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On the Analysis of Resonators Using
Finite-Difference Time-Domain Techniques

Christopher L. Wagner and John B. Schneider

Abstract—Because a resonator with perfect electrically frequencies in the continuous world may split into distinct
conducting (PEC) walls has no complications with absorbing frequencies in the discretized world. Conversely, other modes
boundary conditions and, for canonical geometries, the resonant that one would anticipate are distinct may combine in an FDTD

frequencies are trivial to find, resonators are often used for ana- _. lati Gi the ability to obtain th t behavi
lyzing the performance of finite-difference time-domain (FDTD) simulation. Liven the ability to obtain the resonant behavior

methods. However, when testing the performance of boundary Of some structures directly from the dispersion relation, it
implementations in an FDTD scheme, one should compare to the seems unnecessary to perform simulations using a resonator

resonant frequencies of a “perfect” discretized resonator (not to to quantify the dispersion properties of a given method. These

the mode frequencies in the continuous world). On the other hand, ‘gjmjations yield no insight into the method that is not already
when testing the dispersion properties of a method, the resonant .

frequencies for some structures can be obtained directly from the implicitly Contame_d 'n_ the d'SperS'O_n relat_lon Itself_.
dispersion relation, thus obviating the need for any simulation. ~ We start by reviewing the Yee dispersion relation. We then
Here, we demonstrate how the dispersion relation can be used show how it can be used to predict the resonances that will be

to obtain all the resonant frequencies of a rectangular resonator present in a rectangular structure. Mode shifting, splitting, and

modeled with the Yee algorithm. Furthermore, it is shown that = oo mpining are illustrated with simulations and with use of a
modes that are degenerate in the continuous world can split into .
frequency-versus-wavenumber diagram.

distinct modes in FDTD resonators, while modes that are separate ] s . 8 ) .
in the continuous world can combine in FDTD resonators, thus ~ 1he Yee dispersion relation, in rectangular coordinates, is
yielding extra or missing modes. Analytic results are verified using given by [5]

numerical simulations.

- 2 2
Index Terms—Finite-difference time-domain (FDTD). 1 sin wAt _ 1 sin ke Az
cAt 2 Az 2
L kAy\ (1 kAz)
I. INTRODUCTION . <A_y8in JZ y) N (Esm s z) "

ANONICAL resonators have been used to quantify the
performance of finite-difference time-domain (FDTD)whereAt is the time stepy is the numeric frequency,, k,,
methods designed to model boundaries that are not aligngsi%. are the wavenumber components, axe, Ay, andAz
with the grid (e.g., [1] and [2]). Resonators or resonant-likgre the cell lengths in the respective directions. For cubic cells,
structures have also been used in simulations to demonsttaig reduces to
the dispersion properties of a scheme (e.g., [3] or [4], where a ~
parallel plate waveguide was used). When the goal is to ascek- sin? (‘*’_Af> = gin? <kL‘S> +sin? (M) +sin? (ker
tain the quality of the implementation of boundary condition§? 2 2 2 2
(such as the use of a locally conformal scheme to realize a PEC _ . (2)
boundary), one should try to separate the errors introduced jere S is the Courant number equal ta\//6, and$ is the
inherent grid dispersion from those introduced by the bounddr§! length. _Note,. that the resonant Wavenymbers are dictated
conditions themselves. To accomplish this, the resonant f. the physical size of the structure and this can be controlled
quencies obtained in a simulation should be compared notAgCisely inthe FDTD simulation. Thus, the wavenumbers in the
frequencies of the corresponding resonator in the continudgfdtinuous and discrete worlds correspond exactly. However,
world, but rather to the frequencies of a “perfect” discretizeti€ frequencies that gives rise to those wavenumbers differ.
scatterer, i.e., one that suffers the inherent anisotropy an,dA resonator with PEC walls has resonant mode frequencies
dispersion of the grid, but does not have any boundary erropd/en by
We show that the dispersion relation for the Yee algorithm can 9 9 9
be used to predict precisely the frequencies at which modes 2 — ()2 (ﬂ) + <£> + <£> ©)
will oscillate in a rectangular resonator. Due to the anisotropic L, L, L.
dispersion of the Yee algorithm, modes that have degenerate
wherem, n, andp are the mode indices, and,, L,, and L.
are the size of the resonator in they, andz directions, re-
Manuscript received March 23, 2001; revised November 6, 2002. spectively. In terms of the wavenumber components, (3) can be
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Fig. 1. Continuum and predicted resonant frequencies as well as observed spectrunxf@raresonator. Continuum and FDTD predicted frequencies are
indicated with symbols drawn with arbitrary amplitudes.

