
Understanding the
Finite-Difference Time-Domain Method

John B. Schneider

June 30, 2025



ii



Preface

After providing background material in Chaps. 1 and 2, the following chapters attempt to explain
and apply the finite-difference time-domain (FDTD) method which is one of the most widely used
and successful numerical techniques for solving problems in time-varying electromagnetics. The
FDTD method relies on a discretization of Maxwell’s equations and is best suited for problems
where the dimensions of the structures under consideration are roughly in the “resonance region,”
i.e., the size of a structure and its relevant features are roughly within an order of magnitude,
or two, of the wavelength at the frequencies interest. One feature of the FDTD method is that,
because it is a time-domain method, it is possible to obtain results over a broad spectrum with a
single simulation.

The goal of this book is to guide you to create computer programs, written in C, that are
full fledged solutions to electromagnetics problems in one-, two-, and three-dimensions. Ideally
one has some familiarity with C, but it should be sufficient merely to have familiarity with some
programming language. C is a rather old language, as far as computer languages go, and it comes
with a certain amount of syntactic overhead (such as the need to terminate each statement with a
semicolon, the need to enclose blocks of code in braces, and the need to use “compiler directives”
to include certain header files at the start of a program). Be that as it may, compared to most other
computer languages, C has the advantage of being very fast and efficient. Some might say that C
is merely a step above assembly language and there is some merit to that observation. But, what
one gives up in ease of use when opting to use C can be repaid in terms of gains in speed. The
FDTD method is rather voracious in terms of its appetite for computational resources, so using a
language such as C is required if one has a goal of tackling “large” problems. As will be shown,
implementing the FDTD method is largely a matter of applying for-loops. If one keeps in mind
that that is the heart of the method, that may help to get past some of what may appear to be
programming arcana in what is to come.

Code will sometimes be presented as complete programs and will be labeled as such, e.g.,
Program 3.8. However, sometimes only fragments of code will be presented and labeled as such,
e.g., Fragment 4.2. Although the label may switch between “Program” and “Fragment,” the cor-
responding number will progress independent of the label. Thus, if the code that is presents after
Fragment 4.2 is a “Program” it will be Program 4.3 even though there is no program 4.2. Also, the
label “Program” should not be taken too literally. A C header file may be presented with a Program
label even though it, by itself, could not be used to produce executable code.

The material to follow is presented in the form of a book. Nevertheless, this material has
some obvious deficiencies compared to what might expect in a “complete” textbook. Because
this material is a work in progress, some of these deficiences may be addressed in time, but, for

Lecture notes by John Schneider. preface.tex

iii



iv PREFACE

now, references to prior work are almost nonexistent; there are no end-of-chapter exercises; and
undoubtedly there are places where text could be impoved. Any suggestions for improvement of
this material is welcome.

John B. Schneider
john schneider@wsu.edu

mailto:john_schneider@wsu.edu


Contents

Preface iii

1 Numeric Artifacts 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Finite Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Symbolic Manipulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Brief Review of Electromagnetics 7
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Coulomb’s Law and Electric Field . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Electric Flux Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Static Electric Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Gradient, Divergence, and Curl . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6 Laplacian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.7 Gauss’s and Stokes’ Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.8 Electric Field Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.9 Conductivity and Perfect Electric Conductors . . . . . . . . . . . . . . . . . . . . 22
2.10 Magnetic Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.11 Magnetic Field Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.12 Summary of Static Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.13 Time Varying Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.14 Summary of Time-Varying Fields . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.15 Wave Equation in a Source-Free Region . . . . . . . . . . . . . . . . . . . . . . . 26
2.16 One-Dimensional Solutions to the Wave Equation . . . . . . . . . . . . . . . . . 27

3 Introduction to the FDTD Method 29
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 The Yee Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Update Equations in One (Spatial) Dimension . . . . . . . . . . . . . . . . . . . . 31
3.4 Computer Implementation of a One-Dimensional

FDTD Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5 Bare-Bones Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.6 PMC Boundary in One Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.7 Snapshots of the Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.8 Additive Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

v



vi CONTENTS

3.9 Terminating the Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.10 Total-Field/Scattered-Field Boundary . . . . . . . . . . . . . . . . . . . . . . . . 52
3.11 Inhomogeneities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.12 Lossy Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4 Improving the FDTD Code 73
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2 Arrays and Dynamic Memory Allocation . . . . . . . . . . . . . . . . . . . . . . 73
4.3 Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.4 Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.5 Improvement Number One . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.6 Modular Design and Initialization Functions . . . . . . . . . . . . . . . . . . . . . 88
4.7 Improvement Number Two . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.8 Compiling Modular Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.9 Improvement Number Three . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5 Scaling FDTD Simulations to Any Frequency 113
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.2 Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.2.1 Gaussian Pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.2.2 Harmonic Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.2.3 The Ricker Wavelet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.3 Mapping Frequencies to Discrete Fourier Transforms . . . . . . . . . . . . . . . . 121
5.4 Running Discrete Fourier Transform (DFT) . . . . . . . . . . . . . . . . . . . . . 122
5.5 Real Signals and DFT’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.6 Amplitude and Phase from Two Time-Domain Samples . . . . . . . . . . . . . . 127
5.7 Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.8 Transmission Coefficient for a Planar Interface . . . . . . . . . . . . . . . . . . . 133

5.8.1 Transmission through Planar Interface . . . . . . . . . . . . . . . . . . . . 135
5.8.2 Measuring the Transmission Coefficient Using FDTD . . . . . . . . . . . 136

6 Differential-Equation Based ABC’s 145
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.2 The Advection Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.3 Terminating the Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.4 Implementation of a First-Order ABC . . . . . . . . . . . . . . . . . . . . . . . . 148
6.5 ABC Expressed Using Operator Notation . . . . . . . . . . . . . . . . . . . . . . 153
6.6 Second-Order ABC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
6.7 Implementation of a Second-Order ABC . . . . . . . . . . . . . . . . . . . . . . 158

7 Dispersion, Impedance, Reflection, and Transmission 161
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
7.2 Dispersion in the Continuous World . . . . . . . . . . . . . . . . . . . . . . . . . 161
7.3 Harmonic Representation of the FDTD Method . . . . . . . . . . . . . . . . . . . 162
7.4 Dispersion in the FDTD Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165



CONTENTS vii

7.5 Numeric Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
7.6 Analytic FDTD Reflection and Transmission Coefficients . . . . . . . . . . . . . . 169
7.7 Reflection from a PEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
7.8 Interface Aligned with an Electric-Field Node . . . . . . . . . . . . . . . . . . . . 175

8 Two-Dimensional FDTD Simulations 181
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
8.2 Multidimensional Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
8.3 Two Dimensions: TMz Polarization . . . . . . . . . . . . . . . . . . . . . . . . . 185
8.4 TMz Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
8.5 The TFSF Boundary for TMz Polarization . . . . . . . . . . . . . . . . . . . . . . 204
8.6 TMz TFSF Boundary Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
8.7 TEz Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
8.8 PEC’s in TEz and TMz Simulations . . . . . . . . . . . . . . . . . . . . . . . . . 224
8.9 TEz Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

9 Three-Dimensional FDTD 243
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
9.2 3D Arrays in C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
9.3 Governing Equations and the 3D Grid . . . . . . . . . . . . . . . . . . . . . . . . 246
9.4 3D Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
9.5 TFSF Boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
9.6 TFSF Demonstration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
9.7 Unequal Spatial Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

10 Dispersive Material 289
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
10.2 Constitutive Relations and Dispersive Media . . . . . . . . . . . . . . . . . . . . . 290

10.2.1 Drude Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
10.2.2 Lorentz Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
10.2.3 Debye Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

10.3 Debye Materials Using the ADE Method . . . . . . . . . . . . . . . . . . . . . . . 294
10.4 Drude Materials Using the ADE Method . . . . . . . . . . . . . . . . . . . . . . . 297
10.5 Magnetically Dispersive Material . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
10.6 Piecewise Linear Recursive Convolution . . . . . . . . . . . . . . . . . . . . . . . 301
10.7 PLRC for Debye Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

11 Perfectly Matched Layer 307
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
11.2 Lossy Layer, 1D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
11.3 Lossy Layer, 2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
11.4 Split-Field Perfectly Matched Layer . . . . . . . . . . . . . . . . . . . . . . . . . 312
11.5 Un-Split PML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
11.6 FDTD Implementation of Un-Split PML . . . . . . . . . . . . . . . . . . . . . . . 318



viii CONTENTS

12 Acoustic FDTD Simulations 323
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
12.2 Governing FDTD Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
12.3 Two-Dimensional Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 328

13 Parallel Processing 331
13.1 Threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
13.2 Thread Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
13.3 Message Passing Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
13.4 Open MPI Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
13.5 Rank and Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
13.6 Communicating Between Processes . . . . . . . . . . . . . . . . . . . . . . . . . 344

14 Near-to-Far-Field Transformation 349
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
14.2 The Equivalence Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
14.3 Vector Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
14.4 Electric Field in the Far-Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
14.5 Simpson’s Composite Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
14.6 Collocating the Electric and Magnetic Fields: The Geometric Mean . . . . . . . . 361
14.7 NTFF Transformations Using the Geometric Mean . . . . . . . . . . . . . . . . . 364

14.7.1 Double-Slit Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
14.7.2 Scattering from a Circular Cylinder . . . . . . . . . . . . . . . . . . . . . 368
14.7.3 Scattering from a Strongly Forward-Scattering Sphere . . . . . . . . . . . 369

A Construction of Fourth-Order Central Differences A.375

B Generating a Waterfall Plot and Animation B.377

C Generating an Animation of 1D Snapshots Contained in a Single File C.381

D Rendering and Animating Two-Dimensional Data D.383

E Notation E.387

F PostScript Primer F.389
F.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F.389
F.2 The PostScript File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F.390
F.3 PostScript Basic Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F.390

Index 403



Chapter 1

Numeric Artifacts

1.1 Introduction
Virtually all solutions to problems in electromagnetics require the use of a computer. Even when
an analytic or “closed form” solution is available which is nominally exact, one typically must use
a computer to translate that solution into numeric values for a given set of parameters. Because
of inherent limitations in the way numbers are stored in computers, some errors will invariably be
present in the resulting solution. These errors will typically be small but they are an artifact about
which one should be aware. Here we will discuss a few of the consequences of finite precision.

Later we will discuss numeric solutions to electromagnetic problems which are based on the
finite-difference time-domain (FDTD) method. The FDTD method makes approximations that
force the solutions to be approximate, i.e., the method is inherently approximate. The results
obtained from the FDTD method would be approximate even if we used computers that offered
infinite numeric precision. The inherent approximations in the FDTD method will be discussed in
subsequent chapters.

With numerical methods there is one note of caution which one should always keep in mind.
Provided the implementation of a solution does not fail catastrophically, a computer is always
willing to give you a result. You will probably find there are times when, to get your program
simply to run, the debugging process is incredibly arduous. When your program does run, the
natural assumption is that all the bugs have been fixed. Unfortunately that often is not the case.
Getting the program to run is one thing, getting correct results is another. And, in fact, getting
accurate results is yet another thing—your solution may be correct for the given implementation,
but the implementation may not be one which is capable of producing sufficiently accurate results.
Therefore, the more ways you have to test your implementation and your solution, the better. For
example, a solution may be obtained at one level of discretization and then another solution using
a finer discretization. If the two solutions are not sufficiently close, one has not yet converged to
the “true” solution and a finer discretization must be used or, perhaps, there is some systemic error
in the implementation. The bottom line: just because a computer gives you an answer does not
mean that answer is correct.

Lecture notes by John Schneider. numerical-issues.tex

1



2 CHAPTER 1. NUMERIC ARTIFACTS

1.2 Finite Precision
If we sum one-eleventh eleven times we know that the result is one, i.e., 1/11 + 1/11 + 1/11 +
1/11 + 1/11 + 1/11 + 1/11 + 1/11 + 1/11 + 1/11 = 1. But is that true on a computer? Consider
the C program shown in Program 1.1.

Program 1.1 oneEleventh.c: Test if 1/11 + 1/11 + 1/11 + 1/11 + 1/11 + 1/11 + 1/11 +
1/11 + 1/11 + 1/11 equals 1.

1 /* Is summing 1./11. ten times == 1.0? */
2 #include <stdio.h>
3

4 int main() {
5 float a;
6

7 a = 1.0 / 11.0;
8

9 if (a + a + a + a + a + a + a + a + a + a + a == 1.0)
10 printf("Equal.\n");
11 else
12 printf("Not equal.\n");
13

14 return 0;
15 }

In this program the float variable a is set to one-eleventh. In line 9 the sum of eleven a’s is
compared to one. If they are equal, the program prints “Equal” but prints “Not equal” otherwise.
The output of this program is “Not equal.” Thus, to a computer (at least one running a language
typically used in the solution of electromagnetics problems), the sum of one-eleventh eleven times
is not equal to one. It is worth noting that had line 9 been written a = 1 / 11;, a would have
been set to zero since integer math would be used to evaluate the division. By using a = 1.0 /
11.0;, the computer uses floating-point math.

The floating-point data types in C or FORTRAN can only store a finite number of digits. On
most machines four bytes (32 binary digits or bits) are used for single-precision numbers and
eight bytes (64 digits) are used for double precision. Returning to the sum of one-elevenths, as
an extreme example, assumed that a computer can only store two decimal digits. One eleventh is
equal to 0.09090909. . . Thus, to two decimal places one-eleventh would be approximated by 0.09.
Summing this eleven times yields

0.09 + 0.09 + 0.09 + 0.09 + 0.09 + 0.09 + 0.09 + 0.09 + 0.09 + 0.09 + 0.09 = 0.99

which is clearly not equal to one. If the number is stored with more digits, the result becomes
closer to one, but it never gets there. Both the decimal and binary floating-point representation
of one-eleventh have an infinite number of digits. Thus, when attempting to store one-eleventh



1.2. FINITE PRECISION 3

in a computer the number has to be truncated so that the computer stores an approximation of
one-eleventh. Because of this truncation summing one-eleventh eleven times does not yield one.

Since 1/10 is equal to 0.1, it might appear this number can be stored with a finite number
of digits. Although one-tenth has a finite number of digits when written in base ten (decimal
representation), it has an infinite number of digits when written in base two (binary representation).

In a floating-point decimal number each digit represents the number of, or the “multiples of,”
a particular power of ten. This multiple a digit between zero and one less than the base of the
number system being used. Thus, in decimal, this multiple is between 0 and 9.* Letting a blank
represent a digit, a decimal number can be thought of in the follow way:

. . . . . . .

103 102 101 100 10−1 10−2 10−3 10−4

Each digit tells how many of a particular power of 10 there is in a number (where this digit can be
no greater than 9). The decimal point serves as the dividing line between negative and non-negative
exponents. Binary numbers are similar except each digit represents a power of two:

. . . . . . .

23 22 21 20 2−1 2−2 2−3 2−4

The base-ten number 0.110 is simply 1× 10−1. To obtain the same value using binary numbers we
have to take 2−4 + 2−5 + 2−8 + 2−9 + . . ., i.e., an infinite number of binary digits. Another way of
writing this is

0.110 = 0.0001100110011001100110011 . . .2 .

As before, when this is stored in a computer, the number has to be truncated. The stored value is
no longer precisely equal to one-tenth. Summing ten of these values does not yield one (although
the difference is very small).

The details of how floating-point values are stored in a computer are not a significant concern
when it comes to computational electromagnetics.† However, it may be helpful to know how bits
are allocated. Numbers are stored in exponential form and the standard allocation of bits is:

total bits sign mantissa exponent
single precision 32 1 23 8
double precision 64 1 52 11

Essentially the exponent gives the magnitude of the number while the mantissa gives the digits of
the number—the mantissa determines the precision. The more digits available for the mantissa,
the more precisely a number can be represented. Although a double-precision number has twice
as many total bits as a single-precision number, it uses 52 bits for the mantissa whereas a single-
precision number uses 23. Therefore double-precision numbers actually offer more than twice the
precision of single-precision numbers. A mantissa of 23 binary digits corresponds to a little less
than seven decimal digits. This is because 223 is 8,388,608, thus 23 binary digits can represent

*In base two, i.e., in binary, this multiple can be either zero or one. It is interesting, at least to me, that we do not
have a dedicate symbol to represent the number ten. Instead, we write the symbols for 1 and 0 and understand that that
is ten. When using higher-order number systems, such as hexidecimal, we typical use a or A to represent ten, but this
is more of a proxy for 10 than a dedicated symbol for it.

†For the storage of floating-point number, nearly all computer follow the IEEE 754 standard which can be found
here ieeexplore.ieee.org/document/4610935.

https://ieeexplore.ieee.org/document/4610935


4 CHAPTER 1. NUMERIC ARTIFACTS

numbers between 0 and 8,388,607. On the other hand, a mantissa of 52 binary digits corresponds
to a value with between 15 and 16 decimal digits (252 = 4,503,599,627,370,496).

For the exponent, a double-precision number has three more bits than a single-precision num-
ber. It may seem as if the double-precision exponent has been short-changed as it does not have
twice as many bits as a single-precision number. However, keep in mind that the exponent rep-
resents the size of a number. Each additional bit essentially doubles the range of values that can
be represented. If the exponent had nine bits, it could represent numbers which were twice as
large as single-precision numbers. The three additional bits that a double-precision number pos-
sesses allows it to represent exponents which are eight times larger than single-precision numbers.
This translates into numbers which are 256, i.e., 28, times larger (or smaller) in magnitude than
single-precision numbers.

Consider the following equation
a+ b = a.

From common algebra we know this equation can only be satisfied if b is zero. However, using
computers this equation can be “true,” i.e., b makes no contribution to a, even when b is non-zero.

When numbers are added or subtracted, their mantissas are shifted until their exponents are
equal. At that point the mantissas can be directly added or subtracted. However, if the difference
in the exponents is greater than the length of the mantissa, then the smaller number will not have
any affect when added to or subtracted from the larger number. The code fragment shown in
Fragment 1.2 illustrates this phenomenon.

Fragment 1.2 Code fragment to test if a non-zero b can satisfy the equation a+ b = a.

1 float a = 1.0, b = 0.5, c;
2

3 c = a + b;
4

5 while(c != a) {
6 b = b / 2.0;
7 c = a + b;
8 }
9

10 printf("%12g %12g %12g\n", a, b, c);

Here a is initialized to one while b is set to one-half. The variable c holds the sum of a and b.
The while-loop starting on line 5 will continue as long as c is not equal to a. In the body of the
loop, b is divided by 2 and c is again set equal to a+ b. If the computer had infinite precision, this
would be an infinite loop. The value of b would become vanishingly small, but it would never be
zero and hence a+ b would never equal a. However, the loop does terminate and the output of the
printf() statement in line 10 is:

1 5.96046e-08 1



1.2. FINITE PRECISION 5

This shows that both a and c are unity while b has a value of 5.96046× 10−8. Note that this value
of b corresponds to 1× 2−24. When b has this value, the exponents of a and b differ by more than
23 (a is 1× 20).

One more example serves to illustrate the less-than-obvious ways in which finite precision can
corrupt a calculation. Assume the variable a is set equal to 2. Taking the square root of a and then
squaring a should yield a result which is close to 2 (ideally it would be 2, but since

√
2 has an

infinite number of digits, some accuracy will be lost). However, what happens if the square root is
taken 23 times and then the number is squared 23 times? The number of times to apply the square
root and then square the value is fixed by the #define statement in line 6. We would hope to
get a result close to two, and ideally exactly 2.0, but that is not the case. The program shown in
Program 1.3 allows us to test this scenario.

Program 1.3 rootTest.c: Take the square root of a number repeatedly and then square the
number an equal number of times.

1 /* Square-root test. */
2 #include <math.h> // needed for sqrt()
3 #include <stdio.h>
4

5 /* Number of times to apply square root and then square the value. */
6 #define COUNT 23
7

8 int main() {
9 float a = 2.0;

10 int i;
11

12 for (i = 0; i < COUNT; i++)
13 a = sqrt(a); // square root of a
14

15 for (i = 0; i < COUNT; i++)
16 a = a * a; // a squared
17

18 printf("%12g\n", a);
19

20 return 0;
21 }

The program output is one, i.e., the result is a = 1.0. Each time the square root is taken, the value
gets closer and closer to unity. Eventually, because of truncation error, the computer thinks the
number is unity. At that point no amount of squaring the number will change it. You may wish to
run this for yourself and see what happens if the COUNT in line 6 is changed to 22 or 24 or if the
variable a is changed in line 9 from float to double.



6 CHAPTER 1. NUMERIC ARTIFACTS

1.3 Symbolic Manipulation
When using languages which are typically used in numerical analysis (such as C, C++, FORTRAN,
or even MATLAB), truncation error is unavoidable. The ratio of the circumference of a circle to
its diameter is the number π = 3.141592 . . . This is an irrational (and transcendental) number with
an infinite number of digits. Thus one cannot store the exact numeric value of π in a computer.
Instead, one must use an approximation consisting of a finite number of digits. However, there are
software packages, such as Mathematica, that allow one to manipulate symbols. Within Mathemat-
ica, if a person writes Pi, Mathematica “knows” symbolically what that means. For example, the
cosine of 10000000001*Pi is identically negative one. Similarly, one could write Sqrt[2].
Mathematica knows that the square of this is identically 2. Unfortunately, though, such symbolic
manipulations are incredibly expensive in terms of computational resources. Many cutting-edge
problems in electromagnetics can involve hundreds of thousand or even millions of unknowns. To
deal with these large amounts of data it is imperative to be as efficient—both in terms of memory
and computation time—as possible. Mathematica is wonderful for many things, but it is typically
not the right tool for solving large numeric problems.

In MATLAB one can write pi as a shorthand representation of π. However, this representation
of π is different from that used in Mathematica. In MATLAB, pi is essentially the same as the
numeric representation—it is just more convenient to write pi than all the numeric digits. In C,
provided you have included the header file math.h, you can use M PI as a shorthand for π.‡

Looking in math.h reveals the following statement:

#define M_PI 3.14159265358979323846 /* pi */

This is similar to what is happening in MATLAB. MATLAB only knows what the numeric value
of pi is and that numeric value is a truncated version of the true value. Thus, taking the cosine of
10000000001*pi yields −0.99999999999954 instead of the exact value of −1 (but, of course,
the difference is trivial in this case).

‡In addition to including this header file, some compilers also require that USE MATH DEFINES be defined.
Thus, one would write:
#define USE MATH DEFINES
#include <math.h>



Chapter 2

Brief Review of Electromagnetics

2.1 Introduction
The specific equations on which the finite-difference time-domain (FDTD) method is based will
be considered in some detail later. The goal here is to remind you of the physical significance of
the equations to which you have been exposed in previous courses on electromagnetics.

In some sense there are just a few simple premises which underlie all electromagnetics. One
could argue that electromagnetics is based on the following:

1. Charge exerts force on other charge.

2. Charge in motion exerts a force on other charge in motion.

3. All material is made up of charged particles.

Of course translating these premises, which must take into account the finite speed of light, into
a corresponding mathematical framework is not trivial. However one should not lose sight of the
fact that the math is trying to describe principles that are conceptually rather simple.

2.2 Coulomb’s Law and Electric Field
Coulomb studied the electric force on static (unmoving) charged particles. As depicted in Fig.
2.1, given two discrete particles carrying charge Q1 and Q2, the force experienced by Q2 due
to Q1 is along the line joining Q1 and Q2. The force is proportional to the charges and inversely
proportional to the square of the distance between the charges. A proportionality constant is needed
to obtain Coulomb’s law which gives the equation of the force on Q2 due to Q1:

F12 = â12
1

4πϵ0

Q1Q2

R2
12

(2.1)

where â12 is a unit vector pointing from Q1 to Q2, R12 is the distance between the charges, and
1/4πϵ0 is the proportionality constant. The constant ϵ0 is known as the permittivity of free space
and equals approximately 8.854 × 10−12 F/m. Charge is expressed in units of coulombs (C)* and

Lecture notes by John Schneider. em-review.tex
*One coulomb of charge is equal to 527/801088317 “elementary charges” which can be the charge of an electron

or proton.

7



8 CHAPTER 2. BRIEF REVIEW OF ELECTROMAGNETICS

Q
2 F12 = Q

2 
E

1a12
^

R
12Q

1

Figure 2.1: For two static charges, the force experienced by charge Q2 due to charge Q1 is along
the line which pass through both charges. The direction of the force is dictated by the signs of the
charges. Electric field is assumed to point radially away from positive charges as is indicated by
the lines pointing away from Q1 (which is assumed here to be positive).

can be either negative or positive. When the two charges have like signs, the force will be repulsive:
F12 will be parallel to â12. When the charges are of opposite sign, the force will be attractive so
that F12 will be anti-parallel to â12.

There is a shortcoming with (2.1) in that it implies action at a distance. It appears from this
equation that the force F12 is established instantly. From this equation one could assume that a
change in the distance R12 results in an instantaneous change in the force F12, but this is not the
case. A finite amount of time is required to communicate the change in location of one charge to
the other charge (similarly, it takes a finite amount of time to communicate a change in the quantity
of one charge to the other charge). To overcome this shortcoming it is convenient to employ the
concept of fields.† Instead of Q1 producing a force directly on Q2, Q1 is said to create a vector
field. This field then exerts a force on Q2. The field produced by Q1 is independent of Q2—it
exists whether or not Q2 is there to experience it.

