
Chapter 8

Two-Dimensional FDTD Simulations

8.1 Introduction

One of the truly compelling features of the FDTD method is that the simplicity the method enjoys

in one dimension is largely maintained in higher dimensions. The complexity of other numerical

techniques often increases substantially as the number of dimensions increases. With the FDTD

method, if you understand the algorithm in one dimension, you should have no problem under-

standing the basic algorithm in two or three dimensions. Nevertheless, introducing additional

dimensions has to come at the price of some additional complexity.

This chapter provides details concerning the implementation of two-dimensional simulations

with either the magnetic field or the electric field orthogonal to the normal to the plane of propa-

gation, i.e., TMz or TEz polarization, respectively. Multidimensional simulations require that we

think in terms of a multidimensional grid and thus we require multidimensional arrays to store the

fields. Since we are primarily interested in writing programs in C, we begin with a discussion of

multidimensional arrays in the C language.

8.2 Multidimensional Arrays

Whether an array is one-, two-, or three-dimensional, it ultimately is using a block of contiguous

memory where each element has a single address. The distinction between the different dimensions

is primarily a question of how we want to think about, and access, array elements. For higher-

dimensional arrays, we want to specify two, or more, indices to dictate the element of interest.

However, regardless of the number of indices, ultimately a single address dictates which memory

is being accessed. The translation of multiple indices to a single address can be left to the compiler

or that translation is something we can do ourselves.

The code shown in Fragment 8.1 illustrates how one can think and work with what is effec-

tively a two-dimensional array even though the memory allocation is essentially the same as was

used with the one-dimensional array considered in Fragment 4.1. In Fragment 8.1 the user is

prompted to enter the desired number of rows and columns which are stored in num rows and

num columns, respectively. In line 8 the pointer ez is set to the start of a block of memory

†Lecture notes by John Schneider. fdtd-multidimensional.tex
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which can hold num rows × num columns doubles. Thus sufficient space is available to store

the desired number of rows and columns, but this pointer is dereferenced with a single index (or

offset).

Fragment 8.1 Fragment of code demonstrating the construction of a two-dimensional array.

1 #define Ez(I, J) ez[(I) * num_columns + (J)]

...

2 double *ez;

3 int num_rows, num_columns, m, n;

4

5 printf("Enter the number of row and columns: ");

6 scanf("%d %d", &num_rows, &num_columns);

7

8 ez = calloc(num_rows * num_columns, sizeof(double));

9

10 for (m=0; m < num_rows; m++)

11 for (n=0; n < num_columns; n++)

12 Ez(m, n) = m * n;

In this code the trick to thinking and working in two dimensions, i.e., working with two indices

instead of one, is the macro which is shown in line 1. This macro tells the preprocessor that

every time the string Ez appears with two arguments—here the first argument is labeled I and the

second argument is labeled J—the compiler should translate that to ez[(I) * num columns

+ (J)]. Note the uppercase E in Ez distinguishes this from the pointer ez. I and J in the

macro are just dummy arguments. They merely specify how the first and second arguments should

be used in the translated code. Thus, if Ez(2, 3) appears in the source code, the macro tells

the preprocessor to translate that to ez[(2) * num columns + (3)]. In this way we have

specified two indices, but the macro translates those indices into an expression which evaluates

to a single number which represents the offset into a one-dimensional array (the array ez). Even

though Ez is technically a macro, we will refer to it as an array. Note that, as seen in line 12, Ez’s

indices are enclosed in parentheses, not brackets.

To illustrate this further, assume the user specified that there are 4 columns (num columns is

4) and 3 rows. When the row number increments by one, that corresponds to moving 4 locations

forward in memory. The following shows the arrangement of the two-dimensional array Ez(m,

n) where m is used for the row index and n is used for the column index.

n=0 n=1 n=2 n=3

m=0 Ez(0, 0) Ez(0, 1) Ez(0, 2) Ez(0, 3)

m=1 Ez(1, 0) Ez(1, 1) Ez(1, 2) Ez(1, 3)

m=2 Ez(2, 0) Ez(2, 1) Ez(2, 2) Ez(2, 3)

The Ez array really corresponds to the one-dimensional ez array. The macro calculates the index

for the ez array based on the arguments (i.e., indices) of the Ez array. The following shows the

same table of values, but in terms of the ez array.
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n=0 n=1 n=2 n=3

m=0 ez[0] ez[1] ez[2] ez[3]

m=1 ez[4] ez[5] ez[6] ez[7]

m=2 ez[8] ez[9] ez[10] ez[11]

Again, in this example, when the row is incremented by one, the array index is incremented by 4
(which is the number of columns). This is due to the fact that we are storing the elements by rows.

An entire row of values is stored, then the next row, and so on. Each row contains num columns

elements.

Instead of storing things by rows, we could have easily employed “column-centric storage”

where an entire column is stored contiguously. This would be accomplished by using the macro

#define Ez(I, J) ez[(I) + (J) * num_rows]

This would be used instead of line 1 in Fragment 8.1. If this were used, each time the row is

incremented by one the index of ez is incremented by one. If the column is incremented by one,

the index of ez would be incremented by num rows. In this case the elements of the ez array

would correspond to elements of the Ez array as shown below:

n=0 n=1 n=2 n=3

m=0 ez[0] ez[3] ez[6] ez[9]

m=1 ez[1] ez[4] ez[7] ez[10]

m=2 ez[2] ez[5] ez[8] ez[11]

Note that when the row index is incremented by one, the index of ez is also incremented by

one. However, when the column is incremented by one, the index of ez is incremented by 3,

which is the number of rows. This type of column-centric storage is used in FORTRAN. However,

multidimensional arrays in C are generally assumed to be stored in row-order. Thus column-

centric storage will not be considered further and we will use row-centric macros similar to the

one presented in Fragment 8.1.

When an array is stored by rows, it is most efficient to access the array one row at a time—not

one column at a time. Lines 10 through 12 of Fragment 8.1 demonstrate this by using two loops to

set the elements of Ez to the product of the row and column indices. The inner loop is over the row

and the outer loop sets the column. This is more efficient than if these loops were interchanged

(although there is likely to be no difference for small arrays). This is a consequence of the way

memory is stored both on the disk and in the CPU cache.

Memory is accessed in small chunks known as pages. If the CPU needs access to a certain

variable that is not already in the cache, it will generate a page fault (and servicing a page fault

takes more time than if the variable were already in the cache). When the page gets to the cache

it contains more than just the variable the CPU wanted—it contains other variables which were

stored in memory adjacent to the variable of interest (the page may contain many variables). If the

subsequent CPU operations involve a variable that is already in the cache, that operation can be

done very quickly. It is most likely that that variable will be in the cache, and the CPU will not

have to generate a page fault, if that variable is adjacent in memory to the one used in the previous

operation. Thus, assuming row-centric storage, working with arrays row-by-row is the best way to

avoid needless page faults.

It is important to note that we should not feel constrained to visualize our arrays in terms of the

standard way in which arrays are displayed! Typically two-dimensional arrays are displayed in a
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table with the first element in the upper, left-hand corner of the table. The first index gives the row

number and the second index gives the column number. FDTD simulations are modeling a physical

space, not a table of numbers. In two dimensions we will be concerned with spatial dimensions x
and y. It is convention to give the x location as the first argument and the y location as the second

argument, i.e., Ez(x, y). It is also often the case that it is convenient to think of the lower left-hand

corner of some finite rectangular region of space as the origin. It is perfectly acceptable to use

the array mechanics which have been discussed so far but to imagine them corresponding to an

arrangement in space which corresponds to our usual notion of variation in the x and y directions.

So, for example, in the case of a 3 by 4 array, one can visualize the nodes as being arranged in the

following way:

n=3 Ez(0,3) Ez(1,3) Ez(2,3) n=3 ez[3] ez[7] ez[11]

n=2 Ez(0,2) Ez(1,2) Ez(2,2) n=2 ez[2] ez[6] ez[10]

n=1 Ez(0,1) Ez(1,1) Ez(2,1) ⇐⇒ n=1 ez[1] ez[5] ez[9]

n=0 Ez(0,0) Ez(1,0) Ez(2,0) n=0 ez[0] ez[4] ez[8]

m=0 m=1 m=2 m=0 m=1 m=2

Nothing has changed in terms of the implementation of the macro to realize this two-dimensional

array—the only difference is the way the elements have been displayed. The depiction here is

natural when thinking in terms of variations in x and y, where the first index corresponds to x and

the second index corresponds to y. The previous depiction was natural to the way most people

discuss tables of data. Regardless of how we think of the arrays, it is still true that the second index

is the one that should vary most rapidly in the case of nested loops (i.e., one should strive to have

consecutive operations access consecutive elements in memory).

As mentioned in Sec. 4.2, it is always best to check that an allocation of memory was success-

ful. If calloc() is unable to allocated the requested memory, it will return NULL. After every

allocation we could add code to check that the request was successful. However, as we did in

one-dimension, a better approach is again offered with the use of macros. Fragment 8.2 shows a

macro that can be used to allocate memory for a two-dimensional array.

Fragment 8.2 Macro for allocating memory for a two-dimensional array.

1 #define ALLOC_2D(PNTR, NUMX, NUMY, TYPE) \

2 PNTR = (TYPE *)calloc((NUMX) * (NUMY), sizeof(TYPE)); \

3 if (!PNTR) { \

4 perror("ALLOC_2D"); \

5 fprintf(stderr, \

6 "Allocation failed for " #PNTR ". Terminating...\n");\

7 exit(-1); \

8 }

The macro ALLOC 2D() is similar to ALLOC 1D(), which was presented in Fragment 4.2, except

it takes four arguments instead of three. The first argument is a pointer, the second is the number

of rows, the third is the number of columns, and the fourth is the data type. As an example of how

this macro could be used, line 8 of Fragment 8.1 could be replaced with
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ALLOC_2D(ez, num_rows, num_columns, double);

8.3 Two Dimensions: TMz Polarization

The one-dimensional problems considered thus far assumed a non-zero z component of the electric

field and variation only in the x direction. This required the existence of a non-zero y component

of the magnetic field. Here the field is assumed to vary in both the x and y directions, but not the

z direction. From the outset we will include the possibility of a magnetic conductivity σm. With

these assumptions Faraday’s law becomes
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Since the right-hand side only has non-zero components in the x and y directions, the time-varying

components of the magnetic field can only have non-zero x and y components (we are not con-

cerned with static fields nor a rather pathological case where the magnetic current σmH cancels

the time-varying field ∂H/∂t). The magnetic field is transverse to the z direction and hence this is

designated the TMz case. Ampere’s law becomes
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The scalar equations obtained from (8.1) and (8.2) are

−σmHx − µ
∂Hx

∂t
=

∂Ez

∂y
, (8.3)

σmHy + µ
∂Hy

∂t
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, (8.4)

σEz + ϵ
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=

∂Hy

∂x
− ∂Hx

∂y
. (8.5)

Note that, ignoring the conduction terms for a moment, the temporal derivative of the magnetic

field is related to the spatial derivative of the electric field and vice versa. The only difference

from the one-dimensional case is the additional field component Hx and the derivatives in the y
direction.

Space-time is now discretized so that (8.3)–(8.5) can be expressed in terms of finite-differences.

From these difference equations the future fields can be expressed in terms of past fields. Consis-

tent with the notation used in Sec. 3.3, the following notation will be used:

Hx(x, y, t) = Hx(m∆x, n∆y, q∆t) = Hq
x[m,n] , (8.6)

Hy(x, y, t) = Hy(m∆x, n∆y, q∆t) = Hq
y [m,n] , (8.7)

Ez(x, y, t) = Ez(m∆x, n∆y, q∆t) = Eq
z [m,n] . (8.8)
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As before, the index m corresponds to the spatial step in the x direction while the index q corre-

sponds to the temporal step. Additionally the index n represents the spatial step in the y direction.

The spatial step sizes in the x and y directions are ∆x and ∆y, respectively (these need not be

equal).

In order to obtain the necessary update-equations, each of the field components must be stag-

gered in space. However, it is not necessary to stagger all the field components in time. The electric

field must be offset from the magnetic field, but the magnetic field components do not need to be

staggered relative to each other—all the magnetic field components can exist at the same time. A

suitable spatial staggering of the electric and magnetic field components is shown in Fig. 8.1.

When we say the dimensions of a TMz grid is M × N , that corresponds to the dimensions

of the Ez array. We will ensure the grid is terminated such that there are electric-field nodes on

the edge of the grid. Thus, the Hx array would by M × (N − 1) while the Hy array would be

(M − 1)×N .

In the arrangement of nodes shown in Fig. 8.1 we will assume the electric field nodes fall at

integer spatial steps and the magnetic field nodes are offset a half spatial step in either the x or y
direction. For a given value of the indices m and n, there is a corresponding Ez, Hx, and Hy. We

will sometimes refer to this collection of fields for a fixed value of m and n as a “cell” as indicated

by the dashed enclosures in Fig. 8.1. For a uniform grid where ∆x = ∆y = δ, we will sometimes

use the term “cell” synonomously with the spatial step size. Thus, a statement such as “20 cells

wide” is taken to be a width of 20δ.

As in the one dimensional grid, the electric field is assumed to exist at integer multiples of the

temporal step while both magnetic fields components are offset a half time-step from the electric

fields. With this arrangement in mind, the finite difference approximation of (8.3) expanded about

the space-time point (m∆x, (n+ 1/2)∆y, q∆t) is
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This can be solved for the future value H
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in terms of the “past” values. The resulting

update equation is
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(8.10)

As was the case in one dimension, the material parameters µ and σm are those which pertain at the

given evaluation point.

