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Abstract—There is a long-standing debate surrounding whether
or not enhanced total internal reflection (ETIR) is possible. ETIR
implies that the magnitude of the reflection coefficient is greater
than unity and is conjectured to be possible when a field is inci-
dent from a lossless material to a gainy material beyond the critical
angle. In this letter, we examine this problem through finite-dif-
ference time-domain (FDTD) modeling. The two-dimensional sim-
ulations employ a Gaussian incident beam and make no a priori
assumptions about the reflection coefficient. We consider illumina-
tion of gainy, lossless, and lossy materials. The Poynting vector is
used to examine the flow of energy. For a gainy material, the mag-
nitude of the reflection coefficient is found to be greater than unity,
but there is a delay between when energy enters the gainy mate-
rial and when the “excess” energy is reflected from the interface.
Thus, given the Goos–Hänchen shift associated with total internal
reflection, where the reflected beam is shifted relative to the inci-
dent beam (so that fields must travel in the gainy material before
being reflected), the existence of ETIR appears not only to be plau-
sible, but to be inevitable.

Index Terms—Electromagnetic reflection, finite-difference time-
domain (FDTD) methods, reflection coefficient.

I. INTRODUCTION

A S DEPICTED in Fig. 1, total internal reflection (TIR)
occurs when a field is incident beyond the critical

angle from a material with a higher refractive index (the first
medium) to one with a lower refractive index (the second
medium). TIR has long been the subject of both research and
industrial applications, e.g., [1]–[5]. It is an accepted fact
that the magnitude of the reflection coefficient is less than
unity [6] when the second medium is lossy and is unity when
the second medium is lossless. On the other hand, there has
been considerable debate whether or not the magnitude of the
reflection coefficient can be greater than unity when the second
medium is gainy, e.g., [7]–[10]. Since the first laboratory
observation of the enhanced total internal reflection (ETIR) in
a fiber with neodymium-doped glass cladding by Koester in
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Fig. 1. Depiction of total internal reflection where the incident field is inci-
dent beyond the critical angle. The incident field is a pulsed (and modulated)
Gaussian beam. (The Goos–Hänchen shift is not shown.)

1966 [11], there have been numerous experimental and theo-
retical studies [7]–[10], [12]–[14] that attempted to explain this
phenomenon, but none have succeeded in ending the debate.
One of the reasons for the persistent debate is that the an-

alytic derivation of the reflection coefficient involves a square
root that, in a pure mathematical sense, allows one to select ei-
ther the positive or negative root and still obtain an equally valid
solution. Unfortunately, there is no equivalent to the radiation
condition to provide physical reasons to choose one root over
another. If one views the reflection coefficient as being repre-
sentative of what happens solely at the surface of an interface,
that motivates selecting the root that yields a reflection coeffi-
cient with a magnitude less than unity. After all, how could one
get more energy out of a system than was put in by merely re-
flecting a field from an interface? However, as we discuss in this
letter, viewing the reflection coefficient as being merely dictated
by the impedance mismatch at an interface is too simplistic.
Romanov and Shakhidzhanov [12] first derived a reflection

coefficient with a magnitude greater than unity by choosing ap-
propriate signs for the square roots associated with the Fresnel
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Fig. 2. Plot of the reflection coefficient versus incident angle in the reflec-
tion-coefficient plane. The circle is the unit circle. The curve labeled “Consistent
with FDTD” employs the branch cut that yields analytic results consistent with
previous FDTD simulations [9]. Note the discontinuity in the reflection coef-
ficient at the critical angle (45 ). Furthermore, note that the magnitude of the
reflection coefficient is greater than unity for incident angles beyond the crit-
ical angle. The curve labeled “Not consistent with FDTD” employs the branch
cut advocated by some, e.g., [10]. In this case, there is no discontinuity, and the
magnitude is always less than unity.