In the static case, the field approach does not appear to have any advantage over the direct use
of Coulomb’s law. This is because for static charges Coulomb’s law is correct. Fields (i.e., the lo-
cation or the amount of the charges) must be time-varying for the distinction to arise. Nevertheless,
to be consistent with the time-varying case, fields are used in the static case as well. The electric
field produced by the point charge Q1 is

E1 = âr
Q1

4πϵ0r2
(2.2)

where âr is a unit vector which points radially away from the charge and r is the distance from the
charge. The electric field has units of volts per meter (V/m).

To find the force on Q2, one merely takes the charge times the electric field: F12 = Q2E1. In
general, the force owing to the electric field on any charge Q is the product of the charge and the
electric field at which the charge is present, i.e., F = QE, where E may have been created by any
possible distribution of charges.

†For our purposes, we can think of a field as assigning a value to all points in space. This value may be a scalar
value such as temperature, i.e., a function that describes the temperature throughout space can be thought of as a scalar
field. Or, a field may assign a vector value to all points in space, i.e., a description of the direction and magnitude of
air flow throughout space can be thought of as a vector field.



2.2. COULOMB’S LAW AND ELECTRIC FIELD 9

We can be more explicit about the spatial nature of the electric field. For the remainder of
the book we will largely restrict our description of space to the Cartesian coordinate system. An
arbitrary point in Cartesian coordinates can be specified via its position vector which can be written

r = xâx + yây + zâz (2.3)

where x, y, and z are the displacements along the orthogonal axes x, y, and z axes, respectively,
and âx, ây, and âz are unit vectors pointing in the x, y, and z directions, respectively. Alternatively,
we can write the position vector as

r = râr = rxâx + ryây + rzâz (2.4)

where r is the distance from the origin to the point and is given by

r =
√
x2 + y2 + z2. (2.5)

The unit vector âr points directly from the origin to the given point and has projections onto the x,
y, and z such that of

âr =
x

r
âx +

y

r
ây +

z

r
âz.

Returning to the electric field about a point charge Q1, assuming the charge is at the origin, the
electric field can be written

E1(r) = E1(x, y, z) = âr
Q1

4πϵ0r2
= r

Q1

4πϵ0r3
. (2.6)

This is, of course, essentially unchanged from (2.2) but it does make more explicit that the electric
field is a function of position and implies that the charge is at the origin. What if the chargeQ1 was
not at the origin but rather at the point specified by the position vector r1 = x1âx + y1ây + z1âz?

In this case we define the displacement vector from the charge to an arbitrary point in space,
i.e.,

rd = rdârd = (x− x1)âx + (y − y1)ây + (z − z1)âz (2.7)

where
rd = |rd| =

√
(x− x1)2 + (y − y1)2 + (z − z1)2. (2.8)

The electric field associated with this charge is

E′
1(r) = ârd

Q1

4πϵ0r2d
= rd

Q1

4πϵ0r3d
(2.9)

where the prime has been added to distinguish this field from the one associated with the charge
at the origin. Going forward, the spatial dependence of the field often will not be explicitly shown
but one should not lose sight of the fact that we are considering functions of space.

The previous discussion has been for an unmoving (static) charge that has been sitting in the
same spot for all of eternity. However, we are interested in time varying fields caused by time
varying sources, i.e., time varying currents. Time varying currents necessarily involve moving
charges. What if a point charge, such as we have considered so far, moves? Things become much
more complicated. One needs to employ the Liénard-Wiechert potentials which account for the



10 CHAPTER 2. BRIEF REVIEW OF ELECTROMAGNETICS

finite speed of light. They do this, in part, through the use of a retarded time that considers not
where the charge is at a given instant, but where it had to have been for light to have arrived
at an observation point at a given time. From these potential one can obtain the corresponding
fields. Because the charge is in motion there will be both an electric field and a magnetic field.
Fortunately, we do not need to delve into that complexity.

Because we will not be considering individual charges, but rather collections of charges in the
form of currents, Maxwell’s equations are all we need. And, in fact, as we shall see, we merely
need two of Maxwell’s equations: Ampere’s Law and Faraday’s Law, i.e., the two curl equations.
If you want further details about the field created by a single (point) charge in motion, please see,
for example, Sec. 10.3.2 of [1] or Sec. 14.1 of [2].

The bottom line for us is that the fields we will consider are always functions of both time and
space. We can indicate this explicitly as

E = E(x, y, z, t) = E(r, t).

However, in many instances in what follows the spatial and temporal dependence will be under-
stood and not explicitly shown.

2.3 Electric Flux Density
All material is made up of charged particles. The material may be neutral overall because it has
as many positive charges as negative charges. Nevertheless, there are various ways in which the
positive and negative charges may shift slightly within the material, perhaps under the influence of
an electric field. The resulting charge separation will have an effect on the overall electric field.
Because of this it is often convenient to introduce a new field known as the electric flux density, D,
which has units of Coulombs per square meter (C/m2).‡ Essentially the D field ignores the local
effects of charge which is bound in a material.

In free space, the electric field and the electric flux density are related by

D = ϵ0E. (2.10)

Gauss’s law states that integrating D over a closed surface yields the enclosed free charge∮
S

D · ds = Qenc (2.11)

where S is the closed surface, ds is an incremental surface element whose normal is directed
radially outward, and Qenc is the enclosed charge. As an example, consider the electric field given
in (2.2). Taking S to be a spherical surface with the charge at the center, it is simple to perform the
integral in (2.11): ∮

S

D · ds =
π∫

θ=0

2π∫
ϕ=0

ϵ0
Q1

4πϵ0r2
âr · ârr2 sin θ dϕ dθ = Q1. (2.12)

‡Note that not everybody advocates using the D field. See for example Volume II of The Feynman Lectures on
Physics, R. P. Feynman, R. B. Leighton, and M. Sands, Addison-Wesley, 1964. Feynman only uses E and never resorts
to D.



2.3. ELECTRIC FLUX DENSITY 11

+  +  +  +  +  +  +  +  +  +  +  +  +  +  +  +  +  +  +

−  −  −  −  −  −  −  −  −  −  −  −  −  −  −  −  −  −  −  

ε0

D = ε0 E0

E0

Figure 2.2: Charged parallel plates in free space with positive charge on the top plate and negative
charge on the bottom plate. The dashed line represents the cross-section of a closed integration
surface S.

In (2.12), the radius r of the surface S is arbitrary. Regardless of the size of the spherical integration
surface, the result is always the same. This is because the area of the sphere goes up at r2 while
the magnitude of the field falls off as r2, i.e., the spatial dependence cancels. However, the result
is actually more general that that. The result is independent of the surface chosen (provided it
encloses the charge), but the integral is especially easy to perform for a spherical surface.

We want the integral in (2.11) always to equal the enclosed (free) charge as it does in free space.
However, things are more complicated when material is present. Consider, as shown in Fig. 2.2,
two large parallel plates which carry uniformly distributed charge of equal magnitude but opposite
sign. The dashed line represents the cross section an integration surface S which we take to be a
cuboid and is assumed to be sufficiently far from the edges of the plate so that the field is uniform
over the top of S. This field is identified as E0. The fields are zero outside of the plates and are
tangential to the sides of S within the plates. Therefore the only contribution to the integral would
be from the top of S. The result of the integral

∮
S
ϵ0E · ds is the negative charge enclosed by the

surface (i.e., the negative charge on the bottom plate that falls within S).
Now consider the same plates, carrying the same charge, but with a material present between

the plates. Assume this material is “polarizable” such that the positive and negative charges can
shift slightly. The charges are not completely free to move—they are bound charges. The positive
charges will be repelled by the charge on the top plate and attracted to the charge on the bottom
plate. Conversely, the negative charges will be repelled by the charge on the bottom plate and
attracted to the charge on the top plate. This scenario is depicted in Fig. 2.3.

With the material present, but the “free charge” on the plates unchanged, the electric field due
solely to the charge on the plates is still E0, i.e., the same field as existed in Fig. 2.2. However,
there is another field present due to the displacement of the bound charge in the polarizable material
between the plates. The polarized material effectively acts to establish a layer of positive charge
adjacent to the bottom plate and a layer of negative charge adjacent to the top plate. The field due
to these layers of charge is also uniform but it is in the opposite direction of the field caused by the
free charge on the plates. The field due to bound charge, i.e., due to the presence of the material,



12 CHAPTER 2. BRIEF REVIEW OF ELECTROMAGNETICS

+  +  +  +  +  +  +  +  +  +  +  +  +  +  +  +  +  +  +

−  −  −  −  −  −  −  −  −  −  −  −  −  −  −  −  −  −  −  

E0

−

+

+

+
−

−

−

+

+

+
−

−

−

+

+

+
−

−

−

+

+

+
−

−

−

+

+

+
−

−... ...

−    −    −    −    −

+    +    +    +    +

bound
surface
charge

E
m

Figure 2.3: Charged parallel plates with a polarizable material present between the plates. The
elongated objects represent molecules whose charge orientation serves to produce a net bound
negative charge layer adjacent to the top plate and a bound positive charge layer adjacent to the
bottom plate. In the interior, the positive and negative bound charges cancel each other. It is only at
the surface of the material where one must account for the bound charge. Thus, the molecules are
not drawn throughout the figure. Instead, as shown toward the right side of the figure, merely the
bound charge layer is shown. The free charge on the plates creates the electric field E0. The bound
charge creates the electric field Em which opposes E0 and hence diminishes the total electric field.
The dashed line again represents the cross-section of a closed integration surface S.



2.4. STATIC ELECTRIC FIELDS 13

is labeled Em in Fig. 2.3. The total field is the sum of the fields due to the free and bound charges,
i.e., E = E0 + Em. Because E0 and Em are anti-parallel, the magnitude of the total electric field
E will be less than E0.§

Since the material is neutral, we would like the integral of the electric flux over the surface
S to yield just the enclosed (free) charge on the bottom plate—not the bound charge due to the
material. In some sense this implies that the integration surface cannot separate the positive and
negative bound charge of any single molecule. Each molecule is either entirely inside or outside
the integration surface. Since each molecule is neutral, the only contribution to the integral will be
from the free charge on the plate.

With the material present, the integral of
∮
S
ϵ0E · ds yields too little charge. This is because,

as stated above, the total electric field E is less than it would be if only free space were present. To
correct for the reduced field and to obtain the desired result, the electric flux density is redefined so
that it accounts for the presence of the material. The more general expression for the electric flux
density is

D = ϵrϵ0E = ϵE (2.13)

where ϵr is the relative permittivity and ϵ is called simply the permittivity. By accounting for the
permittivity of a material, Gauss’s law is always satisfied.

In (2.13), D and E are related by a scalar constant. This implies that the D and E fields
are related by a simple proportionality constant for all frequencies, all orientations, and all field
strengths. Unfortunately the real world is not so simple. Clearly if the electric field is strong
enough, it would be possible to tear apart the bound positive and negative charges. Since charges
have some mass, they do not react the same way at all frequencies. Additionally, many materials
may have some structure, such as crystals, where the response in one direction is not the same in
other directions. Nevertheless, Gauss’s law is the law and thus always holds. When things get more
complicated one must abandon a simple scalar for the permittivity and use an appropriate form to
ensure Gauss’s law is satisfied. So, for example, it may be necessary to use a tensor for permittivity
that is directionally dependent. However, with the exception of frequency-dependent behavior (i.e.,
dispersive materials considered in Chap. 10), we will not be pursuing those complications. A scalar
permittivity will suffice.

2.4 Static Electric Fields
Ignoring possible nonlinear behavior of material, superposition holds for electromagnetic fields.
Therefore we can think of any distribution of charges as a collection of point charges. We can get
the total field by summing the contributions from all the charges (and this summing will have to
be in the form of an integration if the charge is continuously distributed where the “point charge”
is an infinitesimal small differential element times the local charge density).

Note from (2.2) that the field associated with a point charge merely points radially away from
the charge. There is no “swirling” of the field. If we have more than a single charge, the total field
may bend, but it will not swirl. Imagine a tiny wheel with positive charge distributed around its

§What is being describe here is an oversimplification. The full story should describe the effect of the bound charge
in terms of a polarization vector P. This will be considered in Chap. 10. For now, the simplication considered here
provides sufficient clarity to the role of the D field.



14 CHAPTER 2. BRIEF REVIEW OF ELECTROMAGNETICS

circumference. The hub of the wheel is held at a fixed location but the wheel is free to spin about its
hub. For static electric fields, no matter where we put this wheel, there would be no net force on the
wheel to cause it to spin. There may be a net force pushing the entire wheel in a particular direction
(a translational force), but the forces which are pushing the wheel to spin in the clockwise direction
will be balanced by the forces pushing the wheel to spin in the counterclockwise direction.

Another property of electrostatic fields is that the electric flux density only begins or terminates
on free charge. If there is no charge present, the lines of flux continue. This is a consquence of
Gauss’s law. If there a surface surrounds a charge-free region, the lines of flux that enter that
surface must exit it such that the total “flow” in equals the total flow out.

The lack of swirl in the electric field and the source of electric flux density are fairly simple
concepts. However, to be able to analyze the fields properly, one needs a mathematical statement
of these concepts. The appropriate statements, in differential form, are

∇× E = 0 (2.14)

and
∇ ·D = ρv (2.15)

where ∇ is the del or nabla operator and ρv is the electric charge density (with units of C/m3).
Equation (2.14) is the curl of the electric field and (2.15) is the divergence of the electric flux
density. These two equations are discussed further in the following section.

2.5 Gradient, Divergence, and Curl
The del operator is independent of the coordinate system used—naturally the behavior of the fields
should not depend on the coordinate system used to describe the field. Nevertheless, the del oper-
ator can be expressed in different coordinates systems. In Cartesian coordinates del is

∇ ≡ âx
∂

∂x
+ ây

∂

∂y
+ âz

∂

∂z
(2.16)

where the symbol ≡ means “defined as.” Note that the del operator by itself is meaningless. It
only takes on meaning when it operates on something and the nature of the operation can take on
different forms.

Del acting on a scalar field produces the gradient of the field. Assuming f is a scalar field, ∇f
produces the vector field given by

∇f = âx
∂f

∂x
+ ây

∂f

∂y
+ âz

∂f

∂z
. (2.17)

The gradient of f points in the direction of greatest change and is proportional to the rate of change.
Assume we wish to find the amount of change in f for a small movement dx in the x direction.
This can be obtained via ∇f · âxdx, to wit

∇f · âxdx =
∂f

∂x
dx = (rate of change in x direction) × (movement in x direction). (2.18)



2.5. GRADIENT, DIVERGENCE, AND CURL 15

Dy(x,y+∆y/2)

Dx(x−∆x/2,y) Dx(x+∆x/2,y)

Dy(x,y−∆y/2)

x

y

Figure 2.4: Discrete approximation to the divergence taken in the xy-plane.

This can be generalized for movement in an arbitrary direction. Letting an incrementally small
length be given by

dℓ = âxdx+ âydy + âzdz, (2.19)

the change in the field realized by moving an amount dℓ is

∇f · dℓ = ∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz. (2.20)

Recall that the dot product is proportional to the magnitude of the two vector operands and the
cosine of the angle between the two vectors. The value of (2.20) will be maximum when dℓ points
in the same direction as ∇f . If dℓ and ∇f are orthogonal, (2.20) is zero. This shows that movement
in the direction of the gradient yields the greatest change and movement orthogonal to the gradient
yields no change.

Returning to (2.15), when the del operator is dotted with a vector field, one obtains the diver-
gence of that field. Divergence can be thought of as a measure of “source” or “sink” strength of
the field at a given point. The divergence of a vector field is a scalar field given by

∇ ·D =
∂Dx

∂x
+
∂Dy

∂y
+
∂Dz

∂z
. (2.21)

Let us consider a finite-difference approximation of this divergence in the xy-plane as shown in
Fig. 2.4. Here the divergence is measured over a small box where the field is assumed to be constant
over each edge of the box. The derivatives can be approximated by central differences:

∂Dx

∂x
+
∂Dy

∂y
≈
Dx

(
x+ ∆x

2
, y
)
−Dx

(
x− ∆x

2
, y
)

∆x

+
Dy

(
x, y + ∆y

2

)
−Dy

(
x, y − ∆y

2

)
∆y

(2.22)

where this is exact as ∆x and ∆y go to zero. Letting ∆x = ∆y = δ, (2.22) can be written

∂Dx

∂x
+
∂Dy

∂y
≈ 1

δ

(
Dx

(
x+

δ

2
, y

)
−Dx

(
x− δ

2
, y

)
+Dy

(
x, y +

δ

2

)
−Dy

(
x, y − δ

2

))
.

(2.23)



16 CHAPTER 2. BRIEF REVIEW OF ELECTROMAGNETICS

Ex(x,y+∆y/2)

Ey(x−∆x/2,y) Ey(x+∆x/2,y)

Ex(x,y−∆y/2)

x

y

(x,y)

Figure 2.5: Discrete approximation to the curl taken in the xy-plane.

Inspection of (2.23) reveals that the divergence is essentially a sum of the field over the faces with
the appropriate sign changes. Positive signs are used if the field is assumed to point out of the box
and negative signs are used when the field is assumed to point into the box. If the sum of these
values is positive, that implies there is more flux out of the box than into it. Conversely, if the sum
is negative, that means more flux is flowing into the box than out. If the sum is zero, there must be
as much flux flowing into the box as out of it. That does not imply necessarily that, for instance,
Dx (x+ δ/2, y) is equal to Dx (x− δ/2, y), but rather that the sum of all four fluxes must be zero.

Equation (2.15) tells us that the electric flux density has zero divergence except where there is
charge present (as specified by the charge-density term ρv). If the charge density is zero, the total
flux entering some small enclosure must also leave it. If the charge density is positive at some
point, more flux will leave a small enclosure surrounding that point than will enter it. On the other
hand, if the charge density is negative, more flux will enter the enclosure surrounding that point
than will leave it.

Finally, let us consider (2.14) which is the curl of the electric field. In Cartesian coordinates it
is possible to treat this operation as simply the cross product between the vector operator ∇ and
the vector field E:

∇× E =

∣∣∣∣∣∣
âx ây âz
∂
∂x

∂
∂y

∂
∂z

Ex Ey Ez

∣∣∣∣∣∣ = âx

(
∂Ez
∂y

− ∂Ey
∂z

)
+ ây

(
∂Ex
∂z

− ∂Ez
∂x

)
+ âz

(
∂Ey
∂x

− ∂Ex
∂y

)
.

(2.24)
Let us consider the behavior of only the z component of this operator which is dictated by the field
in the xy-plane as shown in Fig. 2.5. The z-component of ∇× E can be written as

∂Ey
∂x

− ∂Ex
∂y

≈
Ey
(
x+ ∆x

2
, y
)
− Ey

(
x− ∆x

2
, y
)

∆x

−
Ex

(
x, y + ∆y

2

)
− Ex

(
x, y − ∆y

2

)
∆y

. (2.25)

The finite-difference approximations of the derivatives are again based on the fields on the edges
of a box surrounding the point of interest. However, in this case the relevant fields are tangential



2.6. LAPLACIAN 17

to the edges rather than normal to them. Again letting ∆x = ∆y = δ, (2.25) can be written

∂Ey
∂x

− ∂Ex
∂y

≈ 1

δ

(
Ey

(
x+

δ

2
, y

)
− Ey

(
x− δ

2
, y

)
− Ex

(
x, y +

δ

2

)
+ Ex

(
x, y − δ

2

))
.

(2.26)
Think of the field components shown in Fig. 2.5 as forces that push the edges of the square on
which they are located. These “forces” are directed as indicated by the arrows. Two of these vector
components tend to cause clockwise rotation, namely Ey(x − ∆x/2, y) and Ex(x, y + ∆y/2),
while the other two components cause counterclockwise rotation, namely Ey(x + ∆x/2, y) and
Ex(x, y −∆y/2).

Returning to (2.26), in the sum on the right side the sign is positive if the vector component
points in the counterclockwise direction (relative to rotations about the center of the box) and
is negative if the vector points in the clockwise direction. Recall that rotations and torques are
described as vector quantities where the direction of rotation is determined by the right-hand rule:
put the thumb of your right hand in the direction of the torque or spin vector, and the fingers of
your right hand indicate the direction of the torque or rotation. In Fig. 2.5 we are considering
rotation about the z axis. Thus, if the sum of the vector components in (2.26) is positive, that
implies that the net effect of these electric field vectors is to tend to push a positive charge in the
counterclockwise direction around the z axis. If the sum were negative, the vectors would tend to
push a positive charge in the clockwise direction around the z axis. If the sum is zero, there is no
tendency to push a positive charge around the center of the square (which is not to say there would
not be a translation force on the charge—indeed, if the electric field is non-zero, there has to be
some force on the charge).

2.6 Laplacian
In addition to the gradient, divergence, and curl, there is one more vector operator to consider.
There is a vector identity that the curl of the gradient of any function is identically zero

∇×∇f = 0. (2.27)

This is simple to prove by merely performing the operations in Cartesian coordinates. One obtains
several second-order partial derivatives which cancel if the order of differentiation is switched.
Recall that for a static distribution of charges, ∇ × E = 0. Since the curl of the electric field is
zero, it should be possible to represent the electric field as the gradient of some scalar function

E = −∇V. (2.28)

The scalar function V is the electric potential and the negative sign is used to make the electric
field point from higher potential to lower potential (by historic convention the electric field points
away from positive charge and toward negative charge). By expressing the electric field this way,
the curl of the electric field is guaranteed to be zero.

Another way to express the relationship between the electric field and the potential is via in-
tegration. Consider movement from an arbitrary point a to an arbitrary point b. The change in



18 CHAPTER 2. BRIEF REVIEW OF ELECTROMAGNETICS

potential between these two points can be expressed as

Vb − Va =

b∫
a

∇V · dℓ. (2.29)

The integrand represent the change in the potential for a movement dℓ and the integral merely sums
the changes over the path from a to b. However, the change in potential must also be commensurate
with the movement in the direction of, or against, the electric field. If we move against the electric
field, potential should go up. If we move along the electric field, the potential should go down. In
other words, the incremental change in potential for a movement dℓ should be dV = −E · dℓ (if
the movement dℓ is orthogonal to the electric field, there should be no change in the potential).
Summing the change in potential over the entire path yields

Vb − Va = −
b∫

a

E · dℓ. (2.30)

The integrals in (2.29) and (2.30) can be equated. Since the equality holds for any two arbitrary
points, the integrands must be equal and we are again left with E = −∇V .

The electric flux density can be related to the electric field via D = ϵE and the behavior of the
flux density D is dictated by ∇ ·D = ρv. Combining these with (2.28) yields

E =
1

ϵ
D = −∇V. (2.31)

Taking the divergence of both sides yields

1

ϵ
∇ ·D =

1

ϵ
ρv = −∇ · ∇V. (2.32)

Rearranging this yields Poisson’s equation given by

∇2V = −ρv
ϵ

(2.33)

where ∇2 is the Laplacian operator

∇2 ≡ ∇ · ∇ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (2.34)

Note that the Laplacian is a scalar operator. It can act on a scalar field (such as the potential V as
shown above) or it can act on a vector field as we will see later. When it acts on a vector field, the
Laplacian acts on each component of the field.

In the case of zero charge density, (2.33) reduces to Laplace’s equation

∇2V = 0. (2.35)

We have a physical intuition about what gradient, divergence, and curl are telling us, but what
about the Laplacian? To answer this, consider a function of a single variable.



2.7. GAUSS’S AND STOKES’ THEOREMS 19

Given the function V (x), we can ask if the function at some point is greater than, equal to, or
less than the average of its neighboring values. The answer can be expressed in terms of the value
of the function at the point of interest and the average of samples to either side of that central point:

V (x+ δ) + V (x− δ)

2
− V (x) =


positive if center point less than average of neighbors
zero if center point equals average of neighbors
negative if center point greater than average of neighbors

(2.36)
Here the left-most term represents the average of the neighboring values and δ is some displace-
ment from the central point. Equation (2.36) can be normalized by δ2/2 without changing the
properties of this equation. Performing that normalization and rearranging yields

1

δ2/2

{
V (x+ δ) + V (x− δ)

2
− V (x)

}
=

1

δ2
{(V (x+ δ)− V (x))− (V (x)− V (x− δ))}

=
V (x+δ)−V (x)

δ
− V (x)−V (x−δ)

δ

δ

≈
∂V (x+δ/2)

∂x
− ∂V (x−δ/2)

∂x

δ

≈ ∂2V (x)

∂x2
. (2.37)

Thus the second partial derivative can be thought of as a way of measuring the field at a point
relative to its neighboring points. You should already have in mind that if the second derivative
is negative, a function is tending to curve downward. Second derivatives are usually discussed
in the context of curvature. However, you should also think in terms of the field at a point and
its neighbors. At points where the second derivative is negative those points are higher than the
average of their neighboring points (at least if the neighbors are taken to be an infinitesimally small
distance away).