The update equation for the y component of the magnetic field is obtained by the finite-

difference approximation of (8.4) expanded about the space-time point ((m+1/2)∆x, n∆y, q∆t).
The resulting equation is
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(8.11)
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Figure 8.1: Spatial arrangement of electric- and magnetic-field nodes for TMz polarization. The

electric-field nodes are shown as circles and the magnetic-field nodes as squares with a line that

indicates the orientation of the field component. The somewhat triangularly shaped dashed lines

indicate groupings of nodes that have the same array indices, i.e., a “cell.” For example, in the lower

left corner of the grid all the nodes would have indices in a computer program of (m = 0, n = 0).
In this case the spatial offset of the fields is implicitly understood. This grouping is repeated

throughout the grid. However, groups at the top of the grid lack an Hx node and groups at the

right edge lack an Hy node. The diagram at the bottom left of the figure indicates nodes with their

offsets given explicitly in the spatial arguments whereas the diagram at the bottom right indicates

how the same nodes would be specified in a computer program where the offsets are understood

implicitly.
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Again, the material parameters µ and σm are those which pertain at the given evaluation point.

Note that Hy nodes are offset in space from Hx nodes. Hence the µ and σm appearing in (8.10)

and (8.11) are not necessarily the same even when m and n are the same.

The electric-field update equation is obtained via the finite-difference approximation of (8.5)

expanded about (m∆x, n∆y, (q + 1/2)∆t):
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A uniform grid is one in which the spatial step size is the same in all directions. Assuming a

uniform grid such that ∆x = ∆y = δ, we define the following quantities
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These quantities appear in the update equations and employ the following naming convention: the

first letter identifies the quantity as a constant which does not vary in time (one can also think of

this C as representing the word coefficient), the next two letters indicate the field being updated,

and the last letter indicates the type of field this quantity multiplies. For example, Chxh appears in

the update equation for Hx and it multiplies the previous value of the magnetic field. On the other

hand, Chxe , which also appears in the update equation for Hx, multiplies the electric fields.

To translate these update equations into a form that is suitable for use in a computer program,

we follow the approach that was used in one dimension: explicit references to the time step are

dropped and the spatial offsets are understood. As illustrated in Fig. 8.1, an Hy node is assumed

to be a half spatial step further in the x direction than the corresponding Ez node with the same

indices. Similarly, an Hx node is assumed to be a half spatial step further in the y direction than the

corresponding Ez node with the same indices. Thus, in C, the update equations could be written

Hx(m, n) = Chxh(m, n) * Hx(m, n) -
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Chxe(m, n) * (Ez(m, n + 1) - Ez(m, n));

Hy(m, n) = Chyh(m, n) * Hy(m, n) +

Chye(m, n) * (Ez(m + 1, n) - Ez(m, n));

Ez(m, n) = Ceze(m, n) * Ez(m, n) +

Cezh(m, n) * ((Hy(m, n) - Hy(m - 1, n)) - (Hx(m, n) - Hx(m, n - 1)));

The reason that the “arrays” appearing in these equations start with an uppercase letter and use

parentheses (instead of two pairs of brackets that would be used with traditional two-dimensional

arrays in C) is because these terms are actually macros consistent with the usage described in

Sec. 8.2. In order for these equations to be useful, they have to be contained within loops that

cycle over the spatial indices and these loops must themselves be contained within a time-stepping

loop. Additional considerations are initialization of the arrays, the introduction of energy, and

termination of the grid. This issues are covered in the following sections.

8.4 TMz Example

To illustrate the simplicity of the FDTD method in two dimensions, let us consider a simulation of a

TMz grid which is 101 nodes by 81 nodes and filled with free space. The grid will be terminated on

electric field nodes which will be left at zero (so that the simulation is effectively of a rectangular

resonator with PEC walls). A Ricker wavelet with 20 points per wavelength at its most energetic

frequency is hardwired to the electric-field node at the center of the grid.

Before we get to the core of the code, we are now at a point where it is convenient to split the

main header file into multiple header files: one defining the Grid structure, one defining various

macros, one giving the allocation macros, and one providing the function prototypes. Not all the

“.c” files need to include each of these header files.

The arrangement of the code is shown in Fig. 8.2. In this figure the header files fdtd-grid1.h,

fdtd-alloc1.h, fdtd-macro-tmz.h, and fdtd-proto1.h are shown in a single box

but they exist as four separate files (as will be shown below).

The contents of fdtd-grid1.h are shown in Program 8.3. The Grid structure, which

begins on line 6, now has elements for any of the possible electric or magnetic field components as

well as their associated coefficient arrays. Note that just because all the pointers are declared, they

do not have to be used or point to anything useful. The Grid structure shown here could be used

for a 1D simulation—it provides elements for everything that was needed to do a 1D simulation—

but most of the pointers would be unused, i.e., those elements that pertain to anything other than a

1D simulation would be ignored.

The way we will distinguish between what different grids are being used for is by setting the

“type” field of the grid. Note that line 4 creates a GRIDTYPE enumeration. This command

merely serves to set the value of oneDGrid to zero, the value of teZGrid to one, and the value

of tmZGrid to two. (The value of threeDGrid would be three, but we are not yet concerned

with three-dimensional grids.) A Grid will have its type set to one of these values. Functions

can then check the type and act accordingly.

Program 8.3 fdtd-grid1.h: Contents of the header file that defines the Grid structure. This

structure now contains pointers for each of the possible field values. However, not all these pointers
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tmzdemo1.c

main()

fdtd-proto1.h

ezinc.h

ricker.c

ezIncInit()

ezInc()

updatetmz.c

updateE2d()

updateH2d()

gridtmz.c

gridInit()

snapshot2d.c

snapshotInit2d()

snapshot2d()

fdtd-alloc1.h

fdtd-macro-tmz.h

fdtd-grid1.h

Figure 8.2: The files associated with a simple TMz simulation with a hard source at the center of

the grid. The four header files with an fdtd- prefix are lumped into a single box. Not all these

files are included in each of the files to which this box is linked. See the code for the specifics

related to the inclusion of these files.
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would be used for any particular grid. The pointers that are meaningful would be determined by

the “type” of the grid. The type takes on one of the values of the GRIDTYPE enumeration.

1 #ifndef _FDTD_GRID1_H

2 #define _FDTD_GRID1_H

3

4 enum GRIDTYPE {oneDGrid, teZGrid, tmZGrid, threeDGrid};

5

6 struct Grid {

7 double *hx, *chxh, *chxe;

8 double *hy, *chyh, *chye;

9 double *hz, *chzh, *chze;

10 double *ex, *cexe, *cexh;

11 double *ey, *ceye, *ceyh;

12 double *ez, *ceze, *cezh;

13 int sizeX, sizeY, sizeZ;

14 int time, maxTime;

15 int type;

16 double cdtds;

17 };

18

19 typedef struct Grid Grid;

20

21 #endif

The contents of fdtd-alloc1.h are shown in Program 8.4. This header file merely provides

the memory-allocation macros that have been discussed previously.

Program 8.4 fdtd-alloc1.h: Contents of the header file that defines the memory allocation

macros suitable for 1D and 2D arrays.

1 #ifndef _FDTD_ALLOC1_H

2 #define _FDTD_ALLOC1_H

3

4 #include <stdio.h>

5 #include <stdlib.h>

6

7 /* memory allocation macros */

8 #define ALLOC_1D(PNTR, NUM, TYPE) \

9 PNTR = (TYPE *)calloc(NUM, sizeof(TYPE)); \

10 if (!PNTR) { \

11 perror("ALLOC_1D"); \

12 fprintf(stderr, \

13 "Allocation failed for " #PNTR ". Terminating...\n");\

14 exit(-1); \
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15 }

16

17 #define ALLOC_2D(PNTR, NUMX, NUMY, TYPE) \

18 PNTR = (TYPE *)calloc((NUMX) * (NUMY), sizeof(TYPE)); \

19 if (!PNTR) { \

20 perror("ALLOC_2D"); \

21 fprintf(stderr, \

22 "Allocation failed for " #PNTR ". Terminating...\n");\

23 exit(-1); \

24 }

25

26 #endif

The contents of fdtd-macro-tmz.h are shown in Program 8.5. This file provides the

macros used to access the field arrays and elements of a pointer to a Grid structure. Thus far all

the macros we have used assumed the Grid pointer was called g. The macros provided in lines

8–35 no longer make this assumption. Instead, one specifies the name of the pointer as the first

argument. To this point in our code there is no need for this added degree of freedom. We only

considered code that has one pointer to a Grid and we have consistently named it g. However,

as we will see when we discuss the TFSF boundary, it is convenient to have the ability to refer to

different grids.

The macros in lines 39–66 do assume the Grid pointer is named g. These macros are actually

defined in terms of the first set of macros, i.e., the macros in 8–35, where the first argument has

been set to g. This is merely done to provide a cleaner way of writing a program if, in fact, the

Grid pointer is named g. Note that although we are discussing a 2D TMz problem, this file still

provides macros that can be used for a 1D array. Again, we will see, when we implement a 2D

TFSF boundary, there are valid reasons for doing this. Since any function that is using these macros

will also need to know about a Grid structure, line 4 ensures that the fdtd-grid1.h header

file is also included.

Program 8.5 fdtd-macro-tmz.h: Header file providing macros suitable for accessing the

elements and arrays of either a 1D or 2D Grid. There are two distinct sets of macros. The first set

(lines 8–35) takes an argument that specifies the name of the pointer to the Grid structure. The

second set (lines 39–66) assumes the name of the pointer is g.

1 #ifndef _FDTD_MACRO_TMZ_H

2 #define _FDTD_MACRO_TMZ_H

3

4 #include "fdtd-grid1.h"

5

6 /* macros that permit the "Grid" to be specified */

7 /* one-dimensional grid */

8 #define Hy1G(G, M) G->hy[M]

9 #define Chyh1G(G, M) G->chyh[M]



8.4. TM
z

EXAMPLE 193

10 #define Chye1G(G, M) G->chye[M]

11

12 #define Ez1G(G, M) G->ez[M]

13 #define Ceze1G(G, M) G->ceze[M]

14 #define Cezh1G(G, M) G->cezh[M]

15

16 /* TMz grid */

17 #define HxG(G, M, N) G->hx[(M) * (SizeYG(G)-1) + (N)]

18 #define ChxhG(G, M, N) G->chxh[(M) * (SizeYG(G)-1) + (N)]

19 #define ChxeG(G, M, N) G->chxe[(M) * (SizeYG(G)-1) + (N)]

20

21 #define HyG(G, M, N) G->hy[(M) * SizeYG(G) + (N)]

22 #define ChyhG(G, M, N) G->chyh[(M) * SizeYG(G) + (N)]

23 #define ChyeG(G, M, N) G->chye[(M) * SizeYG(G) + (N)]

24

25 #define EzG(G, M, N) G->ez[(M) * SizeYG(G) + (N)]

26 #define CezeG(G, M, N) G->ceze[(M) * SizeYG(G) + (N)]

27 #define CezhG(G, M, N) G->cezh[(M) * SizeYG(G) + (N)]

28

29 #define SizeXG(G) G->sizeX

30 #define SizeYG(G) G->sizeY

31 #define SizeZG(G) G->sizeZ

32 #define TimeG(G) G->time

33 #define MaxTimeG(G) G->maxTime

34 #define CdtdsG(G) G->cdtds

35 #define TypeG(G) G->type

36

37 /* macros that assume the "Grid" is "g" */

38 /* one-dimensional grid */

39 #define Hy1(M) Hy1G(g, M)

40 #define Chyh1(M) Chyh1G(g, M)

41 #define Chye1(M) Chye1G(g, M)

42

43 #define Ez1(M) Ez1G(g, M)

44 #define Ceze1(M) Ceze1G(g, M)

45 #define Cezh1(M) Cezh1G(g, M)

46

47 /* TMz grid */

48 #define Hx(M, N) HxG(g, M, N)

49 #define Chxh(M, N) ChxhG(g, M, N)

50 #define Chxe(M, N) ChxeG(g, M, N)

51

52 #define Hy(M, N) HyG(g, M, N)

53 #define Chyh(M, N) ChyhG(g, M, N)

54 #define Chye(M, N) ChyeG(g, M, N)

55

56 #define Ez(M, N) EzG(g, M, N)
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57 #define Ceze(M, N) CezeG(g, M, N)

58 #define Cezh(M, N) CezhG(g, M, N)

59

60 #define SizeX SizeXG(g)

61 #define SizeY SizeYG(g)

62 #define SizeZ SizeZG(g)

63 #define Time TimeG(g)

64 #define MaxTime MaxTimeG(g)

65 #define Cdtds CdtdsG(g)

66 #define Type TypeG(g)

67

68 #endif /* matches #ifndef _FDTD_MACRO_TMZ_H */

Finally, the contents of fdtd-proto1.h are shown in Program 8.6. This file provides the

prototypes for the various functions associated with the simulation. Since a pointer to a Grid

appears as an argument to these functions, any file that includes this header will also need to

include fdtd-grid1.h as is done in line 4.

Program 8.6 fdtd-proto1.h: Header file providing the function prototypes.

1 #ifndef _FDTD_PROTO1_H

2 #define _FDTD_PROTO1_H

3

4 #include "fdtd-grid1.h"

5

6 /* Function prototypes */

7 void gridInit(Grid *g);

8

9 void snapshotInit2d(Grid *g);

10 void snapshot2d(Grid *g);

11

12 void updateE2d(Grid *g);

13 void updateH2d(Grid *g);

14

15 #endif

The file tmzdemo1.c, which contains the main() function, is shown in Program 8.7. The

program begins with the inclusion of the necessary header files. Note that only three of the four

fdtd- header files are explicitly included. However, both the header files fdtd-macro-tmz.h

and fdtd-proto1.h ensure that the “missing” file, fdtd-grid1.h, is included.

Fields are introduced into the grid by hardwiring the value of an electric-field node as shown

in line 22. Because the source function is used in main(), the header file ezinc.h had to be

included in this file. Other than those small changes, this program looks similar to many of the 1D

programs which we have previously considered.
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Program 8.7 tmzdemo1.c: FDTD implementation of a TMz grid with a Ricker wavelet source

at the center of the grid. No ABC have been implemented so the simulation is effectively of a

resonator.