That is, given the mode indices, the corresponding wavenuone can use any value for the mode indices and still obtain a

bers are given by real result (assuming is less than the stability limit of /v/3).
mi nr o This is true of this equation, but that observation masks, to
ke = 7, by =7- by =7 (5) some extent, the true behavior of the grid and what is realizable.
T Y z

Regardless of the direction of propagation, there must be at
Putting (2) and (5) together, and solving fﬁr: @/2m, we least two samples per numeric wavelength, i.e., the minimum
obtain the following: wavelength ., is 26. The wavenumber corresponding to
this discretization iSkyax = 27/Amin = /6. Using this
- 1., .
f=——sin as a bound on a single wavenumber component, say:the
TAt component, and equating with the expression given in (5),
C omrd\ 2 T A Cprs\? we obtaink, = mnr/L, < =/6. This places a bound on the
x| S (Sm L. ) + <Sm E) + (Sm E) - (8 mode indexn such thain < L, /6. Therefore, if the resonator
Y ) size L, is N cells, thenm can be no larger tha®v. Similar
arguments hold in the other directions.

This gives the resonant frequengyor a particular set of mode
indices for any FDTD rectangular resonator. When a resonator
has the same size in more than one dimension, modes with per-
mutations of indices will be degenerate. For examplé,,if= Here, we demonstrate the agreement of measured and pre-
L,, modes (1,7,0) and (7,1,0) are degenerate. When a mode tiiated values for FDTD resonators. The rectangular resonators
this type of degeneracy we will refer to the mode in the pluralre excited by a single element current source inztlirec-
even if a single set of indices is given. tion, centered in the domain. The source is a unit amplitude cur-
In the continuum, any resonator has an infinite number ofnt of duratior2At, giving a spectral null at the grid Nyquist
modes. In a discrete space there will be a finite number dfrequency. The: component of the electric field is sampled at
to the spatial sampling of the grid. The highest frequendiie location of the source. This data is Fourier transformed to
that may be coupled into the grid, i.e., the grid Nyquigtroduce the mode spectral plots shown below. With this geom-
frequency, is1/2At [6]. In the continuum, there are modesetry, the excited and detectable modes will have odshd y
whose frequencies are below the grid Nyquist frequency huiode indices, while the axis index will be even. To maintain
that have wavenumber components that are complex [6], [fje source at the center of the domain, there must be an even
The transition between purely real and complex wavenumbensmber of cells in the: andy directions and an odd number
occurs where there are exactly two grid points per numeiit the z direction. For simplicity, the domain is kept as nearly
wavelength. Complex wavenumber components experiermgic as possible so the number of cells in thdirection is
exponential decay, and hence, the corresponding mode doesomat less than i andy. Unit cells are cubic, with%' fields
resonate. Therefore, the continuum theory is applied here witlong the cell edges. Without loss of generality, unit cells are
the understanding that the wavenumbers do not extend beyasdigned a size &f = 1 m. The simulations use the Courant
those that are real in the FDTD grid. From (6), it appears thinit (1/1/3) and are run for 65536 time steps. An FFT was

Il. FDTD SIMULATIONS
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Fig. 2. Continuum and FDTD predicted resonant frequencies as well as observed spectrunx férxa3resonator. Note the good performance of the FDTD
method for the highest frequency mode. This mode is (3,3,2) which is almost along the major diagonal. Continuum and FDTD predicted frequeritges are plo
with arbitrary amplitude.