In lieu of these arguments, Poisson’s equation (2.33) should have physical significance. Where
the charge density is zero, the potential cannot have a local minima or maxima. The potential is
always equal to the average of the neighboring points. If one neighbor is higher, the other must be
lower (and this concept easily generalizes to higher dimensions). Conversely, if the charge density
is positive over some region, the potential should increase as one moves deeper into that region
but the rate of increase must be such that at any point the average of the neighbors is less than
the center point. This behavior is illustrated in Fig. 2.6 which depicts the potential along a path
through the center of a uniform sphere of charge.

2.7 Gauss’s and Stokes’ Theorems
Equation (2.11) presented Gauss’s law which stated the flux of D through a closed surface S is
equal to the enclosed charge. There is an identity in vector calculus, known as Gauss’s theorem,
which states that the integral of the flux of any vector field through a closed surface equals the
integral of the divergence of the field over the volume enclosed by the surface. This holds for any



20 CHAPTER 2. BRIEF REVIEW OF ELECTROMAGNETICS

-4 -2 2 4

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

uniform
sphere of charge

potential

distance from center

Figure 2.6: Potential along a path which passes through a uniform sphere of positive charge (arbi-
trary units).



2.8. ELECTRIC FIELD BOUNDARY CONDITIONS 21

vector field, but using the D field, Gauss’s theorem states∮
S

D · ds =
∫
V

∇ ·Ddv (2.38)

where V is the enclosed volume and dv is a differential volume element. Note that the left-hand
side of (2.38) is the left-hand side of (2.11).

The right-hand side of (2.11) is the enclosed charge Qenc which could be determined either by
evaluating the left-hand side of (2.11) or by integration of the charge density ρv over the volume
enclosed by S. (This is similar to determining the mass of an object by integrating its mass density
over its volume.) Thus,

Qenc =

∫
V

ρvdv. (2.39)

Equating the right-hand sides of (2.38) and (2.39) yields∫
V

∇ ·Ddv =

∫
V

ρvdv. (2.40)

Since this must hold over an arbitrary volume, the integrands must be equal which yields (2.15).
Another useful identity from vector calculus is Stokes’ theorem which states that the integral

of a vector field over any closed path is equal to the integral of the curl of that field over a surface
which has that path as its border. Again, this holds for any vector field, but using the electric field
as an example one can write ∮

L

E · dℓ =
∫
S

∇× E · ds. (2.41)

The surface normal is assumed to follow the right-hand convention so that when the fingers of the
right hand are oriented along the path of the loop, the thumb points in the positive direction of the
surface normal.

Static electric fields are conservative which means that the net work required to move a charge
in a closed path is always zero. Along some portion of the path positive work would have to be
done to push the charge against the field, but this amount of work would be given back by the field
as the charge travels along the remaining portions of the path. The integrand on the left-hand side
in (2.41) is the field dotted with an incremental length. If the integrand were multiplied by a unit
positive charge, the integrand would represent work, since charge times field is force and force
times distance is work. Because a static electric field is conservative, the integral on the left-hand
side of (2.41) must be zero. Naturally this implies that the integral on the right-hand side must also
be zero. Since this holds for any loop L (or, similarly, any surface S), the integrand itself must be
zero. Equating the integrand to zero yields (2.14).

2.8 Electric Field Boundary Conditions
Consider an interface between two homogeneous regions. Because electric flux density only begins
or ends on charge, the normal component of D can only change at the interface if there is charge



22 CHAPTER 2. BRIEF REVIEW OF ELECTROMAGNETICS

on the interface, i.e., surface charge is present. This can be stated mathematically as

n̂ · (D1 −D2) = ρs (2.42)

where ρs is a surface charge density (C/m2), n̂ is a unit vector normal to the surface, and D1 and D2

are the field to either side of the interface. One should properly justify this boundary condition by
an application of Gauss’s law for a small volume surrounding the surface, but such details are left
to others and won’t be considered in this review. If no charge is present, the normal components
must be equal

n̂ ·D1 = n̂ ·D2. (2.43)

The boundary conditions on the tangential component of the electric field can be determined
by integrating the electric field over a closed loop which is essentially a rectangle which encloses a
portion of the interface. By letting the sides shrink to zero and keeping the “top” and “bottom” of
the rectangle small but finite (so that they are tangential to the surface), one essentially has that the
field over the top must be the same as the field over the bottom (owing to the fact that total integral
must be zero since the field is conservative). Stated mathematically, the boundary condition is

n̂× (E1 − E2) = 0. (2.44)

As we will see, with the finite-difference time-domain method, we do not need to concern
ourselves with the details of boundary conditions. We merely need to specify material properties
and the method implicitly handles the boundary conditions.

2.9 Conductivity and Perfect Electric Conductors
It is possible for the charge in materials to move under the influence of an electric field such that
currents flow. If the material has a non-zero conductivity σ, the current density is given by

J = σE. (2.45)

The current density has units of A/m2 and the conductivity has units of S/m.
If charge is increasing or decreasing in a particular region, the divergence of the current density

must be non-zero. If the divergence is zero, that implies as much current leaves a point as enters it
and there is no build-up or diminution of charge. This can be stated as

∇ · J = −∂ρv
∂t

. (2.46)

If the divergence is positive, the charge density must be decreasing with time (so the negative sign
will bring the two into agreement). This equation is a statement of charge conservation also known
as the continuity equation.

Perfect electric conductors (PECs) are materials where it is assumed that the conductivity ap-
proaches infinity. If the fields were non-zero in a PEC, that would imply the current was infinite.
Since infinite currents are not allowed, the fields inside a PEC are required to be zero. This sub-
sequently requires that the tangential electric field at the surface of a PEC is zero (since tangential
fields are continuous across an interface, as dictated by (2.44), and the fields inside the PEC are
zero). Correspondingly, as dictated by (2.42), the normal component of the electric flux density D
at the surface of a PEC must equal the charge density at the surface of the PEC. Since the fields
inside a PEC are zero, all points of the PEC must be at the same potential.



2.10. MAGNETIC FIELDS 23

2.10 Magnetic Fields
Magnetic fields circulate around, but they do not terminate on anything—there is no (known)
magnetic charge. Nevertheless, it is often convenient to define magnetic charge and magnetic
current. These fictions allow one to simplify various problems such as integral formulations of
scattering problems. However for now we will stick to reality and say they do not exist.

The magnetic flux density B is somewhat akin to the electric field in that the force on a charge
in motion is related to B. If a charge Q is moving with velocity u in a field B, it experiences a
force

F = Qu×B. (2.47)

Because B determines the force on a charge, it must account for all sources of magnetic field.
When material is present, the charge in the material can have motion (or rotation) which influences
the magnetic flux density.

Alternatively, similar to the electric flux density, we define the magnetic field H which ignores
the local effects of material. These fields are related by

B = µrµ0H = µH (2.48)

where µr is the relatively permeability, µ0 is the permeability of free space equal to 4π×10−7 H/m,
and µ is simply the permeability. Typically the relative permeability is greater than unity (although
usually only by a small amount) which implies that when a material is present the magnetic flux
density is larger than when there is only free space.

Charge in motion is the source of magnetic fields. If a (constant) current I flows over an
incremental distance dℓ, it will produce an incremental magnetic field given by:

dH =
Idℓ× ar
4πr2

(2.49)

where ar points from the location of the filament of current to the observation point and r is the
distance between the filament and the observation point. Equation (2.49) is known as the Biot-
Savart equation. Of course, because of the conservation of charge, a current cannot flow over just
a filament and then disappear. It must flow along some path. Thus, the magnetic field due to a loop
of (constant) current is given by

H =

∮
L

Idℓ× ar
4πr2

. (2.50)

If the current was flowing throughout a volume or over a surface, the integral would be correspond-
ingly changed to account for the current wherever it flowed.

From (2.50) one sees that currents (which are just another way of saying charge in motion) are
the source of magnetic fields. Because of the cross-product in (2.49) and (2.50), the magnetic field
essentially swirls around the current. If one integrates the magnetic field over a closed path, the
result is the current enclosed by that path∮

L

H · dℓ = Ienc. (2.51)



24 CHAPTER 2. BRIEF REVIEW OF ELECTROMAGNETICS

The enclosed current Ienc is the current that passes through the surface S which is bound by the
loop L.

The left-hand side of (2.51) can be converted to a surface integral by employing Stokes’ theo-
rem while the right-hand side can be related to the current density by integrating over the surface
of the loop. Thus, ∮

L

H · dℓ =
∫
S

∇×H · ds = Ienc =

∫
S

J · ds. (2.52)

Since this must be true for every loop (and surface), the integrands of the second and fourth terms
can be equated. This yields

∇×H = J. (2.53)

The last equation needed to characterize static fields is

∇ ·B = 0. (2.54)

This is the mathematical equivalent of saying there is no magnetic charge.

2.11 Magnetic Field Boundary Conditions
Note that the equation governing B (2.54) is similar to the equation which governed D (2.15). In
fact, since the right-hand side is always zero, the equation for B is simpler. The arguments used to
obtain the boundary condition for the normal component of the D field can be applied directly to
the B field. Thus,

n̂ · (B1 −B2) = 0. (2.55)

For the magnetic field, an integration path is constructed along the same lines as the one used to
determine the boundary condition on the electric field. Note that the equations governing E and H
are similar except that the one for H has a non-zero right-hand side. If the current density is zero
over the region of interest, then there is really no distinction between the two and one can say that
the tangential magnetic fields must be equal across a boundary. However, if a surface current exists
on the interface, there may be a discontinuity in the tangential fields. The boundary condition is
given by

n̂× (H1 −H2) = K (2.56)

where K is the surface current density (with units of A/m).

2.12 Summary of Static Fields
When a system is not changing with respect to time, the governing equations are

∇ ·D = ρv, (2.57)
∇ ·B = 0, (2.58)
∇× E = 0, (2.59)
∇×H = J. (2.60)



2.13. TIME VARYING FIELDS 25

If a loop carries a current but is otherwise neutral, it will produce a magnetic field and only a
magnetic field. If a charge is stationary, it will produce an electric field and only an electric field.
The charge will not “feel” the loop current and the current loop will not feel the stationary charge
(at least approximately). The magnetic field and electric field are decoupled. If a charge Q moves
with velocity u in the presence of both an electric field and a magnetic field, the force on the charge
is the sum of the forces due to the electric and magnetic fields

F = Q(E+ u×B). (2.61)

2.13 Time Varying Fields
What happens when a point charge moves?¶ We know that charge in motion gives rise to a magnetic
field, but if the charge is moving, its associated electric field must also be changing. Thus, when a
system is time-varying the electric and magnetic fields must be coupled.

There is a vector identity that the divergence of the curl of any vector field is identically zero.
Taking the divergence of both sides of (2.60) yields

∇ · ∇ ×H = ∇ · J = −∂ρv
∂t

(2.62)

which implies that

0 =
∂ρv
∂t

. (2.63)

The conservation of charge equation (2.46) was used to write the last equality in (2.62) and the
vector identity governing the divergence of the curl of any field was used to write zero in (2.63).
However, (2.63) is clearly overly restrictive: in general, for a time-varying system, the charge
density will change with respect to time. Therefore something must be wrong with (2.60) as it
pertains to time-varying fields.

It was Maxwell who recognized that by adding the temporal derivative of the electric flux
density to the right-hand side of (2.60) the equation would still be valid for the time-varying case.
The correct equation is given by

∇×H = J+
∂D

∂t
(2.64)

The term ∂D/∂t is known as the displacement current while J is typically called the conduction
current. Equation (2.64) is known as Ampere’s law.

Taking the divergence of the right-hand side of (2.64) yields

∇ · J+
∂∇ ·D
∂t

= −∂ρv
∂t

+
∂∇ ·D
∂t

= −∂ρv
∂t

+
∂ρv
∂t

= 0 (2.65)

where use was made of (2.15) and the conservation of charge equation (2.46).
The electromotive force (EMF) is the change in potential over some path. It has been observed

experimentally that when a magnetic field is time-varying there is a non-zero EMF over a closed
path which encloses the varying field (i.e., the electric field is no longer conservative).

¶As mentioned previously, details can be worked out using the Liénard-Wiechert potentials, but we aren’t actually
interested in the field due to a single charge. We’re interested in aggregated charge motion, i.e., currents.



26 CHAPTER 2. BRIEF REVIEW OF ELECTROMAGNETICS

The symbol λ is often use to represent total magnetic flux through a given surface, i.e.,

λ =

∫
S

B · ds. (2.66)

For time-varying fields, the EMF over a closed path L can be written

Vemf =
dλ

dt
, (2.67)

−
∮
L

E · dℓ =
d

dt

∫
S

B · ds, (2.68)

−
∫
S

∇× E · ds =

∫
S

∂B

∂t
· ds, (2.69)

where Stokes’ theorem was used to write the last equation. Since this equality holds over any
surface, the integrands must be equal. This yields

∇× E = −∂B
∂t

(2.70)

which is known as Faraday’s law.

2.14 Summary of Time-Varying Fields
When a system is changing with respect to time, the governing equations are

∇ ·D = ρv, (2.71)
∇ ·B = 0, (2.72)

∇× E = −∂B
∂t
, (2.73)

∇×H = J+
∂D

∂t
. (2.74)

Note that the divergence equations are unchanged from the static case. The two curl equations
have picked up terms which couple the electric and magnetic fields. Since the additional terms
both involve temporal derivatives, they go to zero in the static case and the equations reduce to
those which governed static fields.

For time-varying fields the same boundary conditions hold as in the static case.

2.15 Wave Equation in a Source-Free Region
Equations (2.71)–(2.74) provide a set of coupled differential equations. In the FDTD method we
will be dealing directly with the two curl equations, i.e., Ampere’s law and Faraday’s law. We will



2.16. ONE-DIMENSIONAL SOLUTIONS TO THE WAVE EQUATION 27

stick to the coupled equations and solve them directly. However, it is also possible to decouple
these equations. As an example, taking the curl of both sides of (2.73) yields

∇×∇× E = −∇× ∂B

∂t
= −µ∇× ∂H

∂t
. (2.75)

There is a vector identity that the curl of the curl of any field is given by

∇×∇× E = ∇(∇ · E)−∇2E. (2.76)

(This is true for any field, not just the electric field as shown here.) In a source-free region, there
is no free charge present, ρv = 0, and hence the divergence of the electric field is zero (∇ · D =
ϵ∇ · E = 0). Thus (2.75) can be written

∇2E = µ
∂

∂t
(∇×H). (2.77)

Keeping in mind that we are considering a source-free region so that J would be zero, we now use
(2.74) to write

∇2E = µ
∂

∂t

∂D

∂t
, (2.78)

= µϵ
∂2E

∂t2
. (2.79)

Equation (2.79) is the wave equation for the electric field and is often written

∇2E− 1

c2
∂2E

∂t2
= 0 (2.80)

where c = 1/
√
µϵ. Had we decoupled the equations to solve H instead of E, we would still obtain

the same equation (except with H replacing E).

2.16 One-Dimensional Solutions to the Wave Equation
The wave equation which governs either the electric or magnetic field in one dimension in a source-
free region can be written

∂2f(x, t)

∂x2
− µϵ

∂2f(x, t)

∂t2
= 0. (2.81)

We make the claim that any function f(ξ) is a solution to this equation provided that f is twice
differentiable and ξ is replaced with t± x/c where c = 1/

√
µϵ. Thus, we have

f(ξ) = f(t± x/c) = f(x, t). (2.82)

The first derivatives of this function can be obtained via the chain rule. Keeping in mind that

∂ξ

∂t
= 1, (2.83)

∂ξ

∂x
= ±1

c
, (2.84)



28 CHAPTER 2. BRIEF REVIEW OF ELECTROMAGNETICS

the first derivatives can be written

∂f(ξ)

∂t
=

∂f(ξ)

∂ξ

∂ξ

∂t
=
∂f(ξ)

∂ξ
, (2.85)

∂f(ξ)

∂x
=

∂f(ξ)

∂ξ

∂ξ

∂x
= ±1

c

∂f(ξ)

∂ξ
. (2.86)

Employing the chain rule in a similar fashion, the second derivatives can be written as

∂

∂t

(
∂f(ξ)

∂t

)
=

∂

∂t

(
∂f(ξ)

∂ξ

)
=
∂2f(ξ)

∂ξ2
∂ξ

∂t
=
∂2f(ξ)

∂ξ2
, (2.87)

∂

∂x

(
∂f(ξ)

∂x

)
=

∂

∂x

(
±1

c

∂f(ξ)

∂ξ

)
= ±1

c

∂2f(ξ)

∂ξ2
∂ξ

∂x
=

1

c2
∂2f(ξ)

∂ξ2
. (2.88)

Thus, (2.87) and (2.88) show that

∂2f

∂t2
=

∂2f

∂ξ2
(2.89)

∂2f

∂x2
=

1

c2
∂2f

∂ξ2
. (2.90)

Substituting these into (2.81) yields

1

c2
∂2f

∂ξ2
− 1

c2
∂2f

∂ξ2
= 0. (2.91)

The two terms on the left-hand side cancel, thus satisfying the equation.
Consider a constant argument of f , say t − x/c = 0. Assume this argument is obtain by

simultaneously having t = 0 and x = 0. Now, let time advance by one second, i.e., t = 1 s. How
must the position x change to maintain an argument of zero? Solving for x yields x = c(1 s).
In other words to move along with the field so as to maintain the value f(0) (whatever that value
happens to be), at time zero, we would be at position zero. At time one second, we would have to
have moved to the location x = c(1 s). Speed is change in position over change in time. Thus the
speed with which we are moving is x/t = c(1 s)/(1 s) = c.

In these notes c will typically be used to represent the speed of light in free space. Using the
permittivity and permeability of free space, we obtain c = 1/

√
ϵ0µ0 ≈ 3× 108 m/s.



Chapter 3

Introduction to the Finite-Difference
Time-Domain Method: FDTD in 1D

3.1 Introduction
The finite-difference time-domain (FDTD) method is arguably the simplest, both conceptually and
in terms of implementation, of the full-wave techniques used to solve problems in electromagnet-
ics. It can accurately tackle a wide range of problems. However, as with all numerical methods, it
does have its share of artifacts and the accuracy is contingent upon the implementation. The FDTD
method can solve complicated problems, but it is generally computationally expensive. Solutions
may require a large amount of memory and computation time. The FDTD method loosely fits into
the category of “resonance region” techniques, i.e., ones in which the characteristic dimensions of
the domain of interest are somewhere on the order of a wavelength in size. If an object is very
small compared to a wavelength, quasi-static approximations generally provide more efficient so-
lutions. Alternatively, if the wavelength is exceedingly small compared to the physical features of
interest, ray-based methods or other techniques may provide a much more efficient way to solve
the problem.

The FDTD method employs finite differences as approximations to both the spatial and tem-
poral derivatives that appear in Maxwell’s equations (specifically Ampere’s and Faraday’s laws).
Consider the Taylor series expansions of the function f(x) expanded about the point x0 with an
offset of ±δ/2:

f

(
x0 +

δ

2

)
= f(x0) +

δ

2
f ′(x0) +

1

2!

(
δ

2

)2

f ′′(x0) +
1

3!

(
δ

2

)3

f ′′′(x0) + . . . , (3.1)

f

(
x0 −

δ

2

)
= f(x0)−

δ

2
f ′(x0) +

1

2!

(
δ

2

)2

f ′′(x0)−
1

3!

(
δ

2

)3

f ′′′(x0) + . . . (3.2)

where the primes indicate differentiation. Subtracting the second equation from the first yields

f

(
x0 +

δ

2

)
− f

(
x0 −

δ

2

)
= δf ′(x0) +

2

3!

(
δ

2

)3

f ′′′(x0) + . . . (3.3)

Lecture notes by John Schneider. fdtd-intro.tex

29



30 CHAPTER 3. INTRODUCTION TO THE FDTD METHOD

Dividing by δ produces

f
(
x0 +

δ
2

)
− f

(
x0 − δ

2

)
δ

= f ′(x0) +
1

3!

δ2

22
f ′′′(x0) + . . . (3.4)

Thus the term on the left is equal to the derivative of the function at the point x0 plus a term which
depends on δ2 plus an infinite number of other terms which are not shown. For the terms which are
not shown, the next would depend on δ4 and all subsequent terms would depend on even higher
powers of δ. Rearranging slightly, this relationship is often stated as

df(x)

dx

∣∣∣∣
x=x0

=
f
(
x0 +

δ
2

)
− f

(
x0 − δ

2

)
δ

+O(δ2). (3.5)

The “big-Oh” term represents all the terms that are not explicitly shown and the value in paren-
theses, i.e., δ2, indicates the lowest order of δ in these hidden terms. If δ is sufficiently small,
a reasonable approximation to the derivative may be obtained by simply neglecting all the terms
represented by the “big-Oh” term. Thus, the central-difference approximation is given by

df(x)

dx

∣∣∣∣
x=x0

≈
f
(
x0 +

δ
2

)
− f

(
x0 − δ

2

)
δ

. (3.6)

Note that the central difference provides an approximation of the derivative of the function at x0,
but the function is not actually sampled there. Instead, the function is sampled at the neighboring
points x0+δ/2 and x0−δ/2. Since the lowest power of δ being ignored is second order, the central
difference is said to have second-order accuracy or second-order behavior. This implies that if δ is
reduced by a factor of 10, the error in the approximation should be reduced by a factor of 100 (at
least approximately). In the limit as δ goes to zero, the approximation becomes exact.

One can construct higher-order central differences. In order to get higher-order behavior, more
terms, i.e., more sample points, must be used. Appendix A presents the construction of a fourth-
order central difference. The use of higher-order central differences in FDTD schemes is certainly
possible, but there are some complications which arise because of the increased “stencil” of the
difference operator. For example, when a perfect electric conductor (PEC) is present, it is possible
that the difference operator will extend into the PEC prematurely or it may extend to the other side
of a PEC sheet. Because of these types of issues, we will only consider the use of second-order
central difference.

3.2 The Yee Algorithm
The FDTD algorithm as first proposed by Kane Yee in 1966 employs second-order central differ-
ences. The algorithm can be summarized as follows:

1. Replace all the derivatives in Ampere’s and Faraday’s laws with finite differences. Discretize
space and time so that the electric and magnetic fields are staggered in both space and time.

2. Solve the resulting difference equations to obtain “update equations” that express the (un-
known) future fields in terms of (known) past fields.



3.3. UPDATE EQUATIONS IN ONE (SPATIAL) DIMENSION 31

3. Evaluate the magnetic fields one time-step into the future so they are now known (effectively
they become past fields).

4. Evaluate the electric fields one time-step into the future so they are now known (effectively
they become past fields).

5. Repeat the previous two steps until the fields have been obtained over the desired duration.

At this stage, the summary is probably a bit too abstract. One really needs an example to demon-
strate the simplicity of the method. However, developing the full set of three-dimensional equations
would be overkill at this point and thus the algorithm will first be presented in one-dimension. As
you will see, the extension to higher dimensions is quite simple.

3.3 Update Equations in One (Spatial) Dimension
Consider a one-dimensional space where there are only variations in the x direction. Assume that
the electric field only has a z component.* In this case Faraday’s law can be written

−µ∂H
∂t

= ∇× E =

∣∣∣∣∣∣
âx ây âz
∂
∂x

0 0
0 0 Ez

∣∣∣∣∣∣ = −ây
∂Ez
∂x

. (3.7)

Thus Hy must be the only non-zero component of the magnetic field which is time varying. (Since
the right-hand side of this equation has only a y component, the magnetic field may have non-zero
components in the x and z directions, but they must be static. We will not be concerned with static
fields here.) Knowing this, Ampere’s law can be written

ϵ
∂E

∂t
= ∇×H =

∣∣∣∣∣∣
âx ây âz
∂
∂x

0 0
0 Hy 0

∣∣∣∣∣∣ = âz
∂Hy

∂x
. (3.8)

The two scalar equations obtained from (3.7) and (3.8) are

µ
∂Hy

∂t
=

∂Ez
∂x

, (3.9)

ϵ
∂Ez
∂t

=
∂Hy

∂x
. (3.10)

The first equation gives the temporal derivative of the magnetic field in terms of the spatial deriva-
tive of the electric field. Conversely, the second equation gives the temporal derivative of the
electric field in terms of the spatial derivative of the magnetic field. As will be shown, the first
equation will be used to advance the magnetic field in time while the second will be used to ad-
vance the electric field. A method in which one field is advanced and then the other, and then the
process is repeated, is known as a leap-frog method.

*This assumption leads to the non-zero fields being Ez(x) and Hy(x). Instead, we could have assumed the non-
zero component of the electric field was Ey(x). In that case the non-zero fields would be Ey(x) and Hz(x). The
approach described here pertains equally well to either set of fields.



32 CHAPTER 3. INTRODUCTION TO THE FDTD METHOD

The next step is to replace the derivatives in (3.9) and (3.10) with (central) finite differences.
To do this, space and time need to be discretized. The following notation will be used to indicate
the location where the fields are sampled in space and time

Ez(x, t) = Ez(m∆x, q∆t) = Eq
z [m] , (3.11)

Hy(x, t) = Hy(m∆x, q∆t) = Hq
y [m] , (3.12)

where ∆x is the spatial offset between sample points and ∆t is the temporal offset. The index
m corresponds to the spatial step index, or, more simply, the spatial step. This effectively yields
the spatial location since one merely scales by ∆x to obtain x. Correspondingly, the index q
corresponds to the temporal step index. When written as a superscript q still represents the temporal
step index—it is not an exponent. When implementing FDTD algorithms we will see that the
spatial indices are used as array indices while the temporal index, which is essentially a global
parameter, is not explicitly specified for each field location. Hence, it is reasonable to keep the
spatial indices as an explicit argument while indicating the temporal index separately.