equations. Consistent with results obtained from finite-dif-
ference time-domain (FDTD) simulation where the reflection
coefficient was found to have a magnitude greater than unity,
Willis et al. [9] proposed an analytic solution that specified
a particular location for the branch cut in the complex plane
associated with the Fresnel equation square roots. This branch
cut was consistent with the earlier work of Fan et al. [8], who
also extensively investigated the Goos–Hänchen shift [15].
Fig. 2 demonstrates the consequences of selecting different
branch cuts for the Fresnel equations. The complex reflec-
tion-coefficient plane shows the reflection coefficient versus
incident angle when , , S/m, and the
frequency is Hz (see the figure caption for further
details).
In this letter, we investigate ETIR via the time-domain be-

havior of Poynting vectors. In Section II, we describe the FDTD
simulations that were performed. In Section III, we provide re-
sults that show the total amount of energy flow across the inter-
face when the second medium is either gainy, lossless, or lossy.
Snapshots of the Poynting vector near the interface are provided
to give an intuitive interpretation of the ways in which the dif-
ferent media behave. Moreover, a trace of the location of the
maximum energy in the pulsed beam is presented to demon-
strate the Goos–Hänchen shift observed in the FDTD simula-
tions. This shift appears to be a key component of ETIR.

II. ANALYSIS AND NUMERICAL APPROACHES

The analysis was conducted using the “material grid” de-
picted in Fig. 3(b), which is a 2-D FDTD grid consisting of
two homogeneous nonmagnetic media where the first medium
has and the second has (thus the critical angle is

Fig. 3. Depiction of the two 2-D FDTD grids in the simulations.
(a) Auxiliary grid that provides the incident field for the TF/SF boundary in the
“material grid.” (b) Material grid.

45 ). The interface is the straight line parallel to the -axis. The
first medium is lossless, while the second is either gainy, loss-
less, or lossy with corresponding conductivities of 500, 0,
or 500 S/m, respectively (if not otherwise specified). Simula-
tions of the gainy material were done using both a dispersive
implementation and one using constant material parameters. At
the frequency of interest, where the material values were equal,
there was no difference in the results. The results shown here
used the constant parameter model. To model a semi-infinite
half-space, we terminate the grid by a convolutional perfectly
match layer (CPML) [16].We launch a localized Gaussian beam
in the FDTD grid using an auxiliary source grid as shown in
Fig. 3(a). The beam was launched into this auxiliary grid by
using a hard-wired electric-field source along the left edge of
the grid. This grid was simply used to obtain the and
of the incident beam with the same dielectric constant as the
first medium in the material grid [these fields were obtained at
the line labeled “Incident Field Measured” in Fig. 3(a)]. Using
this and together with a total-field/scattered-field (TF/SF)
boundary, we introduced the incident beam in the material grid
as shown in Fig. 3(b). This approach enables the introduction of
the incident beam over a TF/SF boundary that parallels and is
adjacent to the interface. (This permits the use of a much smaller
computational domain than the one described in [9].)
The incident field is a pulsed Gaussian beam as described in

[17] with beam waist . Gaussian beams consist of a
(angular) spectrum of plane waves where the angle of propaga-
tion of the spectral components is described by a Gaussian dis-
tribution (about the nominal incident angle ). The larger the
beam waist, the narrower the spectrum. The beam waist used
here is slightly more than twice that used by Willis et al. [9].
During the simulations, snapshots were taken of the Poynting

vector . In the 2-D grid, has only two
orthogonal components, (perpendicular to the interface) and
(tangential to the interface). In the FDTD grid, and are

represented by and , where is the spatial
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step in the -direction, is the spatial step in the -direction,
and is the time-step, such that

(1)

(2)

However, because of the magnetic field’s half-step offset in both
space and time relative to the electric field, averaging is used to
obtain the magnetic fields at the necessary temporal and spa-
tial location. In Fig. 3, we defined the direction from the first
medium to second medium (left to right) as the positive di-
rection. Thus, if is positive, power flows toward the second
medium while a negative value of indicates power is flowing
away from the second medium.
As indicated in Fig. 3(b), an observation line is placed in

the grid [although drawn slightly to the left of the interface in
Fig. 3(b), for the results to follow, the observation line is col-
located with the interface]. At each time-step, we calculate the
power flow “into” and “out of” the second medium, and

, respectively. These are given by

(3)

(4)

where corresponds to the index of the interface and
is the signum function. The range for in the sum is from the
bottom of the grid to the top, i.e., (3) and (4) perform a spatial
integration over the interface at a fixed time-step. Integrating
these values over time and taking their difference yields the
“net” energy flow from the second medium back into the
first medium

(5)