1 /* TMz simulation with Ricker source at center of grid. */

2

3 #include "fdtd-alloc1.h"

4 #include "fdtd-macro-tmz.h"

5 #include "fdtd-proto1.h"

6 #include "ezinc.h"

7

8 int main()

9 {

10 Grid *g;

11

12 ALLOC_1D(g, 1, Grid); // allocate memory for Grid

13

14 gridInit(g); // initialize the grid

15 ezIncInit(g);

16 snapshotInit2d(g); // initialize snapshots

17

18 /* do time stepping */

19 for (Time = 0; Time < MaxTime; Time++) {

20 updateH2d(g); // update magnetic field

21 updateE2d(g); // update electric field

22 Ez(SizeX / 2, SizeY / 2) = ezInc(Time, 0.0); // add a source

23 snapshot2d(g); // take a snapshot (if appropriate)

24 } // end of time-stepping

25

26 return 0;

27 }

The contents of gridtmz.c, which contains the grid initialization function gridInit(),

is shown in Program 8.8. On line 9 the type of grid is defined. This is followed by statements

which set the size of the grid, in both the x and y directions, the duration of the simulation, and

the Courant number. Then, on lines 15 through 23, space is allocated for the field arrays and

their associated coefficients array. Note that although the Ez array is SizeX×SizeY, Hx is

SizeX×(SizeY − 1), and Hy is (SizeX − 1)×SizeY. The remainder of the program merely

sets the coefficient arrays. Here there is no need to include the header file fdtd-proto1.h since

this function does not call any of the functions listed in that file.

Program 8.8 gridtmz.c: Grid initialization function for a TMz simulation. Here the grid is

simply homogeneous free space.
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1 #include "fdtd-macro-tmz.h"

2 #include "fdtd-alloc1.h"

3 #include <math.h>

4

5 void gridInit(Grid *g) {

6 double imp0 = 377.0;

7 int mm, nn;

8

9 Type = tmZGrid;

10 SizeX = 101; // x size of domain

11 SizeY = 81; // y size of domain

12 MaxTime = 300; // duration of simulation

13 Cdtds = 1.0 / sqrt(2.0); // Courant number

14

15 ALLOC_2D(g->hx, SizeX, SizeY - 1, double);

16 ALLOC_2D(g->chxh, SizeX, SizeY - 1, double);

17 ALLOC_2D(g->chxe, SizeX, SizeY - 1, double);

18 ALLOC_2D(g->hy, SizeX - 1, SizeY, double);

19 ALLOC_2D(g->chyh, SizeX - 1, SizeY, double);

20 ALLOC_2D(g->chye, SizeX - 1, SizeY, double);

21 ALLOC_2D(g->ez, SizeX, SizeY, double);

22 ALLOC_2D(g->ceze, SizeX, SizeY, double);

23 ALLOC_2D(g->cezh, SizeX, SizeY, double);

24

25 /* set electric-field update coefficients */

26 for (mm = 0; mm < SizeX; mm++)

27 for (nn = 0; nn < SizeY; nn++) {

28 Ceze(mm, nn) = 1.0;

29 Cezh(mm, nn) = Cdtds * imp0;

30 }

31

32 /* set magnetic-field update coefficients */

33 for (mm = 0; mm < SizeX; mm++)

34 for (nn = 0; nn < SizeY - 1; nn++) {

35 Chxh(mm, nn) = 1.0;

36 Chxe(mm, nn) = Cdtds / imp0;

37 }

38

39 for (mm = 0; mm < SizeX - 1; mm++)

40 for (nn = 0; nn < SizeY; nn++) {

41 Chyh(mm, nn) = 1.0;

42 Chye(mm, nn) = Cdtds / imp0;

43 }

44

45 return;

46 }
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The functions for updating the fields are contained in the file updatetmz.c which is shown

in Program 8.9. In line 7 the Type is checked (i.e., g->type is checked). If it is oneDGrid

then only the Hy field is updated and it only has a single spatial index. If the grid is not a 1D grid,

it is assumed to be a TMz grid. Thus, starting on line 12, Hx and Hy are updated and they now

have two spatial indices.

Program 8.9 updatetmz.c: Functions to update the fields. Depending on the type of grid, the

fields can be treated as either one- or two-dimensional.

1 #include "fdtd-macro-tmz.h"

2

3 /* update magnetic field */

4 void updateH2d(Grid *g) {

5 int mm, nn;

6

7 if (Type == oneDGrid) {

8 for (mm = 0; mm < SizeX - 1; mm++)

9 Hy1(mm) = Chyh1(mm) * Hy1(mm)

10 + Chye1(mm) * (Ez1(mm + 1) - Ez1(mm));

11 } else {

12 for (mm = 0; mm < SizeX; mm++)

13 for (nn = 0; nn < SizeY - 1; nn++)

14 Hx(mm, nn) = Chxh(mm, nn) * Hx(mm, nn)

15 - Chxe(mm, nn) * (Ez(mm, nn + 1) - Ez(mm, nn));

16

17 for (mm = 0; mm < SizeX - 1; mm++)

18 for (nn = 0; nn < SizeY; nn++)

19 Hy(mm, nn) = Chyh(mm, nn) * Hy(mm, nn)

20 + Chye(mm, nn) * (Ez(mm + 1, nn) - Ez(mm, nn));

21 }

22

23 return;

24 }

25

26 /* update electric field */

27 void updateE2d(Grid *g) {

28 int mm, nn;

29

30 if (Type == oneDGrid) {

31 for (mm = 1; mm < SizeX - 1; mm++)

32 Ez1(mm) = Ceze1(mm) * Ez1(mm)

33 + Cezh1(mm) * (Hy1(mm) - Hy1(mm - 1));

34 } else {

35 for (mm = 1; mm < SizeX - 1; mm++)
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36 for (nn = 1; nn < SizeY - 1; nn++)

37 Ez(mm, nn) = Ceze(mm, nn) * Ez(mm, nn) +

38 Cezh(mm, nn) * ((Hy(mm, nn) - Hy(mm - 1, nn)) -

39 (Hx(mm, nn) - Hx(mm, nn - 1)));

40 }

41

42 return;

43 }

The function for updating the electric field, updateE2d(), only is responsible for updating

the Ez field. However, as shown in line 30, it still must check the grid type. If this is a 1D grid, Ez

only has a single spatial index and only depends on Hy. If it is not a 1D grid, it is assumed to be a

TMz grid and Ez now depends on both Hx and Hy.

The function to implement the Ricker wavelet is shown in Program 8.10. The header file

ezinc.h is virtually unchanged from Program 4.16. The one minor change is that instead of in-

cluding fdtd2.h, now the file fdtd-macro-tmz.h is included. Thus ezinc.h is not shown.

The initialization function ezIncInit() prompts the user to enter the points per wavelength at

which the Ricker wavelet has maximum energy. In line 10 it also makes a local copy of the Courant

number (since the Grid is not passed to the ezInc() function and would not otherwise know

this value).

Program 8.10 ricker.c: Function to implement a Ricker wavelet. This is a traveling-wave

version of the function so ezInc() takes arguments of both time and space.

1 #include "ezinc.h"

2

3 static double cdtds, ppw = 0;

4

5 /* initialize source-function variables */

6 void ezIncInit(Grid *g){

7

8 printf("Enter the points per wavelength for Ricker source: ");

9 scanf(" %lf", &ppw);

10 cdtds = Cdtds;

11 return;

12 }

13

14 /* calculate source function at given time and location */

15 double ezInc(double time, double location) {

16 double arg;

17

18 if (ppw <= 0) {

19 fprintf(stderr,

20 "ezInc: ezIncInit() must be called before ezInc.\n"

21 " Points per wavelength must be positive.\n");
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22 exit(-1);

23 }

24

25 arg = M_PI * ((cdtds * time - location) / ppw - 1.0);

26 arg = arg * arg;

27

28 return (1.0 - 2.0 * arg) * exp(-arg);

29 }

Finally, snapshot2d.c is shown in Program 8.11. The function snapshotInit2d()

obtains information from the user about the output that is desired. The goal is to write the data so

that the electric field can be visualized over the entire 2D computational domain.

Program 8.11 snapshot2d.c: Function to record the 2D field to a file. The data is stored as

binary data.

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include "fdtd-macro-tmz.h"

4

5 static int temporalStride = -2, frame = 0, startTime,

6 startNodeX, endNodeX, spatialStrideX,

7 startNodeY, endNodeY, spatialStrideY;

8 static char basename[80];

9

10 void snapshotInit2d(Grid *g) {

11

12 int choice;

13

14 printf("Do you want 2D snapshots? (1=yes, 0=no) ");

15 scanf("%d", &choice);

16 if (choice == 0) {

17 temporalStride = -1;

18 return;

19 }

20

21 printf("Duration of simulation is %d steps.\n", MaxTime);

22 printf("Enter start time and temporal stride: ");

23 scanf(" %d %d", &startTime, &temporalStride);

24 printf("In x direction grid has %d total nodes"

25 " (ranging from 0 to %d).\n", SizeX, SizeX - 1);

26 printf("Enter first node, last node, and spatial stride: ");

27 scanf(" %d %d %d", &startNodeX, &endNodeX, &spatialStrideX);

28 printf("In y direction grid has %d total nodes"

29 " (ranging from 0 to %d).\n", SizeY, SizeY - 1);
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30 printf("Enter first node, last node, and spatial stride: ");

31 scanf(" %d %d %d", &startNodeY, &endNodeY, &spatialStrideY);

32 printf("Enter the base name: ");

33 scanf(" %s", basename);

34

35 return;

36 }

37

38 void snapshot2d(Grid *g) {

39 int mm, nn;

40 float dim1, dim2, temp;

41 char filename[100];

42 FILE *out;

43

44 /* ensure temporal stride set to a reasonable value */

45 if (temporalStride == -1) {

46 return;

47 } if (temporalStride < -1) {

48 fprintf(stderr,

49 "snapshot2d: snapshotInit2d must be called before snapshot.\n"

50 " Temporal stride must be set to positive value.\n");

51 exit(-1);

52 }

53

54 /* get snapshot if temporal conditions met */

55 if (Time >= startTime &&

56 (Time - startTime) % temporalStride == 0) {

57 sprintf(filename, "%s.%d", basename, frame++);

58 out = fopen(filename, "wb");

59

60 /* write dimensions to output file --

61 * express dimensions as floats */

62 dim1 = (endNodeX - startNodeX) / spatialStrideX + 1;

63 dim2 = (endNodeY - startNodeY) / spatialStrideY + 1;

64 fwrite(&dim1, sizeof(float), 1, out);

65 fwrite(&dim2, sizeof(float), 1, out);

66

67 /* write remaining data */

68 for (nn = endNodeY; nn >= startNodeY; nn -= spatialStrideY)

69 for (mm = startNodeX; mm <= endNodeX; mm += spatialStrideX) {

70 temp = (float)Ez(mm, nn); // store data as a float

71 fwrite(&temp, sizeof(float), 1, out); // write the float

72 }

73

74 fclose(out); // close file

75 }

76
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77 return;

78 }

Similar to the snapshot code in one dimension, the Ez field is merely recorded (in binary

format) to a file at the appropriate time-steps. It is up to some other program or software to render

this data in a suitable way. In order to understand what is happening in the two-dimensional grid,

it is extremely helpful to display the fields in a manner that is consistent with the underlying two-

dimensional format. This can potentially be quite a bit of data. To deal with it efficiently, it is often

best to store the data directly in binary format, which we will refer to as “raw” data. In line 58 the

output file is opened as a binary file (hence “b” which appears in the second argument of the call

to fopen()).

The arrays being used to store the fields are doubles. However, storing a complete double can

be considered overkill when it comes to generating graphics. We certainly do not need 15 digits

of precision when viewing the fields. Instead of writing doubles, the output is converted to a float.

(By using floats instead of doubles, the file size is reduced by a factor of two.) Within each output

data file, first the dimensions of the array are written, as floats, as shown in lines 64 and 65. After

that, starting in line 68 of Program 8.11, two nested loops are used to write each element of the

array. Note that the elements are not written in what might be considered a standard way. The

elements are written consistent with how you would read a book in English: from left to right, top

to bottom. As mentioned previously, this is not the most efficient way to access arrays, but there

are some image-processing tools which prefer that data be stored this way.

Once this data is generated, there are several ways in which the data can be displayed. It

is possible to read the data directly using MATLAB and even create an animation of the field.

Appendix D presents a MATLAB function that can be used to generate a movie from the data

generated by Program 8.7.

After compiling Program 8.7 in accordance with all the files shown in Fig. 8.2, let us assume

the executable is named tmzdemo1. The following shows a typical session where this program is

run on a UNIX system (where the executable is entered at the command-line prompt of “>”). The

user’s entries are shown in dark red bold.

> tmzdemo1

Enter the points per wavelength for Ricker source: 20

Do you want 2D snapshots? (1=yes, 0=no) 1

Duration of simulation is 300 steps.

Enter start time and temporal stride: 10 10

In x direction grid has 101 total nodes (ranging from 0 to 100).

Enter first node, last node, and spatial stride: 0 100 1

In y direction grid has 81 total nodes (ranging from 0 to 80).

Enter first node, last node, and spatial stride: 0 80 1

Enter the base name: sim

In this case the user set the Ricker wavelet to have 20 points per wavelength at the most energetic

frequency. Snapshots were generated every 10 time-steps beginning at the 10th time-step. The

snapshots were taken of the entire computational domain since the start- and stop-points were the

first and last nodes in the x and y directions and the spatial stride was unity. The snapshots had a

common base name of sim.
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Figure 8.3 shows three snapshots of the electric field that are generated by Program 8.7. These

images are individual frames generated by the code presented in Appendix D (the frames are in

color when viewed on a suitable output device). These frames correspond to snapshots taken at

time-steps 30, 70, and 110. Logarithmic scaling is used so that the maximum normalized value

of one corresponds to the color identified as zero on the color-bar to the right of each image. A

normalization value of unity was used for these images. Three decades are displayed so that the

minimum visible normalized field is 10−3. This value is shown with a color corresponding to −3
on the color-bar (any values less than the minimum are also displayed using this same color).