Although we currently only have one spatial dimension, time can be thought of as another
dimension. Thus we are effectively considering a form of two-dimensional problem. The question
now is: How should the electric and magnetic field sample points, also known as nodes, be arranged
in space and time? The answer is shown in Fig. 3.1 which depicts a region of space-time where
the particular region would be dictated by the values of m and q that are chosen (which can be
considered constants for the sake of this figure). The electric-field nodes are shown as filled circles
and the magnetic-field nodes as open triangles. Assume that all the fields below the dashed line
are known—they are considered to be in the past—while the fields above the dashed line are future
fields and hence unknown. The FDTD algorithm provides a way to obtain the future fields from
the past fields.

As indicated in Fig. 3.1, consider Faraday’s law at the space-time point ((m+ 1/2)∆x, q∆t)

µ
∂Hy

∂t

∣∣∣∣
(m+1/2)∆x,q∆t

=
∂Ez
∂x

∣∣∣∣
(m+1/2)∆x,q∆t

. (3.13)

The temporal derivative is replaced by a finite difference involvingH
q+ 1

2
y

[
m+ 1

2

]
andH

q− 1
2

y

[
m+ 1

2

]
(i.e., the magnetic field at a fixed location but two different times) while the spatial derivative is re-
placed by a finite difference involving Eq

z [m+ 1] and Eq
z [m] (i.e., the electric field at two different

locations but one time). This yields

µ
H
q+ 1

2
y

[
m+ 1

2

]
−H

q− 1
2

y

[
m+ 1

2

]
∆t

=
Eq
z [m+ 1]− Eq

z [m]

∆x

. (3.14)

Solving this for H
q+ 1

2
y

[
m+ 1

2

]
yields

H
q+ 1

2
y

[
m+

1

2

]
= H

q− 1
2

y

[
m+

1

2

]
+

∆t

µ∆x

(Eq
z [m+ 1]− Eq

z [m]) . (3.15)

This is known as an update equation, specifically the update equation for the Hy field. It is a
generic equation which can be applied to any magnetic-field node. It shows that the future value



3.3. UPDATE EQUATIONS IN ONE (SPATIAL) DIMENSION 33

position, x

time, t

Future

Past

write difference equation
about this point

Ez     [m−1]q+1 Ez     [m+1]q+1Ez     [m]q+1

Hy        [m−1/2]q−1/2 Hy        [m+1/2]q−1/2Hy        [m−3/2]q−1/2

Hy        [m−1/2]q+1/2 Hy        [m+1/2]q+1/2Hy        [m−3/2]q+1/2

Ez [m−1]q Ez [m]q Ez [m+1]q

Hy        [m−1/2]q+3/2 Hy        [m+1/2]q+3/2Hy        [m−3/2]q+3/2

Δx

Δt

Figure 3.1: The arrangement of electric- and magnetic-field nodes in space and time. The electric-
field nodes are shown as filled circles and the magnetic-field nodes as open triangles. The indicated
point is where the difference equation is expanded to obtain an update equation for Hy. This figure
depicts a region of space-time that would depend on the values of m and q which, for the sake of
this figure, can be considered arbitrary constants. So, for example setting m = 0 and q = 0, the
electric field node at the center of the bottom row would correspond to the origin.



34 CHAPTER 3. INTRODUCTION TO THE FDTD METHOD

position, x

Future

Past

write difference equation
about this point

Ez     [m−1]q+1 Ez     [m+1]q+1Ez     [m]q+1

Hy        [m−1/2]q−1/2 Hy        [m+1/2]q−1/2Hy        [m−3/2]q−1/2

Hy        [m−1/2]q+1/2 Hy        [m+1/2]q+1/2Hy        [m−3/2]q+1/2

Ez [m−1]q Ez [m]q Ez [m+1]q

time, t

Hy        [m−1/2]q+3/2 Hy        [m+1/2]q+3/2Hy        [m−3/2]q+3/2

Δx

Δt

Figure 3.2: Space-time after updating the magnetic field. The dividing line between future and
past values has moved forward a half temporal step. The indicated point is where the difference
equation is written to obtain an update equation for Ez.

of Hy depends on only its previous value and the neighboring electric fields. After applying (3.15)
to all the magnetic-field nodes, the dividing line between future and past values has advanced a
half time-step. The space-time grid thus appears as shown in Fig. 3.2 which is identical to Fig. 3.1
except for the advancement of the past/future dividing line.

Now consider Ampere’s law (3.10) applied at the space-time point (m∆x, (q+ 1/2)∆t) which
is indicated in Fig. 3.2:

ϵ
∂Ez
∂t

∣∣∣∣
m∆x,(q+1/2)∆t

=
∂Hy

∂x

∣∣∣∣
m∆x,(q+1/2)∆t

. (3.16)

Replacing the temporal derivative on the left with a finite difference involving Eq+1
z [m] and Eq

z [m]

and replacing the spatial derivative on the right with a finite difference involvingH
q+ 1

2
y

[
m+ 1

2

]
and

H
q+ 1

2
y

[
m− 1

2

]
yields

ϵ
Eq+1
z [m]− Eq

z [m]

∆t

=
H
q+ 1

2
y

[
m+ 1

2

]
−H

q+ 1
2

y

[
m− 1

2

]
∆x

. (3.17)

Solving for Eq+1
z [m] yields

Eq+1
z [m] = Eq

z [m] +
∆t

ϵ∆x

(
H
q+ 1

2
y

[
m+

1

2

]
−H

q+ 1
2

y

[
m− 1

2

])
. (3.18)

Equation (3.18) is the update equation for the Ez field. The indices in this equation are generic so
that the same equation holds for every Ez node. Similar to the update equation for the magnetic



3.3. UPDATE EQUATIONS IN ONE (SPATIAL) DIMENSION 35

field, here we see that the future value of Ez depends on only its past value and the value of the
neighboring magnetic fields.

After applying (3.18) to every electric-field node in the grid, the dividing line between what
is known and what is unknown moves forward another one-half temporal step. One is essentially
back to the situation depicted in Fig. 3.1—the future fields closest to the dividing line between the
future and past are magnetics fields. They would be updated again, then the electric fields would be
updated, and so on. But, as we shall see, we do not need to derive any additional update equations.
Equations (3.15) and (3.18) are essentially all we need. Furthermore, we will only store electric
fields at a single time step and magnetics fields a half temporal step offset from this. In fact, we
will essentially forget about the q’s and their offsets that appear in the exponents of the update
equations. Instead, we can consider terms to the right of the equal sign in the update equations as
being in the past and the term to the left as being the updated (future) value. Once we have that
“future” value, we can forget about the past value that we just updated.

It is often convenient to represent the update coefficients ∆t/ϵ∆x and ∆t/µ∆x in terms of the
ratio of how far energy can propagate in a single temporal step to the spatial step. The maximum
speed electromagnetic energy can travel is the speed of light in free space c = 1/

√
ϵ0µ0 and hence

the maximum distance energy can travel in one time step is c∆t (in all the remaining discussions
the symbol c will be reserved for the speed of light in free space). The ratio c∆t/∆x is often called
the Courant number which we label Sc. It plays an important role in determining the stability of a
simulation (hence the use of S) and will be considered further later. Letting µ = µrµ0 and ϵ = ϵrϵ0,
the coefficients in (3.18) and (3.15) can be written

1

ϵ

∆t

∆x

=
1

ϵrϵ0

√
ϵ0µ0√
ϵ0µ0

∆t

∆x

=

√
ϵ0µ0

ϵrϵ0

c∆t

∆x

=
1

ϵr

√
µ0

ϵ0

c∆t

∆x

=
η0
ϵr

c∆t

∆x

=
η0
ϵr
Sc (3.19)

1

µ

∆t

∆x

=
1

µrµ0

√
ϵ0µ0√
ϵ0µ0

∆t

∆x

=

√
ϵ0µ0

µrµ0

c∆t

∆x

=
1

µr

√
ϵ0
µ0

c∆t

∆x

=
1

µrη0

c∆t

∆x

=
1

µrη0
Sc (3.20)

where η0 =
√
µ0/ϵ0 is the characteristic impedance of free space.

In FDTD simulations there are restrictions on how large a temporal step can be. If it is too large,
the algorithm produces unstable results (i.e., the numbers obtained are completely meaningless
and generally tend quickly to infinity). At this stage we will not consider a rigorous analysis of
stability. However, thinking about the way fields propagate in an FDTD grid, it seems logical that
energy should not be able to propagate any further than one spatial step for each temporal step, i.e.,
c∆t ≤ ∆x. This is because in the FDTD algorithm each node only affects its nearest neighbors. In
one complete cycle of updating the fields, the furthest a disturbance could propagate is one spatial
step. It turns out that the optimum ratio for the Courant number (in terms of minimizing numeric
errors) is also the maximum ratio. Hence, for the one-dimensional simulations considered initially,
we will use

Sc =
c∆t

∆x

= 1. (3.21)

When first obtaining the update equations for the FDTD algorithm, it is helpful to think in
terms of space-time. However, treating time as an additional dimension can be awkward. Thus,
in most situations it is more convenient to think in terms of a single spatial dimension where the
electric and magnetic fields are offset a half spatial step from each other. This is depicted in Fig.
3.3. The temporal offset between the electric and magnetic field is always understood whether
explicitly shown or not.



36 CHAPTER 3. INTRODUCTION TO THE FDTD METHOD

position, x

Hy        [m−1/2]q+1/2 Hy        [m+1/2]q+1/2Hy        [m−3/2]q+1/2

Ez [m−1]q Ez [m]q Ez [m+1]q
Δx

Δx

Figure 3.3: A one-dimensional FDTD space showing the spatial offset between the magnetic and
electric fields.

3.4 Computer Implementation of a One-Dimensional
FDTD Simulation

Our goal now is to translate the update equations (3.15) and (3.18) into a usable computer program.
The first step is to discard, at least to a certain extent, the superscripts—time is a global parameter
and will be recorded in a single integer variable. Time is not something about which each node
needs to be concerned.

Next, keep in mind that in most computer languages the equal sign is used as “the assignment
operator.” In C, the following is a perfectly valid statement

a = a + b;

In the usual mathematical sense, this statement is only true if b were zero. However, to a computer
this statement means take the value of b, add it to the current value of a, and place the result back
in the variable a. Essentially we are updating the “old” value of a with the “new” value. In C this
statement can be written more tersely as

a += b;

When writing a computer program to implement the FDTD algorithm, one does not bother
trying to construct a program that explicitly uses offsets of one-half. Nodes are stored in arrays
and, as is standard practice, individual array elements are specified with integer indices. Thus,
the computer program (or, perhaps more correctly, the author of the computer program) implicitly
incorporates the fact that electric and magnetic fields are offset while using only integer indices to
specify location. As you will see, spatial location and the array index will be virtually synonymous.

For example, assume two arrays, ez and hy, are declared which will contain the Ez and Hy

fields at 200 nodes

double ez[200], hy[200], imp0=377.0;

The variable imp0 is the characteristic impedance of free space and will be used in the following
discussion (it is initialized to a value of 377.0 Ω in this declaration). One should think of the
elements in the ez and hy arrays as being offset from each other by a half spatial step even though
the array values will be accessed using an integer index.

It is arbitrary whether one initially wishes to think of an ez array element as existing to the
right or the left of an hy element with the same index (we assume “left” corresponds to decreasing
values of x while “right” corresponds to increasing values). Here we will assume ez nodes are
to the left of hy nodes with the same index. Or, equivalently, we can think in terms of magnetic



3.4. COMPUTER IMPLEMENTATION OF A ONE-DIMENSIONAL FDTD SIMULATION 37

position, x
ez[0] hy[0] ez[2]ez[1] hy[2]hy[1]

{ {{index 0 index 2index 1

Figure 3.4: A one-dimensional FDTD space showing the assumed spatial arrangement of the
electric- and magnetic-field nodes in the arrays ez and hy. Note that an electric-field node is
assumed to exist to the left of the magnetic-field node with the same index.

field nodes as being to the right of the electric field node with the same index. This is illustrated
in Fig. 3.4 where hy[0] is to the right of ez[0], hy[1] is to the right of ez[1], and so on. In
general, when a Courier font is used, e.g., hy[m], we are considering an array and any offsets of
one-half associated with that array are implicitly understood. When Times-Italic font is used, e.g.,
H
q+ 1

2
y

[
m+ 1

2

]
we are discussing the field itself and offsets will be given explicitly.

Assuming a Courant number of unity (Sc = 1), the node hy[1] could be updated with a
statement such as

hy[1] = hy[1] + (ez[2] - ez[1]) / imp0;

In general, any magnetic-field node can be updated with

hy[m] = hy[m] + (ez[m + 1] - ez[m]) / imp0;

For the electric-field nodes, the update equation can be written

ez[m] = ez[m] + (hy[m] - hy[m - 1]) * imp0;

These two update equations, placed in appropriate loops, are the engines that drive an FDTD
simulation. However, there are a few obvious pieces missing from the puzzle before a useful
simulation can be performed. These missing pieces include

1. Nodes at the end of the physical space do not have neighboring nodes to one side. For exam-
ple, there is no hy[-1] node for the ez[0] node to use in its update equation. Similarly,
if the arrays are declared with 200 elements, there is no ez[200] available for hy[199]
to use in its update equation (recall that the index of the last element in a C array is one
less than the total number of elements—the array index represents the offset from the first
element of the array). Therefore a standard update equation cannot be used at these nodes.

2. Only a constant impedance is used so only a homogeneous medium can be modeled (in this
case free space).

3. As of yet there is no energy present in the field. If the fields are initially zero, they will
remain zero forever.

The first issue can be addressed using absorbing boundary conditions (ABC’s). There are
numerous implementations one can use. In later material we will be consider only a few of the
more popular techniques.



38 CHAPTER 3. INTRODUCTION TO THE FDTD METHOD

The second restriction can be removed by allowing the permittivity and permeability to change
from node to node. However, in the interest of simplicity, we will continue to use a constant
impedance for a little while longer.

The third problem can be overcome by initializing the fields to a non-zero state. However, this
is cumbersome and typically not a good approach. Better solutions are to introduce energy via
either a hardwired source, an additive source, or a total-field/scattered-field (TFSF) boundary. We
will consider implementation of each of these approaches.

3.5 Bare-Bones Simulation
Let us consider a simulation of a wave propagating in free space where there are 200 electric- and
magnetic-field nodes that includes a “hard source” at the first electric field node. Surprisingly, at
this point we do not need to specify either the spatial step size (∆x) nor the temporal step size (∆t)
associated with this simulation. It is enough that we specify the Courant number Sc that relates
the ratio of these two values. However, because we are using an Sc = 1, this value seemingly
disappears from the following, but it should be considered to be lurking in the shadows. The code
is shown in Program 3.1.

Program 3.1 1DbareBones.c: Bare-bones one-dimensional simulation with a hard source.

1 /* Bare-bones 1D FDTD simulation with a hard source. */
2

3 #include <stdio.h>
4 #include <math.h>
5

6 #define SIZE 200
7

8 int main()
9 {

10 double ez[SIZE] = {0.}, hy[SIZE] = {0.}, imp0 = 377.0;
11 int qTime, maxTime = 250, mm;
12

13 /* do time stepping */
14 for (qTime = 0; qTime < maxTime; qTime++) {
15

16 /* update magnetic field */
17 for (mm = 0; mm < SIZE - 1; mm++)
18 hy[mm] = hy[mm] + (ez[mm + 1] - ez[mm]) / imp0;
19

20 /* update electric field */
21 for (mm = 1; mm < SIZE; mm++)
22 ez[mm] = ez[mm] + (hy[mm] - hy[mm - 1]) * imp0;
23

24 /* hardwire a source node */
25 ez[0] = exp(-(qTime - 30.) * (qTime - 30.) / 100.);



3.5. BARE-BONES SIMULATION 39

26

27 printf("%g\n", ez[50]);
28 } /* end of time-stepping */
29

30 return 0;
31 }

In line 6 the preprocessor directive #define is used to allow us to write SIZE instead of 200,
the size of the arrays. In the declaration of the field arrays in line 10, “={0.}” has been added to
ensure that these arrays are initialized to zero. (For larger arrays this is not an efficient approach
for initializing the arrays and we will address this fact later.) The variable qTime, declared in line
11, is an integer counter that serves as the temporal index or time step. The total number of time
steps in the simulation is dictated by the variable maxTime which is set to 250 in line 11 (250 was
chosen arbitrarily—it can be any value desired). Also declared in line 11 is the variable mm which
serves as the “spatial index” (we have opted to use mm in the computer code instead of m merely
out of a desire to avoid variable names that consist of a single character).

Time-stepping is accomplished with the for-loop that begins on line 14 and ends on line 28.
Embedded within this time-stepping loop are two additional (spatial) for-loops—one to update the
magnetic field and the other to update the electric field. The magnetic-field update loop starting
on line 17 excludes the last magnetic-field node in the array, hy[199], since this node lacks one
neighboring electric field. For now we will leave this node zero. The electric-field update loop in
line 21 starts with a spatial index mm of 1, i.e., it does not include ez[0] which is the first Ez node
in the grid. The value of ez[0] is dictated by line 25 which is a Gaussian function that will have
a maximum value of unity when the time counter qTime is 30. The first time through the loop,
when qTime is zero, ez[0] will be set to exp(−9) ≈ 1.2341 × 10−4 which is small relative to
the maximum value of the source. Line 27 prints the value of ez[50] to the screen, once for each
time step. A plot of the output generated by this program is shown in Fig. 3.5.

Note that the output is a Gaussian. The excitation is introduced at ez[0] but the field is
recorded at ez[50]. Because c∆t = ∆x in this simulation (i.e., the Courant number is unity), the
field moves one spatial step for every time step. The separation between the source point and the
observation point results in the observed signal being delayed by 50 time steps from what it was at
the source. The source function has a peak at 30 time steps but, as can be seen from Fig. 3.5, the
field at the observation point is maximum at time step 80.

Consider a slight modification to Program 3.1 where the simulation is run for 1000 time steps
instead of 250 (i.e., maxTime is set to 1000 in line 11 instead of 250 but the code is otherwise
unchanged). The output obtained in this case is shown in Fig. 3.6. Why are there multiple peaks
here and why are they both positive and negative?

The last magnetic-field node in the grid is initially zero and remains zero throughout the simu-
lation. When the field encounters this node it essentially see a perfect magnetic conductor (PMC).
To satisfy the boundary condition at this node, i.e., that the total magnetic field go to zero, a re-
flected wave is created which reverses the sign of the magnetic field but preserves the sign of the
electric field. This phenomenon is considered in more detail in the next section. The second peak
in Fig. 3.6 is this reflected wave. The reflected wave continues to travel in the negative direction
until it encounters the first electric-field node ez[0]. This node has its value set by the source



40 CHAPTER 3. INTRODUCTION TO THE FDTD METHOD

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  25  50  75  100  125  150  175  200  225  250

E
z
[5
0
] 
(V
/m
)

Time Step

Figure 3.5: Output generated by Program 3.1.

function and is oblivious to what is happening in the interior of the grid. In this particular case, by
the time the reflected field reaches the left end of the grid, the source function has essentially gone
to zero and nothing is going to change that. Thus the node ez[0] behaves like a perfect electric
conductor (PEC). To satisfy the boundary conditions at this node, the wave is again reflected, but
this time the electric field changes sign while the sign of the magnetic field is preserved. In this
way the field which was introduced into the grid continues to bounce back and forth until the simu-
lation is terminated. The simulation is of a resonator with one PMC wall and one PEC wall. (Note
that the boundary condition at ez[0] is the same whether or not the source function has gone to
zero. Any incoming field cannot change the value at ez[0] and hence a reflected wave must be
generated which has equal magnitude but opposite sign from the incoming field.)

3.6 PMC Boundary in One Dimension
In Program 3.1 one side of the grid (the “right side”) is terminated by a magnetic field which is
always zero. It was observed that this node acts as a perfect magnetic conductor (PMC) which pro-
duces a reflected wave where the electric field is not inverted while the magnetic field is inverted.
To understand fully why this is the case, let us consider the right side of a one-dimensional domain
where 200 electric- and magnetic-field nodes are used to model free space. Assume the Courant
number is unity and the impedance of free space is 377. The last node in the grid is hy[199] and
it will always remain zero. The other nodes in the grid are updated using, in C notation:

ez[mm] = ez[mm] + (hy[mm] - hy[mm - 1]) * 377; (3.22)
hy[mm] = hy[mm] + (ez[mm + 1] - ez[mm]) / 377; (3.23)

Assume that a Dirac delta pulse, i.e., a unit amplitude pulse existing at a single electric-field node
in space-time, is nearing the end of the grid. Table 3.1 shows the fields at progressive time-steps
starting at a time q when the pulse has reached node ez[198].



3.6. PMC BOUNDARY IN ONE DIMENSION 41

-1

-0.5

 0

 0.5

 1

 0  100  200  300  400  500  600  700  800  900  1000

E
z
[5
0
] 
(V
/m
)

Time Step

Figure 3.6: Output generated by Program 3.1 but with maxTime set to 1000.

time
step

Node
ez[197] hy[197] ez[198] hy[198] ez[199] hy[199]

q − 1/2 −1/377 0 0
q 0 1 0
q + 1/2 0 −1/377 0
q + 1 0 0 1
q + 3/2 0 0 0
q + 2 0 0 1
q + 5/2 0 1/377 0
q + 3 0 1 0
q + 7/2 1/377 0 0
q + 4 1 0 0

Table 3.1: Electric- and magnetic-field nodes at the “end” of arrays which have 200 elements, i.e.,
the last node is hy[199] which is always set to zero (because it is never updated). A pulse of
unit amplitude is propagating to the right and has arrived at ez[198] at time-step q. Time is
advancing as one reads down the columns.



42 CHAPTER 3. INTRODUCTION TO THE FDTD METHOD

At time q node ez[198] is unity while hy[197] was set to −1/377 at the previous update of
the magnetic fields. When the magnetic fields are updated at time q+1/2 the update equation (3.23)
dictates that hy[197] be set to zero (the “old” value of the magnetic field cancels the contribution
from the electric field). Meanwhile, hy[198] becomes −1/377. All other magnetic-field nodes
will be zero.

Updating the electric field at time-step q + 1 results in ez[198] being set to zero while
ez[199] is set to one—the pulse advances one spatial step to the right. If the normal update
equation could be used at node hy[199], at time q + 3/2 it would be set to −1/377. However,
because there is no neighboring electric field to the right of hy[199], the update equation cannot
be used and, lacking an alternative way of calculating its value, hy[199] is left as zero, i.e., no
update is applied to this node. Thus at time q + 3/2 all the magnetic-field nodes in the grid are
zero.

When the electric field is updated at time q+ 2 essentially nothing happens. The electric fields
are updated from their old values and the difference of surrounding magnetic fields. However all
magnetic fields are zero. Thus the new electric field is the same as the old electric field.

At time q + 5/2 the unit pulse which exists at ez[199] causes hy[198] to become 1/377
which is the negative of what it was two times steps ago. From this time forward, the pulse
propagates back to the left with the electric field maintaining unit amplitude.

This discussion is for a single pulse, but any incident field could be treated as a string of pulses
and then one would merely have to superimpose their values. This discussion further supposes the
Courant number is unity. When the Courant number is not unity the termination of the grid still
behaves as a PMC wall, but the pulse will not propagate without distortion (it suffers dispersion
because of the properties of the grid itself as will be discussed in more detail in Sec. 7.4).

If the grid were terminated on an electric-field node which was always set to zero, that node
would behave as a perfect electric conductor. In that case the reflected electric field would have
the opposite sign from the incident field while the magnetic field would preserve its sign. This is
what happens to any field incident on the left side of the grid in Program 3.1.

3.7 Snapshots of the Field
In Program 3.1 the field at a single point is recorded to a file. Alternatively, it is often useful to view
the fields over the entire computational domain at a single instant of time, i.e., take a “snapshot”
that shows the field throughout space. Here we describe one way in which this can be implemented
in C.

The approach adopted here will open a separate file for each snapshot.† Each file will have a
common base name, then a dot, and then a sequence number which will be called the frame number.
So, for example, the files might be called sim.0, sim.1, sim.2, and so on. To accomplish this,
the fragments shown in Fragments 3.2 and 3.3 would be added to a program (such as Program
3.1).

Fragment 3.2 Declaration of variables associated with taking snapshots. The base name is stored

†Arguably a simpler and cleaner approach would be to write a single output file where each line of output corre-
sponds to one snapshot. Nevertheless, we will stick with the one-snaphot-per-file approach here.



3.7. SNAPSHOTS OF THE FIELD 43

in the character array basename and the complete file name for each frame is stored in filename.
Here the base name is initialized to sim but, if desired, the user could be prompted for the base
name. The integer frame is the frame number for each snapshot and is initialized to zero.

