
Chapter 4

Improving the FDTD Code

4.1 Introduction

The C code presented in the previous chapter adequately served its purpose—it implemented the

desired FDTD functionality in a relatively straightforward way. However, as the algorithms get

more involved, for instance, when implementing simulations of two- or three-dimensional prob-

lems, the readability, portability, and maintainability will be improved if our implementation is

slightly more sophisticated. In this chapter we will implement the algorithms of the previous chap-

ter in a way which may seem, at first, to be overly complicated. However, as the complexity of

the algorithms increases in coming chapters, we will see that the effort required to understand this

more sophisticated approach will have been worth it.

4.2 Arrays and Dynamic Memory Allocation

In C an array is stored in a block of contiguous memory. Memory itself is fundamentally a one-

dimensional quantity since memory is ultimately accessed with a single memory address. Let us

consider a one-dimensional array of doubles ez where the size is specified at run-time rather than

at compile-time. The compiler needs to know about the existence of this array, but at compile-time

it does not need to know the amount or the location of memory where the array will be stored. We

can specify the size of the array when the program is run and we can allow the computer to decide

the location of the necessary amount of memory. The compiler is told about the potential existence

of the array by declaring a pointer to the array. Once the pointer is associated with the appropriate

block of memory, it is virtually indistinguishable from a one-dimensional array.

The code shown in Fragment 4.1 demonstrates how the array ez can be created at run-time. In

line 1 ez is declared as a pointer—it can store an address but when the program initially starts it

does not point to anything meaningful.* Line 2 declares two integer variables: num elements

Lecture notes by John Schneider. fdtd-improved-code.tex
*It would be better to set ez equal to NULL when it is declare. This ensure it initially does not point to a valid ad-

dress and thus would be unlikely to cause any problems—other than the termination of the program—if one attempted

to use it without further initialization. Note that NULL is not a keywork in C, i.e., it is not built into the language.

Rather, it is defined in various header files, including stdlib.h, to be ((void *)0). If one is doing anything

with dynamically allocated memory, it is almost certain that stdlib.h would be one of the included header files.

73

74 CHAPTER 4. IMPROVING THE FDTD CODE

which will contain the number of elements in the array, and mm which will be used as a loop

counter. Lines 4 and 5 determine the number of elements the user desires.

Fragment 4.1 Fragment of code demonstrating how the size of the array ez can be set at run-

time. The header file stdlib.h would typically have to be included to provide the prototype for

the calloc() function.

1 double *ez;

2 int num_elements, mm;

3

4 printf("Enter the size of the array: ");

5 scanf("%d", &num_elements);

6

7 ez = calloc(num_elements, sizeof(double));

8

9 for (mm=0; mm < num_elements; mm++)

10 ez[mm] = 3.0 * mm;

Line 7 is the key to getting ez to behave as an array. In this line the pointer ez is set equal to the

memory address that is returned by the function calloc().† calloc() takes two arguments.

The first specifies the number of elements in the array while the second specifies the amount of

memory needed for a single element. Here the sizeof() operator is used to obtain the size of a

double variable, i.e., the size in bytes of the memory associate with a double. (Although not shown

in this fragment, when using the calloc() function one typically has to include the header file

stdlib.h to provide the function prototype.) If calloc() is unable to provide the requested

memory it will return NULL (which is effectively 0). ‡

After the call of calloc() in line 7, ez points to the start of a contiguous block of memory

where the array elements can be stored. To demonstrate this, lines 9 and 10 write the value of three

times the array index to each element of the array (so that ez[0] would be 0.0, ez[1] would be

3.0, ez[2] would be 6.0, and so on).

Some compilers will actually complain about the code as it is written in Fragment 4.1. The

“problem” is that technically calloc() returns a void pointer—it is simply the address of the

start of a block of memory, but we have not said what is stored in that memory. We want a pointer

to doubles since we will be storing double precision variables in this memory. The compiler

really already knows this since we are storing the address in ez which is a pointer to doubles.

Nevertheless, some compilers will give a warning because of line 7. Therefore, to ensure that

compilers do not complain, it would be best to replace line 7 with

7 ez = (double *)calloc(num_elements, sizeof(double));

†calloc() is closely related to the function malloc() which also allocates a block of memory and returns

the address of the start of that block. However calloc() returns memory which has been cleared, i.e., set to zero,

while malloc() returns memory which may contain anything. Since we want the field arrays initially to be zero, it

is better to use calloc() than malloc().
‡Robust code would check the return value and take appropriate measures if NULL were returned. For now we will

assume that calloc() succeeded, but we return to this point in the next section.

4.3. MACROS 75

In this way the void pointer returned by calloc() is converted (or cast) to a pointer to doubles.

4.3 Macros

C provides a preprocessor which “processes” your code prior to the compiler itself. Preprocessor

directives start with the pound sign (#) and instruct the preprocessor to do things such as include

a header file (with an #include statement) or substitute one string for another. Program 3.1 had

three preprocessor directives. Two were used to include the files stdio.h and math.h and one

used a #define statement to tell the preprocessor to substitute 200 for all occurrences of the

string SIZE.

Compilers allow you to see the source code after passing through the preprocessor. Using the

GNU C compiler, one adds the -E flag to the compiler command to obtain the output from the

preprocessor. So, for example, one can see the source code as it appears after passing through the

preprocessor with the command

gcc -E 1DbareBones.c

In this case you will observe that there are many, many more lines of output than there are in your

original program. This is because of the inclusion of the header files. Your original program will

appear at the end of the output except now SIZE does not appear anywhere. Instead, any place it

had appeared you will now see 200.

The #define statement can also be used to create a macro. Unlike the simple string substi-

tution used before, a macro can take one or more arguments. These arguments dictate how strings

given as arguments should re-appear in the output. For example, consider the following macro

#define SQR(X) ((X) * (X))

This tells the preprocessor that every time SQR appears in the source code, the preprocessor should

take whatever appeared as an argument and replace that with the argument multiplied by itself.

Here the argument X is just serving as a place holder. Consider the following code

a = 6.0 * SQR(3.0 + 4.0);

After passing through the preprocessor, this code would appear as

a = 6.0 * ((3.0 + 4.0) * (3.0 + 4.0));

The result would be that a would be set equal to 6× 72 = 294.

It may seem that there are an excess number of parentheses in this macro, but one must be

careful with macros to ensure the desired results are obtained. Consider this macro

#define BAD_SQR1(X) X * X

If a program then contained this statement

a = 6.0 * BAD_SQR1(3.0 + 4.0);

the preprocessor translates this to

a = 6.0 * 3.0 + 4.0 * 3.0 + 4.0;

76 CHAPTER 4. IMPROVING THE FDTD CODE

Since multiplication has a higher precedence than addition, in this case a would be set equal to

18 + 12 + 4 = 34. There is no harm in using extra parentheses, so do not hesitate to use them to

ensure you are getting precisely what you want or to add clarity.

It is also worth noting that the macro definition itself will typically not be terminated by a

semicolon. If one includes a semicolon, it could easily produce unintended results. As an example,

consider

#define BAD_SQR2(X) ((X) * (X));

If a program then contained this statement

a = BAD_SQR2(4.0) + 10.0;

the preprocessor would translate this to

a = ((4.0) * (4.0)); + 10;

Note that the “+ 10” is consider a separate statement since there is a semicolon between it and

the squared term.§ Thus, a will be set to 16.0 instead of the correct value of 26.0.

Macros may have any number of arguments. As an example, consider

#define FOO(X, Y) (Y) * cos((X) * (Y))

Given this macro, the following code

a = FOO(cos(2.15), 7.0 * sqrt(4.0));

would be translated by the preprocessor to

a = (7.0 * sqrt(4.0)) * cos((cos(2.15)) * (7.0 * sqrt(4.0)));

Macros can span multiple lines provided the newline character at the end of each line is

“quoted” with a backslash. Said another way, a backslash must be the last character on a line

if the statement is to continue on the next line.

There is another “trick” that one can do with macros. One can say they want the string version

of an argument in the preprocessor output, essentially the argument will appear enclosed in quotes

in the output. To understand why this is useful, it first helps to recall that in C, if one puts two

strings adjacent¶ to each other, the compiler treats the two separate strings as a single string. Thus,

the following commands are all equivalent

printf("Hello world.\n");

printf("Hello " "world.\n");

printf("Hello "

"world.\n");

Each of these produce the same output

Hello world.

§When using the GNU C compiler, this “bad” code will compile without error. If one adds the -Wall flag when

compiling, the GNU compiler will provide a warning that gives the line number and a statement such as “warning:

statement with no effect.” Nevertheless, the code will compile.
¶Here “adjacent” means that any amount of white space, i.e., spaces, tabs, and newlines, can appear between the

two strings.

4.3. MACROS 77

Note that there is no comma between the separated strings in the printf() statements and the

amount of whitespace between the strings is irrelevant.