At time-step 30, the field is seen to be radiating concentrically away from the source at the

center of the grid. At time-step 70 the field is just starting to reach the top and bottom edges

of the computational domain. Since the electric-field nodes along the edge of the computational

domain are not updated (due to these nodes lacking a neighboring magnetic-field node in their

update equations), these edges behave as PEC boundaries. Hence the field is reflected back from

these walls. The reflection of the field in clearly evident at time-step 110. As the simulation

progresses, the field bounces back and forth. (The field at a given point can be recorded and then

Fourier transformed. The peaks in the transform correspond to the resonant modes of this particular

structure.)

To model an infinite domain, the second-order ABC discussed in Sec. 6.6 can be applied to

every electric field node on the boundary. In one dimension the ABC needed to be applied to only

two nodes. In two dimensions, there would essentially be four lines of nodes to which the ABC

must be applied: nodes along the left, right, top, and bottom. However, in all cases the form of

the ABC is the same. For a second-order ABC, a node on the boundary depends on two interior

nodes as well as the field at the boundary and those same two interior nodes at two previous time

steps. As before, the old values would have to be stored in supplementary arrays—six old values

for each node on the boundary. This is accomplished fairly easily by extrapolating the 1D case so

that there are now four storage arrays (one for the left, right, top, and bottom). These would be

three-dimensional arrays. In addition to two indices which indicate displacement from the edge

(i.e., displacement into the interior) and the time step, there would be a third index to indicate

displacement along the edge. So, for example, this third index would specify the particular node

along the top or bottom (and hence would vary between 0 and “SizeX - 1”) or the node along

the left or right (and hence would vary between 0 and “SizeY - 1”).

For nodes in the corner of the computational domain, there is some ambiguity as to which

nodes are the neighboring “interior” nodes which should be used by the ABC. However, the corner

nodes never couple back to the interior and hence it does not matter what one does with these

nodes. They can be left zero or assumed to contain meaningless numbers and that will not affect

the values in the interior of the grid. The magnetic fields that are adjacent to corner nodes are

affected by the values of the field in the corners. However, these nodes themselves are not used be

any other nodes in their updates. The electric fields which are adjacent to these magnetic fields are

updated using the ABC; they ignore the field at the neighboring magnetic-field nodes. Therefore

no special consideration will be given to resolving the corner ambiguity.
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(a)

(b)

(c)

Figure 8.3: Display of Ez field generated by Program 8.7 at time steps (a) 30, (b) 70, and (c) 110.

A Ricker source with 20 points per wavelength at its most energetic frequency is hard-wired to the

Ez node at the center of the grid.
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8.5 The TFSF Boundary for TMz Polarization

For a distant source illuminating a scatterer, it is not feasible to discretize the space surrounding

the source, discretize the space between the source and the scatterer, and discretize the space

surrounding the scatterer. Even if a large enough computer could be obtained that was capable of

storing all that discretized space, one simply would not want to use the FDTD grid to propagate

the field from the source to the scatterer. Such an endeavor would be slow, incredibly inefficient,

and suffer from needless numerical artifacts. Instead, one should discretize the space surrounding

the scatterer and introduce the incident field via a total-field/scattered-field boundary. When the

source is distant from the scatterer, the incident field is nearly planar and thus we will restrict

consideration to incident plane waves.

Section 3.10 showed how the TFSF concept could be implemented in a one-dimensional prob-

lem. The TFSF boundary separated the grid into two regions: a total-field (TF) region and a

scattered-field (SF) region. There were two nodes adjacent to this boundary. One was in the SF

region and depended on a node in the TF region. The other was in the TF region and depended on

a node in the SF region. To obtain self-consistent update equations, when updating nodes in the

TF region, one must use the total field which pertains at the neighboring nodes. Conversely, when

updating nodes in the SF region, one must use the scattered field which pertains at neighboring

nodes. In one dimension, the two nodes adjacent to the boundary must have the incident field

either added to or subtracted from the field which exists at their neighbor on the other side of the

boundary. Thus, in one dimension we required knowledge of the incident field at two locations for

every time step.

In two dimensions, the grid is again divided into a TF region and a SF region. In this case

the boundary between the two regions is no longer a point. Figure 8.4 shows a TMz grid with a

rectangular TFSF boundary. (The boundary does not have to be rectangular, but the implementation

details are simplest when the boundary has straight sides and hence we will restrict ourselves to

TFSF boundaries which are rectangular.) In this figure the TF region is enclosed within the TFSF

boundary which is drawn with a dashed line. The SF region is any portion of the grid that is

outside this boundary. Nodes that have a neighbor on the other side of the boundary are enclosed

in a solid rectangle with rounded corners. Note that these encircled nodes are tangential to the

TFSF boundary (we consider the Ez field, which points out of the page, to be tangential to the

boundary if we envision the boundary extending into the third dimension). The fields that are

normal to the boundary, such as the Hy nodes along the top and bottom of the TFSF boundary,

do not have neighbors which are across the boundary (even though the field could be considered

adjacent to the boundary).

In the implementation used here, the TF region is defined by the indices of the “first” and “last”

electric-field nodes which are in the TF region. These nodes are shown in Fig. 8.4 where the “first”

node is the one in the lower left corner and the “last” one is in the upper right corner. Note that

electric fields and magnetic fields with the same indices are not necessarily on the same side of

the boundary. For example, the Ez nodes on the right side of the TF region have one of their

neighboring Hy nodes in the SF region. This is true despite the fact that these Hy nodes share the

same x-index as the Ez nodes.

Further note that in this particular construction of a TFSF boundary, the electric fields tan-

gential to the TFSF boundary are always in the TF region. These nodes will have at least one

neighboring magnetic field node that is in the SF region. Thus, the correction necessary to obtain a
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Total-Field Region

Scattered-Field Region
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Figure 8.4: Depiction of a total-field/scattered-field boundary in a TMz grid. The size of the TF

region is defined by the indices of the first and last electric field nodes which are within the region.

Note that at the right-hand side of the boundary the Hy nodes with the same x-index (i.e., the same

“m” index) as the “last” node will be in the SF region. Similarly, at the top of the grid, Hx nodes

with the same y-index as the last node will be in the SF region. Therefore one must pay attention

to the field component as well as the indices to determine if a node is in the SF or TF region.
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consistent update of these electric field nodes would involve adding the incident field the neighbor-

ing magnetic fields on the other side of the TFSF boundary. Conversely, the magnetic field nodes

that are tangential to the TFSF boundary are always in the SF region. These nodes will have one

neighboring electric field node that is in the TF region. Thus, the correction necessary to obtain a

consistent update of these magnetic field nodes would involve subtracting the incident field from

the electric field node on the other side of the TFSF boundary.

As in the one-dimensional case, to implement the TFSF method, one must know the incident

field at every node which has a neighbor on the other side of the TFSF boundary. The incident

field must be known at all these points and for every time-step. In Section 3.10 analytic expres-

sions were used for the incident field, i.e., the expressions that describes propagation of the incident

field in the continuous world. However, the incident field does not propagate the same way in the

FDTD grid as the continuous world (except in the special case of one-dimensional propagation

with a Courant number of unity). Therefore, if the continuous-world expressions were used for

the incident field, there would be a mismatch between the fields in the grid and the fields given

by the continuous-world expressions. This mismatch would cause fields to leak across the bound-

ary. Another drawback to using the continuous-world expressions is that they typically involve a

transcendental function (such as a trigonometric function or an exponential). Calculation of these

functions is somewhat computationally expensive—at least compared to a few simple algebraic

calculations. If the transcendental functions have to be calculated at numerous points for every

time-step, this can impose a potentially significant computational cost. Fortunately, provided the

direction of the incident-field propagation coincides with one of the axes of the grid, there is a way

to ensure that the incident field exactly matches the way in which the incident field propagates in

the two-dimensional FDTD grid. Additionally, the calculation of the incident field can be done

efficiently.

The trick to calculating the incident field is to perform an auxiliary one-dimensional FDTD

simulation which calculates the incident field. This auxiliary simulation uses the same Courant

number and material parameters as pertain in the two-dimensional grid but is otherwise completely

separate from the two-dimensional grid. The one-dimensional grid is merely used to find the

incident fields needed to implement the TFSF boundary. (Each Ez and Hy node in the 1D grid

can be thought as providing E inc
z and H inc

y , respectively, at the appropriate point in space-time as

dictated by the discretization and time-stepping.)

Figure 8.5 shows the auxiliary 1D grid together with the 2D grid. The base of the vertical

arrows pointing from the 1D grid to the 2D grid indicate the nodes in the 1D grid from which

the nodes in the 2D grid obtain the incident field (only nodes in the 2D grid adjacent to the TFSF

boundary require knowledge of the incident field). Since the incident field propagates in the +x
direction, there is no incident Hx field. Hence nodes that depend on an Hx node on the other side

of the TFSF boundary do not need to be corrected since H inc
x = 0.

Despite the representation in Fig. 8.5, the 1D grid does not need to be the same width as the

2D grid, but it must be at least as long as necessary to provide the incident field for all the nodes

tangential to the TFSF boundary (i.e., it must be large enough to provide the values associated with

the base of each of the vertical arrows shown in Fig. 8.5). Additionally, the 1D grid must include

a source on the left and the right side of the grid must be suitably terminated so that the incident

field does not reflect back. Here we will assume fields are introduced into the 1D grid via a hard

source at the left end.

Using an auxiliary 1D grid, the TFSF boundary could be realized as follows. First, outside of
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hard
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incident field obtained from 1D simulation
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direction of propagation

Figure 8.5: A one-dimensional auxiliary grid is used to calculate the incident field which is as-

sumed to be propagating in the +x direction. The vertical arrows indicate the nodes whose values

are needed to implement the TFSF boundary. The incident Hx field is zero and hence no correction

is needed in association with Ez nodes that have a neighboring Hx node on the other side of the

boundary. The 1D grid is driven by a hard source at the left side. The 1D grid must be suitably

terminated at the right side to model an infinite domain. The size of the 1D grid is somewhat

independent of the size of the 2D grid—it must be large enough to provide incident field associ-

ated with each of the vertical arrows shown above but otherwise may be larger or smaller than the

overall width of the 2D grid.
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the time-stepping loop, a function would be called to initialize the TFSF code. This initialization

would allocate arrays of the necessary size for the 1D auxiliary grid and set all the necessary

constants. Then, within the time-stepping loop, the following steps would be taken (where we use

the additional subscripts 1D and 2D to distinguish between arrays associated with the 1D and 2D

grids):

1. Update the magnetic fields in the two-dimensional grid using the usual update equations (i.e.,

do not account for the existence of TFSF boundary): H
q− 1

2

x2D ⇒ H
q+ 1

2

x2D and H
q− 1

2

y2D ⇒ H
q+ 1

2

y2D .

2. Call a function to make all calculations and corrections associated with the TFSF boundary:

(a) Correct the two-dimensional magnetic fields tangential to the TFSF boundary using the

incident electric field from the one-dimensional grid, i.e., using Eq
z1D.

(b) Update the magnetic field in the one-dimensional grid: H
q− 1

2

y1D ⇒ H
q+ 1

2

y1D .

(c) Update the electric field in the one-dimensional grid: Eq
z1D ⇒ Eq+1

z1D .

(d) Correct the electric field in the two-dimensional grid using the incident magnetic field

from the one-dimensional grid, i.e., using H
q+ 1

2

y1D . (Since there is no Hx1D in this partic-

ular case with grid-aligned propagation, no correction is necessary in association with

Ez nodes that have a neighboring Hx node on the other side of the TFSF boundary.)

3. Update the electric field in the two-dimensional grid using the usual update equations (i.e.,

do not account for the existence of TFSF boundary): Eq
z2D ⇒ Eq+1

z2D .

8.6 TMz TFSF Boundary Example

Figure 8.6 shows three snapshots of a computational domain that incorporates a TFSF boundary.

The size of the grid is 101 nodes wide and 81 nodes high. The incident field is a Ricker wavelet

with 30 points per wavelength at its most energetic frequency. The indices for the first electric-field

node in the TF region are (5, 5) and the indices of the last node in the TF region are (95, 75). There

is no scatterer present and hence there are no fields visible in the SF region.

In Fig. 8.6(a) the incident field is seen to have entered the left side of the TF region. There is

an abrupt discontinuity in the field as one cross the TFSF boundary. This discontinuity is visible

to the left of the TF region as well as along a portion of the top and bottom of the region. In Fig.

8.6(b) the pulse is nearly completely within the TF region. In Fig. 8.6(c) the incident pulse has

encountered the right side of the TF region. At this point the incident field seemingly disappears!

The corrections to the fields at the right side of the boundary are such that the incident field does

not escape the TF region.

Figure 8.7 shows three snapshots of a computational domain that is similar to the one shown in

Fig. 8.6. The only difference is that a PEC plate has been put into the grid. The plate is realized by

setting to zero the Ez nodes along a vertical line. This line of nodes is offset 20 cells from the left

side of the computational domain and runs vertically from 20 cells from the bottom of the domain

to 20 cells from the top. (The way in which one models a PEC in 2D grids will be discussed further

in Sec. 8.8.)
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(a)

(b)

(c)

Figure 8.6: Display of Ez field in a computational domain employing a TFSF boundary. Snapshots

are taken at time-steps (a) 30, (b) 100, and (c) 170. The pulsed, plane-wave source corresponds to

a Ricker wavelet with 30 points per wavelength at its most energetic frequency.
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Second-order ABC’s are used to terminate the grid. (In Fig. 8.6 the fields were normalized to

1.0. In Fig. 8.7 they have been normalized to 2.0.)

In Fig. 8.7(a) the incident field has just barely reached the plate. There is no scattering evident

yet and hence no scattered fields are visible in the SF region. In Fig. 8.7(b) the interaction of the

field with the plate is obvious. One can see how the fields have diffracted around the edges of

the plate. As can be seen, the field scattered from the plate has had time to propagate into the SF

region. Figure 8.7(c) also shows the non-zero field in the SF region (together with the total field

throughout the TF region). The ABC’s must absorb the scattered field, but they do not have to

contend with the incident field since, as shown in Fig. 8.6, the incident field never escapes the TF

region (but, of course, the scattered field at any point along the edge of the computational domain

could be as large or larger than the incident field—it depends on how the scatterer scatters the

field).