1 char basename[80] = "sim", filename[100];
2 int frame = 0;
3 FILE *snapshot;

Fragment 3.3 Code to generate the snapshots. This would be placed inside the time-stepping
loop. The if-statement in line 2 ensures the electric field is only recorded every tenth time-step.

1 /* write snapshot if time-step is a multiple of 10 */
2 if (qTime % 10 == 0) {
3 /* construct complete file name and increment frame counter */
4 sprintf(filename, "%s.%d", basename, frame++);
5

6 /* open file */
7 snapshot = fopen(filename, "w");
8

9 /* write data to file */
10 for (mm = 0; mm < SIZE; mm++)
11 fprintf(snapshot, "%g\n", ez[mm]);
12

13 /* close file */
14 fclose(snapshot);
15 }

In Fragment 3.2 the base name is initialized to sim but the user could be prompted for their
desired base name. The integer variable frame is the frame (or snapshot) counter that will be
incremented each time a snapshot is taken. It is initialized to zero. The file pointer snapshot is
used for the output files.

The code shown in Fragment 3.3 would be placed inside the time-stepping loop of Program
3.1.‡ Line 2 checks, using the modulo operator (%) if the time step is a multiple of 10. (10 was
chosen somewhat arbitrarily. If snapshots were desired more frequently, a smaller value would be
used. If snapshots were desired less frequently, a larger value would be used.) If the time step is a
multiple of 10, the complete output-file name is constructed in line 4 by writing the file name to the
string variable filename using the sprintf() function. (Since zero is a multiple of 10, the
first snapshot that is taken corresponds to the fields at time zero. This data would be written to the
file sim.0. Note that in Line 4 the frame number is incremented each time a file name is created.

‡It could be placed anywhere in the loop, but for the results to follow, it was placed just prior to the end of the loop.



44 CHAPTER 3. INTRODUCTION TO THE FDTD METHOD

The file is opened in line 7 and the data is written using the loop starting in line 10. Finally, the file
is closed in line 14.

Fig. 3.7 shows the snapshots of the field at time steps 20, 30, and 40 using essentially the same
code as Program 3.1—the only difference being the addition of the code to take the snapshots.
The corresponding files are sim.2, sim.3, and sim.4. In these snapshots the field can be seen
entering the computational domain from the left and propagating to the right.

3.8 Additive Source
Hardwiring the source, as was done in Program 3.1, has the severe shortcoming that no energy can
pass through the source node. This problem can be rectified by using an additive source. Consider
Ampere’s law with the current density term:

∇×H = J+ ϵ
∂E

∂t
. (3.24)

The current density J can represent both the conduction current due to flow of charge in a material
under the influence of the electric field, i.e., current given by σE, as well as the current associated
with any source, i.e., an “impressed current.” At this point we are just interested in the source
aspect of J and will return to the issue of finite conductivity in Sec. 3.12 and Sec. 5.7. Rearranging
(3.24) slightly yields

∂E

∂t
=

1

ϵ
∇×H− 1

ϵ
J. (3.25)

This equation gives the temporal derivative of the electric field in terms of the spatial derivative
of the magnetic field—which is as before—and an additional term which can be thought of as the
forcing function for the system. This current can be specified to be whatever is desired.

To translate (3.25) into a form suitable for the FDTD algorithm, the spatial derivatives are again
expressed in terms of finite differences and then one solves for the future fields in terms of past
fields. Recall that for Ampere’s law, the update equation for Eq

z [m] was obtained by applying finite
differences at the space-time point (m∆x, (q + 1/2)∆t). Going through the exact same procedure
but adding the source term yields

Eq+1
z [m] = Eq

z [m] +
∆t

ϵ∆x

(
H
q+ 1

2
y

[
m+

1

2

]
−H

q+ 1
2

y

[
m− 1

2

])
− ∆t

ϵ
J
q+ 1

2
z [m] . (3.26)

The source current could potentially be distributed over a number of nodes, but for the sake of
introducing energy to the grid, it suffices to apply it to a single node.

In order to preserve the original update equation (which is sometimes handy when writing
loops), (3.26) can be separated into two steps: first the usual update is applied and then the source
term is added. For example:

Eq+1
z [m] = Eq

z [m] +
∆t

ϵ∆x

(
H
q+ 1

2
y

[
m+

1

2

]
−H

q+ 1
2

y

[
m− 1

2

])
(3.27)

Eq+1
z [m] = Eq+1

z [m]− ∆t

ϵ
J
q+ 1

2
z [m] . (3.28)



3.8. ADDITIVE SOURCE 45

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  25  50  75  100  125  150  175  200

E
z
 
(V
/m
)

Spatial Step

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  25  50  75  100  125  150  175  200

E
z
 
(V
/m
)

Spatial Step

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  25  50  75  100  125  150  175  200

E
z
 
(V
/m
)

Spatial Step

Figure 3.7: Snapshots taken at time-steps 20, 30, and 40 of the Ez field generated by Program 3.1.
The field is seen to be propagating away from the hardwired source at the left end of the grid.



46 CHAPTER 3. INTRODUCTION TO THE FDTD METHOD

In practice the source current might only exist at a single node in the 1D grid (as will be the case
in the examples to come). Thus, (3.28) would be applied only at the node where the source current
is non-zero.

Generally the amplitude and the sign of the source function are not a concern. When calculating
things such as the scattering cross-section or the reflection coefficient, one always normalizes by
the incident field. Therefore we do not need to specify explicitly the value of ∆t/ϵ in (3.28)—it
suffices merely to treat this coefficient as being contained in the source function itself.

A program that implements an additive source and takes snapshots of the electric field is shown
in Program 3.4. The changes from Program 3.1 are shown in dark red bold. The source function
is exactly the same as before except now, instead of setting the value of ez[0] to the value of
this function, the source function is added to ez[50]. The source is introduced in line 29 and
the update equations are unchanged from before. (Note that in this chapter the programs will be
somewhat verbose, simplistic, and repetitive. Once we are comfortable with the FDTD algorithm
we will pay more attention to better coding practices.)

Program 3.4 1Dadditive.c: One-dimensional FDTD program with an additive source. Mul-
tiple output files are written, one for each “snapshot” of the electric field.

1 /* 1D FDTD simulation with an additive source. */
2

3 #include <stdio.h>
4 #include <math.h>
5

6 #define SIZE 200
7

8 int main()
9 {

10 double ez[SIZE] = {0.}, hy[SIZE] = {0.}, imp0 = 377.0;
11 int qTime, maxTime = 200, mm;
12

13 char basename[80] = "sim", filename[100];
14 int frame = 0;
15 FILE *snapshot;
16

17 /* do time stepping */
18 for (qTime = 0; qTime < maxTime; qTime++) {
19

20 /* update magnetic field */
21 for (mm = 0; mm < SIZE - 1; mm++)
22 hy[mm] = hy[mm] + (ez[mm + 1] - ez[mm]) / imp0;
23

24 /* update electric field */
25 for (mm = 1; mm < SIZE; mm++)
26 ez[mm] = ez[mm] + (hy[mm] - hy[mm - 1]) * imp0;
27

28 /* use additive source at node 50 */



3.8. ADDITIVE SOURCE 47

29 ez[50] += exp(-(qTime - 30.) * (qTime - 30.) / 100.);
30

31 /* write snapshot if time a multiple of 10 */
32 if (qTime % 10 == 0) {
33 sprintf(filename, "%s.%d", basename, frame++);
34 snapshot=fopen(filename, "w");
35 for (mm = 0; mm < SIZE; mm++)
36 fprintf(snapshot, "%g\n", ez[mm]);
37 fclose(snapshot);
38 }
39 } /* end of time-stepping */
40

41 return 0;
42 }

Snapshots of Ez taken at time-steps 20, 30, and 40 are shown in Fig. 3.8. Note that the field
originates from node 50 and that it propagates to either side of this node. Also notice that the peak
amplitude is half of what it was when the source function was implemented as a hardwired source.

As something of an aside, in Program 3.4 note that the code that takes a snapshot of the electric
field was placed in the time-stepping but after the update equation. Thus one might ask: do the
contents of snapshot file sim.0 contain the fields at time zero or at time one? And, do the other
snapshots correspond to times that are multiples of 10 or do they correspond to one plus a multiple
of 10? In nearly all practical cases it will not matter. The precise location of t = 0 is rather
arbitrary. So, when looking at the snapshots it is usually sufficient to know that the sequence of
snapshots start “at the beginning of the simulation” (albeit after the first updates of the Hy and Ez
fields) and then are taken every 10 time steps. However, if one wants to be more precise about this,
absolute time is usually dictated by the source function. Now, think in terms of the hard-source
implementation rather than the additive source. We have implemented a Gaussian source that has
a peak amplitude at time-step 30. The way the code is written here, with the source being applied
after the update equation and then the snapshot being taken last, we would see the peak at the
source node in frame sim.3. In other words the snapshots do indeed correspond to times that are
multiples of 10. So, in some sense the electric fields start at a time step of −1 (relative to the peak
excitation). The very first update update loop takes them up to time step 0, and then the source
function is applied to set the field at the source node at time-step 0. However, this is truly a minor
point and we will not worry about it in subsequent discussions. Whether the code that introduces
the source appears before or after the update loop and whether the code that generates output
appears before or after the update loop, often does not matter—the important thing is generally
just that these things are included in the time-stepping loop.

Before moving on, let us consider one more way of writing the snapshots. In this case, we want
to write all the snapshots to a single data file. Each line of the file corresponds to a single snapshot.
The code to accomplish this is provided in Program 3.5.

Program 3.5 1DadditiveOneFile.c: One-dimensional FDTD program with an additive
source. Multiple output files are written, one for each “snapshot” of the electric field.



48 CHAPTER 3. INTRODUCTION TO THE FDTD METHOD

0.0

0.2

0.4

0.6

0.8

1.0

0.0 25.0 50.0 75.0 100.0 125.0 150.0 175.0 200.0

E
z
 
(V
/m
)

Spatial Step

0.0

0.2

0.4

0.6

0.8

1.0

0.0 25.0 50.0 75.0 100.0 125.0 150.0 175.0 200.0

E
z
 
(V
/m
)

Spatial Step

0.0

0.2

0.4

0.6

0.8

1.0

0.0 25.0 50.0 75.0 100.0 125.0 150.0 175.0 200.0

E
z
 
(V
/m
)

Spatial Step

Figure 3.8: Snapshots taken at time-steps 20, 30, and 40 of the Ez field generated by Program 3.4.
An additive source is applied to node 50 and the field is seen to propagate away from it to either
side.



3.8. ADDITIVE SOURCE 49

1 /* 1D FDTD simulation with an additive source.
2 * All snapshots are written to a single output file. */
3

4 #include <stdio.h>
5 #include <math.h>
6

7 #define SIZE 200
8

9 int main()
10 {
11 double ez[SIZE] = {0.}, hy[SIZE] = {0.}, imp0 = 377.0;
12 int qTime, maxTime = 200, mm;
13

14 char filename[100] = "sim.dat";
15 FILE *snapshots;
16

17 snapshots=fopen(filename, "w");
18

19

20 /* do time stepping */
21 for (qTime = 0; qTime < maxTime; qTime++) {
22

23 /* update magnetic field */
24 for (mm = 0; mm < SIZE - 1; mm++)
25 hy[mm] = hy[mm] + (ez[mm + 1] - ez[mm]) / imp0;
26

27 /* update electric field */
28 for (mm = 1; mm < SIZE; mm++)
29 ez[mm] = ez[mm] + (hy[mm] - hy[mm - 1]) * imp0;
30

31 /* use additive source at node 50 */
32 ez[50] += exp(-(qTime - 30.) * (qTime - 30.) / 100.);
33

34 /* write snapshot if time a multiple of 2 */
35 if (qTime % 2 == 0) {
36 for (mm = 0; mm < SIZE; mm++)
37 fprintf(snapshots, "%g ", ez[mm]);
38 fprintf(snapshots, "\n");
39 }
40 } /* end of time-stepping */
41

42

43 fclose(snapshots);
44

45 return 0;
46 }



50 CHAPTER 3. INTRODUCTION TO THE FDTD METHOD

The code that differs from Program 3.1 is again highlighted in dark red bold. In lines 14 through 17
a single file is opened named sim.dat. In line 35 the time step is checked to see if it is a multiple
of two (i.e., a snapshot is taken every other time step). If it is, the electric fields are written to the
output file, placing a space between successive elements. After writing the last value in the array,
a newline character is written to the output file as shown in line 38 (note that this statement is not
part of the preceding for-loop). After the time-stepping has completed, the data file is closed in 43.

There are advantages and disadvantages to storing snapshots in either multiple files or a single
file. However, using a single data file together with MATLAB makes it quite simple to generate an
animation of the field. The code to accomplish this is provided in Appendix C.

3.9 Terminating the Grid
In most instances one is interested in modeling a problem which exists in an open domain, i.e.,
an infinite space. This is true even when the specific region of interest, say the region where a
scatterer is present, may be small. That scatterer is in an unbounded space. Thus far the code we
have written is only suitable for modeling a resonator since the nodes at the ends of the grid reflect
any field incident upon them. We now wish to rectify this shortcoming. Absorbing boundary
conditions (ABC’s) will be used so that the grid, which will contain only a finite number of nodes,
can behave as if it were infinite. In one dimension, when operating at the Courant limit of one, an
exact ABC can be realized. Unfortunately in higher dimensions, or even in one dimension when
not operating at the Courant limit or when a material other than free space is present at the end of
the grid, ABC’s are only approximate. The better the ABC, the less (spurious) energy it reflects
back into the interior of the grid.

Before implementing an ABC, let us again consider the code shown in Program 3.4 but with
the maximum number of time steps set to 450. With the FDTD method, the more ways in which
the field can be visualized, the better. Watching the field propagate in the time-domain can provide
insights into the behavior of a system. Additionally, visualization of the propagation of the fields
can be an invaluable aid when debugging FDTD code. Animations of the field are especially useful
and different display strategies will be discussed later.

Since we cannot include an animation here, we will use a “waterfall plot” of the electric field
in the one-dimensional domain. A waterfall plot is a collection of standard “x vs. y” plots where
each plot is offset slightly from the next (a direct vertical offset will be used here). This can be
thought of as stacking all the frames of an animation, one above the next.

Figure 3.9 shows the waterfall plot corresponding to the output from Program 3.4 (with a
maxTime of 450). Each line represents a snapshot of the field throughout the computational
domain. One can see that electric field starts to propagate away from the source which is at node
50. The curve/line corresponding to 5 on the vertical axis is the data from the sixth frame (i.e.,
sim.5). Since the frames are recorded every ten time-steps, since sim.0 corresponds to the field
at time zero, this line shows the field at the fiftieth time-step. This line has two peaks. One is
traveling to the left and the other to the right. Once the left-going field encounters the end of the
grid at node zero, it is both reflected and inverted. It then travels to the right as time progresses.
The peak which originally travels to the right from the source encounters the right end of the grid



3.9. TERMINATING THE GRID 51

0 50 100 150 200
0

5

10

15

20

25

30

35

40

45

Figure 3.9: Waterfall plot of the electric field produced by Program 3.4. The computational domain
has 200 nodes with a PEC boundary on the left and a PMC boundary on the right. The vertical axis
gives the frame number. Snapshots, i.e., frames, were recorded every 10 time steps.



52 CHAPTER 3. INTRODUCTION TO THE FDTD METHOD

around frame (or curve) 17. In this case, with the PMC boundary that exists there, the electric
field is not inverted—instead, the magnetic field, which is not plotted, is inverted. A reflected
wave then propagates back to the left. The field propagates back and forth, inverting its sign at
the left boundary and preserving its sign at the right boundary, until the simulation is halted. The
MATLAB code that was used to generate this waterfall plot is given in Appendix B. Additionally,
Appendix B provides MATLAB code that can be used to animate snapshots of a one-dimensional
domain.

Returning to the issue of grid termination, when the Courant number is unity, the distance the
wave travels in one temporal step is equal to one spatial step, i.e., c∆t = ∆x. We are interested in
modeling an open domain where there is no energy entering the grid “from the outside.” Therefore,
for node ez[0], its updated value should just be the previous value that existed at ez[1]. Since
no energy is entering the grid from the left, the field at ez[1] must be propagating solely to
the left. At the next time step the value that was at ez[1] should now appear at ez[0]. Similar
arguments hold at the other end of the grid. The updated value of hy[199] should be the previous
value of hy[198].

Thus, a simple ABC can be realized by adding the following line to Program 3.4 between lines
23 and 24

ez[0] = ez[1];

Similarly, the following line would be added between lines 19 and 20

hy[SIZE-1] = hy[SIZE-2];

The waterfall plot which is obtained for the electric field after making these changes is shown in
Fig. 3.10. Note that the reflected fields are no longer present. The left- and right-going pulses reach
the end of the grid and then disappear as if they have continued to propagate off to infinity. (How-
ever, there is still some persistent field that lingers throughout the grid. This field is small—about
five orders of magnitude smaller than the peak when using single precision—and is a consequence
of finite precision. These small fields are not visible on the scale of the plot and are not of much
practical concern since typically other sources of error will be far larger.)

As mentioned previously, this simple ABC only works in limited situations. However, the basic
premise is employed in many of the more complicated ABC’s: the future value of the field at the
end of the grid depends on some combination of the past and interior fields. We will return to this
topic in Chap. 6.

3.10 Total-Field/Scattered-Field Boundary
Note that any function f(ξ) which is twice differentiable is a solution to the wave equation. In
one dimension all that is required is that the argument ξ be replaced by t ± x/c. A proof was
given in Sec. 2.16. Thus far the excitation of the FDTD grids has occurred at a point—either the
hardwired source at the left end of the grid, as shown in Program 3.1, or the additive source at
node 50, as shown in Program 3.4. Now our goal is to construct a source such that the excitation
only propagates in one direction, i.e., the source introduces an incident field that is propagating
to the right (the positive x direction). We will accomplish this using what is known as a total-
field/scattered-field (TFSF) boundary.



3.10. TOTAL-FIELD/SCATTERED-FIELD BOUNDARY 53

0 50 100 150 200
0

5

10

15

20

25

30

35

40

45

Figure 3.10: Waterfall plot of the electric field using the same computational domain as Fig. 3.9
except a simple ABC has been used to terminate the grid. Note that the field propagates from the
additive source at node 50 and merely disappears when it reaches either end of the grid.



54 CHAPTER 3. INTRODUCTION TO THE FDTD METHOD

We start by specifying the incident field as a function of space and time. A Gaussian pulse has
been used for the excitation in the previous examples. A Gaussian can still be used to specify the
excitation, but to obtain a wave propagating to the right, the argument should be t− x/c instead of
merely t. Previously the source was given by

f(t) = f(q∆t) = e
−
(

q∆t−30∆t
10∆t

)2

= e−(
q−30
10 )

2

= f [q] (3.29)

where 30∆t is a delay and the term in the denominator of the exponent (10∆t) controls the width of
the pulse. Note that the time-step width ∆t can be canceled from the numerator and denominator
of the exponent.

For the propagating incident field, t in (3.29) is replaced with t−x/c. In discretized space-time
this argument is given by

t− x

c
= q∆t −

m∆x

c
=

(
q − m∆x

c∆t

)
∆t =

(
q − m

Sc

)
∆t = (q −m)∆t (3.30)

where the assumption that the Courant number (Sc = c∆t/∆x) is unity has been used to write the
last equality. This expression can now be used for the argument in the previous source function to
obtain a propagating wave which we will identify as E inc

z

E inc
z [m, q] = e

−
(

(q−m)∆t−30∆t
10∆t

)2

= e−(
(q−m)−30

10 )
2

(3.31)

This equation essentially assumes that the origin, i.e., the point x = 0, corresponds to the index
m = 0. However, the origin can be shifted to a different point and this fact will be exploited
later. Keep in mind that there is nothing that dictates that we must always think of the origin as
corresponding to the left-most point in the grid.

The corresponding magnetic field is obtained by dividing the electric field by the characteristic
impedance. Additionally, to ensure that Einc

z × Hinc
y points in the desired direction of travel, the

magnetic field must be negative, i.e.,

H inc
y [m, q] = −

√
ϵ

µ
E inc
z [m, q] = −1

η
e−(

(q−m)−30
10 )

2

(3.32)

where η =
√
µ/ϵ is the characteristic impedance of the medium. Note that the arguments do not

need to be integers. If one needs to calculate the magnetic field at the position m − 1/2 and time
q − 1/2, these are perfectly legitimate arguments.

In the total-field/scattered-field (TFSF) formulation, the computational domain is divided into
two regions: (1) the total-field region which contains the incident field plus any scattered field and
(2) the scattered-field region which contains only scattered field. The incident field is introduced on
a fictitious seam, or boundary, between the total-field and the scattered-field regions. The location
of this boundary is somewhat arbitrary, but it is typically placed so that any scatterers are contained
in the total-field region.

When updating the fields, the update equations must be consistent. This is to say only scattered
fields should be used to update a node in the scattered-field region and only total fields should be
used to update a node in the total-field region. Figure 3.11 shows a one-dimensional grid where the
TFSF boundary is assumed to exist between nodes Hy

[
49 + 1

2

]
and Ez[50] (in Fig. 3.11 the nodes



3.10. TOTAL-FIELD/SCATTERED-FIELD BOUNDARY 55

position, xez[48]
hy[48]

ez[50]ez[49]
hy[50]hy[49]

total fieldscattered field

Figure 3.11: Portion of the one-dimensional arrays in the vicinity of a total-field/scattered-field
boundary. Scattered field exists to the left of the boundary and total field exists to the right. Note
that node hy[49] has an index of 49 in a computer program but corresponds logically to the
location (49 + 1

2
)∆x or, equivalently, (50− 1

2
)∆x.

are shown in the computer-array form with integer indices). The node Hy

[
49 + 1

2

]
is equivalent

to Hy

[
50− 1

2

]
and will be written using the latter form in the following discussion. Note that

no matter where the boundary is placed, there will only be two nodes adjacent to the boundary—
one electric-field node and one magnetic-field node. Furthermore, although the location of this
boundary is arbitrary, once its location is selected, it is fixed throughout the simulation. Defining
the scattered-field region to be to the left of the boundary and the total-field region to be to the
right, we see that hy[49] is the last node in the scattered-field region while ez[50] is the first
node in the total-field region.

When updating the nodes adjacent to the boundary, there is a problem, i.e., an inconsistency,
in that a neighbor to one side is not the same type of field as the field being updated. This is to say
that a total-field node will depend on a scattered-field node and, conversely, a scattered-field node
will depend on a total-field node. The solution to this problem actually provides the way in which
fields are introduced into the grid using the TFSF boundary.

Consider the usual update equation of the electric field at location m = 50 which was given in
(3.18) and is repeated below

tot︷ ︸︸ ︷
Eq+1
z [50] =

tot︷ ︸︸ ︷
Eq
z [50]+

∆t

ϵ∆x


tot︷ ︸︸ ︷

H
q+ 1

2
y

[
50 +

1

2

]
−

scat︷ ︸︸ ︷
H
q+ 1

2
y

[
50− 1

2

] . (3.33)

We have assumed the TFSF boundary is between Eq+1
z [50] and H

q+ 1
2

y

[
50− 1

2

]
and the labels

above the individual components indicate if the field is in the total-field region or the scattered-
field region. We see that Eq+1

z [50] and H
q+ 1

2
y

[
50 + 1

2

]
are total-field nodes but H

q+ 1
2

y

[
50− 1

2

]
is a

scattered-field node—it lacks the incident field. This can be fixed by adding the incident field to
H
q+ 1

2
y

[
50− 1

2

]
in (3.33). This added field must correspond to the magnetic field which exists at

location 50 − 1/2 and time step q + 1/2. Thus, a consistent update equation for Eq+1
z [50] which



56 CHAPTER 3. INTRODUCTION TO THE FDTD METHOD

only involves total fields is

tot︷ ︸︸ ︷
Eq+1
z [50] =

tot︷ ︸︸ ︷
Eq
z [50]+ (3.34)

∆t

ϵ∆x


tot︷ ︸︸ ︷

H
q+ 1

2
y

[
50 +

1

2

]
−

tot︷ ︸︸ ︷
scat︷ ︸︸ ︷

H
q+ 1

2
y

[
50− 1

2

]
+

inc︷ ︸︸ ︷(
−1

η
E inc
z

[
50− 1

2
, q +

1

2

])


.

The sum of the terms in braces gives the total magnetic field for H
q+ 1

2
y

[
50− 1

2

]
. Note that here

the incident field is assumed to be given. (It might be calculated analytically or, as we will see in
higher dimensions where the TFSF boundary involves several points, it might be calculated with
an auxiliary FDTD simulation of its own. But, either way, it is known.)