If we want the preprocessor to produce the string version of an argument in the output, we affix

(hash) to the argument name in the place where it should appear in the output. For example, we

could use a macro to print what is being calculated and show the result of the calculation as well:

#define SHOW_CALC(X) \

printf(#X " = %g\n", X)

The first line of this macro is terminated with a backslash telling the preprocessor that the definition

is continued on the next line. Now, if the code contained

SHOW_CALC(6.0 + 24.0 / 8.0);

the preprocessor would convert this to

printf("6.0 + 24.0 / 8.0" " = %g\n", 6.0 + 24.0 / 8.0);

When the program is run, the following output would be generated

6.0 + 24.0 / 8.0 = 9

We are now at a point where we can construct a fairly sophisticated macro to do memory

allocation. The macro will check if the allocation of memory was successful. If not, the macro will

report the problem and terminate the program. The following fragment shows the desired code.

Fragment 4.2 Macro for allocating memory for a one-dimensional array. The trailing backslashes

must appear directly before the end of the line. (By “quoting” the newline character at the end of

the line we are telling the preprocessor the definition is continued on the next line.)

1 #define ALLOC_1D(PNTR, NUM, TYPE) \

2 PNTR = (TYPE *)calloc(NUM, sizeof(TYPE)); \

3 if (!PNTR) { \

4 perror("ALLOC_1D"); \

5 fprintf(stderr, \

6 "Allocation failed for " #PNTR ". Terminating...\n");\

7 exit(-1); \

8 }

The macro ALLOC 1D() takes three arguments: a pointer (called PNTR), an integer specifying

the number of elements (NUM), and a data type (TYPE). In line 2 the macro uses calloc() to

obtain the desired amount of memory. Then, in line 3, it checks if the allocation was successful.

Recall that calloc() will return NULL if it failed to allocate the requested memory. In C, the

exclamation mark is also the “not operator.” So, if the value of PNTR is NULL (or, thought of

another way, “false”), then !PNTR would be true. If the memory allocation failed, two error

messages are printed (one message is generated using the system function perror(), the other

uses fprintf() and writes the output to stderr, which is typically the screen). The program

is then terminated with the exit() command.

With this macro in our code we could create an array ez with 200 elements with statements

such as

78 CHAPTER 4. IMPROVING THE FDTD CODE

double *ez;

ALLOC_1D(ez, 200, double);

Technically the semicolon in the second statement is not necessary (since this macro translates to

a block of code that ends with a close-brace), but there is no harm in having it.

4.4 Structures

In C one can group data together, essentially create a compound data type, using what is known

as a structure. A program can have different types of structures, i.e., ones that bundle together

different kinds of data. For example, a program might use structures that bundle together a person’s

age, weight, and name as well as structures that bundle together a person’s name, social security

number, and income. Just as we can have multiple variables of a given type and each variable

is a unique instance of that data type, we can have multiple variables that corresponds to a given

structure, each of which is a unique instance of that structure.

Initially, when declaring a structure, we first tell the compiler the composition of the structure.

As an example, the following command defines a person structure that contains three elements:

a character pointer called name that will be used to store the name of a person, an integer called

age that will correspond to the person’s age, and an integer called weight that will correspond

to the person’s weight.

struct person {

char *name;

int age;

int weight;

};

This statement is merely a definition—no structure has been created yet. To create a person

structure called bob and another one called sue, a command such as the following could be used:

struct person bob, sue;

Actually, one could combine these two statements and create bob and sue with the following:

struct person {

char *name;

int age;

int weight;

} bob, sue;

However, in the code to come, we will use a variant of the two-statement version of creating

structures. It should also be pointed out that elements do not need to be declared with individual

statements of their own. For example, we could write

struct person {

char *name;

int age, weight;

};

4.4. STRUCTURES 79

instead of the two separate lines shown above. The order in which items are declared within the

structure are generally unimportant. So, the statement above is effectively equivalent to

struct person {

int age, weight;

char *name;

};

To access the elements of a structure we write the name of the structure, a dot, and then the

name of the element. For example, bob.age would be the age element of the structure bob,

and sue.age would be the age element of the structure sue (despite the fact that these are both

age elements, they are completely independent variables).

Now, let’s write a program that creates two person structures. The program has a func-

tion called showPerson1() to show the elements of a person and another function called

changePerson1() that reduces the person’s age by two and decreases the weight by five. Each

of these functions takes a single argument, a person structure. The program is shown in Program

4.3.

Program 4.3 structDemo1.c: Program to demonstrate the basic use of structures.

1 /* structDemo1.c: Program to demonstrate the use of structures. Here

2 * structures are passed as arguments to functions. */

3

4 #include <stdio.h>

5

6 struct person {

7 char *name;

8 int age;

9 int weight;

10 };

11

12 void changePerson1(struct person p);

13 void showPerson1(struct person p);

14

15 int main() {

16 struct person bob, sue;

17

18 sue.name = "Sue";

19 sue.age = 21;

20 sue.weight = 120;

21

22 bob.name = "Bob";

23 bob.age = 62;

24 bob.weight = 180;

25

26 showPerson1(sue);

27

80 CHAPTER 4. IMPROVING THE FDTD CODE

28 printf("*** Before changePerson1() ***\n");

29 showPerson1(bob);

30 changePerson1(bob);

31 printf("*** After changePerson1() ***\n");

32 showPerson1(bob);

33

34 return 0;

35 }

36

37 /* Function to display the elements in a person. */

38 void showPerson1(struct person p) {

39 printf("name: %s\n", p.name);

40 printf("age: %d\n", p.age);

41 printf("weight: %d\n", p.weight);

42 return;

43 }

44

45 /* Function to modify the elements in a person. */

46 void changePerson1(struct person p) {

47 p.age = p.age - 2;

48 p.weight = p.weight - 5;

49 printf("*** In changePerson1() ***\n");

50 showPerson1(p);

51 return;

52 }

In line 16 of the main() function we declare the two person structures bob and sue. This

allocates the space for these structures, but as yet their elements do not have meaningful values.

In 18 we set the name of element of sue. The following two lines set the age and weight.

The elements for bob are set starting at line 22. In line 26 the showPerson1() function is

called with an argument of sue. This function, which starts on line 38, shows the name, age, and

weight of a person.

After showing the elements of sue, in line 29 of main(), showPerson1() is used to show

the elements of bob. In line 30 the function changePerson1() is called with an argument of

bob. This function, which is given starting on line 46, subtracts two from the age and five from

the weight. After making these modifications, in line 50, showPerson1() is called to display

the modified person. Finally, returning to line 32 of the main() function, the showPerson1()

function is called once again with an argument of bob. Note that this is after bob has supposedly

been modified by the changePerson1() function. The output produced by Program 4.3 is

1 name: Sue

2 age: 21

3 weight: 120

4 *** Before changePerson1() ***
5 name: Bob

6 age: 62

4.4. STRUCTURES 81

7 weight: 180

8 *** In changePerson1() ***
9 name: Bob

10 age: 60

11 weight: 175

12 *** After changePerson1() ***
13 name: Bob

14 age: 62

15 weight: 180

Here we see, in lines 1–3 and 5–7 of the output, that the initial values of sue and bob are as

we would anticipate. Also, when showPerson1() is called from within changePerson1()

(line 50 of the program), we see, lines 9–11 of the output, the modified values for bob, i.e., his

age has been reduced by two and his weight has been reduced by five. However, the last three lines

of output, 13–15 show that, insofar as the bob structure in the main() function is concerned,

nothing has changed! bob has not been modified by changePerson1().

Although this behavior may not have been what we would have anticipated, it is correct. When

a structure is given as an argument, the function that is called is given a complete copy of the

original structure. Thus, when that function modifies the elements of the structure, it is modifying

a copy of the original—it is not affecting the original itself.

If we want a function that we call to be able to modify a structure, we must pass a pointer to that

structure. We will modify the code to permit this but let use first introduce the typedef statement

that allows to write slightly cleaner code. Having to write struct person everywhere we want

to specify a person structure is slightly awkward. C allows us to use a typedef statement to

define an equivalent. The following statement tells the compiler that Person is the equivalent of

struct person

typedef struct person Person;

Note that there is no requirement that we use the same word for the structure and the typedef-

equivalent. Additionally, even when using the same word, there is no need to use different capital-

ization (since the structure and its equivalent are maintained in different name spaces).

Now, let us assume we want to create two pointers to structures, one named susan and one

robert. These can be created with

struct person *susan, *robert;

Assuming the typedef statement given above has already appeared in the program, we could

instead write:

Person *susan, *robert;

susan and robert are pointers to structures but, initially, they do not point to any structures. We

cannot set their elements because there is is no memory allocated for the storage of these elements.

Thus, we must allocate memory for these structures and ensure the pointers point to the memory.