used to obtain spectral information. Using these parameters, the TABLE |
Nyquist frequency is 259.6278 MHz and the spectral resolution’** 4> 3 REW#’:'TISREZE]?UOEE‘CT'E; THE OBSERYED PREQUENCIESARE
Af |S 7.923 211 kHZ. In the SpeCtra| p|OtS tO fO"OW, SymbO|S ALL FREQUENC”ESARE IN MEGAHERTZ '

are used to designate continuum and FDTD predicted resonant

frequencies while a line shows the result of the FDTD simul;
tion (i.e., a solid line shows the entire spectrum obtained fro Mode | Continuum Theory | FDTD Predicted | FDTD Observed
the simulation). Specifically, plus signs are used to indicate t
continuum frequencies obtained via (3), while X’s are used (1,1,0) 52.99633 52.52425 52.52297
indicate FDTD frequencies obtained via (6).

The difference between the continuum resonance and = (1,1,2) 113.1140 104.2227 104.2219
FDTD resonance, as well as the ability to predict the FDT
resonant frequency, can be demonstrated with a trivial (1,3,0) 118.5034 101.7291 101.7261
small resonator. The smallest possible resonator with the ¢
ometry described above has a volume ok 2x 1 cells. (1,3,2) 155.0136 143.6522 143.6557
Such a resonator has only one mode, the (1,1,0) mode. 1
continuum frequency is 105.9927 MHz. Equation (6) pre (3,3,0) 158.9890 141.2610 141.2629
dicts the FDTD frequency will be 101.7291 MHz, and thi
agrees withint A f of the observed FDTD results, as show (3,3,2) 187.7862 187.0015 187.0036
in Fig. 1.

To illustrate more clearly nonlinear effects, a resonator with

a size of 4x 4 x 3 is considered next. The amplitude spectrum In Fig. 2, note the relatively good agreement between the
is shown in Fig. 2. Note that the FDTD predicted values mat&DTD resonance and the continuum theory at the highest res-
the observed spectral peaks, whereas the continuum frequenoient frequency. This is, at first, somewhat counter-intuitive
do not. The (1,3,0) modes are dispersion shifted to a frequersigice this resonance occurs in a region with coarse discretiza-
lower than the (1,1,2) mode, and the (3,3,0) mode is shiftedtion where one might expect the worst dispersion errors. How-
below the (1,3,2) modes as shown in Table I. There is a large@ieer, this peak corresponds to the (3,3,2) mode whose associated
line [8] due to the charge deposited by the pulsed source. Adavevectors are nearly aligned with the grid diagonals. Since
line does not exist for the previous resonator because that sntladise simulations are run at the Courant limit, there is no grid
resonator did not provide ample room to store charge to eithdispersion along the grid diagonals regardless of the discretiza-
side of the source (i.e., the charge was effectively shorted by ti@n. This illustrates that, due to the anisotropy of the grid, the
walls of the resonator). amount of dispersion is a function of both the discretization and



2888 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 51, NO. 10, OCTOBER 2003

T T T T T T T T l T T T T T T T T I T T T T I
10 + Continuum Theory| —J
E X FDTD Predicted 3
N — FDTD Observed ]
o IF E
3 E ]
EOF 1+t HitHH ] e T .
a - -
g - : szaxx RO .

£ i

E 0.1 3 E
k31 r m
1) . ]
o - u
17 i i
0.01 e U w U &L E
: | v ]

0‘001 1 1 1 1 I L 1 L 1 I 1 1 1 1 1 1 1 II\ 1 1 I

(=)
W
(=)

100 150 200 250
Frequency [MHz]

Fig.3. Continuum and FDTD predicted resonant frequencies as well as observed spectrum{@ arv@esonator. Continuum and FDTD predicted frequencies
are plotted with arbitrary amplitude. The dc line is not shown.