Instead of modifying the update equation, it is usually best to preserve the standard update
equation (so that it can be put in a loop that pertains to all nodes), and then apply a correction in a
separate step. In this way, Eq+1

z [50] is updated in a two-step process:

Eq+1
z [50] = Eq

z [50] +
∆t

ϵ∆x

(
H
q+ 1

2
y

[
50 +

1

2

]
−H

q+ 1
2

y

[
50− 1

2

])
, (3.35)

Eq+1
z [50] = Eq+1

z [50] +
∆t

ϵ∆x

1

η
E inc
z

[
50− 1

2
, q +

1

2

]
. (3.36)

The characteristic impedance η can be written as
√
µrµ0/ϵrϵ0 = η0

√
µr/ϵr. Recall from (3.19)

that the coefficient ∆t/ϵ∆x can be expressed as η0Sc/ϵr where Sc is the Courant number. Com-
bining these terms, the correction equation (3.36) can be written

Eq+1
z [50] = Eq+1

z [50] +
Sc√
ϵrµr

E inc
z

[
50− 1

2
, q +

1

2

]
. (3.37)

With a Courant number of unity and free space (where ϵr = µr = 1), this reduces to

Eq+1
z [50] = Eq+1

z [50] + E inc
z

[
50− 1

2
, q +

1

2

]
. (3.38)

This equation simply says that the incident field that existed one-half a temporal step in the past
and one-half a spatial step to the left of Eq+1

z [50] is added to this node. This is logical since a field
traveling to the right requires one-half of a temporal step to travel half a spatial step.

Now consider the update equation for H
q+ 1

2
y

[
50− 1

2

]
which is given by (3.15) (with one sub-

tracted from the spatial offset):

scat︷ ︸︸ ︷
H
q+ 1

2
y

[
50− 1

2

]
=

scat︷ ︸︸ ︷
H
q− 1

2
y

[
50− 1

2

]
+

∆t

µ∆x

 tot︷ ︸︸ ︷
Eq
z [50]−

scat︷ ︸︸ ︷
Eq
z [49]

 . (3.39)



3.10. TOTAL-FIELD/SCATTERED-FIELD BOUNDARY 57

As was true for the update of the electric field adjacent to the TFSF boundary, this is not a consistent
equation since the terms are scattered-field quantities except for Eq

z [50] which is in the total-field
region. To correct this, the incident field could be subtracted from Eq

z [50]. Rather than modifying
(3.39), we choose to give the necessary correction as a separate equation. The correction would be

H
q+ 1

2
y

[
50− 1

2

]
= H

q+ 1
2

y

[
50− 1

2

]
− ∆t

µ∆x

E inc
z [50, q]. (3.40)

With a Courant number of unity and free space, this equation becomes

H
q+ 1

2
y

[
50− 1

2

]
= H

q+ 1
2

y

[
50− 1

2

]
− 1

η0
E inc
z [50, q]. (3.41)

As mentioned previously, there is nothing that requires the origin to be assigned to one par-
ticular node in the grid. There is no reason that one has to associate the location x = 0 with the
left end of the grid. In the TFSF formulation it is usually most convenient to fix the origin relative
to the TFSF boundary itself. Let the origin x = 0 correspond to the node Ez[50]. Such a shift
requires that 50 be subtracted from the spatial indices given previously for the incident field. The
correction equations thus become

H
q+ 1

2
y

[
50− 1

2

]
= H

q+ 1
2

y

[
50− 1

2

]
− 1

η0
E inc
z [0, q], (3.42)

Eq+1
z [50] = Eq+1

z [50] + E inc
z

[
−1

2
, q +

1

2

]
. (3.43)

To implement a TFSF boundary, one merely has to translate (3.42) and (3.43) into the necessary
statements. A program that implements a TFSF boundary between hy[49] and ez[50] is shown
in Program 3.6.

Program 3.6 1Dtfsf.c: One-dimensional simulation with a TFSF boundary between hy[49]
and ez[50].

1 /* 1D FDTD simulation with a simple absorbing boundary condition
2 * and a TFSF boundary between hy[49] and ez[50]. */
3

4 #include <stdio.h>
5 #include <math.h>
6

7 #define SIZE 200
8

9 int main()
10 {
11 double ez[SIZE] = {0.}, hy[SIZE] = {0.}, imp0 = 377.0;
12 int qTime, maxTime = 450, mm;
13

14 char basename[80]="sim", filename[100];



58 CHAPTER 3. INTRODUCTION TO THE FDTD METHOD

15 int frame = 0;
16 FILE *snapshot;
17

18 /* do time stepping */
19 for (qTime = 0; qTime < maxTime; qTime++) {
20

21 /* simple ABC for hy[size - 1] */
22 hy[SIZE - 1] = hy[SIZE - 2];
23

24 /* update magnetic field */
25 for (mm = 0; mm < SIZE - 1; mm++)
26 hy[mm] = hy[mm] + (ez[mm + 1] - ez[mm]) / imp0;
27

28 /* correction for Hy adjacent to TFSF boundary */
29 hy[49] -= exp(-(qTime - 30.) * (qTime - 30.) / 100.) / imp0;
30

31 /* simple ABC for ez[0] */
32 ez[0] = ez[1];
33

34 /* update electric field */
35 for (mm = 1; mm<SIZE; mm++)
36 ez[mm] = ez[mm] + (hy[mm] - hy[mm - 1]) * imp0;
37

38 /* correction for Ez adjacent to TFSF boundary */
39 ez[50] += exp(-(qTime + 0.5 - (-0.5) - 30.) *
40 (qTime + 0.5 - (-0.5) - 30.) / 100.);
41

42 /* write snapshot if time a multiple of 10 */
43 if (qTime % 10 == 0) {
44 sprintf(filename, "%s.%d", basename, frame++);
45 snapshot = fopen(filename, "w");
46 for (mm = 0; mm < SIZE; mm++)
47 fprintf(snapshot, "%g\n", ez[mm]);
48 fclose(snapshot);
49 }
50 } /* end of time-stepping */
51

52 return 0;
53 }

Note that this is similar to Program 3.4. Other than the incorporation of the ABC’s in line 22 and
32, the only differences are the removal of the additive source (line 29 of Program 3.4) and the
addition of the two correction equations in lines 29 and 39. The added code is shown in dark red
bold. In line 39, the half-step forward in time is obtained with qTime+0.5. The half-step back
in space is obtained with the -0.5 which is enclosed in parentheses.

The waterfall plot of the fields generated by Program 3.6 is shown in Fig. 3.12. Note that the



3.11. INHOMOGENEITIES 59

0 50 100 150 200
0

5

10

15

20

25

30

35

40

45

Figure 3.12: Waterfall plot of the electric fields produced by Program 3.6 which has a TFSF
boundary between nodes hy[49] and ez[50].

field appears at node 50 and travels exclusively to the right—no field propagates to the left from
the TFSF boundary. Since there is nothing to scatter the incident field in this simulation, Fig. 3.12
shows only the incident field. The next step is, thus, the inclusion of some inhomogeneity in the
grid to generate scattered fields.

3.11 Inhomogeneities
The FDTD update equations were obtained from approximations of Faraday’s and Ampere’s laws
which were themselves differential equations. Differential equations pertain at a point. Thus, the ϵ
and µ which appear in these equations are the ones which exist at the location of the corresponding
node. It is certainly permissible that these values change from point to point. In fact, it is required
that they change when modeling inhomogeneous material.

Recall, from (3.19), that the electric-field update equation had a coefficient of η0Sc/ϵr. Assum-
ing that the Courant number Sc is still unity, but allowing the relative permittivity to be a function
of position, the update equation could be implemented with a statement such as

ez[mm] = ez[mn] + (hy[mm] - hy[mm-1]) * imp0 / epsR[mm];

where the array element epsR[mm] contains the relative permittivity at the point m∆x, i.e., at a
point collocated with the node ez[mm]. The size of the epsR array would be the same size as the
electric-field array and the elements have to be initialized to appropriate values.



60 CHAPTER 3. INTRODUCTION TO THE FDTD METHOD

The same concept applies to the relative permeability in the updating of the magnetic fields
where the update coefficient is given by Sc/(µrη0) (ref. (3.20)). The relative permeability that
exists at the point in space corresponding to the location of a particular magnetic-field node is the
one that should be used in the update equation for that node. Assuming an array muR has been
created and initialized with the values of the relative permeability, the magnetic-fields would be
updated with an equation such as

hy[mm] = hy[mm] + (ez[mm + 1] - ez[mm]) / imp0 / muR[mm];

A program that models a region of space near the interface between free space and a dielectric
with a relative permittivity of nine is shown in Program 3.7 (the permeability is that of free space).
The incident field is still introduced via a TFSF boundary, which is in the free-space side of the
computational domain, and the ABC on the left hand side is the same as before. However, there
are some other minor changes between this program and the program in Program 3.6. The electric
and magnetic fields are no longer initialized when they are declared. Instead, two loops are used
to set the initial fields to zero. The magnetic field is now declared to have one fewer node than the
electric field. This was done so that the computational domain begins and ends on an electric-field
node. (There are no truly compelling reasons to have the computational domain begin and end with
the same field type, but such symmetry can simplify coding and some aspects of certain problems.)
Because the grid now terminates on an electric field, the ABC at the right end of the grid must be
applied to this terminal electric-field node. This is accomplished with the statement in line 45.

Program 3.7 1Ddielectric.c: One-dimensional FDTD program to model an interface be-
tween free-space and a dielectric that has a relative permittivity ϵr of 9.

1 /* 1D FDTD simulation with a simple absorbing boundary
2 * condition, a TFSF boundary between hy[49] and ez[50], and
3 * a dielectric material starting at ez[100] */
4

5 #include <stdio.h>
6 #include <math.h>
7

8 #define SIZE 200
9

10 int main()
11 {
12 double ez[SIZE], hy[SIZE - 1], epsR[SIZE], imp0 = 377.0;
13 int qTime, maxTime = 450, mm;
14 char basename[80] = "sim", filename[100];
15 int frame = 0;
16 FILE *snapshot;
17

18 /* initialize electric field */
19 for (mm = 0; mm < SIZE; mm++)
20 ez[mm] = 0.0;
21



3.11. INHOMOGENEITIES 61

22 /* initialize magnetic field */
23 for (mm = 0; mm < SIZE - 1; mm++)
24 hy[mm] = 0.0;
25

26 /* set relative permittivity */
27 for (mm = 0; mm < SIZE; mm++)
28 if (mm < 100)
29 epsR[mm] = 1.0;
30 else
31 epsR[mm] = 9.0;
32

33 /* do time stepping */
34 for (qTime = 0; qTime < maxTime; qTime++) {
35

36 /* update magnetic field */
37 for (mm = 0; mm<SIZE - 1; mm++)
38 hy[mm] = hy[mm] + (ez[mm + 1] - ez[mm]) / imp0;
39

40 /* correction for Hy adjacent to TFSF boundary */
41 hy[49] -= exp(-(qTime - 30.) * (qTime - 30.) / 100.) / imp0;
42

43 /* simple ABC for ez[0] and ez[SIZE - 1] */
44 ez[0] = ez[1];
45 ez[SIZE-1] = ez[SIZE-2];
46

47 /* update electric field */
48 for (mm = 1; mm < SIZE - 1; mm++)
49 ez[mm] = ez[mm] + (hy[mm] - hy[mm - 1]) * imp0 / epsR[mm];
50

51 /* correction for Ez adjacent to TFSF boundary */
52 ez[50] += exp(-(qTime + 0.5 - (-0.5) - 30.)*
53 (qTime + 0.5 - (-0.5) - 30.) / 100.);
54

55 /* write snapshot if time a multiple of 10 */
56 if (qTime % 10 == 0) {
57 sprintf(filename, "%s.%d", basename, frame++);
58 snapshot = fopen(filename, "w");
59 for (mm = 0; mm < SIZE; mm++)
60 fprintf(snapshot, "%g\n", ez[mm]);
61 fclose(snapshot);
62 }
63 } /* end of time-stepping */
64

65 return 0;
66 }

The relative-permittivity array epsR is initialize in the loop starting at line 27. If the spatial



62 CHAPTER 3. INTRODUCTION TO THE FDTD METHOD

index mm is less than 100, the relative permittivity is set to unity (i.e., free space), otherwise it is set
to 9. The characteristic impedance of free space is η0 while the impedance for the dielectric is η0/3.
Note that the update equations do not directly incorporate the dielectric impedance. Rather, the co-
efficient that appears in the equation uses the impedance of free space and the relative permittivity
that pertains at that point.

When a wave is normally incident from a medium with a characteristic impedance η1 to a
medium with a characteristic impedance η2, the reflection coefficient Γ and the transmission coef-
ficient T are given by

Γ =
η2 − η1
η2 + η1

, (3.44)

T =
2η2

η2 + η1
. (3.45)

Therefore the reflection and transmission coefficients that pertain to this example are

Γ =
η0/3− η0
η0/3 + η0

= −1

2
, (3.46)

T =
2η0/3

η0/3 + η0
=

1

2
. (3.47)

The waterfall plot of the data produced by Program 3.7 is shown in Fig. 3.13. Once the field
encounters the interface at node 100, a reflected field (i.e., a scattered field) is created. Although
one cannot easily judge scales from the waterfall plot, it can be seen that the reflected field is
negative and appears to have about half the magnitude of the incident pulse (the peak of the incident
field spans a vertical space corresponding to nearly two frames while the peak of the reflected field
spans about one frame). Similarly, the transmitted pulse is positive and appears to have half the
magnitude of the incident field. One can see this more clearly in Fig. 3.14 which shows the field at
time-steps 100 and 140. The incident pulse had unit amplitude. At the time-steps shown here, the
field has split into the transmitted and reflected pulses, each of which has a magnitude of one-half.
The plot at time-step 140 shows a greater separation between the reflected and transmitted pulses
than is seen at time-step 100.

Returning to the waterfall plot of Fig. 3.13, one can also see that the pulse in the dielectric
travels more slowly than the pulse in free space. With a relative permittivity of 9, the speed of light
should be one-third of that in free space. Thus, from frame to frame the peak in the dielectric has
moved one-third of the distance that the peak moves in free space.

There are two numerical artifacts present in Fig. 3.13, one which we need to fix and the other
we need to understand. Note that when the reflected field encounters the left boundary it disap-
pears. The ABC does its job and the field is absorbed. On the other hand, when the transmitted
wave encounters the right boundary, at approximately frame 37, it is not completely absorbed. A
reflected wave is produced which is visible in the upper right-hand corner of Fig. 3.13. Why is
the ABC no longer working? The problem is that the simple ABC used so far is based on the as-
sumption that the wave travels one spatial step for every time step. In this dielectric, with a relative
permittivity of 9, the speed of light is one-third that of free space and hence the wave does not
travel one spatial step per time step—it travels a third of a spatial step. A possible fix might be to
update the electric field on the boundary with the value of the neighboring electric-field node from



3.11. INHOMOGENEITIES 63

0 50 100 150 200
0

5

10

15

20

25

30

35

40

45

Figure 3.13: Waterfall plot of the electric fields produced by Program 3.7 which has a dielectric
with a relative permittivity of 9 starting at node 100. Free space is to the left of that. The boundary
between these two regions is indicated with the dashed vertical line.

-0.5

-0.25

 0

 0.25

 0.5

 0  25  50  75  100  125  150  175  200

Time-step 100
Time-step 140

E
z
 
(V
/m
)

Spatial Step

Figure 3.14: Two of the snapshots produced by Program 3.7. The vertical line at node 100 corre-
sponds to the interface between free space and the dielectric. The incident pulse (not shown) had
unit amplitude. Shown in this figure are the transmitted field (to the right of the interface) and the
reflected field (to the left).



64 CHAPTER 3. INTRODUCTION TO THE FDTD METHOD

three time steps in the past. However, what if the relative permittivity of the dielectric were 2? In
that case the speed of light would be 1/

√
2 times that of free space. There would be no past value

of an interior node that could be used directly to update the boundary node. So, it is necessary to
rethink the implementation of the ABC so that it can handle these sorts of situations. This will be
addressed in another chapter.

The other artifact present in Fig. 3.13 is slightly less obvious. If you look at the trailing edge
of the transmitted pulse around frame 33, or so, you will see a slight wiggle appear on the trailing
side of the pulse. The incident field is a Gaussian pulse which asymptotically goes to zero to either
side of the peak value. However, the transmitted pulse does not behave this way—at least not after
propagating in the dielectric for a while (initially there are no wiggles visible at the trailing side
of the transmitted pulse). These wiggles are caused by dispersion in the FDTD grid. When the
Courant number is anything other than unity, the FDTD grid is dispersive, meaning that different
frequencies propagate at different speeds. Note that we have defined the Courant number as the
c∆t/∆x where c is the speed of light in free space. We will generally maintain the convention that
c represents the speed of light in free space. However, one can think of the Courant number as a
local quantity that equals the local speed of light multiplied by the ratio ∆t/∆x. Because the speed
of light is one-third of that of free space, the local Courant number in the dielectric is not unity.
Since the Gaussian pulse consists of a range of frequencies, and these frequencies are propagating
at different speeds, the pulse “breaks apart” as it propagates. In practice, one tries to ensure that the
amount of dispersion is small, but it is unavoidable in multi-dimensional FDTD analysis. Numeric
dispersion will be discussed further in Chap. 7.

Because of the discretized nature of the FDTD grid, the location of a material boundary can
be somewhat ambiguous. The relatively permittivity that pertains to a particular electric-field node
can be assumed to exist over the space that extends from one of its neighboring magnetic-field
nodes to the other neighboring magnetic-field node. This idea is illustrated in Fig. 3.15 which
shows a portion of the FDTD grid together with the permittivity associated with each node. The
permittivities are indicated with the bar along the bottom of the figure.

If there is only a change in permittivity, the location of the interface between the different media
seems rather clear. It coincides with the magnetic-field node that has ϵ1 to one side and ϵ2 to the
other. However, what if there is a change in permeability too? The permeabilities are indicated
with a bar along the top of the figure. It is seen that the interface associated with the change in
permeabilities is not aligned with the interface associated with the change in permittivities. One
way to address this problem is to assume the true interface is aligned with an electric-field node.
This node would then use the average of the permittivities of the media to either side. This scenario
is depicted in Fig. 3.16. Alternatively, if one wants to have the boundary aligned with a magnetic-
field node, then the node located on the boundary would use the average of the permeabilities to
either side while the electric-field nodes would use the permittivity of the first medium if they were
to the left of the boundary and use the permittivity of the second medium if they were to the right.

3.12 Lossy Material
When a material has a finite conductivity σ, a conduction-current term is added to Ampere’s law
(which is distinct from the source-current term mentioned in Sec. 3.8). Thus, in a source-free



3.12. LOSSY MATERIAL 65

Ez

Hy Hy Hy HyHy

EzEzEzEz

ε1 ε1 ε2 ε2

μ1 μ2μ1 μ2μ1

ε2

Hy

Ez

position, x

Figure 3.15: One-dimensional grid depicting an abrupt change in both the permittivity and perme-
ability. The actual location of the interface between the two media is ambiguous.

Ez

Hy Hy Hy HyHy

EzEzEzEz

ε1 ε1 ε2 ε2

μ1 μ2μ1 μ2μ1

εavg

Hy

Ez

position, x

Figure 3.16: One-dimensional grid depicting a change from one medium to another. An electric-
field node is assumed to be collocated with the interface, hence the permittivity used there is the
average of the permittivities to either side.

region, Amperes law becomes

σE+ ϵ
∂E

∂t
= ∇×H. (3.48)

The discretized form of Ampere’s law provided the update equation for the electric field. As before,
assuming only a z component of the field and variation only in the x direction, this equation reduces
to

σEz + ϵ
∂Ez
∂t

=
∂Hy

∂x
. (3.49)

As discussed in Sec. 3.3 and detailed in Fig. 3.2, this equation was expanded about the point
(m∆x, (q + 1/2)∆t) to obtain the electric-field update equation. However, when loss is present,
the undifferentiated electric field appears on the left side of the equation. With the assumed
arrangement of the nodes shown in Fig. 3.2, there is no electric field at the space-time point
(m∆x, (q + 1/2)∆t). This problem can be circumvented by using the average (in time) of the
electric field to either side of the desired point, i.e.,

E
q+ 1

2
z [m] ≈ Eq+1

z [m] + Eq
z [m]

2
. (3.50)

Thus a suitable discretization of Ampere’s law when loss is present is

σ
Eq+1
z [m] + Eq

z [m]

2
+ ϵ

Eq+1
z [m]− Eq

z [m]

∆t

=
H
q+ 1

2
y

[
m+ 1

2

]
−H

q+ 1
2

y

[
m− 1

2

]
∆x

. (3.51)



66 CHAPTER 3. INTRODUCTION TO THE FDTD METHOD

As before, this can be solved forEq+1
z [m], which is the “future” field, in terms of purely past fields.

The result is

Eq+1
z [m] =

1− σ∆t

2ϵ

1 + σ∆t

2ϵ

Eq
z [m] +

∆t

ϵ∆x

1 + σ∆t

2ϵ

(
H
q+ 1

2
y

[
m+

1

2

]
−H

q+ 1
2

y

[
m− 1

2

])
. (3.52)

When σ is zero this reduces to the previous update equation (3.18).
In previous update equations it was possible to express the coefficients in terms of the Courant

number, i.e., the ratio of the temporal step to the spatial step. In (3.52) it appears the term σ∆t/(2ϵ)
requires that the temporal step be specified (together with the conductivity and permittivity). How-
ever, there is a way to express this such that the temporal step does not need to be stated explicitly.
This will be considered in detail in Sec. 5.7.

As we will see, it is occasionally helpful to incorporate a magnetic conduction current in Fara-
day’s law. Similar to the electric conduction current, the magnetic conduction current is assumed
to be the product of the magnetic conductivity σm and the magnetic field. Faraday’s law becomes

−σmH− µ
∂H

∂t
= ∇× E. (3.53)

We again restrict consideration to an Hy component which varies only in the x direction. This
reduces to

σmHy + µ
∂Hy

∂t
=
∂Ez
∂x

. (3.54)

As was depicted in Fig. 3.1, this is expanded/discretized at the space-time point ((m+1/2)∆x, q∆t).
Since there is no magnetic field available at integer time steps, the magnetic field is averaged in
time to get an approximation of the field at time q∆t. This yields

σm
H
q+ 1

2
y

[
m+ 1

2

]
+H

q− 1
2

y

[
m+ 1

2

]
2

+ µ
H
q+ 1

2
y

[
m+ 1

2

]
−H

q− 1
2

y

[
m+ 1

2

]
∆t

=

Eq
z [m+ 1]− Eq

z [m]

∆x

. (3.55)

Solving for H
q+ 1

2
y

[
m+ 1

2

]
yields the update equation

H
q+ 1

2
y

[
m+

1

2

]
=

1− σm∆t

2µ

1 + σm∆t

2µ

H
q− 1

2
y

[
m+

1

2

]
+

∆t

µ∆x

1 + σm∆t

2µ

(Eq
z [m+ 1]− Eq

z [m]) . (3.56)

When σm is zero this reduces to (3.15).
Program 3.8 models a lossy dielectric half-space that starts at node 100. As before, the relative

permittivity is 9. However there is also an electric loss present such that σ∆t/2ϵ is 0.01. The
program uses two coefficient arrays, ceze and cezh. The terms in the ceze array multiply
the previous (or “self”) term while the cezh array contains the terms that multiply the spatial
difference of the magnetic fields. Think of these arrays as consisting of coefficients (or constants),
hence the “c” at the start of their name, that appear in the Ez update equation, hence the ez part
of the name, and multiplying either the electric field (ceze) or the magnetic field (cezh). The
values of these arrays are set in the loop that starts at line 27. Since the simple ABC previously



3.12. LOSSY MATERIAL 67

employed at the right edge of the grid does not work, it has been removed but the left side of the
grid is terminated as before. The magnetic field update is unchanged from before. A waterfall plot
of the data produced by Program 3.8 is shown in Fig. 3.17. The pulse decays as it propagates in
the lossy region and eventually decays to a rather negligible value. Thus the lack of an ABC at the
right side of the grid is not really a concern in this particular instance.

Program 3.8 1Dlossy.c: One-dimensional simulation with a lossy dielectric region.