To accomplish this, we can include in our program a statement such as

ALLOC_1D(susan, 1, Person);

Recalling the ALLOC 1D() macro presented in Sec. 4.3, this statement will allocate the memory

for one Person and associate that memory with the pointer susan. We can now set the element

82 CHAPTER 4. IMPROVING THE FDTD CODE

associated with susan. However, accessing the elements of a pointer to a Person is different

than directly accessing the elements of a Person. To set the age element of susan we would

have to write either

(*susan).age = 21;

or

susan->age = 21;

Program 4.4 is similar to Program 4.3 in many respects except here, rather than using structures

directly, the program primarily deals with pointers to structures. As will be shown, this allows other

functions to change the elements within any given structure—the function merely has to be passed

a pointer to the structure rather than (a copy of) the structure.

Program 4.4 structDemo2.c: Program to demonstrate the basic use of pointers to structures.

1 /* structDemo2.c: Program to demonstrate the use of pointers to

2 * structures. */

3

4 #include <stdlib.h>

5 #include <stdio.h>

6

7 #define ALLOC_1D(PNTR, NUM, TYPE) \

8 PNTR = (TYPE *)calloc(NUM, sizeof(TYPE)); \

9 if (!PNTR) { \

10 perror("ALLOC_1D"); \

11 fprintf(stderr, \

12 "Allocation failed for " #PNTR ". Terminating...\n");\

13 exit(-1); \

14 }

15

16 struct person {

17 char *name;

18 int age;

19 int weight;

20 };

21

22 typedef struct person Person;

23

24 void changePerson2(Person *p);

25 void showPerson2(Person *p);

26

27 int main() {

28 Person *robert, *susan;

29

30 ALLOC_1D(susan, 1, Person);

4.4. STRUCTURES 83

31 ALLOC_1D(robert, 1, Person);

32

33 susan->name = "Susan";

34 susan->age = 21;

35 susan->weight = 120;

36

37 robert->name = "Robert";

38 robert->age = 62;

39 robert->weight = 180;

40

41 showPerson2(susan);

42

43 printf("*** Before changePerson2() ***\n");

44 showPerson2(robert);

45 changePerson2(robert);

46 printf("*** After changePerson2() ***\n");

47 showPerson2(robert);

48

49 return 0;

50 }

51

52 /* Function to display the elements in a person. */

53 void showPerson2(Person *p) {

54 printf("name: %s\n", p->name);

55 printf("age: %d\n", p->age);

56 printf("weight: %d\n", p->weight);

57 return;

58 }

59

60 /* Function to modify the elements in a person. */

61 void changePerson2(Person *p) {

62 p->age = p->age - 2;

63 p->weight = p->weight - 5;

64 printf("*** In changePerson2() ***\n");

65 showPerson2(p);

66 return;

67 }

The typedef statement in line 22 allows us to write simply Person instead of struct

person. This is followed by the prototypes for functions showPerson2() and changePerson2().

These functions are similar to the corresponding functions in the previous program except now the

arguments are pointers to structures instead of structures. Thus, the syntactic changes are necessary

in the functions themselves (e.g., we have to write p->age instead of p.age). Starting on line

30 the ALLOC 1D() macro is used to allocate the memory for the susan and robert pointers

that were declared in line 28. The values of the elements are then set, the contents of the structures

displayed, robert is modified, and the contents or robert are shown again.

84 CHAPTER 4. IMPROVING THE FDTD CODE

The output produced by Program 4.4 is

name: Susan

age: 21

weight: 120

*** Before changePerson2() ***
name: Robert

age: 62

weight: 180

*** In changePerson2() ***
name: Robert

age: 60

weight: 175

*** After changePerson2() ***
name: Robert

age: 60

weight: 175

Note that in this case, the changes made by changePerson2() are persistent—when the main()

function shows the elements of robert we see the modified values (unlike with the previous pro-

gram).

4.5 Improvement Number One

Now let us use some of the features discussed in the previous sections in a revised version of the

“bare-bones” program that appeared in Sec. 3.5. Here we will bundle much of the data associated

with an FDTD simulation into a structure that we will call a Grid structure. (We will often refer

to this structure as simply the Grid or a Grid.) Here will define the Grid as follows:

struct Grid {

double *ez; // electric field array

double *hy; // magnetic field array

int sizeX; // size of computational domain

int time, maxTime; // current and max time step

double cdtds; // Courant number

};

In the “improved” program that we will soon see, there will not appear to be much reason for

creating this structure. Why bother? The motivation will be more clear when we start to modularize

the code so that different functions handle different aspects of the FDTD simulation. By bundling

all the relevant information about the simulation into a structure, we can simply pass as an argument

to each function a pointer to this Grid.

First, let us create a header file fdtd1.h in which we will put the definition of a Grid

structure. In this file we will also include the (1D) macro for allocating memory. Finally, in a quest

to keep the code as clean as possible, we will also define a few additional preprocessor directives: a

macro for accessing the ez array elements, a macro for accessing the hy array elements, and some

simple #define statements to facilitate references to sizeX, time, maxTime, and cdtds.

The complete header file is shown in Program 4.5.

4.5. IMPROVEMENT NUMBER ONE 85

Program 4.5 fdtd1.h: Header file for the first “improved” version of a simple 1D FDTD pro-

gram.

1 #ifndef _FDTD1_H

2 #define _FDTD1_H

3

4 #include <stdio.h>

5 #include <stdlib.h>

6

7 struct Grid {

8 double *ez;

9 double *hy;

10 int sizeX;

11 int time, maxTime;

12 double cdtds;

13 };

14

15 typedef struct Grid Grid;

16

17 /* memory allocation macro */

18 #define ALLOC_1D(PNTR, NUM, TYPE) \

19 PNTR = (TYPE *)calloc(NUM, sizeof(TYPE)); \

20 if (!PNTR) { \

21 perror("ALLOC_1D"); \

22 fprintf(stderr, \

23 "Allocation failed for " #PNTR ". Terminating...\n");\

24 exit(-1); \

25 }

26

27 /* macros for accessing arrays and such */

28 /* NOTE!!!! Here we assume the Grid structure is g. */

29 #define Hy(MM) g->hy[MM]

30 #define Ez(MM) g->ez[MM]

31 #define SizeX g->sizeX

32 #define Time g->time

33 #define MaxTime g->maxTime

34 #define Cdtds g->cdtds

35

36 #endif /* matches #ifndef _FDTD1_H */

Line 1 checks if this header file, i.e., fdtd1.h, has previously been included. Including mul-

tiple copies of a header file can cause errors or warnings (such as when a term that was previously

defined in a #define statement is again mentioned in a different #define statement). In the

simple code with which we are working now, multiple inclusions are not a significant concern,

86 CHAPTER 4. IMPROVING THE FDTD CODE

but we want to develop the techniques to ensure multiple inclusions do not cause problems in the

future. Line 1 checks for a previous inclusion by testing if the identifier (technically a compiler

directive) FDTD1 H is not defined. If it is not defined, the next statement on line 2 defines it.

Thus, FDTD1 H serves as something of a flag. It will be defined if this file has been previously

included and will not be defined otherwise. Therefore, owing to the #ifndef statement at the

start of the file, if this header file has previously been included the preprocessor will essentially

ignore the rest of the file. The #ifndef statement on line 1 is paired with the #endif statement

on line 36 at the end of the file.

Assuming this file has not previously been included, next, the header files stdio.h and

stdlib.h are included. Since the macro ALLOC 1D() uses both calloc() and some printing

functions, both these headers have to be included anywhere ALLOC 1D() is used.

The commands for defining the Grid structure start on line 7. Following that, the ALLOC 1D()

macro begins on line 18. The macros given on lines 29 and 30 allow us to access the field arrays in

a way that is easier to read.|| (Importantly, note that these statements assume that the Grid in the

program has been given the name g! We will, in fact, make a habit of using the variable name g for

a Grid in the code to follow.) So, for example, the macro on line 30 allows us to write Ez(50)

instead of writing the more cumbersome g->ez[50]. Note that the index for the array element

is now enclosed in parentheses and not square brackets. The definitions in lines 31 through 34

allow us to write SizeX instead of g->sizeX, Time instead of g->time, MaxTime instead

of g->maxTime, and Cdtds instead of g->cdtds.

An improved version of Program 3.1 is shown in Program 4.6.

Program 4.6 improved1.c: Source code for an improved version of the bare-bones 1D FDTD

program.

1 /* improved1.c: Improved bare-bones 1D FDTD simulation. */

2

3 #include "fdtd1.h"

4 #include <math.h>

5

6 int main()

7 {

8 Grid *g;

9 double imp0 = 377.0;

10 int mm;

11

12 ALLOC_1D(g, 1, Grid);

13

14 SizeX = 200; // size of grid

15 MaxTime = 250; // duration of simulation

16 Cdtds = 1.0; // Courant number (unused)

17

||The right side of 29 and 30 do not use the usual blue that used to signify identifiers. This is because as this

point these are technical preprocessors string substitutions rather than actual identifiers in the code. This coloring is

somewhat inconsistent used with the ALLOC 1D() macro but will be tolerated for now.