the direction of propagation. For a general resonator in whidispersion-shifted (3,5,0) mode, thus yielding a single spectral
one does not know the orientation of the associated wavevéne in the simulation.
tors, one would be unable to say if the agreement between thdhe mechanics of mode splitting and combining is perhaps
FDTD-generated resonances and the continuum resonancedast understood using gtk (w-3) diagram of the frequency
getting better or worse as the frequency increases. Neverthiersus the wavenumber. Fig. 4 shows such a diagram that can
less, one can be confident that agreement is good for well-b= used to demonstrate the splitting and combining of the
solved frequencies (i.e., ones for which the discretization is higmodes mentioned above. First, one draws a straight line of
enough to ensure low dispersion for all directions of propagsalope ¢/2x representing the relationship between frequency
tion). and wavenumber magnitude in the continuum. Assume one is

Mode splitting is a result of the anisotropic dispersion dhterested in the (1,7,0) and (5,5,0) modes which are degenerate
the Yee grid. Modes with the same continuum frequendy the continuum. The dispersion curves for these modes are
can have different dispersion shifts owing to their differertdded to the plot. To generate these curves, the magnitude of
wavenumber components. This occurs because continuum e wavenumber is now treated as the independent variable. For
generate modes having distinct sets of indices suffer differéhe (1,7,0) mode, one plots
dispersion in the FDTD grid, thus resulting in two (or more) 1 9 i

. i .o (2w fAL .o f ko . o Tko

spectral lines. The smallest resonator where splitting occurs_; sin < > =si < = > + sin ( = > @)
is the 8x 8 x 7 resonator. For example the (1,7,0) and the 2 2v/50 2/50
(5,5,0) modes are degenerate. However, the dispersion shifiile for the (5,5,0) mode, one plots
will be different for the (1,7,0) modes and (5,5,0) mode, thus

splitting this line. The same thing occurs if the third index %SmZ (27rfAt> = 2sin? (ﬂ) ) (8)
is 2, 4, or 6. The measured and predicted resonances for the S 2 2v/50

8 x 8 x 7 resonator are shown in Fig. 3. Again, there is peNow, (3) is used to obtain the continuum frequency for the reso-
fect agreement between the predicted and measured FDi&ht mode. This pointis identified in Fig. 4 by the intersection of
frequencies, and these frequencies may differ substantiati straight continuum line and the horizontal line labeled “Con-
from the continuum frequency. tinuum (1,7,0) & (5,5,0).” Since the FDTD resonator must have
The resonators illustrated here do not exhibit an extra totak same wavenumbers, one draws a vertical line from that point
number of mode lines since some modes also combine while the continuum line and finds the intersections with the dis-
others split. However, once the size of the resonator is abgwersion curves for the (1,7,0) and (5,5,0) modes. These intersec-
20x 20x 19, the FDTD resonator will have more mode linesions are indicated with the horizontal lines labeled “Observed
than the continuum theory predicts. (5,5,0)” and “Observed (1,7,0).” The vertical distance between
Mode combining occurs when two (or more) distinct modesese horizontal lines shows the difference in frequency of these
suffer different dispersion resulting in the lines combining teupposedly degenerate modes.
form a single line. In the case of thex83 x 7 resonator, the  Mode combining is illustrated in a similar fashion. One has
(1,7,0) modes are dispersion shifted to the same frequency astthadd the dispersion curve for the (3,5,0) mode and identify the
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Fig. 4. Dispersion curves (frequency versus wavenumber) for selected modes ir B1g 8 resonator, graphically illustrating mode splitting and combining.
Horizontal lines labeled “Continuum” are the frequencies which should exist for a giveimes labeled “Observed” are the dispersion shifted frequencies that
will be seen in the FDTD simulation.