The organization of code used to generate the results shown in Fig. 8.7 is depicted in Fig.

8.8. The header files are not shown. The contents of the files updatetmz.c, ricker.c, and

snapshot2d.c are unchanged from the previous section (refer to Programs 8.9, 8.10, and 8.11,

respectively). The file gridtmz.c has changed only slightly from the code shown in Program

8.8 in that a line of electric-field update coefficients are now set to zero corresponding to the

location of the PEC. Since this change is so minor, this file is not presented here. The header files

fdtd-alloc1.h, fdtd-grid1.h and fdtd-macro-tmz.h are also unchanged from the

previous section (refer to Programs 8.4, 8.3, and 8.5).

The contents of tmzdemo2.c are shown in Program 8.12. This program differs from Program

8.7 only in the call to the TFSF and ABC functions. Also, a different prototype header file is

included. These difference are shown in dark red bold.

Program 8.12 tmzdemo2.c: Program to perform a TMz simulation where the field is intro-

duced via a TFSF boundary and the grid is terminated with a second-order ABC. The differences

between this code and Program 8.7 are shown in dark red bold.

1 /* TMz simulation with a TFSF boundary and a second-order ABC. */

2

3 #include "fdtd-alloc1.h"

4 #include "fdtd-macro-tmz.h"

5 #include "fdtd-proto2.h"

6

7 int main()

8 {

9 Grid *g;

10

11 ALLOC_1D(g, 1, Grid); // allocate memory for grid

12 gridInit(g); // initialize 2D grid

13

14 abcInit(g); // initialize ABC

15 tfsfInit(g); // initialize TFSF boundary

16 snapshotInit2d(g); // initialize snapshots

17
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(a)

(b)

(c)

Figure 8.7: Display of Ez field in a computational domain employing a TFSF boundary. There is a

PEC vertical plate which is realized by setting to zero the Ez field over a lines that is 41 cells high

and 20 cells from the left edge of the computational domain. Snapshots are taken at time steps (a)

30, (b) 100, and (c) 170. A second-order ABC is used to terminate the grid.
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tmzdemo2.c

main()

updatetmz.c

updateE2d()

updateH2d()

gridInit()

tfsftmz.c

tfsfInit()

tfsfUpdate()

abctmz.c

abcInit()

abc()

snapshot2d.c

snapshotInit2d()

snapshot2d()

gridtmz.c

ricker.c

ezIncInit()

ezInc()

gridInit1d()

grid1dez.c

Figure 8.8: Organization of files associated with a TMz simulation that employs a TFSF boundary

and a second-order ABC. The header files are not shown.

18 /* do time stepping */

19 for (Time = 0; Time < MaxTime; Time++) {

20 updateH2d(g); // update magnetic fields

21 tfsfUpdate(g); // apply TFSF boundary

22 updateE2d(g); // update electric fields

23 abc(g); // apply ABC

24 snapshot2d(g); // take a snapshot (if appropriate)

25 } // end of time-stepping

26

27 return 0;

28 }

After initialization of the 2D grid in line 11, the ABC, TFSF, and snapshot functions are ini-

tialized. Time-stepping begins in line 19. Within the time-stepping loop, first the magnetic fields

are updated. As already mentioned, the function updateH2d() is unchanged from before. We

merely pass to it the the Grid pointer g. Next, the function tfsfUpdate() is used to update

the fields adjacent to the TFSF boundary. This function takes (the 2D Grid pointer) g as an ar-

gument. As we will see, the TFSF function also keeps track of an auxiliary 1D that is completely

hidden from main(). The electric fields are then updated, the ABC is applied, and a snapshot is

generated (if the time-step is appropriate).

The header file fdtd-proto2.h is shown in Program 8.13. The only substantial changes

from Program 8.6 are the addition of the prototypes for the TFSF, ABC functions, and a function

used to initialize the 1D grid.

Program 8.13 fdtd-proto2.h: Header file that now includes the prototypes for the TFSF and

ABC functions. The differences between this file and 8.6 are shown in dark red bold.
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1 #ifndef _FDTD_PROTO2_H

2 #define _FDTD_PROTO2_H

3

4 #include "fdtd-grid1.h"

5

6 /* Function prototypes */

7 void abcInit(Grid *g);

8 void abc(Grid *g);

9

10 void gridInit1d(Grid *g);

11 void gridInit(Grid *g);

12

13 void snapshotInit2d(Grid *g);

14 void snapshot2d(Grid *g);

15

16 void tfsfInit(Grid *g);

17 void tfsfUpdate(Grid *g);

18

19 void updateE2d(Grid *g);

20 void updateH2d(Grid *g);

21

22 #endif

The code to implement the TFSF boundary is shown in Program 8.14. There are five global

variables in this program. The four declared on lines 7 and 8 give the indices of the first and last

points in the TF region. The global variable g1, declared on line 10, is a Grid pointer that will be

used for the auxiliary 1D grid.

The function tfsfInit() starts by allocating space for g1. Once that space has been allo-

cated we could set the Courant number, the maximum number of time steps, and the size of the

grid. However, it is important that these values match, at least in some ways, the value of the 2D

grid that has already been declared. Thus, in line 15, the contents of the 2D grid structure are copy

to the 1D grid structure. To accomplish this copying the C function memcpy() is used. This

function takes three arguments: the destination memory address, the source memory address, and

the amount of memory to be copied. After this copying has been completed, there are some things

about the g1 which are incorrect. For example, its type corresponds to a 2D TMz grid. Also, the

pointers for its arrays are the same as those for the 2D grid. We do not want the 1D grid writing to

the same arrays as the 2D grid! Therefore these values within the Grid pointer g1 need to be fix

and this is accomplished with the grid-initialization function gridInit1D() called in 16. We

will consider the details of that function soon. Just prior to returning, tfsfInit() initializes the

source function by calling ezIncInit().

As we saw in the main() function in Program 8.12, tfsfUpdate() is called once per

time-step, after the magnetic fields have been updated and before the electric field is updated. Note

that the fields throughout the grid are not consistent until after the electric field has been updated

in the 2D grid (i.e., after step three in the algorithm described on page 208). This is because just
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prior to calling tfsfUpdate() the magnetic fields have not been corrected to account for the

TFSF boundary. Just after tfsfUpdate() has returned the electric field has been corrected in

anticipation of the next update.

Program 8.14 tfsftmz.c: Source code to implement a TFSF boundary for a TMz grid. The

incident field is assumed to propagate along the x direction and is calculated using an auxiliary 1D

simulation.

1 #include <string.h> // for memcpy

2 #include "fdtd-macro-tmz.h"

3 #include "fdtd-proto2.h"

4 #include "fdtd-alloc1.h"

5 #include "ezinc.h"

6

7 static int firstX = 0, firstY, // indices for first point in TF region

8 lastX, lastY; // indices for last point in TF region

9

10 static Grid *g1; // 1D auxiliary grid

11

12 void tfsfInit(Grid *g) {

13

14 ALLOC_1D(g1, 1, Grid); // allocate memory for 1D Grid

15 memcpy(g1, g, sizeof(Grid)); // copy information from 2D array

16 gridInit1d(g1); // initialize 1d grid

17

18 printf("Grid is %d by %d cell.\n", SizeX, SizeY);

19 printf("Enter indices for first point in TF region: ");

20 scanf(" %d %d", &firstX, &firstY);

21 printf("Enter indices for last point in TF region: ");

22 scanf(" %d %d", &lastX, &lastY);

23

24 ezIncInit(g); // initialize source function

25

26 return;

27 }

28

29 void tfsfUpdate(Grid *g) {

30 int mm, nn;

31

32 // check if tfsfInit() has been called

33 if (firstX <= 0) {

34 fprintf(stderr,

35 "tfsfUpdate: tfsfInit must be called before tfsfUpdate.\n"

36 " Boundary location must be set to positive value.\n");

37 exit(-1);

38 }
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39

40 // correct Hy along left edge

41 mm = firstX - 1;

42 for (nn = firstY; nn <= lastY; nn++)

43 Hy(mm, nn) -= Chye(mm, nn) * Ez1G(g1, mm + 1);

44

45 // correct Hy along right edge

46 mm = lastX;

47 for (nn = firstY; nn <= lastY; nn++)

48 Hy(mm, nn) += Chye(mm, nn) * Ez1G(g1, mm);

49

50 // correct Hx along the bottom

51 nn = firstY - 1;

52 for (mm = firstX; mm <= lastX; mm++)

53 Hx(mm, nn) += Chxe(mm, nn) * Ez1G(g1, mm);

54

55 // correct Hx along the top

56 nn = lastY;

57 for (mm = firstX; mm <= lastX; mm++)

58 Hx(mm, nn) -= Chxe(mm, nn) * Ez1G(g1, mm);

59

60 updateH2d(g1); // update 1D magnetic field

61 updateE2d(g1); // update 1D electric field

62 Ez1G(g1, 0) = ezInc(TimeG(g1), 0.0); // set source node

63 TimeG(g1)++; // increment time in 1D grid

64

65 /* correct Ez adjacent to TFSF boundary */

66 // correct Ez field along left edge

67 mm = firstX;

68 for (nn = firstY; nn <= lastY; nn++)

69 Ez(mm, nn) -= Cezh(mm, nn) * Hy1G(g1, mm - 1);

70

71 // correct Ez field along right edge

72 mm = lastX;

73 for (nn = firstY; nn <= lastY; nn++)

74 Ez(mm, nn) += Cezh(mm, nn) * Hy1G(g1, mm);

75

76 // no need to correct Ez along top and bottom since

77 // incident Hx is zero

78

79 return;

80 }

The function tfsfUpdate(), which is called once per time-step, starts by ensuring that the

initialization function has been called. It then corrects Hy along the left and right edges and Hx

along the top and bottom edges. Then, in line 60, the magnetic field in the 1D grid is updated, then
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the 1D electric field. Then the source is realized by hard-wiring the first electric-field node in the

1D grid to the source function (in this case a Ricker wavelet). This is followed by incrementing the

time-step in the 1D grid. Now that the 1D grid has been updated, starting in line 67, the electric

fields adjacent to the TFSF boundary are corrected. Throughout tfsfUpdate() any macro that

pertains to g1 must explicitly specify the Grid as an argument.

The function used to initialize the 1D grid is shown in Program 8.15. After inclusion of the

appropriate header files, NLOSS is defined to be 20. The 1D grid is terminated with a lossy layer

rather than an ABC. NLOSS represents the number of nodes in this lossy region.

Program 8.15 grid1dez.c: Initialization function for the 1D auxiliary grid used by the TFSF

function to calculate the incident field.

1 #include <math.h>

2 #include "fdtd-macro-tmz.h"

3 #include "fdtd-alloc1.h"

4

5 #define NLOSS 20 // number of lossy cells at end of 1D grid

6 #define MAX_LOSS 0.35 // maximum loss factor in lossy layer

7

8 void gridInit1d(Grid *g) {

9 double imp0 = 377.0, depthInLayer, lossFactor;

10 int mm;

11

12 SizeX += NLOSS; // size of domain

13 Type = oneDGrid; // set grid type

14

15 ALLOC_1D(g->hy, SizeX - 1, double);

16 ALLOC_1D(g->chyh, SizeX - 1, double);

17 ALLOC_1D(g->chye, SizeX - 1, double);

18 ALLOC_1D(g->ez, SizeX, double);

19 ALLOC_1D(g->ceze, SizeX, double);

20 ALLOC_1D(g->cezh, SizeX, double);

21

22 /* set the electric- and magnetic-field update coefficients */

23 for (mm = 0; mm < SizeX - 1; mm++) {

24 if (mm < SizeX - 1 - NLOSS) {

25 Ceze1(mm) = 1.0;

26 Cezh1(mm) = Cdtds * imp0;

27 Chyh1(mm) = 1.0;

28 Chye1(mm) = Cdtds / imp0;

29 } else {

30 depthInLayer = mm - (SizeX - 1 - NLOSS) + 0.5;

31 lossFactor = MAX_LOSS * pow(depthInLayer / NLOSS, 2);

32 Ceze1(mm) = (1.0 - lossFactor) / (1.0 + lossFactor);

33 Cezh1(mm) = Cdtds * imp0 / (1.0 + lossFactor);

34 depthInLayer += 0.5;
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35 lossFactor = MAX_LOSS * pow(depthInLayer / NLOSS, 2);

36 Chyh1(mm) = (1.0 - lossFactor) / (1.0 + lossFactor);

37 Chye1(mm) = Cdtds / imp0 / (1.0 + lossFactor);

38 }

39 }

40

41 return;

42 }

Recall that in tfsfInit() the values from the 2D grid were copied to the 1D grid (ref. line

15 of Program 8.14). Thus at the start of this function the value of SizeX is set to that of the 2D

grid. (The value of SizeY is also set to that of the 2D grid, but this value is ignored in the context

of a 1D grid.) In line 12 the size is increased by the number of nodes in the lossy layer. This is the

final size of the 1D grid: 20 cells greater than the x dimension of the 2D grid.

The grid type is specified as being a oneDGrid in line 13. (There is no need to set the Courant

number since that was copied from the 2D grid.) This is followed by memory allocation for the

various arrays in lines 15 to 20.

The update-equation coefficients are set by the for-loop that begins on line 23. (The final

electric-field node does not have its coefficient set as it will not be updated.) The region of the

1D grid corresponding to the width of the 2D grid is set to free space. Recalling the discussion of

Sec. 3.12, the remainder of the grid is set to a lossy layer where the electric and magnetic loss are

matched so that the characteristic impedance remains that of free space. However, unlike in Sec.

3.12, here the amount of loss is small at the start of the layer and grows towards the end of the

grid: The loss increases quadratically as one approaches the end of the grid. The maximum “loss

factor” (which corresponds to σ∆t/2ϵ in the electric-field update equations or σm∆t/2µ in the

magnetic-field update equations) is set by the #define statement on line 6 to 0.35. By gradually

ramping up the loss, the reflections associated with having an abrupt change in material constants

can be greatly reduced. Further note that although the loss factor associated with the electric and

magnetic fields are matches, because the electric and magnetic fields are spatially offset, the loss

factor that pertains at electric and magnetic field nodes differ even when they have the same spatial

index. The loss factor is based on the variable depthInLayer which represents how deep a

particular node is within the lossy layer. The greater the depth, the greater the loss.