4.5. IMPROVEMENT NUMBER ONE 87

18 ALLOC_1D(g->ez, SizeX, double);

19 ALLOC_1D(g->hy, SizeX, double);

20

21 /* do time stepping */

22 for (Time = 0; Time < MaxTime; Time++) {

23

24 /* update magnetic field */

25 for (mm = 0; mm < SizeX - 1; mm++)

26 Hy(mm) = Hy(mm) + (Ez(mm + 1) - Ez(mm)) / imp0;

27

28 /* update electric field */

29 for (mm = 1; mm < SizeX; mm++)

30 Ez(mm) = Ez(mm) + (Hy(mm) - Hy(mm - 1)) * imp0;

31

32 /* hardwire a source node */

33 Ez(0) = exp(-(Time - 30.0) * (Time - 30.0) / 100.0);

34

35 printf("%g\n", Ez(50));

36 } /* end of time-stepping */

37

38 return 0;

39 }

In line 8 the pointer to the Grid structure g is declared. Because we have just declared a

pointer to a Grid, we next need to obtain the memory to store the elements of the structure itself.

This allocation is done in line 12.

Because the Grid contains pointers ez and hy, we do not need to declare those field arrays

separately. The size of the computational domain is set in line 14 while the duration of the simula-

tion is set in 15. After the preprocessor has processed the code, these lines will actually be

g->sizeX = 200;

g->maxTime = 250;

At this point in the program the pointers ez and hy do not have any memory associated with

them—we cannot store anything yet in the field arrays. Therefore the next step is the allocation of

memory for the field arrays which is accomplished in lines 18 and 19.

The rest of the code is largely the same as given in Program 3.1. The only difference being a

slight change in notation/syntax. Program 3.1 and Program 4.6 produce identical results.

This new version of the bare-bones simulation is split into two files: the header file fdtd1.h

and the source file improved1.c. This is depicted in Fig. 4.1. The main() function in file

improved1.c handles all the calculations associated with the FDTD simulation. Since there is

only a single source file, there is no obvious advantage to creating a header file. However, as we

further modularize the code, the header file will provide a convenient way to ensure that different

source files share common definitions of various things. For example, many source files may need

to know about the details of a Grid structure. These details can be written once in the header file

and then the header file can be included into different source files as appropriate. Examples of this

will be provided in the following sections.

88 CHAPTER 4. IMPROVING THE FDTD CODE

improved1.c

main()

fdtd1.h

Figure 4.1: The files associated with the first improved version of the FDTD code. The header

file fdtd1.h is included in the source file improved1.c as indicated by the dashed line. The

source file improved1.c contains the main() function which performs all the executable state-

ments associated with the simulation.

4.6 Modular Design and Initialization Functions

Thus far all the programs have been written using a single source file that contains a single function

(the main() function), or in the case of the previous section, one source file and one header file.

As the complexity of the FDTD simulation increases this approach becomes increasingly unwieldy

and error prone. A better approach is to modularize the program so that different functions perform

specific tasks—not everything is done within main(). For example, we may want to use one

function to update the magnetic field, another to update the electric field, another to introduce

energy into the grid, and another to handle the termination of the grid.

Additionally, with C it is possible to put different functions in different source files and compile

the source files separately. By putting different functions in different source files, it is possible to

have different functions that are within one source file share variables which are “hidden” from all

functions that do not appear in that file. You can think of these variables as being private, known

only to the functions contained in the file. As will be shown, such sharing of variables can be

useful when one wants to initialize the behavior of a function that will be called multiple times

(but the initialization only needs to be done once).

To illustrate how functions within a file can share variables that are otherwise hidden from

other parts of a program, assume there is a function that we want to call several times. Further

assume this function performs a calculation based on some parameters but these parameters only

need to be set once—they will not vary from the value to which they are initially set. For this

type of scenario, it is often convenient to split the task into two functions: one function handles

the initialization of the parameters (the “initialization function”) and the other function handles

4.6. MODULAR DESIGN AND INITIALIZATION FUNCTIONS 89

the calculation based on those parameters (the “calculation function”). Now, the question is: How

can the initialization function make the parameters visible to the calculation function and how can

the values of these parameters persist between one invocation of the function and the next? The

answer lies in global variables.

Generally the use of global variables is discouraged as they can make programs hard to under-

stand and difficult to debug. However, global variables can be quite useful when used properly.

To help minimize the problems associated with global variables, we will further modularizing the

program so that the initialization function and calculation function mentioned above are stored in

a separate file from the rest of the program. In this way the global variables that these functions

share are not visible to any other function.

As a somewhat contrived example of this approach to setting parameters, assume we want to

write a program that will calculate the values of a harmonic function where the user can specify the

amplitude and the phase, i.e., we want to calculate f(x) = a cos(x + ϕ) where a is the amplitude

and ϕ is the phase. Note that we often just write f(x) for a function like this even though the

function depends on a and ϕ as well as x. We usually do not write f(x, a, ϕ) because we think of

a and ϕ as fixed values (even though they have to be specified at some point) while x is the value

we are interested in varying. Assume we want to write our program so that there is a function

harmonic1() that is the equivalent of f(x) = a cos(x+ϕ). harmonic1() should take a single

argument that corresponds to the value of x. We will use a separate function, harmonicInit1()

that will set the amplitude and phase.

A file that contains a suitable main() function and the associated statements to realize the pa-

rameter setting discussed above is shown in Program 4.7. The prototypes for harmonicInit1()

and harmonic1() are given in lines 12 and 13, respectively. Note, however, that these functions

do not appear in this file. Between lines 19 and 23 the user is prompted for the amplitude and

phase (and the phase is converted from degrees to radians). These values are passed as arguments

to the harmonicInit1() function. As we will see a little later, this function sets persistent

global parameters to these values so that they are visible to the function harmonic1() whenever

it is called. The for-loop that starts on line 28 generates the desired output values. Here we set the

variable x to values between 0 and 2π. In line 30 the value of x is printed together with the value

of harmonic1(x). Note that the harmonic1() function is not passed the amplitude or phase

as an argument.

Program 4.7 paramDemo1.c: File containing the main() function and appropriate header

material that is used to demonstrate the setting of persistent parameters in an auxiliary function.

Here harmonicInit1() and harmonic1() are serving this auxiliary role. The code associ-

ated with those functions is in a separate file (see Program 4.8).

1 /* paramDemo1.c: Program that demonstrates the setting of

2 * "persistent" parameters via the arguments of an initialization

3 * function. Here the parameters control the amplitude and phase of a

4 * harmonic function f(x) = a cos(x + phi). This program generates

5 * num_points of the harmonic function with the "x" value of the

6 * varying between zero and 2*pi.

7 */

90 CHAPTER 4. IMPROVING THE FDTD CODE

8

9 #include <stdio.h>

10 #include <math.h> // To obtain M_PI, i.e., 3.14159...

11

12 void harmonicInit1(double amp, double phase);

13 double harmonic1(double x);

14

15 int main() {

16 double amp, phase, x;

17 int mm, num_points = 100;

18

19 printf("Enter the amplitude: ");

20 scanf(" %lf", &);

21 printf("Enter the phase [in degrees]: ");

22 scanf(" %lf", &phase);

23 phase *= M_PI / 180.0;

24

25 /* Set the amplitude and phase. */

26 harmonicInit1(amp, phase);

27

28 for (mm = 0; mm < num_points; mm++) {

29 x = 2.0 * M_PI * mm / (float)(num_points - 1);

30 printf("%f %f\n", x, harmonic1(x));

31 }

32

33 return 0;

34 }

The file containing the functions harmonicInit1() and harmonic1() is shown in Pro-

gram 4.8. In line 12 two static double variables are declared: amp is the amplitude and phase is

the phase. These variables are visible to all the functions in this file but are not visible to any other

functions (despite the common name, these variables are distinct from those with the same name in

the main() function). Furthermore, the value of these variables will “persist.” They will remain

unchanged (unless we explicitly change them) and available for our use through the duration of the

running of the program. (Note that, it may be somewhat confusing, but the “static” qualifier

in line 12 does not mean constant. The value of these variables can be changed. Rather, it means

these global variables are local to this file.)

The harmonicInit1() function starts on line 16. It takes two arguments. Here those

arguments are labeled the amp and the phase. We must distinguish these variable names

from the corresponding global variables. We accomplish this by putting the prefix the on the

corresponding global variable name. The global variables are set to the desired values in lines 17

and 18. The harmonic1() function that begins on line 24 then uses these global values in the

calculation of a cos(x+ ϕ).

Program 4.8 harmonicDemo1.c: File containing the functions harmonicInit1() and

4.6. MODULAR DESIGN AND INITIALIZATION FUNCTIONS 91

harmonic1().