III. RESULTS

The computational domain for the following simulations is
1000 by 5000 uniform cells, where the interface is at
an index 900, and the incident angle is 48 . Fig. 4 is a plot
of when the second medium is gainy, lossless, or lossy.
The solid curve, corresponding to the lossless case, is initially
zero and, starting around 5000 time-steps, becomes increasingly
negative as there is a net flow of energy to the right. After ap-
proximately 6800 time-steps, the curve stops decreasing and be-
gins to climb. Eventually, the curve returns to zero, indicating
there was no net flow of energy into or from the second medium:
All the energy that passed to the right eventually passed back
to the left. When the second medium is lossy, the curve again
starts to drop at around 5000 time-steps, but the curve drops
even further and never returns to zero, indicating that there has
been a net flow of energy into the second medium. As with the
other two media, the curve for the gainy medium also starts
to drop around 5000 time-steps, indicating energy is flowing
into the second medium. However, the drop is not as great as
for the other two media, and eventually the curve moves into

Fig. 4. Accumulated net energy flow from the second medium versus time for
lossy, lossless, and gainy media.

Fig. 5. Snapshot of Poynting vectors at time-step 6699 for lossless, lossy, and
gainy media.

positive territory, indicating there has been a net flow of energy
out of the second medium. Significantly, this curve does not ob-
tain a positive value until after a significant amount of time has
passed—the reflected field is not immediately greater than the
incident field.
To provide a qualitative understanding of the behavior of the

fields, we examined snapshots of the Poynting vectors near the
interface. One such snapshot (taken at time step 6699) is shown
in Fig. 5. A subset of the grid is shown where samples are taken
every 14 points along the -axis (ranging from 2880 to 3080)
and at every point along the -axis (ranging from 899 to 906).
Here, the conductivities for the gainy and lossy materials are
1500 and 1500 S/m, respectively (the magnitude of the con-

ductivity was increased by a factor of three in order to make its
affect on the Poynting vectors easier to see at a glance). One
observes that the amount of “tilt” of the Poynting vectors in the
direction of the first medium is greatest for the gainy material
and least for the lossy material, indicating that the gainy mate-
rial will have the most energy flow back toward the first medium
while the lossy material will have the least flow in that direction
(which is consistent with Fig. 4). Fig. 6 provides an expanded
view of the rectangular box in Fig. 5 and further expands the
view of one representative vector cluster.
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Fig. 6. Expanded view of the rectangular region shown in Fig. 5.

Fig. 7. Depiction of the Goos–Hänchen shift between the incident and reflected
fields as obtained by breadcrumbing the maximum value of the Poynting vector
when it is propagating toward or away from the interface.

To demonstrate the Goos–Hänchen shift inherent in TIR, we
recorded the path of themaximum energy associated with the in-
cident beam and the reflected beam as shown in Fig. 7. This path
is obtained by finding the location of the maximum value of the
Poynting vectors at every time-step and placing a “breadcrumb”
at that location. This path starts at the TF/SF boundary and prop-
agates toward the interface. As the Gaussian beam nears the
lossless–gainy interface, the location of the peak energy tran-
sitions to the interface and propagates tangentially along it. As
time progresses, the peak energy moves from the interface and
follows the path of the reflected beam as shown in Fig. 7.We use
breadcrumbs to fit straight lines to the path of the incident and
reflected fields. As shown in Fig. 7, there is a small displace-
ment between where the incident and reflect paths intersect the
interface. This displacement is the Goos–Hänchen shift. (In this
particular simulation, the displacement is approximately ,
where is the spatial step-size of the uniform grid.) To account

for this shift, fields must “travel” within the second medium.
When the second medium is gainy, this “travel” provides the
opportunity for the fields to grow, hence experience gain, re-
sulting in a reflected field that carries more energy than the in-
cident field. Note that the Goos–Hänchen shift is: 1) a well-es-
tablished fact of TIR; 2) a discontinuous phenomenon in that it
is not present for incident angles below the critical angle and
is maximum just beyond the critical angle; and 3) a decreasing
function for increasing incident angles. Similarly, for a gainy
material, the magnitude of the reflection coefficient is discon-
tinuous at the critical angle (with a peak just beyond the critical
angle) and decreases for increasing incident angles beyond the
critical angle.

IV. CONCLUSION

FDTD simulations of TIR from a gainy material yield a re-
flection coefficient with amagnitude greater than unity.We have
shown that, from the standpoint of energy flow, this gain should
be rather unsurprising. The “excess” reflected energy only ap-
pears after the fields have had a chance to interact with the
second medium. The behavior of the magnitude of the reflected
field is also completely consistent with the Goos–Hänchen shift.
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