1 /* 1D FDTD simulation of a lossy dielectric region. */
2

3 #include <stdio.h>
4 #include <math.h>
5

6 #define SIZE 200
7 #define LOSS 0.01
8

9 int main()
10 {
11 double ez[SIZE], hy[SIZE - 1], ceze[SIZE], cezh[SIZE],
12 imp0 = 377.0;
13 int qTime, maxTime = 450, mm;
14 char basename[80] = "sim", filename[100];
15 int frame = 0;
16 FILE *snapshot;
17

18 /* initialize electric field */
19 for (mm = 0; mm < SIZE; mm++)
20 ez[mm] = 0.0;
21

22 /* initialize magnetic field */
23 for (mm = 0; mm < SIZE - 1; mm++)
24 hy[mm] = 0.0;
25

26 /* set electric-field update coefficients */
27 for (mm = 0; mm < SIZE; mm++)
28 if (mm < 100) { /* free space */
29 ceze[mm] = 1.0;
30 cezh[mm] = imp0;
31 } else { /* lossy dielectric */
32 ceze[mm] = (1.0 - LOSS) / (1.0 + LOSS);
33 cezh[mm] = imp0 / 9.0 / (1.0 + LOSS);
34 }
35

36 /* do time stepping */
37 for (qTime = 0; qTime < maxTime; qTime++) {
38



68 CHAPTER 3. INTRODUCTION TO THE FDTD METHOD

39 /* update magnetic field */
40 for (mm = 0; mm < SIZE - 1; mm++)
41 hy[mm] = hy[mm] + (ez[mm + 1] - ez[mm]) / imp0;
42

43 /* correction for Hy adjacent to TFSF boundary */
44 hy[49] -= exp(-(qTime - 30.) * (qTime - 30.) / 100.) / imp0;
45

46 /* simple ABC for ez[0] */
47 ez[0] = ez[1];
48

49 /* update electric field */
50 for (mm = 1; mm < SIZE - 1; mm++)
51 ez[mm] = ceze[mm] * ez[mm] + cezh[mm] * (hy[mm] - hy[mm - 1]);
52

53 /* correction for Ez adjacent to TFSF boundary */
54 ez[50] += exp(-(qTime + 0.5 - (-0.5) - 30.) *
55 (qTime + 0.5 - (-0.5) - 30.) / 100.);
56

57 /* write snapshot if time a multiple of 10 */
58 if (qTime % 10 == 0) {
59 sprintf(filename, "%s.%d", basename, frame++);
60 snapshot=fopen(filename, "w");
61 for (mm = 0; mm < SIZE; mm++)
62 fprintf(snapshot, "%g\n", ez[mm]);
63 fclose(snapshot);
64 }
65 } /* end of time-stepping */
66

67 return 0;
68 }

When loss is present the characteristic impedance of the medium becomes

η =

√√√√µ
(
1− j σm

ωµ

)
ϵ
(
1− j σ

ωϵ

) = η0

√√√√µr

(
1− j σm

ωµ

)
ϵr
(
1− j σ

ωϵ

) (3.57)

When σm/µ = σ/ϵ the terms in parentheses are equal and hence cancel. With those terms canceled,
the characteristic impedance is indistinguishable from the lossless case. Therefore

η|σm
µ

=σ
ϵ
= η|σm=σ=0 = η0

√
µr
ϵr
. (3.58)

As shown in (3.44), the reflection coefficient for a wave normally incident on a planar boundary
is proportional to the difference of the impedances to either side of the interface. If the material
on one side is lossless while the material on the other side is lossy with σm/µ = σ/ϵ, then the
impedances are matched provided the ratios of ϵr and µr are also matched across the boundary.



3.12. LOSSY MATERIAL 69

0 50 100 150 200
0

5

10

15

20

25

30

35

40

45

Figure 3.17: Waterfall plot of the electric fields produced by Program 3.8 which has a lossy dielec-
tric region with a relative permittivity of 9 starting at node 100. The dashed vertical line indicates
the boundary between free space and the lossy dielectric.

With the impedances matched, there will be no reflection from the interface. Therefore a lossy
layer could be used to terminate the grid. The fields will dissipate in this lossy region and, if the
region is large enough, may be small by the time they encounter the end of the grid. Upon reflection
from the end of the grid, the fields would have to propagate back through the lossy layer where they
would decay even further. With proper design the reflected fields can be made inconsequentially
small when they eventually get back to the lossless portion of the grid.

A lossy layer with the impedance matched to the previous region can be implemented easily in
one dimension. Program 3.9 shows a program where a lossless dielectric layer with ϵr = 9 starts
at node 100. The lossless region extends to node 180. At node 180, and beyond, the material has
both a nonzero electric and a magnetic conductivity. The conductivities are matched in the sense
that σm/µ = σ/ϵ. Thus the terms σm∆t/2µ and σ∆t/2ϵ in the update-equations are also matched.
In this program these terms are set to 0.02. The coefficients used in the magnetic-field update
equations are stored in the arrays chyh and chye.

The waterfall plot of the data generated by Program 3.9 is shown in Fig. 3.18. The fields
that enter the lossless region propagate to the right and eventually encounter the lossy region.
Because the impedances of the lossless and lossy media are matched, the fields enter the lossy
region without reflection (actually, that is true in the continuous world, but only approximately true
in the discretized FDTD world—there is some small reflection present). As the fields propagate in
the lossy region they dissipate to the point where they are almost negligible when they reenter the
lossless region. There is no reflected field evident in the upper right corner of the plot.



70 CHAPTER 3. INTRODUCTION TO THE FDTD METHOD

This “matched lossy layer” could be used to terminate a grid that has a dielectric at the end
of the grid, i.e., a grid that would be unsuitable for application of the simple shift-based ABC
employed previously. There is, in fact, an ABC that employs this concept but in a much more
sophisticated way so that it works in two- and three-dimensions. The lossy layer we have employed
here would not work in higher dimension when energy is obliquely incident on the layer. The more
sophisticated ABC is known as the Perfectly Matched Layer (PML) and is considered in Chap. 11.

Program 3.9 1Dmatched.c: Program with a lossless dielectric region followed by a lossy layer
that has its impedance matched to the lossless dielectric.

1 /* 1D FDTD simulation of a lossless dielectric region
2 * followed by a lossy layer which matches the impedance
3 * of the dielectric. */
4

5 #include <stdio.h>
6 #include <math.h>
7

8 #define SIZE 200
9 #define LOSS 0.02

10 #define LOSS_LAYER 180
11

12 int main()
13 {
14 double ez[SIZE], hy[SIZE - 1], ceze[SIZE], cezh[SIZE],
15 chyh[SIZE - 1], chye[SIZE - 1], imp0 = 377.0;
16 int qTime, maxTime = 450, mm;
17 char basename[80] = "sim", filename[100];
18 int frame = 0;
19 FILE *snapshot;
20

21 /* initialize electric field */
22 for (mm = 0; mm < SIZE; mm++)
23 ez[mm] = 0.0;
24

25 /* initialize magnetic field */
26 for (mm = 0; mm < SIZE - 1; mm++)
27 hy[mm] = 0.0;
28

29 /* set electric-field update coefficients */
30 for (mm = 0; mm < SIZE; mm++)
31 if (mm < 100) {
32 ceze[mm] = 1.0;
33 cezh[mm] = imp0;
34 } else if (mm < LOSS_LAYER) {
35 ceze[mm] = 1.0;
36 cezh[mm] = imp0 / 9.0;



3.12. LOSSY MATERIAL 71

37 } else {
38 ceze[mm] = (1.0 - LOSS) / (1.0 + LOSS);
39 cezh[mm] = imp0 / 9.0 / (1.0 + LOSS);
40 }
41

42 /* set magnetic-field update coefficients */
43 for (mm = 0; mm < SIZE - 1; mm++)
44 if (mm < LOSS_LAYER) {
45 chyh[mm] = 1.0;
46 chye[mm] = 1.0 / imp0;
47 } else {
48 chyh[mm] = (1.0 - LOSS) / (1.0 + LOSS);
49 chye[mm] = 1.0 / imp0 / (1.0 + LOSS);
50 }
51

52 /* do time stepping */
53 for (qTime = 0; qTime < maxTime; qTime++) {
54

55 /* update magnetic field */
56 for (mm = 0; mm < SIZE - 1; mm++)
57 hy[mm] = chyh[mm] * hy[mm] +
58 chye[mm] * (ez[mm + 1] - ez[mm]);
59

60 /* correction for Hy adjacent to TFSF boundary */
61 hy[49] -= exp(-(qTime - 30.) * (qTime - 30.) / 100.) / imp0;
62

63 /* simple ABC for ez[0] */
64 ez[0] = ez[1];
65

66 /* update electric field */
67 for (mm = 1; mm < SIZE - 1; mm++)
68 ez[mm] = ceze[mm] * ez[mm] +
69 cezh[mm] * (hy[mm] - hy[mm - 1]);
70

71 /* correction for Ez adjacent to TFSF boundary */
72 ez[50] += exp(-(qTime + 0.5 - (-0.5) - 30.)*
73 (qTime + 0.5 - (-0.5) - 30.) / 100.);
74

75 /* write snapshot if time a multiple of 10 */
76 if (qTime % 10 == 0) {
77 sprintf(filename, "%s.%d", basename, frame++);
78 snapshot=fopen(filename, "w");
79 for (mm = 0; mm < SIZE; mm++)
80 fprintf(snapshot, "%g\n", ez[mm]);
81 fclose(snapshot);
82 }
83 } /* end of time-stepping */



72 CHAPTER 3. INTRODUCTION TO THE FDTD METHOD

84

85 return 0;
86 }

0 50 100 150 200
0

5

10

15

20

25

30

35

40

45

Figure 3.18: Waterfall plot of the electric fields produced by Program 3.9 which has a dielectric
region starting at node 100 with a relative permittivity of 9. This lossless region is followed by a
lossy layer with matched impedance. The lossy region starts at node 180. The dashed vertical line
in the middle indicates the boundary between free space and the lossless dielectric. The second
dashed vertical line indicates the boundary between the lossless and the lossy dielectrics.



Chapter 4

Improving the FDTD Code

4.1 Introduction
The C code presented in the previous chapter adequately served its purpose—it implemented the
desired FDTD functionality in a relatively straightforward way. However, as the algorithms get
more involved, for instance, when implementing simulations of two- or three-dimensional prob-
lems, the readability, portability, and maintainability will be improved if our implementation is
slightly more sophisticated. In this chapter we will implement the algorithms of the previous chap-
ter in a way which may seem, at first, to be overly complicated. However, as the complexity of
the algorithms increases in coming chapters, we will see that the effort required to understand this
more sophisticated approach will have been worth it.

4.2 Arrays and Dynamic Memory Allocation
In C an array is stored in a block of contiguous memory. Memory itself is fundamentally a one-
dimensional quantity since memory is ultimately accessed with a single memory address. Let us
consider a one-dimensional array of doubles ez where the size is specified at run-time rather than
at compile-time. The compiler needs to know about the existence of this array, but at compile-time
it does not need to know the amount or the location of memory where the array will be stored. We
can specify the size of the array when the program is run and we can allow the computer to decide
the location of the necessary amount of memory. The compiler is told about the potential existence
of the array by declaring a pointer to the array. Once the pointer is associated with the appropriate
block of memory, it is virtually indistinguishable from a one-dimensional array.

The code shown in Fragment 4.1 demonstrates how the array ez can be created at run-time. In
line 1 ez is declared as a pointer—it can store an address but when the program initially starts it
does not point to anything meaningful.* Line 2 declares two integer variables: num elements

Lecture notes by John Schneider. fdtd-improved-code.tex
*It would be better to set ez equal to NULL when it is declare. This ensure it initially does not point to a valid ad-

dress and thus would be unlikely to cause any problems—other than the termination of the program—if one attempted
to use it without further initialization. Note that NULL is not a keywork in C, i.e., it is not built into the language.
Rather, it is defined in various header files, including stdlib.h, to be ((void *)0). If one is doing anything
with dynamically allocated memory, it is almost certain that stdlib.h would be one of the included header files.

73



74 CHAPTER 4. IMPROVING THE FDTD CODE

which will contain the number of elements in the array, and mm which will be used as a loop
counter. Lines 4 and 5 determine the number of elements the user desires.

Fragment 4.1 Fragment of code demonstrating how the size of the array ez can be set at run-
time. The header file stdlib.h would typically have to be included to provide the prototype for
the calloc() function.

1 double *ez;
2 int num_elements, mm;
3

4 printf("Enter the size of the array: ");
5 scanf("%d", &num_elements);
6

7 ez = calloc(num_elements, sizeof(double));
8

9 for (mm=0; mm < num_elements; mm++)
10 ez[mm] = 3.0 * mm;

Line 7 is the key to getting ez to behave as an array. In this line the pointer ez is set equal to the
memory address that is returned by the function calloc().† calloc() takes two arguments.
The first specifies the number of elements in the array while the second specifies the amount of
memory needed for a single element. Here the sizeof() operator is used to obtain the size of a
double variable, i.e., the size in bytes of the memory associate with a double. (Although not shown
in this fragment, when using the calloc() function one typically has to include the header file
stdlib.h to provide the function prototype.) If calloc() is unable to provide the requested
memory it will return NULL (which is effectively 0). ‡

After the call of calloc() in line 7, ez points to the start of a contiguous block of memory
where the array elements can be stored. To demonstrate this, lines 9 and 10 write the value of three
times the array index to each element of the array (so that ez[0] would be 0.0, ez[1] would be
3.0, ez[2] would be 6.0, and so on).

Some compilers will actually complain about the code as it is written in Fragment 4.1. The
“problem” is that technically calloc() returns a void pointer—it is simply the address of the
start of a block of memory, but we have not said what is stored in that memory. We want a pointer
to doubles since we will be storing double precision variables in this memory. The compiler
really already knows this since we are storing the address in ez which is a pointer to doubles.
Nevertheless, some compilers will give a warning because of line 7. Therefore, to ensure that
compilers do not complain, it would be best to replace line 7 with

7 ez = (double *)calloc(num_elements, sizeof(double));

†calloc() is closely related to the function malloc() which also allocates a block of memory and returns
the address of the start of that block. However calloc() returns memory which has been cleared, i.e., set to zero,
while malloc() returns memory which may contain anything. Since we want the field arrays initially to be zero, it
is better to use calloc() than malloc().

‡Robust code would check the return value and take appropriate measures if NULL were returned. For now we will
assume that calloc() succeeded, but we return to this point in the next section.



4.3. MACROS 75

In this way the void pointer returned by calloc() is converted (or cast) to a pointer to doubles.

4.3 Macros
C provides a preprocessor which “processes” your code prior to the compiler itself. Preprocessor
directives start with the pound sign (#) and instruct the preprocessor to do things such as include
a header file (with an #include statement) or substitute one string for another. Program 3.1 had
three preprocessor directives. Two were used to include the files stdio.h and math.h and one
used a #define statement to tell the preprocessor to substitute 200 for all occurrences of the
string SIZE.

Compilers allow you to see the source code after passing through the preprocessor. Using the
GNU C compiler, one adds the -E flag to the compiler command to obtain the output from the
preprocessor. So, for example, one can see the source code as it appears after passing through the
preprocessor with the command

gcc -E 1DbareBones.c

In this case you will observe that there are many, many more lines of output than there are in your
original program. This is because of the inclusion of the header files. Your original program will
appear at the end of the output except now SIZE does not appear anywhere. Instead, any place it
had appeared you will now see 200.

The #define statement can also be used to create a macro. Unlike the simple string substi-
tution used before, a macro can take one or more arguments. These arguments dictate how strings
given as arguments should re-appear in the output. For example, consider the following macro

#define SQR(X) ((X) * (X))

This tells the preprocessor that every time SQR appears in the source code, the preprocessor should
take whatever appeared as an argument and replace that with the argument multiplied by itself.
Here the argument X is just serving as a place holder. Consider the following code

a = 6.0 * SQR(3.0 + 4.0);

After passing through the preprocessor, this code would appear as

a = 6.0 * ((3.0 + 4.0) * (3.0 + 4.0));

The result would be that a would be set equal to 6× 72 = 294.
It may seem that there are an excess number of parentheses in this macro, but one must be

careful with macros to ensure the desired results are obtained. Consider this macro

#define BAD_SQR1(X) X * X

If a program then contained this statement

a = 6.0 * BAD_SQR1(3.0 + 4.0);

the preprocessor translates this to

a = 6.0 * 3.0 + 4.0 * 3.0 + 4.0;



76 CHAPTER 4. IMPROVING THE FDTD CODE

Since multiplication has a higher precedence than addition, in this case a would be set equal to
18 + 12 + 4 = 34. There is no harm in using extra parentheses, so do not hesitate to use them to
ensure you are getting precisely what you want or to add clarity.

It is also worth noting that the macro definition itself will typically not be terminated by a
semicolon. If one includes a semicolon, it could easily produce unintended results. As an example,
consider

#define BAD_SQR2(X) ((X) * (X));

If a program then contained this statement

a = BAD_SQR2(4.0) + 10.0;

the preprocessor would translate this to

a = ((4.0) * (4.0)); + 10;

Note that the “+ 10” is consider a separate statement since there is a semicolon between it and
the squared term.§ Thus, a will be set to 16.0 instead of the correct value of 26.0.

Macros may have any number of arguments. As an example, consider

#define FOO(X, Y) (Y) * cos((X) * (Y))

Given this macro, the following code

a = FOO(cos(2.15), 7.0 * sqrt(4.0));

would be translated by the preprocessor to

a = (7.0 * sqrt(4.0)) * cos((cos(2.15)) * (7.0 * sqrt(4.0)));

Macros can span multiple lines provided the newline character at the end of each line is
“quoted” with a backslash. Said another way, a backslash must be the last character on a line
if the statement is to continue on the next line.

There is another “trick” that one can do with macros. One can say they want the string version
of an argument in the preprocessor output, essentially the argument will appear enclosed in quotes
in the output. To understand why this is useful, it first helps to recall that in C, if one puts two
strings adjacent¶ to each other, the compiler treats the two separate strings as a single string. Thus,
the following commands are all equivalent

printf("Hello world.\n");
printf("Hello " "world.\n");
printf("Hello "

"world.\n");

Each of these produce the same output

Hello world.

§When using the GNU C compiler, this “bad” code will compile without error. If one adds the -Wall flag when
compiling, the GNU compiler will provide a warning that gives the line number and a statement such as “warning:
statement with no effect.” Nevertheless, the code will compile.

¶Here “adjacent” means that any amount of white space, i.e., spaces, tabs, and newlines, can appear between the
two strings.



4.3. MACROS 77

Note that there is no comma between the separated strings in the printf() statements and the
amount of whitespace between the strings is irrelevant.

If we want the preprocessor to produce the string version of an argument in the output, we affix
# (hash) to the argument name in the place where it should appear in the output. For example, we
could use a macro to print what is being calculated and show the result of the calculation as well:

#define SHOW_CALC(X) \
printf(#X " = %g\n", X)

The first line of this macro is terminated with a backslash telling the preprocessor that the definition
is continued on the next line. Now, if the code contained

SHOW_CALC(6.0 + 24.0 / 8.0);

the preprocessor would convert this to

printf("6.0 + 24.0 / 8.0" " = %g\n", 6.0 + 24.0 / 8.0);

When the program is run, the following output would be generated

6.0 + 24.0 / 8.0 = 9

We are now at a point where we can construct a fairly sophisticated macro to do memory
allocation. The macro will check if the allocation of memory was successful. If not, the macro will
report the problem and terminate the program. The following fragment shows the desired code.

Fragment 4.2 Macro for allocating memory for a one-dimensional array. The trailing backslashes
must appear directly before the end of the line. (By “quoting” the newline character at the end of
the line we are telling the preprocessor the definition is continued on the next line.)

1 #define ALLOC_1D(PNTR, NUM, TYPE) \
2 PNTR = (TYPE *)calloc(NUM, sizeof(TYPE)); \
3 if (!PNTR) { \
4 perror("ALLOC_1D"); \
5 fprintf(stderr, \
6 "Allocation failed for " #PNTR ". Terminating...\n");\
7 exit(-1); \
8 }

The macro ALLOC 1D() takes three arguments: a pointer (called PNTR), an integer specifying
the number of elements (NUM), and a data type (TYPE). In line 2 the macro uses calloc() to
obtain the desired amount of memory. Then, in line 3, it checks if the allocation was successful.
Recall that calloc() will return NULL if it failed to allocate the requested memory. In C, the
exclamation mark is also the “not operator.” So, if the value of PNTR is NULL (or, thought of
another way, “false”), then !PNTR would be true. If the memory allocation failed, two error
messages are printed (one message is generated using the system function perror(), the other
uses fprintf() and writes the output to stderr, which is typically the screen). The program
is then terminated with the exit() command.

With this macro in our code we could create an array ez with 200 elements with statements
such as



78 CHAPTER 4. IMPROVING THE FDTD CODE

double *ez;

ALLOC_1D(ez, 200, double);

Technically the semicolon in the second statement is not necessary (since this macro translates to
a block of code that ends with a close-brace), but there is no harm in having it.

4.4 Structures
In C one can group data together, essentially create a compound data type, using what is known
as a structure. A program can have different types of structures, i.e., ones that bundle together
different kinds of data. For example, a program might use structures that bundle together a person’s
age, weight, and name as well as structures that bundle together a person’s name, social security
number, and income. Just as we can have multiple variables of a given type and each variable
is a unique instance of that data type, we can have multiple variables that corresponds to a given
structure, each of which is a unique instance of that structure.

Initially, when declaring a structure, we first tell the compiler the composition of the structure.
As an example, the following command defines a person structure that contains three elements:
a character pointer called name that will be used to store the name of a person, an integer called
age that will correspond to the person’s age, and an integer called weight that will correspond
to the person’s weight.

struct person {
char *name;
int age;
int weight;

};

This statement is merely a definition—no structure has been created yet. To create a person
structure called bob and another one called sue, a command such as the following could be used:

struct person bob, sue;

Actually, one could combine these two statements and create bob and sue with the following:

struct person {
char *name;
int age;
int weight;

} bob, sue;

However, in the code to come, we will use a variant of the two-statement version of creating
structures. It should also be pointed out that elements do not need to be declared with individual
statements of their own. For example, we could write

struct person {
char *name;
int age, weight;

};



4.4. STRUCTURES 79

instead of the two separate lines shown above. The order in which items are declared within the
structure are generally unimportant. So, the statement above is effectively equivalent to

struct person {
int age, weight;
char *name;

};

To access the elements of a structure we write the name of the structure, a dot, and then the
name of the element. For example, bob.age would be the age element of the structure bob,
and sue.age would be the age element of the structure sue (despite the fact that these are both
age elements, they are completely independent variables).

Now, let’s write a program that creates two person structures. The program has a func-
tion called showPerson1() to show the elements of a person and another function called
changePerson1() that reduces the person’s age by two and decreases the weight by five. Each
of these functions takes a single argument, a person structure. The program is shown in Program
4.3.

Program 4.3 structDemo1.c: Program to demonstrate the basic use of structures.

1 /* structDemo1.c: Program to demonstrate the use of structures. Here
2 * structures are passed as arguments to functions. */
3

4 #include <stdio.h>
5

6 struct person {
7 char *name;
8 int age;
9 int weight;

10 };
11

12 void changePerson1(struct person p);
13 void showPerson1(struct person p);
14

15 int main() {
16 struct person bob, sue;
17

18 sue.name = "Sue";
19 sue.age = 21;
20 sue.weight = 120;
21

22 bob.name = "Bob";
23 bob.age = 62;
24 bob.weight = 180;
25

26 showPerson1(sue);
27



80 CHAPTER 4. IMPROVING THE FDTD CODE

28 printf("*** Before changePerson1() ***\n");
29 showPerson1(bob);
30 changePerson1(bob);
31 printf("*** After changePerson1() ***\n");
32 showPerson1(bob);
33

34 return 0;
35 }
36

37 /* Function to display the elements in a person. */
38 void showPerson1(struct person p) {
39 printf("name: %s\n", p.name);
40 printf("age: %d\n", p.age);
41 printf("weight: %d\n", p.weight);
42 return;
43 }
44

45 /* Function to modify the elements in a person. */
46 void changePerson1(struct person p) {
47 p.age = p.age - 2;
48 p.weight = p.weight - 5;
49 printf("*** In changePerson1() ***\n");
50 showPerson1(p);
51 return;
52 }

In line 16 of the main() function we declare the two person structures bob and sue. This
allocates the space for these structures, but as yet their elements do not have meaningful values.
In 18 we set the name of element of sue. The following two lines set the age and weight.
The elements for bob are set starting at line 22. In line 26 the showPerson1() function is
called with an argument of sue. This function, which starts on line 38, shows the name, age, and
weight of a person.

After showing the elements of sue, in line 29 of main(), showPerson1() is used to show
the elements of bob. In line 30 the function changePerson1() is called with an argument of
bob. This function, which is given starting on line 46, subtracts two from the age and five from
the weight. After making these modifications, in line 50, showPerson1() is called to display
the modified person. Finally, returning to line 32 of the main() function, the showPerson1()
function is called once again with an argument of bob. Note that this is after bob has supposedly
been modified by the changePerson1() function. The output produced by Program 4.3 is

1 name: Sue
2 age: 21
3 weight: 120
4 *** Before changePerson1() ***
5 name: Bob
6 age: 62



4.4. STRUCTURES 81

7 weight: 180
8 *** In changePerson1() ***
9 name: Bob

10 age: 60
11 weight: 175
12 *** After changePerson1() ***
13 name: Bob
14 age: 62
15 weight: 180

Here we see, in lines 1–3 and 5–7 of the output, that the initial values of sue and bob are as
we would anticipate. Also, when showPerson1() is called from within changePerson1()
(line 50 of the program), we see, lines 9–11 of the output, the modified values for bob, i.e., his
age has been reduced by two and his weight has been reduced by five. However, the last three lines
of output, 13–15 show that, insofar as the bob structure in the main() function is concerned,
nothing has changed! bob has not been modified by changePerson1().

Although this behavior may not have been what we would have anticipated, it is correct. When
a structure is given as an argument, the function that is called is given a complete copy of the
original structure. Thus, when that function modifies the elements of the structure, it is modifying
a copy of the original—it is not affecting the original itself.

If we want a function that we call to be able to modify a structure, we must pass a pointer to that
structure. We will modify the code to permit this but let use first introduce the typedef statement
that allows to write slightly cleaner code. Having to write struct person everywhere we want
to specify a person structure is slightly awkward. C allows us to use a typedef statement to
define an equivalent. The following statement tells the compiler that Person is the equivalent of
struct person

typedef struct person Person;

Note that there is no requirement that we use the same word for the structure and the typedef-
equivalent. Additionally, even when using the same word, there is no need to use different capital-
ization (since the structure and its equivalent are maintained in different name spaces).