1 /* harmonicDemo1.c: Functions to calculate a harmonic function of a

2 * given amplitude and phase. The desired amplitude and phase are

3 * passed as arguments to harmonicInit1(). harmonicInit1() sets the

4 * corresponding static global variables so that these values will be

5 * available for the harmonic1() function to use whenever it is

6 * called.

7 */

8

9 #include <math.h> // for cos() function

10

11 /* Global static variables that are visible only to functions inside

12 this file. */

13 static double amp, phase;

14

15 // initialization function

16 void harmonicInit1(double the_amp, double the_phase) {

17 amp = the_amp;

18 phase = the_phase;

19

20 return;

21 }

22

23 // calculation function

24 double harmonic1(double x) {

25 return amp * cos(x + phase);

26 }

Now, let us change these programs in order to further separate the main() function from the

harmonic function. There is no reason that the main() function should have to prompt the user

for the amplitude or phase. These values are simply passed along to the harmonic initialization

function and never actually used in main(). Thus, a better approach would be to let the harmonic

initialization function prompt the user for whatever input it needs. The main() function would

merely call the initialization function and leave all the details up to it. So in the future, if one wanted

to change the harmonic function so the user could specify a frequency as well as the amplitude and

phase, that code could be added to the harmonic functions but the main() function would not

have to be changed in any way.

The new version of the main() function is shown in Program 4.9. Note that there is now no

mention of amplitude or phase in main(). That information has all been relegated to the harmonic

functions themselves.

Program 4.9 paramDemo2.c: Modified file containing the main() function which demon-

strates the use of an initialization function to set parameters. In this version of the code the initial-

ization function harmonicInit2() takes no arguments. The code for harmonicInit2()

92 CHAPTER 4. IMPROVING THE FDTD CODE

and harmonic2() is given in Program 4.10.

1 /* paramDemo2.c: Program that demonstrates the setting of

2 * "persistent" parameters via an initialization function. Here the

3 * initialization function handles all the details of obtaining the

4 * parameters associated with the harmonic function.

5 */

6

7 #include <stdio.h>

8 #include <math.h> // To obtain M_PI, i.e., 3.14159...

9

10 void harmonicInit2();

11 double harmonic2(double x);

12

13 int main() {

14 double x;

15 int mm, num_points = 100;

16

17 /* Initialize the harmonic function. */

18 harmonicInit2();

19

20 for (mm = 0; mm < num_points; mm++) {

21 x = 2.0 * M_PI * mm / (float)(num_points - 1);

22 printf("%f %f\n", x, harmonic2(x));

23 }

24

25 return 0;

26 }

The file containing harmonicInit2() and harmonic2() is shown in Program 4.10. As

before, the amplitude and phase are global static variables that are declared in line 13. Note

that harmonicInit2() takes no arguments. Instead, this function prompts the user for the

amplitude and phase and sets the global variables appropriately. Having done this, these values are

visible to the function harmonic2() (which is unchanged from the function harmonic1()

given previously).

Program 4.10 harmonicDemo2.c: File containing the functions harmonicInit2() and

harmonic2().

1 /* harmonicDemo2.c: Functions to calculate a harmonic function of a

2 * given amplitude and phase. harmonicInit2() prompts the user for

3 * the amplitude and phase and sets the global variables so these

4 * values will be available for the harmonic2() function to use

5 * whenever it is called.

4.7. IMPROVEMENT NUMBER TWO 93

6 */

7

8 #include <stdio.h>

9 #include <math.h> // for cos() function

10

11 /* Global static variables that are visible only to functions inside

12 this file. */

13 static double amp, phase;

14

15 // initialization function

16 void harmonicInit2() {

17

18 printf("Enter the amplitude: ");

19 scanf(" %lf", &);

20 printf("Enter the phase [in degrees]: ");

21 scanf(" %lf", &phase);

22 phase *= M_PI / 180.0;

23

24 return;

25 }

26

27 // calculation function

28 double harmonic2(double x) {

29 return amp * cos(x + phase);

30 }

In Sec. 4.8 we will discuss the compilation of multi-file programs such as these.

4.7 Improvement Number Two

Let us consider a further refinement to the simple bare-bones FDTD simulation. In this version of

the code the updating of the electric and magnetic fields will be handled by separate functions. The

grid arrays will be initialized with a separate function and the source function will be calculated

using a separate function. The arrangement of the functions among the various files is depicted in

Fig. 4.2.

Program 4.11 shows the contents of the file improved2.c. As indicated in Fig. 4.2, main()

calls gridInit2(). This function initializes the Grid structure g. The function gridInit2()

is contained in the separate file gridInit2.c. The magnetic fields are updated using the func-

tion updateH2() while the electric fields are updated using updateE2(). Both these func-

tions are contained in the file update2.c. The source function is calculated using the function

ezInc() that is contained in the file ezInc2.c.

Program 4.11 improved2.c: Further code improvement of the bare-bones 1D FDTD simula-

tion. Here the initialization of the grid as well as the updating of the fields are handled by separate

94 CHAPTER 4. IMPROVING THE FDTD CODE

improved2.c

main()

fdtd2.hezInc2.h

ezInc2.c

ezIncInit()

ezInc()

update2.c

updateE2()

updateH2()

gridInit2.c

gridInit2()

Figure 4.2: The files associated with the second improved version of the FDTD code. The header

files fdtd2.h and ezInc2.h are included in the source files to which they are joined by a

dashed line. The file improved2.c contains the main() function but the initialization of the

grid, the calculation of the source function, and the updating of the fields are no longer done in

main(). Instead, other functions are called to accomplish these tasks. The heavy black lines

indicates which functions call which other functions. In this case, main() originates calls to all

the other functions.

4.7. IMPROVEMENT NUMBER TWO 95

functions. The argument for these functions is merely the Grid pointer g. Additionally, the source

function is initialized and calculated by separate functions.

1 /* improved2.c: Version 2 of the improved bare-bones 1D FDTD

2 * simulation. */

3

4 #include "fdtd2.h"

5 #include "ezInc2.h"

6

7 int main()

8 {

9 Grid *g;

10

11 ALLOC_1D(g, 1, Grid); // allocate memory for Grid

12 gridInit2(g); // initialize the grid

13

14 ezIncInit(g); // initialize source function

15

16 /* do time stepping */

17 for (Time = 0; Time < MaxTime; Time++) {

18 updateH2(g); // update magnetic field

19 updateE2(g); // update electric field

20 Ez(0) = ezInc(Time, 0.0); // apply source function

21 printf("%g\n", Ez(50)); // print output

22 } // end of time-stepping

23

24 return 0;

25 }

Line 9 declares g to be a pointer to a Grid. Since a Grid structure has as elements the field

arrays, the time step, the duration of the simulations, and the maximum number of time steps,

none of these variables need to be declared explicitly. Note, however, that line 9 merely creates a

pointer but as yet this pointer does not point to anything meaningful. Line 11 uses ALLOC 1D()

to allocated memory for the Grid and ensures g points to that memory. Assuming there were no

errors in the allocation, this line is effectively the equivalent of

g = calloc(1, sizeof(Grid));

As shown in lines 12, 18, and 19, gridInit2(), updateH2(), and updateE2() each

have a single argument: g (a pointer to the Grid). The parameters of the source function are

initialized by calling ezIncInit() in line 14.

The header file fdtd2.h is shown in Program 4.12. This file is largely the same as fdtd1.h.

The only significant difference is the function prototypes that are provided in lines 36–38 for three

of the functions called by main() (note that the prototypes for the functions related to the source

are provided in ezInc2.h).

96 CHAPTER 4. IMPROVING THE FDTD CODE

Program 4.12 fdtd2.h: Header file to accompany the second version of the improved code

showin in Program 4.11. The differences between this file and fdtd1.h are shown in dark red

bold.

1 #ifndef _FDTD2_H

2 #define _FDTD2_H

3

4 #include <stdio.h>

5 #include <stdlib.h>

6

7 struct Grid {

8 double *ez;

9 double *hy;

10 int sizeX;

11 int time, maxTime;

12 double cdtds;

13 };

14

15 typedef struct Grid Grid;

16

17 /* memory allocation macro */

18 #define ALLOC_1D(PNTR, NUM, TYPE) \

19 PNTR = (TYPE *)calloc(NUM, sizeof(TYPE)); \

20 if (!PNTR) { \

21 perror("ALLOC_1D"); \

22 fprintf(stderr, \

23 "Allocation failed for " #PNTR ". Terminating...\n");\

24 exit(-1); \

25 }

26

27 /* macros for accessing arrays and such */

28 #define Hy(MM) g->hy[MM]

29 #define Ez(MM) g->ez[MM]

30 #define SizeX g->sizeX

31 #define Time g->time

32 #define MaxTime g->maxTime

33 #define Cdtds g->cdtds

34

35 /* function prototypes */

36 void gridInit2(Grid *g);

37 void updateH2(Grid *g);

38 void updateE2(Grid *g);

39

40 #endif /* matches #ifndef _FDTD2_H */

Program 4.13 shows the contents of the file update2.c. The static global variable imp0 rep-

4.7. IMPROVEMENT NUMBER TWO 97

resents the characteristic impedance of free space and is set to 377.0 in line 6. This variable is never

changed throughout the program. The magnetic field is updated with the function updateH2()

which is given between lines 9 and 16. Note that the update equation uses Hy() and Ez() to refer

to the elements of the field arrays. The macros in fdtd2.h translate these to the necessary syntax

(which is essentially g->hy[] and g->ez[]). The electric field is updated using updateE2()

which is given between lines 19 and 26.

