances and the continuum resonances are
getting better or worse as the frequency increases. Neverthe-
less, one can be confident that agreement is good for well-re-
solved frequencies (i.e., ones for which the discretization is high
enough to ensure low dispersion for all directions of propaga-
tion).

Mode splitting is a result of the anisotropic dispersion of
the Yee grid. Modes with the same continuum frequency
can have different dispersion shifts owing to their different
wavenumber components. This occurs because continuum de-
generate modes having distinct sets of indices suffer different
dispersion in the FDTD grid, thus resulting in two (or more)
spectral lines. The smallest resonator where splitting occurs
is the 8 8 7 resonator. For example the (1,7,0) and the
(5,5,0) modes are degenerate. However, the dispersion shift
will be different for the (1,7,0) modes and (5,5,0) mode, thus
splitting this line. The same thing occurs if the third index
is 2, 4, or 6. The measured and predicted resonances for the
8 8 7 resonator are shown in Fig. 3. Again, there is per-
fect agreement between the predicted and measured FDTD
frequencies, and these frequencies may differ substantially
from the continuum frequency.

The resonators illustrated here do not exhibit an extra total
number of mode lines since some modes also combine while
others split. However, once the size of the resonator is above
20 20 19, the FDTD resonator will have more mode lines
than the continuum theory predicts.

Mode combining occurs when two (or more) distinct modes
suffer different dispersion resulting in the lines combining to
form a single line. In the case of the 88 7 resonator, the
(1,7,0) modes are dispersion shifted to the same frequency as the

dispersion-shifted (3,5,0) mode, thus yielding a single spectral
line in the simulation.

The mechanics of mode splitting and combining is perhaps
best understood using an- ( - ) diagram of the frequency
versus the wavenumber. Fig. 4 shows such a diagram that can
be used to demonstrate the splitting and combining of the
modes mentioned above. First, one draws a straight line of
slope representing the relationship between frequency
and wavenumber magnitude in the continuum. Assume one is
interested in the (1,7,0) and (5,5,0) modes which are degenerate
in the continuum. The dispersion curves for these modes are
added to the plot. To generate these curves, the magnitude of
the wavenumber is now treated as the independent variable. For
the (1,7,0) mode, one plots

(7)

while for the (5,5,0) mode, one plots

(8)

Now, (3) is used to obtain the continuum frequency for the reso-
nant mode. This point is identified in Fig. 4 by the intersection of
the straight continuum line and the horizontal line labeled “Con-
tinuum (1,7,0) & (5,5,0).” Since the FDTD resonator must have
the same wavenumbers, one draws a vertical line from that point
on the continuum line and finds the intersections with the dis-
persion curves for the (1,7,0) and (5,5,0) modes. These intersec-
tions are indicated with the horizontal lines labeled “Observed
(5,5,0)” and “Observed (1,7,0).” The vertical distance between
these horizontal lines shows the difference in frequency of these
supposedly degenerate modes.

Mode combining is illustrated in a similar fashion. One has
to add the dispersion curve for the (3,5,0) mode and identify the
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Fig. 4. Dispersion curves (frequency versus wavenumber) for selected modes in the 8� 8� 7 resonator, graphically illustrating mode splitting and combining.
Horizontal lines labeled “Continuum” are the frequencies which should exist for a givenk. Lines labeled “Observed” are the dispersion shifted frequencies that
will be seen in the FDTD simulation.

TABLE II
SELECTEDLIST OF 8� 8� 7 RESONATORMODE FREQUENCIES, SHOWING THE

EFFECT OFCOMBINING AND SPLITTING. THE (1,7,0) MODE SPLIT FROM

THE (5,5,0) MODE AND COMBINES WITH THE (3,5,0) MODE, JUMPING

OVER INTERVENING MODES. SIMILAR SPLITTING/COMBINING OCCURS

WITH A THIRD INDEX OF 2, 4, OR 6. OBSERVED DEGENERATE

MODES CANNOT BE DISTINGUISHED IN THE FDTD DATA. OBSERVED

LINE FREQUENCY CLOSEST TO THEPREDICTED LINE IS REPORTED.
ALL FREQUENCIESARE IN MEGAHERTZ

frequency for the corresponding continuum resonance. Drawing
a vertical line from that point on the continuum line, one finds
that the intersection with the (3,5,0) dispersion curve is pre-
cisely at the same frequency as the (1,7,0) mode. Hence, these
distinct modes in the continuum yield a single resonance in the
FDTD simulation. The frequencies associated with these modes
are given in Table II.

III. CONCLUSION

The dispersion relation accurately predicts the frequencies at
which a rectangular resonator mode will resonate. Dispersion
can split or combine modes. Furthermore, the dispersion shift
can change the resonant frequencies so that a list of observed
modes ordered by resonant frequency may or may not corre-
spond in order to a list obtained from the continuum.

The Yee dispersion anisotropy is responsible for mode split-
ting and combining. Algorithms which are more isotropic than
Yee, such as the Forgy isotropic scheme [9] which is isotropic to
fourth order, will have reduced mode splitting. Given the disper-
sion relation one can post-process resonance data to correct for
the mean dispersion error. Such a correction would shift peaks
but would not undo any splitting or combining.

The resonant analysis conducted here was limited to the Yee
scheme, but a similar analysis can be conducted for any FDTD
scheme for which a dispersion relation exists. It is to be noted
that the rectangular resonators considered here have simple res-
onances in which the fields can be viewed as the superposition
of plane waves propagating in discrete directions. Knowing the
directions and the corresponding frequencies, and given the dis-
persion relation, one can exactly predict the amount of error
in the resonant frequency obtained from a simulation. How-
ever, for a general resonator in which the wavevectors associ-
ated with a given mode are not known one cannot determine the
amount of error, nor can one completely correct for that error,
unless the particular scheme has the same amount of error for all
wavevectors at a given discretization. The Yee scheme, which
is anisotropic to second order, permits only limited correction
where one can correct for the mean dispersion error. Such a
technique is essentially the one applied in the dispersion correc-
tion technique described by Nehrbasset al. [10] (however, they
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applied the correction at a single frequency prior to the simu-
lation rather than as a post-processing correction across all fre-
quencies). On the other hand, correcting for the mean dispersion
error in the Forgy scheme (which is, same as the Yee algorithm,
second-order accurate but, unlike the Yee algorithm, isotropic
to fourth order) would yield results that are more accurate than
those which could be obtained from the (corrected) Yee algo-
rithm at the same discretization.
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