TABLE I [ll. CONCLUSION
SELECTEDLIST OF8 X 8 X 7 RESONATORMODE FREQUENCIES SHOWING THE
EFFECT OFCOMBINING AND SPLITTING. THE (1,7,0) MODE SPLIT FROM Th i rsion relation r Iv predi he fr nci
THE (5,5,0) MoDE AND COMBINES WITH THE (3,5,0) MODE, JUMPING . ed spersion relation accurately p e.d cts the equ.e ¢ e.S at
OVER INTERVENING MODES SIMILAR SPLITTING/COMBINING OCCURS which a reCtangU!ar resonator mode will resonafce. D|5_per5|9n
WITH A THIRD INDEX OF 2, 4, OR 6. OBSERVED DEGENERATE can split or combine modes. Furthermore, the dispersion shift
MODES CANNOT BE DISTINGUISHED IN THE FDTD DATA. OBSERVED can change the resonant frequencies so that a list of observed

LINE FREQUENCY CLOSEST TO THEPREDICTED LINE IS REPORTED

ALL FREQUENCIESARE IN MEGAHERTZ modes ordered by resonant frequency may or may not corre-

spond in order to a list obtained from the continuum.

The Yee dispersion anisotropy is responsible for mode split-
Mode | Continuum Theory | FDTD Predicted | FDTD Observed  ting and combining. Algorithms which are more isotropic than
Yee, such as the Forgy isotropic scheme [9] which is isotropic to
(3,5,0) 109.2547 101.7291 101.7261 fourth order, will have reduced mode splitting. Given the disper-
sion relation one can post-process resonance data to correct for
(3,3,4) 116.8595 1147771 114.7756 the mean dispersion error. Such a correction would shift peaks
but would not undo any splitting or combining.
(3,5,2) 117.3490 112.5123 112.5096 The resonant analysis conducted here was limited to the Yee
scheme, but a similar analysis can be conducted for any FDTD
(1,5,4) 128.3151 121.0187 121.0191 scheme for which a dispersion relation exists. It is to be noted
that the rectangular resonators considered here have simple res-
(1,1,6) 131.1865 103.2788 103.2791 onances in which the fields can be viewed as the superposition
of plane waves propagating in discrete directions. Knowing the
(1,7,0) 132.4908 101.7291 101.7261 directions and the corresponding frequencies, and given the dis-
persion relation, one can exactly predict the amount of error
(5,5,0) 132.4908 123.3438 123.3406 in the resonant frequency obtained from a simulation. How-

ever, for a general resonator in which the wavevectors associ-

ated with a given mode are not known one cannot determine the
frequency for the corresponding continuum resonance. Drawiaghount of error, nor can one completely correct for that error,
a vertical line from that point on the continuum line, one findanless the particular scheme has the same amount of error for all
that the intersection with the (3,5,0) dispersion curve is presavevectors at a given discretization. The Yee scheme, which
cisely at the same frequency as the (1,7,0) mode. Hence, thissgnisotropic to second order, permits only limited correction
distinct modes in the continuum yield a single resonance in tidere one can correct for the mean dispersion error. Such a
FDTD simulation. The frequencies associated with these modeshnique is essentially the one applied in the dispersion correc-
are given in Table II. tion technique described by Nehrbatsl.[10] (however, they
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applied the correction at a single frequency prior to the simu-[7] J. B. Schneider and C. L. Wagner, “FDTD dispersion revisited: Faster-
lation rather than as a post-processing correction across all fre-  than-light propagation,TEEE Trans. Microwave Theory Tectvol. 9,

guencies). On the other hand, correcting for the mean dispersio

pp. 54-56, Feb. 1999.
] C.L.Wagner and J. B. Schneider, “Divergent fields, charge, and capac-

error in the Forgy scheme (which is, same as the Yee algorithm, itance in FDTD simuilations,|EEE Trans. Microwave Theory Tegh.
second-order accurate but, unlike the Yee algorithm, isotropic__ vol- 46, pp. 2131-2136, Dec. 1998.

to fourth order) would yield results that are more accurate than

9] E. A. Forgy and W. C. Chew, “A time-domain method with isotropic
dispersion and increased stability on an overlapped latiE&E Trans.

those which could be obtained from the (corrected) Yee algo-  Antennas Propagatvol. 50, pp. 983-996, July 2002.
rithm at the same discretization. [10] J. W. Nehrbass, J. O. Jetiand R. Lee, “Reducing the phase error for

(1]

(2]

(3]

(4]

finite-difference methods without increasing the ord#EE Trans. An-
tennas Propagatvol. 46, pp. 1194-2401, Aug. 1998.
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