Program 4.13 update2.c: Source code for the functions updateH2() and updateE2().

1 /* update2.c: Functions to update the electric and magnetic fields. */

2

3 #include "fdtd2.h"

4

5 /* characteristic impedance of free space */

6 static double imp0 = 377.0;

7

8 /* update magnetic field */

9 void updateH2(Grid *g) {

10 int mm;

11

12 for (mm = 0; mm < SizeX - 1; mm++)

13 Hy(mm) = Hy(mm) + (Ez(mm + 1) - Ez(mm)) / imp0;

14

15 return;

16 }

17

18 /* update electric field */

19 void updateE2(Grid *g) {

20 int mm;

21

22 for (mm = 1; mm < SizeX - 1; mm++)

23 Ez(mm) = Ez(mm) + (Hy(mm) - Hy(mm - 1)) * imp0;

24

25 return;

26 }

Program 4.14 shows the source code for the function gridInit2(). This function is used to

set the value of various elements of the Grid. (For this rather simple simulation, this program is

itself quite simple.) Line 6 sets the size of the Grid, SizeX, to 200. Actually, after the preprocessor

has processed the code, this line will be

g->sizeX = 200;

Line 7 sets the duration of the simulation to 250 time-steps. Line 8 sets the Courant number to

unity. Lines 10 and 11 use the ALLOC 1D() macro to allocate the necessary memory for the

electric and magnetic field arrays.

98 CHAPTER 4. IMPROVING THE FDTD CODE

Program 4.14 gridInit2.c: Source code for the function gridInit2().

1 /* gridInit2.c: Function to initialize the Grid structure. */

2

3 #include "fdtd2.h"

4

5 void gridInit2(Grid *g) {

6 SizeX = 200; // set the size of the grid

7 MaxTime = 250; // set duration of simulation

8 Cdtds = 1.0; // set Courant number

9

10 ALLOC_1D(g->ez, SizeX, double); // allocate memory for Ez

11 ALLOC_1D(g->hy, SizeX, double); // allocate memory for Hy

12

13 return;

14 }

Finally, Program 4.15 shows the contents of the file ezInc2.c which contains the code to

implement the functions ezIncInit() and ezInc(). The function ezInc() is a Gaussian

pulse whose width and delay are parameters that are set by ezIncInit(). The implementation

of this source function is slightly different than in the original bare-bones code in that here the

user is prompted for the width and delay. Additionally, the source function ezInc() takes two

arguments, the time and the location, so that this function can be used in a TFSF formulation.

When ezInc() is called from main(), the location is simply hardwired to zero (ref. line 20 of

Program 4.11).

Program 4.15 ezInc2.c: File for the functions ezIncInit() and ezInc(). ezInc() is a

traveling-wave implementation of a Gaussian pulse. There are three private static global variables

in this code. These variables, representing the width and delay of the pulse as well as the Courant

number, are determined and set by the initialization function ezIncInit(). The Courant num-

ber is taken from the Grid pointer that is passed as an argument while the user is prompted to

provide the width and delay.

1 /* Functions to calculate the source function (i.e., the incident

2 * field). */

3

4 #include "ezInc2.h"

5

6 /* global variables -- but private to this file */

7 static double delay, width = 0, cdtds;

8

9 /* prompt user for source-function width and delay. */

4.7. IMPROVEMENT NUMBER TWO 99

10 void ezIncInit(Grid *g){

11

12 cdtds = Cdtds;

13 printf("Enter temporal delay [number of time steps to peak]: ");

14 scanf(" %lf", &delay);

15 printf("Enter width [time steps between peak and 1/e]: ");

16 scanf(" %lf", &width);

17

18 return;

19 }

20

21 /* calculate source function at given time and location */

22 double ezInc(double time, double location) {

23 if (width <= 0) {

24 fprintf(stderr,

25 "ezInc: must call ezIncInit before ezInc.\n"

26 " Width must be positive.\n");

27 exit(-1);

28 }

29 return exp(-pow((time - delay - location / cdtds) / width, 2));

30 }

In Program 4.15 the variable width is used to determine if initialization has been done.

width is initialized to zero when it is declared in line 7. If it is not positive when ezInc()

is called, an error message is printed and the program terminates. In practice one should check that

all the parameters have been set to reasonable values, but here we only check the width.

The private variable cdtds declared in line 7 is distinct from Cdtds which the preprocessor

expands to g->cdtds. That is to say the Courant number cdtds that is an element within the

Grid is different from the private variable cdtds in this file. But, of course, we want these values

to be the same and line 12 assures this.

The header file to accompany ezInc2.c is shown in Program ezInc2.h. As well as provid-

ing the necessary function prototypes, this file ensures the inclusion of fdtd2.h (which provides

the description a Grid structure).

Program 4.16 ezInc2.h: Header file that accompanies ezInc2.c and is also included in the

file that specifies main() (i.e., the file improved2.c.

1 /* Header file to accompany ezInc2.c. */

2

3 #ifndef _EZINC2_H

4 #define _EZINC2_H

5

6 #include <math.h>

7 #include <stdio.h>

8 #include <stdlib.h>

100 CHAPTER 4. IMPROVING THE FDTD CODE

9 #include "fdtd2.h"

10

11 void ezIncInit(Grid *g);

12 double ezInc(double time, double location);

13

14 #endif /* matches #ifndef _EZINC2_H */

4.8 Compiling Modular Code

When a program is divided between multiple files it is typically not necessary to recompile every

file if there was a change in only some of them. Each source file can be compiled individually to an

“object file” or object code. An object file, by itself, is not executable. (To create executable code,

all the object code must be linked together.) To create an object file with the GNU C compiler, one

uses the -c flag. Thus, for example, to obtain the object file for ezInc2.c, one would issue a

command such as

gcc -Wall -O -c ezInc2.c

The flag -Wall means to show all warnings, while -O tells the compiler to optimize the code

(greater optimization can be obtained by instead using -O2 or -O3—the greater optimization

usually comes at the cost of slower compilation and larger object and executable files). When this

command is issued the compiler will create the object file ezInc2.o.

The object files for all the components of the program can be created separately by reissuing

commands similar to the one shown above, e.g.,

gcc -Wall -O -c ezInc2.c

gcc -Wall -O -c improved2.c

gcc -Wall -O -c update2.c

gcc -Wall -O -c gridInit2.c

These commands would create the object files ezInc2.o, improved2.o, update2.o, and

gridInit2.o. Alternatively, one can create all the object files at once using a command such as

gcc -Wall -O -c ezInc2.c improved2.c update2.c gridInit2.c

No matter how the object files are created, they need to be linked together to obtain an exe-

cutable. The command to accomplish this is

gcc ezInc2.o improved2.o update2.o gridInit2.o -lm -o improved2

The flag -lm tells the compiler to link to the math library** The -o flag allows one to specify the

name of the output/executable file, in this case improved2.

For small programs there is not much advantage to incremental compilation. However, as the

software increases in size and complexity, there may be a significant savings in time realized by

**On some systems this is necessary because of the math functions used in ezInc2.c. On other system this flag

may be unnecessary, but including it shouldn’t cause problems, some sytems my not require this flag.

4.9. IMPROVEMENT NUMBER THREE 101

recompiling only the code that has changed. For example, assume a change was made in the file

gridInit2.c but in no other. Also assume that the object code for each file has previously been

created. To obtain an executable that reflects this change one merely needs to recompile this one

file and then link the resulting object file to the others, i.e.,

gcc -Wall -O -c gridInit2.c

gcc ezInc2.o improved2.o update2.o gridInit2.o -lm -o improved2

The details of incremental compilations can actually be handled by utilities that detect the files

that need to be recompiled and react accordingly. Those who are interested in an example of such

a utility may be interested in the make utility which is available on most Unix-based machines.

Another helpful utility, which goes hand-in-hand with make is makedepend which sorts out

the dependence of all the source files on the header files. make is a rather old utility—going

back to the early days of Unix—and there are alternatives available such as SCons available from

www.scons.org.

4.9 Improvement Number Three

Now let us modularize the program that contained the matched lossy layer (Program 3.9). As

shown in Fig. 4.3, we will use separate functions for initializing the grid, taking snapshots, applying

the TFSF boundary, updating the grid, and applying the ABC. Additionally, the calculation of the

incident source function will be handled by a separate function. This source function will be called

by the function that implements the TFSF boundary, but no other. Each box in Fig. 4.3 represents a

separate file that contains one or more functions. The dashed lines indicate the inclusion of header

files and the heavy lines indicate function calls from one file to another.