Finally, the file abctmz.c is shown in Program 8.16. There are four arrays used to store the

old values of field needed by the ABC—one array for each side of the grid. For each node along

the edge of the grid, six values must be stored. Thus the arrays that store values along the left

and right sides have a total of 6× SizeY elements while the arrays that store values along the top

and bottom have 6× SizeX elements. Starting on line 17 four macros are defined that simplify

accessing the elements of these arrays. The macros take three arguments. One arguments specifies

displacement along the edge of the grid. Another specifies the displacement into the interior. The

third argument specifies the number of steps back in time.

Program 8.16 abctmz.c: Function to apply a second-order ABC to a TMz grid.
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1 /* Second-order ABC for TMz grid. */

2 #include <math.h>

3 #include "fdtd-alloc1.h"

4 #include "fdtd-macro-tmz.h"

5

6 /* Define macros for arrays that store the previous values of the

7 * fields. For each one of these arrays the three arguments are as

8 * follows:

9 *
10 * first argument: spatial displacement from the boundary

11 * second argument: displacement back in time

12 * third argument: distance from either the bottom (if EzLeft or

13 * EzRight) or left (if EzTop or EzBottom) side

14 * of grid

15 *
16 */

17 #define EzLeft(M, Q, N) ezLeft[(N) * 6 + (Q) * 3 + (M)]

18 #define EzRight(M, Q, N) ezRight[(N) * 6 + (Q) * 3 + (M)]

19 #define EzTop(N, Q, M) ezTop[(M) * 6 + (Q) * 3 + (N)]

20 #define EzBottom(N, Q, M) ezBottom[(M) * 6 + (Q) * 3 + (N)]

21

22 static int initDone = 0;

23 static double coef0, coef1, coef2;

24 static double *ezLeft, *ezRight, *ezTop, *ezBottom;

25

26 void abcInit(Grid *g) {

27 double temp1, temp2;

28

29 initDone = 1;

30

31 /* allocate memory for ABC arrays */

32 ALLOC_1D(ezLeft, SizeY * 6, double);

33 ALLOC_1D(ezRight, SizeY * 6, double);

34 ALLOC_1D(ezTop, SizeX * 6, double);

35 ALLOC_1D(ezBottom, SizeX * 6, double);

36

37 /* calculate ABC coefficients */

38 temp1 = sqrt(Cezh(0, 0) * Chye(0, 0));

39 temp2 = 1.0 / temp1 + 2.0 + temp1;

40 coef0 = -(1.0 / temp1 - 2.0 + temp1) / temp2;

41 coef1 = -2.0 * (temp1 - 1.0 / temp1) / temp2;

42 coef2 = 4.0 * (temp1 + 1.0 / temp1) / temp2;

43

44 return;

45 }

46

47 void abc(Grid *g)
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48 {

49 int mm, nn;

50

51 /* ABC at left side of grid */

52 for (nn = 0; nn < SizeY; nn++) {

53 Ez(0, nn) = coef0 * (Ez(2, nn) + EzLeft(0, 1, nn))

54 + coef1 * (EzLeft(0, 0, nn) + EzLeft(2, 0, nn)

55 - Ez(1, nn) - EzLeft(1, 1, nn))

56 + coef2 * EzLeft(1, 0, nn) - EzLeft(2, 1, nn);

57

58 /* memorize old fields */

59 for (mm = 0; mm < 3; mm++) {

60 EzLeft(mm, 1, nn) = EzLeft(mm, 0, nn);

61 EzLeft(mm, 0, nn) = Ez(mm, nn);

62 }

63 }

64

65 /* ABC at right side of grid */

66 for (nn = 0; nn < SizeY; nn++) {

67 Ez(SizeX - 1, nn) = coef0 * (Ez(SizeX - 3, nn) + EzRight(0, 1, nn))

68 + coef1 * (EzRight(0, 0, nn) + EzRight(2, 0, nn)

69 - Ez(SizeX - 2, nn) - EzRight(1, 1, nn))

70 + coef2 * EzRight(1, 0, nn) - EzRight(2, 1, nn);

71

72 /* memorize old fields */

73 for (mm = 0; mm < 3; mm++) {

74 EzRight(mm, 1, nn) = EzRight(mm, 0, nn);

75 EzRight(mm, 0, nn) = Ez(SizeX - 1 - mm, nn);

76 }

77 }

78

79 /* ABC at bottom of grid */

80 for (mm = 0; mm < SizeX; mm++) {

81 Ez(mm, 0) = coef0 * (Ez(mm, 2) + EzBottom(0, 1, mm))

82 + coef1 * (EzBottom(0, 0, mm) + EzBottom(2, 0, mm)

83 - Ez(mm, 1) - EzBottom(1, 1, mm))

84 + coef2 * EzBottom(1, 0, mm) - EzBottom(2, 1, mm);

85

86 /* memorize old fields */

87 for (nn = 0; nn < 3; nn++) {

88 EzBottom(nn, 1, mm) = EzBottom(nn, 0, mm);

89 EzBottom(nn, 0, mm) = Ez(mm, nn);

90 }

91 }

92

93 /* ABC at top of grid */

94 for (mm = 0; mm < SizeX; mm++) {
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95 Ez(mm, SizeY - 1) = coef0 * (Ez(mm, SizeY - 3) + EzTop(0, 1, mm))

96 + coef1 * (EzTop(0, 0, mm) + EzTop(2, 0, mm)

97 - Ez(mm, SizeY - 2) - EzTop(1, 1, mm))

98 + coef2 * EzTop(1, 0, mm) - EzTop(2, 1, mm);

99

100 /* memorize old fields */

101 for (nn = 0; nn < 3; nn++) {

102 EzTop(nn, 1, mm) = EzTop(nn, 0, mm);

103 EzTop(nn, 0, mm) = Ez(mm, SizeY - 1 - nn);

104 }

105 }

106

107 return;

108 }

The initialization function starting on line 26 allocates space for the arrays and calculates the

coefficients used by the ABC. It is assumed the grid is uniform along the edge and the coefficients

are calculated based on the parameters that pertain at the first node in the grid (as indicated by the

statements starting on line 38).

The abc() function, which starts on line 47 and is called once per time step, systematically

applies the ABC to each node along the edge of the grid. After the ABC is applied to an edge, the

“old” stored values are updated.

8.7 TEz Polarization

In TEz polarization the non-zero fields are Ex, Ey, and Hz, i.e., the electric field is transverse to the

z direction. The fields may vary in the x and y directions but are invariant in z. These fields, and

the corresponding governing equations, are completely decoupled from those of TMz polarization.

The governing equations are

σEx + ϵ
∂Ex

∂t
=

∂Hz

∂y
, (8.19)

σEy + ϵ
∂Ey

∂t
= −∂Hz

∂x
, (8.20)

−σmHz − µ
∂Hz

∂t
=

∂Ey

∂x
− ∂Ex

∂y
. (8.21)

As usual, space-time is discretized so that (8.19)–(8.21) can be expressed in terms of finite-

differences. From these difference equations the future fields can be expressed in terms of past

fields. The following notation will be used:

Ex(x, y, t) = Ex(m∆x, n∆y, q∆t) = Eq
x[m,n] , (8.22)

Ey(x, y, t) = Ey(m∆x, n∆y, q∆t) = Eq
y [m,n] (8.23)

Hz(x, y, t) = Hz(m∆x, n∆y, q∆t) = Hq
z [m,n] . (8.24)
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As before the indices m, n, and q specify the step in the x, y, and t “directions.”

A suitable arrangement of nodes is shown in Fig. 8.9. The triangularly shaped dashed lines in

the lower left of the grid enclose nodes which would have the same indices in a computer program.

Note that the grid is terminated such that there are tangential electric field nodes adjacent to

the boundary. (When it comes to the application of ABC’s, these are the nodes to which the ABC

would be applied.) When we say a TEz grid has dimensions M ×N , the arrays are dimensioned as

follows: Ex is (M−1)×N , Ey is M×(N−1), and Hz is (M−1)×(N−1). Therefore, although

the grid is described as M ×N , no array actually has these dimensions! Each magnetic-field node

has four adjacent electric-field nodes that “swirl” about it. One can think of these four nodes as

defining a square with the magnetic field at the center of the square (if the grid is not uniform, the

square becomes a rectangle). An M × N grid would consist of (M − 1) × (N − 1) complete

squares.

The way in which the TEz arrays are dimensioned may seem odd but it is done with an eye

toward having a consistent grid in three dimensions. As an indication of where we will ultimately

end up, we can overlay a TMz and TEz grid as shown in Fig. 8.10. As will be shown in the

discussion of 3D grids, a 3D grid is essentially layers of TMz and TEz grids which are offset from

each other in the z direction. The update equations of these offset grids will have to be modified to

account for variations in the z directions. This modification will provide the coupling between the

TMz and TEz grids which is lacking in 2D.

Given the governing equations (8.19)–(8.21) and the arrangement of nodes shown in Fig. 8.9,

the Hz update equation is

H
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The electric-field update equations are
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Ey[m,n+1/2]

Ex[m+1/2,n]
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Figure 8.9: Spatial arrangement of electric- and magnetic-field nodes for TEz polarization. The

magnetic-field nodes are shown as squares and the electric-field nodes are circles with a line that

indicates the orientation of the field component. The somewhat triangularly shaped dashed lines

indicate groupings of nodes which have the same array indices. This grouping is repeated through-

out the grid. However, at the top of the grid the “group” only contains an Ex node and on the right

side of the grid the group only contains an Ey node. The diagram at the bottom left of the figure

indicates nodes with their offsets given explicitly in the spatial arguments whereas the diagram at

the bottom right indicates how the same nodes would be specified in a computer program where

the offsets are understood implicitly.
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Hz(m+1/2,n+1/2)

Ey(m,n+1/2)

Ex(m+1/2,n)
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same
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Figure 8.10: Superposition of a TMz and TEz grid. The symbols used for the nodes is as before.

The dashed boxes enclose nodes which have the same indices. Although this is nominally identified

as an M ×N grid, only the Ez array has M ×N nodes.

Similar to the TMz case, we assume a uniform grid and define the following quantities

Chzh(m+ 1/2, n+ 1/2) =
1− σm∆t

2µ

1 + σm∆t

2µ

∣

∣

∣

∣

∣
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, (8.28)
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Ceyh(m,n+ 1/2) =
1
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2ϵ
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ϵδ
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. (8.33)

By discarding the explicit offsets of one-half (but leaving them as implicitly understood) the update

equations can be written in a form suitable for implementation in a computer. Because of the

arrangement of the nodes, this “discarding” implies that sometimes the one-half truly is discarded
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and sometimes it should be replaced with unity. The distinction is whether or not the one-half

indicates the nodes on the right side of the update equation are within the same grouping of cells

as the node on the left side of the equation. If they are, the one-half is truly discarded. If they are

not, the node on the right side of the update equation must have its index reflect which group of

cells it is within relative to the node on the left side of the equation. The resulting equations are

Hz(m, n) = Chzh(m, n) * Hz(m, n) +

Chze(m, n) * ((Ex(m, n + 1) - Ex(m, n)) -

(Ey(m + 1, n) - Ey(m, n)));

Ex(m, n) = Cexe(m, n) * Ex(m, n) +

Cexh(m, n) * (Hz(m, n) - Hz(m, n - 1));

Ey(m, n) = Ceye(m, n) * Ey(m, n) -

Ceyh(m, n) * (Hz(m, n) - Hz(m - 1, n));

A TFSF boundary can be incorporated in a TEz grid. Conceptually the implementation is the

same as has been shown in 1D and in the TMz grid. Nodes that are tangential to the boundary will

have a neighboring node on the other side of the boundary. The incident field will have to be either

added to or subtracted from that neighboring node to obtain consistent equations. A portion of a

TEz grid showing the TFSF boundary is shown in Fig. 8.11. We will specify the size of the TF

region as indicated in the figure. Indices that specify the start of the TF region correspond to the

first Ex and Ey nodes which are in the TF region. Referring to Figs. 8.4 and 8.10, these indices

would also correspond to the first Ez node in the TF region. The indices which specify the end

of the TF region correspond to Ex and Ey nodes which are actually in the SF region. These two

nodes, as shown in Fig. 8.10, are not tangential to the TFSF boundary and hence do to have to be

corrected. However, note that the Ez node in the overlain grid that has these indices does lie in the

TF region (and does, when dealing with a 3D or TMz grid, have to be corrected to account for the

presence of the boundary).

8.8 PEC’s in TEz and TMz Simulations

When modeling a PEC in a TMz grid, if an Ez node falls within the PEC, it is set to zero. Figure

8.12 shows a portion of a TMz grid that depicts how Ez would set to zero. The curved boundary

is the surface of the PEC and it is assumed that the PEC extends down and to the right of this

boundary. The Ez nodes which would be set to zero are indicated with gray boxes. Although the

goal is to model a continuously varying boundary, the discrete nature of the FDTD grid gives rise

to a “staircased” approximation of the surface.

When we say a node is “set to zero” this could mean various things. For example, it may mean

that the field is initially zero and then never updated. It could mean that it is updated, but the

update coefficients are set to zero. Or, it could even mean that the field is updated with non-zero

coefficients, but then additional code is used to set the field to zero each time-step. The means by

which a field is set to zero is not particularly important to us right now.

A thin PEC plate can be modeled in a TMz grid by setting to zero nodes along a vertical or

horizontal line. If the physical plate being modeled is not aligned with the grid, one would have

to zero nodes in a manner that approximates the true slope of the plate. Again, this would yield a

staircased approximate to the true surface. (One may have to be careful to ensure that there are no
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Total-Field Region

Scattered-Field Region

indices specifying
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Figure 8.11: TFSF boundary in a TEz grid. The rounded boxes indicate the nodes that have a

neighboring node on the other side of the boundary and hence have to have their update equations

corrected.
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Figure 8.12: TMz grid with a PEC object. The PEC is assumed to exist below and to the right of

the curved boundary. The PEC is realized by setting to zero the Ez nodes that fall within the PEC.