The source code improved3.c which contains the main() function is shown in Program

4.17. Note that nearly all activities associated with the FDTD simulation are now done by separate

functions. main() merely serves to ensure that proper initialization is done and then implements

the time-stepping loop in which the various functions are called.

Program 4.17 improved3.c: Source code containing the main() function. Nearly all the

FDTD related activities have been relegated to separate functions which are called from main().

1 /* improved3.c: FDTD simulation where main() is primarily used to call

2 * other functions that perform the necessary operations. */

3

4 #include "fdtd3.h"

5

6 int main()

7 {

8 Grid *g;

9

10 ALLOC_1D(g, 1, Grid); // allocate memory for Grid

11

www.scons.org

102 CHAPTER 4. IMPROVING THE FDTD CODE

improved3.c

main()
fdtd3.h

ezInc3.h

ezInc3.c

ezIncInit()

ezInc()

update3.c

updateE3()

updateH3()

gridInit3.c

gridInit3()

tfsf.c

tfsfInit()

tfsfUpdate()

abc.c

abcInit()

abc()

snapshot.c

snapshotInit()

snapshot()

Figure 4.3: The files associated with the third improvement of the FDTD code. The header file

fdtd3.h is explicitly included in the source files to which it is joined by a dashed line. (Wherever

ezInc3.h appears it also ensures fdtd3.h is included.) The file improved3.c contains

the main() function but the initialization of the grid, the application of the absorbing boundary

condition, the calculation of the source function, the updating of the fields, and the taking of the

snapshots is no longer done in main(). Instead, other functions are called to accomplish these

tasks.

4.9. IMPROVEMENT NUMBER THREE 103

12 gridInit3(g); // initialize the grid

13 abcInit(g); // initialize ABC

14 tfsfInit(g); // initialize TFSF boundary

15 snapshotInit(g); // initialize snapshots

16

17 /* do time stepping */

18 for (Time = 0; Time < MaxTime; Time++) {

19 updateH3(g); // update magnetic field

20 tfsfUpdate(g); // correct field on TFSF boundary

21 abc(g); // apply ABC

22 updateE3(g); // update electric field

23 snapshot(g); // take a snapshot (if appropriate)

24 } // end of time-stepping

25

26 return 0;

27 }

We have any number of options in terms of how functions should be initialized or what argu-

ments they should be passed. Thus, one should not consider this code to be optimum in any way.

Rather this code is being used to illustrate implementation options.

As in the previous program, main() starts by defining a Grid pointer and allocating space for

the actual structure. Then, in lines 12–15, four initialization functions are called. gridInit3()

initializes the Grid (this will be discussed in more detail shortly). abcInit() handles any ini-

tialization associated with the ABC (as we will see, in this particular case there is nothing for this

initialization function to do). tfsfInit() initializes the TFSF boundary while snapshotInit()

does the necessary snapshot initialization. Following these initialization steps is the time-stepping

loop where the various functions are called that do the actual calculations.

The header fdtd3.h is shown in Program 4.18. Looking just at improved3.c you would

be unaware that the Grid structure has changed. However, four pointers have been added that

will contain the update-equation coefficients. As can be seen in lines 8 and 9 of Program 4.18,

these pointers are named ceze, cezh, chyh, and chye. Besides this and besides providing the

function prototypes for the new functions, this header file is largely the same as fdtd2.h.

Program 4.18 fdtd3.h: Header file to accompany improved3.c. Differences from fdtd2.h

are shown in dark red bold.

1 #ifndef _FDTD3_H

2 #define _FDTD3_H

3

4 #include <stdio.h>

5 #include <stdlib.h>

6

7 struct Grid {

8 double *ez, *ceze, *cezh;

104 CHAPTER 4. IMPROVING THE FDTD CODE

9 double *hy, *chyh, *chye;

10 int sizeX;

11 int time, maxTime;

12 double cdtds;

13 };

14

15 typedef struct Grid Grid;

16

17 /* macros for accessing arrays and such */

18 #define Hy(MM) g->hy[MM]

19 #define Chyh(MM) g->chyh[MM]

20 #define Chye(MM) g->chye[MM]

21

22 #define Ez(MM) g->ez[MM]

23 #define Ceze(MM) g->ceze[MM]

24 #define Cezh(MM) g->cezh[MM]

25

26 #define SizeX g->sizeX

27 #define Time g->time

28 #define MaxTime g->maxTime

29 #define Cdtds g->cdtds

30

31 /* memory allocation macro */

32 #define ALLOC_1D(PNTR, NUM, TYPE) \

33 PNTR = (TYPE *)calloc(NUM, sizeof(TYPE)); \

34 if (!PNTR) { \

35 perror("ALLOC_1D"); \

36 fprintf(stderr, \

37 "Allocation failed for " #PNTR ". Terminating...\n");\

38 exit(-1); \

39 }

40

41 /* Function prototypes */

42 void abcInit(Grid *g);

43 void abc(Grid *g);

44

45 void gridInit3(Grid *g);

46

47 void snapshotInit(Grid *g);

48 void snapshot(Grid *g);

49

50 void tfsfInit(Grid *g);

51 void tfsfUpdate(Grid *g);

52

53 void updateE3(Grid *g);

54 void updateH3(Grid *g);

55

4.9. IMPROVEMENT NUMBER THREE 105

56 #endif /* matches #ifndef _FDTD3_H */

The function gridInit3() is contained in the file gridInit3.c shown in Program 4.19.

Keep in mind that it does not matter what file names are—file names do not have to match the

contents of the file in any way, but, of course, it is best to use names that are descriptive of the

contents.

The preprocessor directives in lines 5–7 are simply to provide convenient names to the amount

of loss, the starting location of the lossy layer, and the relatively permittivity of the half space.

These parameters are the same as they were in Program 3.9.

Program 4.19 gridInit3.c: The gridInit3() function to initialize the Grid.

1 /* gridInit3.c: Function to initialize the Grid structure. */

2

3 #include "fdtd3.h"

4

5 #define LOSS 0.02

6 #define LOSS_LAYER 180 // node at which lossy layer starts

7 #define EPSR 9.0

8

9 void gridInit3(Grid *g) {

10 double imp0 = 377.0;

11 int mm;

12

13 SizeX = 200; // size of domain

14 MaxTime = 450; // duration of simulation

15 Cdtds = 1.0; // Courant number

16

17 ALLOC_1D(g->ez, SizeX, double);

18 ALLOC_1D(g->ceze, SizeX, double);

19 ALLOC_1D(g->cezh, SizeX, double);

20 ALLOC_1D(g->hy, SizeX - 1, double);

21 ALLOC_1D(g->chyh, SizeX - 1, double);

22 ALLOC_1D(g->chye, SizeX - 1, double);

23

24 /* set electric-field update coefficients */

25 for (mm = 0; mm < SizeX; mm++)

26 if (mm < 100) {

27 Ceze(mm) = 1.0;

28 Cezh(mm) = imp0;

29 } else if (mm < LOSS_LAYER) {

30 Ceze(mm) = 1.0;

31 Cezh(mm) = imp0 / EPSR;

32 } else {

33 Ceze(mm) = (1.0 - LOSS) / (1.0 + LOSS);

106 CHAPTER 4. IMPROVING THE FDTD CODE

34 Cezh(mm) = imp0 / EPSR / (1.0 + LOSS);

35 }

36

37 /* set magnetic-field update coefficients */

38 for (mm = 0; mm < SizeX - 1; mm++)

39 if (mm < LOSS_LAYER) {

40 Chyh(mm) = 1.0;

41 Chye(mm) = 1.0 / imp0;

42 } else {

43 Chyh(mm) = (1.0 - LOSS) / (1.0 + LOSS);

44 Chye(mm) = 1.0 / imp0 / (1.0 + LOSS);

45 }

46

47 return;

48 }

Lines 13–15 set the size of the Grid, the duration of the simulation, and the Courant number.

Lines 17–22 allocate the necessary memory for the various arrays. The coefficient arrays are then

set as they were in Program 3.9.

The functions to update the electric and magnetic fields, i.e., updateE3() and updateH3()

are contained in the file update3.c. The contents of this file are shown in Program 4.20. The

functions are largely unchanged from those that appeared in Program 4.13. The only significant

differences are the appearance of the coefficient arrays in the update equations that start on lines

10 and 21.

Program 4.20 update3.c: Functions to update the electric and magnetic fields.