The nodes that would be set to zero are surrounded by gray boxes.
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Figure 8.13: TEz grid with a PEC object. The PEC is assumed to exist below and to the right of the

curved boundary. The PEC is realized be setting to zero any electric field which has a neighboring

Hz node within the PEC. The nodes that would be set to zero are surrounded by gray rectangles.

“gaps” in the model of a thin PEC that is not aligned with the grid. Fields should only be able to

get from one side of the PEC to the other by propagating around the ends of the PEC.)

In a TEz grid, the realization of a PEC is slightly more complicated. For a PEC object which

has a specified cross section, one should not merely set to zero the electric-field nodes that fall

within the boundary of the PEC (as was done in the TMz case). Instead, one should consider the

PEC as consisting of a collection of patches of metal. If an Hz node falls within the PEC, then four

surrounding electric-field nodes should be set to zero. Thus, if an Hz node is in the PEC we fill the

square surrounding that node with PEC and this causes the four surrounding electric field nodes to

be zero. The TEz representation of a PEC object is depicted in Fig. 8.13. The object is the same

as shown in Fig. 8.12. In both figures the curved boundary is a portion of a circle that is center on

what would correspond to the location of an Ez node (regardless of whether or not an Ez node is

actually present). The nodes that are set to zero are enclosed in gray rectangles.

A horizontal PEC plate would be implemented by zeroing a horizontal line of Ex nodes while

a vertical plate would be realized by zeroing a vertical line of Ey nodes. A tilted plate would be

realized as a combination of zeroed Ex and Ey nodes.

For both TEz and TMz grids, all the magnetic fields are updated in the usual way. Magnetic
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fields are oblivious to the presence of PEC’s.

8.9 TEz Example

In this section we present the computer code to model a circular PEC scatterer in a TEz grid. The

scatterer is illuminated by a pulsed plane wave that is introduced via a TFSF boundary. We will

use a grid that is nominally 92 by 82 (keeping in mind that for TEz polarization none of the field

arrays will actually have these dimensions). The code is organized in essentially the same way as

was the TMz code presented in Sec. 8.6.

The PEC scatterer is assumed to have a radius of 12 cells and be centered on an Hz node. The

indices of the center are (45, 40). The PEC is realized by checking if an Hz node is within the

circle (specifically, if the distance from the center to the node is less than the radius). As we will

see, if an Hz is within the circle, the four surrounding electric-field nodes are set to zero by setting

the corresponding update coefficients to zero.

Program 8.17 contains the main() function. Other than the difference of one header file, this

program is identical to the TMz code presented in Program 8.12. However, despite similar names,

the functions that are called here differ from those used by Program 8.12—different files are linked

together for the different simulations.

Program 8.17 tezdemo.c: The main() function for a simulation involving a TEz grid.

1 /* TEz simulation with a TFSF boundary and a second-order ABC. */

2

3 #include "fdtd-alloc1.h"

4 #include "fdtd-macro-tez.h"

5 #include "fdtd-proto2.h"

6

7 int main()

8 {

9 Grid *g;

10

11 ALLOC_1D(g, 1, Grid); // allocate memory for grid

12 gridInit(g); // initialize 2D grid

13

14 abcInit(g); // initialize ABC

15 tfsfInit(g); // initialize TFSF boundary

16 snapshotInit2d(g); // initialize snapshots

17

18 /* do time stepping */

19 for (Time = 0; Time < MaxTime; Time++) {

20 updateH2d(g); // update magnetic fields

21 tfsfUpdate(g); // apply TFSF boundary

22 updateE2d(g); // update electric fields

23 abc(g); // apply ABC

24 snapshot2d(g); // take a snapshot (if appropriate)
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25 } // end of time-stepping

26

27 return 0;

28 }

The code to construct the TEz grid is shown in Program 8.18, i.e., the code to set the elements

of the Grid pointer g. The simulation is run at the Courant limit of 1/
√
2 as shown in line 16.

Between lines 31 and 41 the update coefficients for all the electric field nodes are set to that of free

space. Then, starting at line 49, each Hz node is checked to see if it is within the PEC scatterer. If

it is, the coefficients for the surrounding nodes are set to zero. Starting at line 71 all the magnetic-

field coefficients are set to that of free space. There is no need to change these coefficients to

account for the PEC—the PEC is realized solely by dictating the behavior of the electric field.

Program 8.18 gridtezpec.c: Function to initialize a TEz grid. A circular PEC scatterer is

present.

1 #include "fdtd-macro-tez.h"

2 #include "fdtd-alloc1.h"

3 #include <math.h>

4

5 void gridInit(Grid *g) {

6 double imp0 = 377.0;

7 int mm, nn;

8

9 /* terms for the PEC scatterer */

10 double rad, r2, xLocation, yLocation, xCenter, yCenter;

11

12 Type = teZGrid;

13 SizeX = 92; // size of domain

14 SizeY = 82;

15 MaxTime = 300; // duration of simulation

16 Cdtds = 1.0 / sqrt(2.0); // Courant number

17

18 ALLOC_2D(g->hz, SizeX - 1, SizeY - 1, double);

19 ALLOC_2D(g->chzh, SizeX - 1, SizeY - 1, double);

20 ALLOC_2D(g->chze, SizeX - 1, SizeY - 1, double);

21

22 ALLOC_2D(g->ex, SizeX - 1, SizeY, double);

23 ALLOC_2D(g->cexh, SizeX - 1, SizeY, double);

24 ALLOC_2D(g->cexe, SizeX - 1, SizeY, double);

25

26 ALLOC_2D(g->ey, SizeX, SizeY - 1, double);

27 ALLOC_2D(g->ceye, SizeX, SizeY - 1, double);

28 ALLOC_2D(g->ceyh, SizeX, SizeY - 1, double);

29
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30 /* set electric-field update coefficients */

31 for (mm = 0; mm < SizeX - 1; mm++)

32 for (nn = 0; nn < SizeY; nn++) {

33 Cexe(mm, nn) = 1.0;

34 Cexh(mm, nn) = Cdtds * imp0;

35 }

36

37 for (mm = 0; mm < SizeX; mm++)

38 for (nn = 0; nn < SizeY - 1; nn++) {

39 Ceye(mm, nn) = 1.0;

40 Ceyh(mm, nn) = Cdtds * imp0;

41 }

42

43 /* Set to zero nodes associated with PEC scatterer.

44 * Circular scatterer assumed centered on Hz node

45 * at (xCenter, yCenter). If an Hz node is less than

46 * the radius away from this node, set to zero the

47 * four electric fields that surround that node.

48 */

49 rad = 12; // radius of circle

50 xCenter = SizeX / 2;

51 yCenter = SizeY / 2;

52 r2 = rad * rad; // square of radius

53 for (mm = 1; mm < SizeX - 1; mm++) {

54 xLocation = mm - xCenter;

55 for (nn = 1; nn < SizeY - 1; nn++) {

56 yLocation = nn - yCenter;

57 if (xLocation * xLocation + yLocation * yLocation < r2) {

58 Cexe(mm, nn) = 0.0;

59 Cexh(mm, nn) = 0.0;

60 Cexe(mm, nn + 1) = 0.0;

61 Cexh(mm, nn + 1) = 0.0;

62 Ceye(mm + 1, nn) = 0.0;

63 Ceyh(mm + 1, nn) = 0.0;

64 Ceye(mm, nn) = 0.0;

65 Ceyh(mm, nn) = 0.0;

66 }

67 }

68 }

69

70 /* set magnetic-field update coefficients */

71 for (mm = 0; mm < SizeX - 1; mm++)

72 for (nn = 0; nn < SizeY - 1; nn++) {

73 Chzh(mm, nn) = 1.0;

74 Chze(mm, nn) = Cdtds / imp0;

75 }

76
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77 return;

78 }

The header file fdtd-macro-tez.h that defines the macros used in the TEz simulations is

shown in Program 8.19. The header files that define the function prototypes (fdtd-proto2.h),

the allocation macros (fdtd-alloc1.h), and the Grid structure (fdtd-grid1.h) are un-

changed from before and hence are not repeated here (refer to Programs 8.13, 8.4, and 8.3, respec-

tively).

Program 8.19 fdtd-macro-tez.h: Macros used for TEz grids.

1 #ifndef _FDTD_MACRO_TEZ_H

2 #define _FDTD_MACRO_TEZ_H

3

4 #include "fdtd-grid1.h"

5

6 /* macros that permit the "Grid" to be specified */

7 /* one-dimensional grid */

8 #define Hz1G(G, M) G->hz[M]

9 #define Chzh1G(G, M) G->chzh[M]

10 #define Chze1G(G, M) G->chze[M]

11

12 #define Ey1G(G, M) G->ey[M]

13 #define Ceye1G(G, M) G->ceye[M]

14 #define Ceyh1G(G, M) G->ceyh[M]

15

16 /* TEz grid */

17 #define HzG(G, M, N) G->hz[(M) * (SizeYG(G) - 1) + (N)]

18 #define ChzhG(G, M, N) G->chzh[(M) * (SizeYG(G) - 1) + (N)]

19 #define ChzeG(G, M, N) G->chze[(M) * (SizeYG(G) - 1) + (N)]

20

21 #define ExG(G, M, N) G->ex[(M) * SizeYG(G) + (N)]

22 #define CexeG(G, M, N) G->cexe[(M) * SizeYG(G) + (N)]

23 #define CexhG(G, M, N) G->cexh[(M) * SizeYG(G) + (N)]

24

25 #define EyG(G, M, N) G->ey[(M) * (SizeYG(G) - 1) + (N)]

26 #define CeyeG(G, M, N) G->ceye[(M) * (SizeYG(G) - 1) + (N)]

27 #define CeyhG(G, M, N) G->ceyh[(M) * (SizeYG(G) - 1) + (N)]

28

29 #define SizeXG(G) G->sizeX

30 #define SizeYG(G) G->sizeY

31 #define SizeZG(G) G->sizeZ

32 #define TimeG(G) G->time

33 #define MaxTimeG(G) G->maxTime

34 #define CdtdsG(G) G->cdtds
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35 #define TypeG(G) G->type

36

37 /* macros that assume the "Grid" is "g" */

38 /* one-dimensional grid */

39 #define Hz1(M) Hz1G(g, M)

40 #define Chzh1(M) Chzh1G(g, M)

41 #define Chze1(M) Chze1G(g, M)

42

43 #define Ey1(M) Ey1G(g, M)

44 #define Ceye1(M) Ceye1G(g, M)

45 #define Ceyh1(M) Ceyh1G(g, M)

46

47 /* TEz grid */

48 #define Hz(M, N) HzG(g, M, N)

49 #define Chzh(M, N) ChzhG(g, M, N)

50 #define Chze(M, N) ChzeG(g, M, N)

51

52 #define Ex(M, N) ExG(g, M, N)

53 #define Cexh(M, N) CexhG(g, M, N)

54 #define Cexe(M, N) CexeG(g, M, N)

55

56 #define Ey(M, N) EyG(g, M, N)

57 #define Ceye(M, N) CeyeG(g, M, N)

58 #define Ceyh(M, N) CeyhG(g, M, N)

59

60 #define SizeX SizeXG(g)

61 #define SizeY SizeYG(g)

62 #define SizeZ SizeZG(g)

63 #define Time TimeG(g)

64 #define MaxTime MaxTimeG(g)

65 #define Cdtds CdtdsG(g)

66 #define Type TypeG(g)

67

68 #endif /* matches #ifndef _FDTD_MACRO_TEZ_H */

The functions to update the fields are shown in Program 8.20. These functions can update

fields in either one- or two-dimensional grid. If the grid type is oneDGrid, here it is assumed

the non-zero fields are Ey and Hz. If that is not the case, it is assume the grid is a TEz grid with

non-zero fields Ex, Ey, and Hz. As has been the case in the past the electric field updates, starting

at line 37, update all the nodes except the nodes at the edge of the grid. However, since all the

magnetic-field nodes have all their neighbors, as shown starting on line 15, all the magnetic-field

nodes in the grid are updated.

Program 8.20 updatetez.c: Functions to update fields in a TEz grid.
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1 #include "fdtd-macro-tez.h"

2

3 /* update magnetic field */

4 void updateH2d(Grid *g) {

5 int mm, nn;

6

7 if (Type == oneDGrid) {

8

9 for (mm = 0; mm < SizeX - 1; mm++)

10 Hz1(mm) = Chzh1(mm) * Hz1(mm)

11 - Chze1(mm) * (Ey1(mm + 1) - Ey1(mm));

12

13 } else {

14

15 for (mm = 0; mm < SizeX - 1; mm++)

16 for (nn = 0; nn < SizeY - 1; nn++)

17 Hz(mm, nn) = Chzh(mm, nn) * Hz(mm, nn) +

18 Chze(mm, nn) * ((Ex(mm, nn + 1) - Ex(mm, nn))

19 - (Ey(mm + 1, nn) - Ey(mm, nn)));

20 }

21

22 return;

23 }

24

25 /* update electric field */

26 void updateE2d(Grid *g) {

27 int mm, nn;

28

29 if (Type == oneDGrid) {

30

31 for (mm = 1; mm < SizeX - 1; mm++)

32 Ey1(mm) = Ceye1(mm) * Ey1(mm)

33 - Ceyh1(mm) * (Hz1(mm) - Hz1(mm - 1));

34

35 } else {

36

37 for (mm = 0; mm < SizeX - 1; mm++)

38 for (nn = 1; nn < SizeY - 1; nn++)

39 Ex(mm, nn) = Cexe(mm, nn) * Ex(mm, nn) +

40 Cexh(mm, nn) * (Hz(mm, nn) - Hz(mm, nn - 1));

41

42 for (mm = 1; mm < SizeX - 1; mm++)

43 for (nn = 0; nn < SizeY - 1; nn++)

44 Ey(mm, nn) = Ceye(mm, nn) * Ey(mm, nn) -

45 Ceyh(mm, nn) * (Hz(mm, nn) - Hz(mm - 1, nn));

46 }

47



234 CHAPTER 8. TWO-DIMENSIONAL FDTD SIMULATIONS

48 return;

49 }

The second-order absorbing boundary condition is realized with the code in the file abctez.c

which is shown in Program 8.21. Because of the way the grid is constructed, the ABC is applied

to Ey nodes along the left and right side of the computational domain and to Ex nodes along the

top and bottom.