1 /* update3.c: Functions to update the electric and magnetic fields. */

2

3 #include "fdtd3.h"

4

5 /* update magnetic field */

6 void updateH3(Grid *g) {

7 int mm;

8

9 for (mm = 0; mm < SizeX - 1; mm++)

10 Hy(mm) = Chyh(mm) * Hy(mm) +

11 Chye(mm) * (Ez(mm + 1) - Ez(mm));

12

13 return;

14 }

15

16 /* update electric field */

17 void updateE3(Grid *g) {

18 int mm;

4.9. IMPROVEMENT NUMBER THREE 107

19

20 for (mm = 1; mm < SizeX - 1; mm++)

21 Ez(mm) = Ceze(mm) * Ez(mm) +

22 Cezh(mm) * (Hy(mm) - Hy(mm - 1));

23

24 return;

25 }

The function to apply the absorbing boundary conditions is rather trivial and is shown in Pro-

gram 4.21. Also shown in Program 4.21 is the initialization function abcInit(). In this partic-

ular case the ABC is so simple that there is no initialization that needs to be done and hence this

function simply returns. In Chap. 6 we will begin to consider more sophisticated ABC’s that do

indeed require some initialization. Thus, this call to the initialization function is done in anticipa-

tion of that. As was the case in Program 3.9, the ABC is only applied to the left side of the grid.

The right side of the grid is terminated with a lossy layer.

Program 4.21 abc.c: Absorbing boundary condition used by improved3.c. For this partic-

ular simple ABC there is nothing for the initialization function to do and hence it simply returns.

1 /* abc.c: Functions to terminate left side of grid. */

2

3 #include "fdtd3.h"

4

5 // Initialize the ABC -- in this case, there is nothing to do.

6 void abcInit(Grid *g) {

7

8 return;

9 }

10

11 // Apply the ABC -- in this case, only to the left side of grid.

12 void abc(Grid *g) {

13

14 /* simple ABC for left side of grid */

15 Ez(0) = Ez(1);

16

17 return;

18 }

The code associated with the TFSF boundary is shown in Program 4.22. Line 7 declares a

static global variable tfsfBoundary which specifies the location of the TFSF boundary. This

variable is initialized to zero with the understanding that when the code is initialized it will be set

to some meaningful (positive) value.

108 CHAPTER 4. IMPROVING THE FDTD CODE

Program 4.22 tfsf.c: Code to implement the TFSF boundary.

1 /* tfsf.c Functions to implement a 1D TFSF boundary. */

2

3 #include <math.h>

4 #include "fdtd3.h"

5 #include "ezInc3.h"

6

7 static int tfsfBoundary = 0; // location of TFSF boundary

8

9 void tfsfInit(Grid *g) {

10

11 printf("Enter location of TFSF boundary: ");

12 scanf(" %d", &tfsfBoundary);

13

14 ezIncInit(g); // initialize source function

15

16 return;

17 }

18

19 void tfsfUpdate(Grid *g) {

20 /* check if tfsfInit() has been called */

21 if (tfsfBoundary <= 0) {

22 fprintf(stderr,

23 "tfsfUpdate: tfsfInit must be called before tfsfUpdate.\n"

24 " Boundary location must be set to positive value.\n");

25 exit(-1);

26 }

27

28 /* correct Hy adjacent to TFSF boundary */

29 Hy(tfsfBoundary) -= ezInc(Time, 0.0) * Chye(tfsfBoundary);

30

31 /* correct Ez adjacent to TFSF boundary */

32 Ez(tfsfBoundary + 1) += ezInc(Time + 0.5, -0.5);

33

34 return;

35 }

The initialization function tfsfInit() begins on line 9. The user is prompted to enter the

location of the TFSF boundary. Then the initialization function for the source ezIncInit() is

called to set the parameters that control the shape of the pulse.

The code to calculate the source function, i.e., the functions ezIncInit() and ezInc()

is identical to that shown in Program 4.15. However, there would be one slight change to the file:

instead of including ezInc2.h, line 4 of Program 4.15 would be changed to include ezInc3.h.

We assume this modified program is in the file ezInc3.c which is not shown. The header file

ezInc3.h would be nearly identical to the code shown in Program 4.16 except the “2” in lines 3,

4.9. IMPROVEMENT NUMBER THREE 109

4, and 9, would be changed to “3” (thus ensuring the proper inclusion of the header file fdtd3.h

instead of fdtd2.h). Again, since this is such a minor change, the contents of ezInc3.h are

not shown.

The function tfsfUpdate() which begins on line 19 is called once every time-step. This

function applies the necessary correction to the nodes adjacent to the TFSF boundary. Because of

the implicit timing within this file, this function needs to be called after the magnetic-field update,

but before the electric-field update. The function first checks that the boundary location is positive.

If it is not, an error message is printed and the program terminates, otherwise the fields adjacent to

the boundary are corrected.

Finally, the code associated with taking snapshots of the field is shown in Program 4.23.

snapshotInit() allows the user to specify the time at which snapshots should start, the tem-

poral stride between snapshots, the node at which a snapshot should start, the node at which it

should end, the spatial stride between nodes, and the base name of the output files. Assuming the

user entered a base name of sim, then, as before, the output files would be named sim.0, sim.1,

sim.2, and so on. If the user said the startTime is 105 and the temporalStride is 10, then

snapshots would be taken at time-steps 105, 115, 125, and so on. Similarly, if the user specified

that the startNode and endNode are 0 and 180, respectively, and the spatialStride is 1,

then the value of every electric field node between 0 and 180, inclusive, would be recorded to the

snapshot file. If the spatialStride were 2, every other node would be recorded. If it were

3, every third node would be recorded. (Because of this, the endNode only corresponds to the

actual last node in the snapshot file if its offset from the startNode is an even multiple of the

spatial stride.)

Program 4.23 snapshot.c: Code for taking snapshots of the electric field.

1 /* snapshot.c: Functions for taking snapshots of a 1D grid. */

2

3 #include "fdtd3.h"

4

5 static int temporalStride = 0, spatialStride, startTime,

6 startNode, endNode, frame = 0;

7 static char basename[80];

8

9 void snapshotInit(Grid *g) {

10

11 printf("For the snapshots:\n");

12 printf(" Duration of simulation is %d steps.\n", MaxTime);

13 printf(" Enter start time and temporal stride: ");

14 scanf(" %d %d", &startTime, &temporalStride);

15 printf(" Grid has %d total nodes (ranging from 0 to %d).\n",

16 SizeX, SizeX-1);

17 printf(" Enter first node, last node, and spatial stride: ");

18 scanf(" %d %d %d", &startNode, &endNode, &spatialStride);

19 printf(" Enter the base name: ");

20 scanf(" %s", basename);

110 CHAPTER 4. IMPROVING THE FDTD CODE

21

22 return;

23 }

24

25 void snapshot(Grid *g) {

26 int mm;

27 char filename[100];

28 FILE *snapshot;

29

30 /* ensure temporal stride set to a reasonable value */

31 if (temporalStride <= 0) {

32 fprintf(stderr,

33 "snapshot: snapshotInit must be called before snapshot.\n"

34 " Temporal stride must be set to positive value.\n");

35 exit(-1);

36 }

37

38 /* get snapshot if temporal conditions met */

39 if (Time >= startTime &&

40 (Time - startTime) % temporalStride == 0) {

41 sprintf(filename, "%s.%d", basename, frame++);

42 snapshot = fopen(filename, "w");

43 for (mm = startNode; mm <= endNode; mm += spatialStride)

44 fprintf(snapshot, "%g\n", Ez(mm));

45 fclose(snapshot);

46 }

47

48 return;

49 }

As shown in line 9, snapshotInit() takes a single argument, a pointer to a Grid structure.

This function prompts the user to set the appropriate snapshot control values. The snapshot files

themselves are created by the function snapshot() which starts on line 25. This function starts

by checking that the temporal stride has been set to a reasonable value. If not, an error message

is printed and the program terminates. The program then checks if time is greater than or equal

to startTime and the difference between the current time and the startTime is a multiple of

temporalStride. If not, the function returns. If those conditions are met, then, as we have

seen before, a snapshot file is written and the frame counter is advanced. However, now there

is some control over which nodes are actually written. Note that the function snapshot() is

called every time-step. We could easily have checked in the main() function if the time-step

was such that a snapshot should be generated and only then called snapshot(). Reasons for

adopting either approach could be made but be aware that the overhead for calling a function is

typically small. Thus, the savings realized by calling snapshot() less often (but still ultimately

generating the same number of snapshots) is likely to be trivial. The approach used here keeps all

the snapshot-related data in the snapshot code itself.

After compiling all this code (and linking it), the executable will produce the same results as

4.9. IMPROVEMENT NUMBER THREE 111

were obtained from Program 3.9 (assuming, of course, the user enters the same parameters as

were used in Program 3.9). With the new version of the code there are several improvements we

could potentially use to our advantage. Assume, for instance, we wanted to do simulations of

two different scenarios. We could create two Grid structures, one for each scenario. Each grid

would have its own gridInit() function, but other than that all the code could be used by either

grid. The update functions could be applied, without any modification, to any grid. The snapshot

function could be applied to any grid, and so on.

112 CHAPTER 4. IMPROVING THE FDTD CODE