Program 8.21 abctez.c: Contents of file that implements the second-order absorbing bound-

ary condition for the TEz grid.

1 /* Second-order ABC for TEz grid. */

2 #include <math.h>

3 #include "fdtd-alloc1.h"

4 #include "fdtd-macro-tez.h"

5

6 /* Define macros for arrays that store the previous values of the

7 * fields. For each one of these arrays the three arguments are as

8 * follows:

9 *
10 * first argument: spatial displacement from the boundary

11 * second argument: displacement back in time

12 * third argument: distance from either the bottom (if EyLeft or

13 * EyRight) or left (if ExTop or ExBottom) side

14 * of grid

15 *
16 */

17 #define EyLeft(M, Q, N) eyLeft[(N) * 6 + (Q) * 3 + (M)]

18 #define EyRight(M, Q, N) eyRight[(N) * 6 + (Q) * 3 + (M)]

19 #define ExTop(N, Q, M) exTop[(M) * 6 + (Q) * 3 + (N)]

20 #define ExBottom(N, Q, M) exBottom[(M) * 6 + (Q) * 3 + (N)]

21

22 static int initDone = 0;

23 static double coef0, coef1, coef2;

24 static double *eyLeft, *eyRight, *exTop, *exBottom;

25

26 void abcInit(Grid *g) {

27 double temp1, temp2;

28

29 initDone = 1;

30

31 /* allocate memory for ABC arrays */

32 ALLOC_1D(eyLeft, (SizeY - 1) * 6, double);

33 ALLOC_1D(eyRight, (SizeY - 1) * 6, double);

34 ALLOC_1D(exTop, (SizeX - 1) * 6, double);
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35 ALLOC_1D(exBottom, (SizeX - 1) * 6, double);

36

37 /* calculate ABC coefficients */

38 temp1 = sqrt(Cexh(0, 0) * Chze(0, 0));

39 temp2 = 1.0 / temp1 + 2.0 + temp1;

40 coef0 = -(1.0 / temp1 - 2.0 + temp1) / temp2;

41 coef1 = -2.0 * (temp1 - 1.0 / temp1) / temp2;

42 coef2 = 4.0 * (temp1 + 1.0 / temp1) / temp2;

43

44 return;

45 }

46

47 void abc(Grid *g)

48 {

49 int mm, nn;

50

51 /* ABC at left side of grid */

52 for (nn = 0; nn < SizeY - 1; nn++) {

53 Ey(0, nn) = coef0 * (Ey(2, nn) + EyLeft(0, 1, nn))

54 + coef1 * (EyLeft(0, 0, nn) + EyLeft(2, 0, nn)

55 - Ey(1, nn) - EyLeft(1, 1, nn))

56 + coef2 * EyLeft(1, 0, nn) - EyLeft(2, 1, nn);

57

58 /* memorize old fields */

59 for (mm = 0; mm < 3; mm++) {

60 EyLeft(mm, 1, nn) = EyLeft(mm, 0, nn);

61 EyLeft(mm, 0, nn) = Ey(mm, nn);

62 }

63 }

64

65 /* ABC at right side of grid */

66 for (nn = 0; nn < SizeY - 1; nn++) {

67 Ey(SizeX - 1, nn) = coef0 * (Ey(SizeX - 3, nn) + EyRight(0, 1, nn))

68 + coef1 * (EyRight(0, 0, nn) + EyRight(2, 0, nn)

69 - Ey(SizeX - 2, nn) - EyRight(1, 1, nn))

70 + coef2 * EyRight(1, 0, nn) - EyRight(2, 1, nn);

71

72 /* memorize old fields */

73 for (mm = 0; mm < 3; mm++) {

74 EyRight(mm, 1, nn) = EyRight(mm, 0, nn);

75 EyRight(mm, 0, nn) = Ey(SizeX - 1 - mm, nn);

76 }

77 }

78

79 /* ABC at bottom of grid */

80 for (mm = 0; mm < SizeX - 1; mm++) {

81 Ex(mm, 0) = coef0 * (Ex(mm, 2) + ExBottom(0, 1, mm))
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82 + coef1 * (ExBottom(0, 0, mm) + ExBottom(2, 0, mm)

83 - Ex(mm, 1) - ExBottom(1, 1, mm))

84 + coef2 * ExBottom(1, 0, mm) - ExBottom(2, 1, mm);

85

86 /* memorize old fields */

87 for (nn = 0; nn < 3; nn++) {

88 ExBottom(nn, 1, mm) = ExBottom(nn, 0, mm);

89 ExBottom(nn, 0, mm) = Ex(mm, nn);

90 }

91 }

92

93 /* ABC at top of grid */

94 for (mm = 0; mm < SizeX - 1; mm++) {

95 Ex(mm, SizeY - 1) = coef0 * (Ex(mm, SizeY - 3) + ExTop(0, 1, mm))

96 + coef1 * (ExTop(0, 0, mm) + ExTop(2, 0, mm)

97 - Ex(mm, SizeY - 2) - ExTop(1, 1, mm))

98 + coef2 * ExTop(1, 0, mm) - ExTop(2, 1, mm);

99

100 /* memorize old fields */

101 for (nn = 0; nn < 3; nn++) {

102 ExTop(nn, 1, mm) = ExTop(nn, 0, mm);

103 ExTop(nn, 0, mm) = Ex(mm, SizeY - 1-nn);

104 }

105 }

106

107 return;

108 }

The contents of the file tfsftez.c are shown in Program 8.22. This closely follows the

TFSF code that was used for the TMz grid. Again, a 1D auxiliary grid is used to describe the

incident field. The 1D grid is available via in the Grid pointer g1 which is only visible to the

functions in this file. Space for the structure is allocated in line 16. In the following line the

contents of the 2D structure are copied to the 1D structure. This is done to set the size of the grid

and the Courant number. Then, in line 18, the function gridInit1d() is called to complete the

initialization of the 1D grid.

The function tfsfUpdate(), which starts on line 31, is called once per time-step. After

ensuring that the initialization function has been called, the magnetic fields adjacent to the TFSF

boundary are corrected. Following this, as shown starting on line 52, the magnetic field in the 1D

grid is updated, then the 1D electric field is updated, then the source function is applied to the first

node in the 1D grid, and finally the time-step of the 1D grid is incremented. Starting on line 58,

the electric fields in the 2D grid adjacent to the TFSF boundary are corrected.

The header file ezinctez.h differs from ezinc.h used in the TMz code only in that it in-

cludes fdtd-macro-tez.h instead of fdtd-macro-tmz.h. Hence it is not shown here nor

is the code used to realize the source function which is a Ricker wavelet (which is also essentially

unchanged from before).
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Program 8.22 tfsftez.c: Implementation of a TFSF boundary for a TEz grid. The incident

field propagates in the x direction and an auxiliary 1D grid is used to compute the incident field.

1 /* TFSF implementation for a TEz grid. */

2

3 #include <string.h> // for memcpy

4 #include "fdtd-macro-tez.h"

5 #include "fdtd-proto2.h"

6 #include "fdtd-alloc1.h"

7 #include "ezinctez.h"

8

9 static int firstX = 0, firstY, // indices for first point in TF region

10 lastX, lastY; // indices for last point in TF region

11

12 static Grid *g1; // 1D auxiliary grid

13

14 void tfsfInit(Grid *g) {

15

16 ALLOC_1D(g1, 1, Grid); // allocate memory for 1D Grid

17 memcpy(g1, g, sizeof(Grid)); // copy information from 2D array

18 gridInit1d(g1); // initialize 1d grid

19

20 printf("Grid is %d by %d cell.\n", SizeX, SizeY);

21 printf("Enter indices for first point in TF region: ");

22 scanf(" %d %d", &firstX, &firstY);

23 printf("Enter indices for last point in TF region: ");

24 scanf(" %d %d", &lastX, &lastY);

25

26 ezIncInit(g); // initialize source function

27

28 return;

29 }

30

31 void tfsfUpdate(Grid *g) {

32 int mm, nn;

33

34 // check if tfsfInit() has been called

35 if (firstX <= 0) {

36 fprintf(stderr,

37 "tfsfUpdate: tfsfInit must be called before tfsfUpdate.\n"

38 " Boundary location must be set to positive value.\n");

39 exit(-1);

40 }

41

42 // correct Hz along left edge

43 mm = firstX - 1;

44 for (nn = firstY; nn < lastY; nn++)
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45 Hz(mm, nn) += Chze(mm, nn) * Ey1G(g1, mm + 1);

46

47 // correct Hz along right edge

48 mm = lastX;

49 for (nn = firstY; nn < lastY; nn++)

50 Hz(mm, nn) -= Chze(mm, nn) * Ey1G(g1, mm);

51

52 updateH2d(g1); // update 1D magnetic field

53 updateE2d(g1); // update 1D electric field

54 Ey1G(g1, 0) = ezInc(TimeG(g1), 0.0); // set source node

55 TimeG(g1)++; // increment time in 1D grid

56

57 // correct Ex along the bottom

58 nn = firstY;

59 for (mm = firstX; mm < lastX; mm++)

60 Ex(mm, nn) -= Cexh(mm, nn) * Hz1G(g1, mm);

61

62 // correct Ex along the top

63 nn = lastY;

64 for (mm = firstX; mm < lastX; mm++)

65 Ex(mm, nn) += Cexh(mm, nn) * Hz1G(g1, mm);

66

67 // correct Ey field along left edge

68 mm = firstX;

69 for (nn = firstY; nn < lastY; nn++)

70 Ey(mm, nn) += Ceyh(mm, nn) * Hz1G(g1, mm - 1);

71

72 // correct Ey field along right edge

73 mm = lastX;

74 for (nn = firstY; nn < lastY; nn++)

75 Ey(mm, nn) -= Ceyh(mm, nn) * Hz1G(g1, mm);

76

77 // no need to correct Ex along top and bottom since

78 // incident Ex is zero

79

80 return;

81 }

The function to initialize the 1D auxiliary grid is shown in Program 8.23. As was the case for

the TMz case, the grid is terminated on the right with a lossy layer that is 20 cells wide. The rest

of the grid corresponds to free space. (The first node in the grid is the hard-wired source node and

hence the left side of the grid does not need to be terminated.)

Program 8.23 grid1dhz.c: Initialization function used for the 1D auxiliary grid for the TEz

TFSF boundary.
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1 /* Create a 1D grid suitable for an auxiliary grid used as part of

2 * the implementation of a TFSF boundary in a TEz simulations. */

3

4 #include <math.h>

5 #include "fdtd-macro-tez.h"

6 #include "fdtd-alloc1.h"

7

8 #define NLOSS 20 // number of lossy cells at end of 1D grid

9 #define MAX_LOSS 0.35 // maximum loss factor in lossy layer

10

11 void gridInit1d(Grid *g) {

12 double imp0 = 377.0, depthInLayer = 0.0, lossFactor;

13 int mm;

14

15 SizeX += NLOSS; // size of domain

16 Type = oneDGrid; // set grid type

17

18 ALLOC_1D(g->hz, SizeX - 1, double);

19 ALLOC_1D(g->chzh, SizeX - 1, double);

20 ALLOC_1D(g->chze, SizeX - 1, double);

21 ALLOC_1D(g->ey, SizeX, double);

22 ALLOC_1D(g->ceye, SizeX, double);

23 ALLOC_1D(g->ceyh, SizeX, double);

24

25 /* set electric-field update coefficients */

26 for (mm = 0; mm < SizeX - 1; mm++) {

27 if (mm < SizeX - 1 - NLOSS) {

28 Ceye1(mm) = 1.0;

29 Ceyh1(mm) = Cdtds * imp0;

30 Chzh1(mm) = 1.0;

31 Chze1(mm) = Cdtds / imp0;

32 } else {

33 depthInLayer += 0.5;

34 lossFactor = MAX_LOSS * pow(depthInLayer / NLOSS, 2);

35 Ceye1(mm) = (1.0 - lossFactor) / (1.0 + lossFactor);

36 Ceyh1(mm) = Cdtds * imp0 / (1.0 + lossFactor);

37 depthInLayer += 0.5;

38 lossFactor = MAX_LOSS * pow(depthInLayer / NLOSS, 2);

39 Chzh1(mm) = (1.0 - lossFactor) / (1.0 + lossFactor);

40 Chze1(mm) = Cdtds / imp0 / (1.0 + lossFactor);

41 }

42 }

43

44 return;

45 }
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Figure 8.14 shows snapshots of the magnetic field throughout the computational domain at

three different times. The snapshot in Fig. 8.14(a) was taken after 60 time steps. The leading edge

of the incident pulse has just started to interact with the scatterer. No scattered fields are evident

in the SF region. The snapshot in Fig. 8.14(b) was taken after 100 time steps. The entire scatterer

is now visible and scattered fields have just started to enter the SF region. The final snapshot was

taken after 140 time steps.

To obtain these snapshots, the snapshot code of Program 8.11 has to be slightly modified. Since

we are now interested in obtaining Hz instead of Ez, the limits of the for-loops starting in line 68

of Program 8.11 would have to be changed to that which pertain to the Hz array. Furthermore,

one would have to change Ez(mm, nn) in line 70 to Hz(mm, nn). Because these changes are

minor, the modified version of the program is not shown.
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(a)

(b)

(c)

Figure 8.14: Pulsed TEz illumination of a circular scatter. Display of the Hz field at time-steps (a)

60, (b) 100 and (c) 140. The field has been normalized by 1/377 (i.e., the characteristic impedance

of free space) and is shown with three decades of logarithmic scaling. The incident field is a Ricker

wavelet discretized such that there are 30 points per wavelength at the most energetic frequency.
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