Now, let us assume we want to create two pointers to structures, one named susan and one
robert. These can be created with

struct person *susan, *robert;

Assuming the typedef statement given above has already appeared in the program, we could
instead write:

Person *susan, *robert;

susan and robert are pointers to structures but, initially, they do not point to any structures. We
cannot set their elements because there is is no memory allocated for the storage of these elements.
Thus, we must allocate memory for these structures and ensure the pointers point to the memory.

To accomplish this, we can include in our program a statement such as

ALLOC_1D(susan, 1, Person);

Recalling the ALLOC 1D() macro presented in Sec. 4.3, this statement will allocate the memory
for one Person and associate that memory with the pointer susan. We can now set the element



82 CHAPTER 4. IMPROVING THE FDTD CODE

associated with susan. However, accessing the elements of a pointer to a Person is different
than directly accessing the elements of a Person. To set the age element of susan we would
have to write either

(*susan).age = 21;

or

susan->age = 21;

Program 4.4 is similar to Program 4.3 in many respects except here, rather than using structures
directly, the program primarily deals with pointers to structures. As will be shown, this allows other
functions to change the elements within any given structure—the function merely has to be passed
a pointer to the structure rather than (a copy of) the structure.

Program 4.4 structDemo2.c: Program to demonstrate the basic use of pointers to structures.

1 /* structDemo2.c: Program to demonstrate the use of pointers to
2 * structures. */
3

4 #include <stdlib.h>
5 #include <stdio.h>
6

7 #define ALLOC_1D(PNTR, NUM, TYPE) \
8 PNTR = (TYPE *)calloc(NUM, sizeof(TYPE)); \
9 if (!PNTR) { \

10 perror("ALLOC_1D"); \
11 fprintf(stderr, \
12 "Allocation failed for " #PNTR ". Terminating...\n");\
13 exit(-1); \
14 }
15

16 struct person {
17 char *name;
18 int age;
19 int weight;
20 };
21

22 typedef struct person Person;
23

24 void changePerson2(Person *p);
25 void showPerson2(Person *p);
26

27 int main() {
28 Person *robert, *susan;
29

30 ALLOC_1D(susan, 1, Person);



4.4. STRUCTURES 83

31 ALLOC_1D(robert, 1, Person);
32

33 susan->name = "Susan";
34 susan->age = 21;
35 susan->weight = 120;
36

37 robert->name = "Robert";
38 robert->age = 62;
39 robert->weight = 180;
40

41 showPerson2(susan);
42

43 printf("*** Before changePerson2() ***\n");
44 showPerson2(robert);
45 changePerson2(robert);
46 printf("*** After changePerson2() ***\n");
47 showPerson2(robert);
48

49 return 0;
50 }
51

52 /* Function to display the elements in a person. */
53 void showPerson2(Person *p) {
54 printf("name: %s\n", p->name);
55 printf("age: %d\n", p->age);
56 printf("weight: %d\n", p->weight);
57 return;
58 }
59

60 /* Function to modify the elements in a person. */
61 void changePerson2(Person *p) {
62 p->age = p->age - 2;
63 p->weight = p->weight - 5;
64 printf("*** In changePerson2() ***\n");
65 showPerson2(p);
66 return;
67 }

The typedef statement in line 22 allows us to write simply Person instead of struct
person. This is followed by the prototypes for functions showPerson2() and changePerson2().
These functions are similar to the corresponding functions in the previous program except now the
arguments are pointers to structures instead of structures. Thus, the syntactic changes are necessary
in the functions themselves (e.g., we have to write p->age instead of p.age). Starting on line
30 the ALLOC 1D() macro is used to allocate the memory for the susan and robert pointers
that were declared in line 28. The values of the elements are then set, the contents of the structures
displayed, robert is modified, and the contents or robert are shown again.



84 CHAPTER 4. IMPROVING THE FDTD CODE

The output produced by Program 4.4 is

name: Susan
age: 21
weight: 120

*** Before changePerson2() ***
name: Robert
age: 62
weight: 180

*** In changePerson2() ***
name: Robert
age: 60
weight: 175

*** After changePerson2() ***
name: Robert
age: 60
weight: 175

Note that in this case, the changes made by changePerson2() are persistent—when the main()
function shows the elements of robert we see the modified values (unlike with the previous pro-
gram).

4.5 Improvement Number One
Now let us use some of the features discussed in the previous sections in a revised version of the
“bare-bones” program that appeared in Sec. 3.5. Here we will bundle much of the data associated
with an FDTD simulation into a structure that we will call a Grid structure. (We will often refer
to this structure as simply the Grid or a Grid.) Here will define the Grid as follows:

struct Grid {
double *ez; // electric field array
double *hy; // magnetic field array
int sizeX; // size of computational domain
int time, maxTime; // current and max time step
double cdtds; // Courant number

};

In the “improved” program that we will soon see, there will not appear to be much reason for
creating this structure. Why bother? The motivation will be more clear when we start to modularize
the code so that different functions handle different aspects of the FDTD simulation. By bundling
all the relevant information about the simulation into a structure, we can simply pass as an argument
to each function a pointer to this Grid.

First, let us create a header file fdtd1.h in which we will put the definition of a Grid
structure. In this file we will also include the (1D) macro for allocating memory. Finally, in a quest
to keep the code as clean as possible, we will also define a few additional preprocessor directives: a
macro for accessing the ez array elements, a macro for accessing the hy array elements, and some
simple #define statements to facilitate references to sizeX, time, maxTime, and cdtds.
The complete header file is shown in Program 4.5.



4.5. IMPROVEMENT NUMBER ONE 85

Program 4.5 fdtd1.h: Header file for the first “improved” version of a simple 1D FDTD pro-
gram.

1 #ifndef _FDTD1_H
2 #define _FDTD1_H
3

4 #include <stdio.h>
5 #include <stdlib.h>
6

7 struct Grid {
8 double *ez;
9 double *hy;

10 int sizeX;
11 int time, maxTime;
12 double cdtds;
13 };
14

15 typedef struct Grid Grid;
16

17 /* memory allocation macro */
18 #define ALLOC_1D(PNTR, NUM, TYPE) \
19 PNTR = (TYPE *)calloc(NUM, sizeof(TYPE)); \
20 if (!PNTR) { \
21 perror("ALLOC_1D"); \
22 fprintf(stderr, \
23 "Allocation failed for " #PNTR ". Terminating...\n");\
24 exit(-1); \
25 }
26

27 /* macros for accessing arrays and such */
28 /* NOTE!!!! Here we assume the Grid structure is g. */
29 #define Hy(MM) g->hy[MM]
30 #define Ez(MM) g->ez[MM]
31 #define SizeX g->sizeX
32 #define Time g->time
33 #define MaxTime g->maxTime
34 #define Cdtds g->cdtds
35

36 #endif /* matches #ifndef _FDTD1_H */

Line 1 checks if this header file, i.e., fdtd1.h, has previously been included. Including mul-
tiple copies of a header file can cause errors or warnings (such as when a term that was previously
defined in a #define statement is again mentioned in a different #define statement). In the
simple code with which we are working now, multiple inclusions are not a significant concern,



86 CHAPTER 4. IMPROVING THE FDTD CODE

but we want to develop the techniques to ensure multiple inclusions do not cause problems in the
future. Line 1 checks for a previous inclusion by testing if the identifier (technically a compiler
directive) FDTD1 H is not defined. If it is not defined, the next statement on line 2 defines it.
Thus, FDTD1 H serves as something of a flag. It will be defined if this file has been previously
included and will not be defined otherwise. Therefore, owing to the #ifndef statement at the
start of the file, if this header file has previously been included the preprocessor will essentially
ignore the rest of the file. The #ifndef statement on line 1 is paired with the #endif statement
on line 36 at the end of the file.

Assuming this file has not previously been included, next, the header files stdio.h and
stdlib.h are included. Since the macro ALLOC 1D() uses both calloc() and some printing
functions, both these headers have to be included anywhere ALLOC 1D() is used.

The commands for defining the Grid structure start on line 7. Following that, the ALLOC 1D()
macro begins on line 18. The macros given on lines 29 and 30 allow us to access the field arrays in
a way that is easier to read.|| (Importantly, note that these statements assume that the Grid in the
program has been given the name g! We will, in fact, make a habit of using the variable name g for
a Grid in the code to follow.) So, for example, the macro on line 30 allows us to write Ez(50)
instead of writing the more cumbersome g->ez[50]. Note that the index for the array element
is now enclosed in parentheses and not square brackets. The definitions in lines 31 through 34
allow us to write SizeX instead of g->sizeX, Time instead of g->time, MaxTime instead
of g->maxTime, and Cdtds instead of g->cdtds.

An improved version of Program 3.1 is shown in Program 4.6.

Program 4.6 improved1.c: Source code for an improved version of the bare-bones 1D FDTD
program.

1 /* improved1.c: Improved bare-bones 1D FDTD simulation. */
2

3 #include "fdtd1.h"
4 #include <math.h>
5

6 int main()
7 {
8 Grid *g;
9 double imp0 = 377.0;

10 int mm;
11

12 ALLOC_1D(g, 1, Grid);
13

14 SizeX = 200; // size of grid
15 MaxTime = 250; // duration of simulation
16 Cdtds = 1.0; // Courant number (unused)
17

||The right side of 29 and 30 do not use the usual blue that used to signify identifiers. This is because as this
point these are technical preprocessors string substitutions rather than actual identifiers in the code. This coloring is
somewhat inconsistent used with the ALLOC 1D() macro but will be tolerated for now.



4.5. IMPROVEMENT NUMBER ONE 87

18 ALLOC_1D(g->ez, SizeX, double);
19 ALLOC_1D(g->hy, SizeX, double);
20

21 /* do time stepping */
22 for (Time = 0; Time < MaxTime; Time++) {
23

24 /* update magnetic field */
25 for (mm = 0; mm < SizeX - 1; mm++)
26 Hy(mm) = Hy(mm) + (Ez(mm + 1) - Ez(mm)) / imp0;
27

28 /* update electric field */
29 for (mm = 1; mm < SizeX; mm++)
30 Ez(mm) = Ez(mm) + (Hy(mm) - Hy(mm - 1)) * imp0;
31

32 /* hardwire a source node */
33 Ez(0) = exp(-(Time - 30.0) * (Time - 30.0) / 100.0);
34

35 printf("%g\n", Ez(50));
36 } /* end of time-stepping */
37

38 return 0;
39 }

In line 8 the pointer to the Grid structure g is declared. Because we have just declared a
pointer to a Grid, we next need to obtain the memory to store the elements of the structure itself.
This allocation is done in line 12.

Because the Grid contains pointers ez and hy, we do not need to declare those field arrays
separately. The size of the computational domain is set in line 14 while the duration of the simula-
tion is set in 15. After the preprocessor has processed the code, these lines will actually be

g->sizeX = 200;
g->maxTime = 250;

At this point in the program the pointers ez and hy do not have any memory associated with
them—we cannot store anything yet in the field arrays. Therefore the next step is the allocation of
memory for the field arrays which is accomplished in lines 18 and 19.

The rest of the code is largely the same as given in Program 3.1. The only difference being a
slight change in notation/syntax. Program 3.1 and Program 4.6 produce identical results.

This new version of the bare-bones simulation is split into two files: the header file fdtd1.h
and the source file improved1.c. This is depicted in Fig. 4.1. The main() function in file
improved1.c handles all the calculations associated with the FDTD simulation. Since there is
only a single source file, there is no obvious advantage to creating a header file. However, as we
further modularize the code, the header file will provide a convenient way to ensure that different
source files share common definitions of various things. For example, many source files may need
to know about the details of a Grid structure. These details can be written once in the header file
and then the header file can be included into different source files as appropriate. Examples of this
will be provided in the following sections.



88 CHAPTER 4. IMPROVING THE FDTD CODE

improved1.c

main()

fdtd1.h

Figure 4.1: The files associated with the first improved version of the FDTD code. The header
file fdtd1.h is included in the source file improved1.c as indicated by the dashed line. The
source file improved1.c contains the main() function which performs all the executable state-
ments associated with the simulation.

4.6 Modular Design and Initialization Functions
Thus far all the programs have been written using a single source file that contains a single function
(the main() function), or in the case of the previous section, one source file and one header file.
As the complexity of the FDTD simulation increases this approach becomes increasingly unwieldy
and error prone. A better approach is to modularize the program so that different functions perform
specific tasks—not everything is done within main(). For example, we may want to use one
function to update the magnetic field, another to update the electric field, another to introduce
energy into the grid, and another to handle the termination of the grid.

Additionally, with C it is possible to put different functions in different source files and compile
the source files separately. By putting different functions in different source files, it is possible to
have different functions that are within one source file share variables which are “hidden” from all
functions that do not appear in that file. You can think of these variables as being private, known
only to the functions contained in the file. As will be shown, such sharing of variables can be
useful when one wants to initialize the behavior of a function that will be called multiple times
(but the initialization only needs to be done once).

To illustrate how functions within a file can share variables that are otherwise hidden from
other parts of a program, assume there is a function that we want to call several times. Further
assume this function performs a calculation based on some parameters but these parameters only
need to be set once—they will not vary from the value to which they are initially set. For this
type of scenario, it is often convenient to split the task into two functions: one function handles
the initialization of the parameters (the “initialization function”) and the other function handles



4.6. MODULAR DESIGN AND INITIALIZATION FUNCTIONS 89

the calculation based on those parameters (the “calculation function”). Now, the question is: How
can the initialization function make the parameters visible to the calculation function and how can
the values of these parameters persist between one invocation of the function and the next? The
answer lies in global variables.

Generally the use of global variables is discouraged as they can make programs hard to under-
stand and difficult to debug. However, global variables can be quite useful when used properly.
To help minimize the problems associated with global variables, we will further modularizing the
program so that the initialization function and calculation function mentioned above are stored in
a separate file from the rest of the program. In this way the global variables that these functions
share are not visible to any other function.

As a somewhat contrived example of this approach to setting parameters, assume we want to
write a program that will calculate the values of a harmonic function where the user can specify the
amplitude and the phase, i.e., we want to calculate f(x) = a cos(x + ϕ) where a is the amplitude
and ϕ is the phase. Note that we often just write f(x) for a function like this even though the
function depends on a and ϕ as well as x. We usually do not write f(x, a, ϕ) because we think of
a and ϕ as fixed values (even though they have to be specified at some point) while x is the value
we are interested in varying. Assume we want to write our program so that there is a function
harmonic1() that is the equivalent of f(x) = a cos(x+ϕ). harmonic1() should take a single
argument that corresponds to the value of x. We will use a separate function, harmonicInit1()
that will set the amplitude and phase.

A file that contains a suitable main() function and the associated statements to realize the pa-
rameter setting discussed above is shown in Program 4.7. The prototypes for harmonicInit1()
and harmonic1() are given in lines 12 and 13, respectively. Note, however, that these functions
do not appear in this file. Between lines 19 and 23 the user is prompted for the amplitude and
phase (and the phase is converted from degrees to radians). These values are passed as arguments
to the harmonicInit1() function. As we will see a little later, this function sets persistent
global parameters to these values so that they are visible to the function harmonic1() whenever
it is called. The for-loop that starts on line 28 generates the desired output values. Here we set the
variable x to values between 0 and 2π. In line 30 the value of x is printed together with the value
of harmonic1(x). Note that the harmonic1() function is not passed the amplitude or phase
as an argument.

Program 4.7 paramDemo1.c: File containing the main() function and appropriate header
material that is used to demonstrate the setting of persistent parameters in an auxiliary function.
Here harmonicInit1() and harmonic1() are serving this auxiliary role. The code associ-
ated with those functions is in a separate file (see Program 4.8).

1 /* paramDemo1.c: Program that demonstrates the setting of
2 * "persistent" parameters via the arguments of an initialization
3 * function. Here the parameters control the amplitude and phase of a
4 * harmonic function f(x) = a cos(x + phi). This program generates
5 * num_points of the harmonic function with the "x" value of the
6 * varying between zero and 2*pi.
7 */



90 CHAPTER 4. IMPROVING THE FDTD CODE

8

9 #include <stdio.h>
10 #include <math.h> // To obtain M_PI, i.e., 3.14159...
11

12 void harmonicInit1(double amp, double phase);
13 double harmonic1(double x);
14

15 int main() {
16 double amp, phase, x;
17 int mm, num_points = 100;
18

19 printf("Enter the amplitude: ");
20 scanf(" %lf", &amp);
21 printf("Enter the phase [in degrees]: ");
22 scanf(" %lf", &phase);
23 phase *= M_PI / 180.0;
24

25 /* Set the amplitude and phase. */
26 harmonicInit1(amp, phase);
27

28 for (mm = 0; mm < num_points; mm++) {
29 x = 2.0 * M_PI * mm / (float)(num_points - 1);
30 printf("%f %f\n", x, harmonic1(x));
31 }
32

33 return 0;
34 }

The file containing the functions harmonicInit1() and harmonic1() is shown in Pro-
gram 4.8. In line 12 two static double variables are declared: amp is the amplitude and phase is
the phase. These variables are visible to all the functions in this file but are not visible to any other
functions (despite the common name, these variables are distinct from those with the same name in
the main() function). Furthermore, the value of these variables will “persist.” They will remain
unchanged (unless we explicitly change them) and available for our use through the duration of the
running of the program. (Note that, it may be somewhat confusing, but the “static” qualifier
in line 12 does not mean constant. The value of these variables can be changed. Rather, it means
these global variables are local to this file.)

The harmonicInit1() function starts on line 16. It takes two arguments. Here those
arguments are labeled the amp and the phase. We must distinguish these variable names
from the corresponding global variables. We accomplish this by putting the prefix the on the
corresponding global variable name. The global variables are set to the desired values in lines 17
and 18. The harmonic1() function that begins on line 24 then uses these global values in the
calculation of a cos(x+ ϕ).

Program 4.8 harmonicDemo1.c: File containing the functions harmonicInit1() and



4.6. MODULAR DESIGN AND INITIALIZATION FUNCTIONS 91

harmonic1().

1 /* harmonicDemo1.c: Functions to calculate a harmonic function of a
2 * given amplitude and phase. The desired amplitude and phase are
3 * passed as arguments to harmonicInit1(). harmonicInit1() sets the
4 * corresponding static global variables so that these values will be
5 * available for the harmonic1() function to use whenever it is
6 * called.
7 */
8

9 #include <math.h> // for cos() function
10

11 /* Global static variables that are visible only to functions inside
12 this file. */
13 static double amp, phase;
14

15 // initialization function
16 void harmonicInit1(double the_amp, double the_phase) {
17 amp = the_amp;
18 phase = the_phase;
19

20 return;
21 }
22

23 // calculation function
24 double harmonic1(double x) {
25 return amp * cos(x + phase);
26 }

Now, let us change these programs in order to further separate the main() function from the
harmonic function. There is no reason that the main() function should have to prompt the user
for the amplitude or phase. These values are simply passed along to the harmonic initialization
function and never actually used in main(). Thus, a better approach would be to let the harmonic
initialization function prompt the user for whatever input it needs. The main() function would
merely call the initialization function and leave all the details up to it. So in the future, if one wanted
to change the harmonic function so the user could specify a frequency as well as the amplitude and
phase, that code could be added to the harmonic functions but the main() function would not
have to be changed in any way.

The new version of the main() function is shown in Program 4.9. Note that there is now no
mention of amplitude or phase in main(). That information has all been relegated to the harmonic
functions themselves.

Program 4.9 paramDemo2.c: Modified file containing the main() function which demon-
strates the use of an initialization function to set parameters. In this version of the code the initial-
ization function harmonicInit2() takes no arguments. The code for harmonicInit2()



92 CHAPTER 4. IMPROVING THE FDTD CODE

and harmonic2() is given in Program 4.10.

1 /* paramDemo2.c: Program that demonstrates the setting of
2 * "persistent" parameters via an initialization function. Here the
3 * initialization function handles all the details of obtaining the
4 * parameters associated with the harmonic function.
5 */
6

7 #include <stdio.h>
8 #include <math.h> // To obtain M_PI, i.e., 3.14159...
9

10 void harmonicInit2();
11 double harmonic2(double x);
12

13 int main() {
14 double x;
15 int mm, num_points = 100;
16

17 /* Initialize the harmonic function. */
18 harmonicInit2();
19

20 for (mm = 0; mm < num_points; mm++) {
21 x = 2.0 * M_PI * mm / (float)(num_points - 1);
22 printf("%f %f\n", x, harmonic2(x));
23 }
24

25 return 0;
26 }

The file containing harmonicInit2() and harmonic2() is shown in Program 4.10. As
before, the amplitude and phase are global static variables that are declared in line 13. Note
that harmonicInit2() takes no arguments. Instead, this function prompts the user for the
amplitude and phase and sets the global variables appropriately. Having done this, these values are
visible to the function harmonic2() (which is unchanged from the function harmonic1()
given previously).

Program 4.10 harmonicDemo2.c: File containing the functions harmonicInit2() and
harmonic2().

1 /* harmonicDemo2.c: Functions to calculate a harmonic function of a
2 * given amplitude and phase. harmonicInit2() prompts the user for
3 * the amplitude and phase and sets the global variables so these
4 * values will be available for the harmonic2() function to use
5 * whenever it is called.



4.7. IMPROVEMENT NUMBER TWO 93

6 */
7

8 #include <stdio.h>
9 #include <math.h> // for cos() function

10

11 /* Global static variables that are visible only to functions inside
12 this file. */
13 static double amp, phase;
14

15 // initialization function
16 void harmonicInit2() {
17

18 printf("Enter the amplitude: ");
19 scanf(" %lf", &amp);
20 printf("Enter the phase [in degrees]: ");
21 scanf(" %lf", &phase);
22 phase *= M_PI / 180.0;
23

24 return;
25 }
26

27 // calculation function
28 double harmonic2(double x) {
29 return amp * cos(x + phase);
30 }

In Sec. 4.8 we will discuss the compilation of multi-file programs such as these.

4.7 Improvement Number Two
Let us consider a further refinement to the simple bare-bones FDTD simulation. In this version of
the code the updating of the electric and magnetic fields will be handled by separate functions. The
grid arrays will be initialized with a separate function and the source function will be calculated
using a separate function. The arrangement of the functions among the various files is depicted in
Fig. 4.2.

Program 4.11 shows the contents of the file improved2.c. As indicated in Fig. 4.2, main()
calls gridInit2(). This function initializes the Grid structure g. The function gridInit2()
is contained in the separate file gridInit2.c. The magnetic fields are updated using the func-
tion updateH2() while the electric fields are updated using updateE2(). Both these func-
tions are contained in the file update2.c. The source function is calculated using the function
ezInc() that is contained in the file ezInc2.c.

Program 4.11 improved2.c: Further code improvement of the bare-bones 1D FDTD simula-
tion. Here the initialization of the grid as well as the updating of the fields are handled by separate



94 CHAPTER 4. IMPROVING THE FDTD CODE

improved2.c

main()

fdtd2.hezInc2.h

ezInc2.c

ezIncInit()
ezInc()

update2.c

updateE2()
updateH2()

gridInit2.c

gridInit2()

Figure 4.2: The files associated with the second improved version of the FDTD code. The header
files fdtd2.h and ezInc2.h are included in the source files to which they are joined by a
dashed line. The file improved2.c contains the main() function but the initialization of the
grid, the calculation of the source function, and the updating of the fields are no longer done in
main(). Instead, other functions are called to accomplish these tasks. The heavy black lines
indicates which functions call which other functions. In this case, main() originates calls to all
the other functions.



4.7. IMPROVEMENT NUMBER TWO 95

functions. The argument for these functions is merely the Grid pointer g. Additionally, the source
function is initialized and calculated by separate functions.

1 /* improved2.c: Version 2 of the improved bare-bones 1D FDTD
2 * simulation. */
3

4 #include "fdtd2.h"
5 #include "ezInc2.h"
6

7 int main()
8 {
9 Grid *g;

10

11 ALLOC_1D(g, 1, Grid); // allocate memory for Grid
12 gridInit2(g); // initialize the grid
13

14 ezIncInit(g); // initialize source function
15

16 /* do time stepping */
17 for (Time = 0; Time < MaxTime; Time++) {
18 updateH2(g); // update magnetic field
19 updateE2(g); // update electric field
20 Ez(0) = ezInc(Time, 0.0); // apply source function
21 printf("%g\n", Ez(50)); // print output
22 } // end of time-stepping
23

24 return 0;
25 }

Line 9 declares g to be a pointer to a Grid. Since a Grid structure has as elements the field
arrays, the time step, the duration of the simulations, and the maximum number of time steps,
none of these variables need to be declared explicitly. Note, however, that line 9 merely creates a
pointer but as yet this pointer does not point to anything meaningful. Line 11 uses ALLOC 1D()
to allocated memory for the Grid and ensures g points to that memory. Assuming there were no
errors in the allocation, this line is effectively the equivalent of

g = calloc(1, sizeof(Grid));

As shown in lines 12, 18, and 19, gridInit2(), updateH2(), and updateE2() each
have a single argument: g (a pointer to the Grid). The parameters of the source function are
initialized by calling ezIncInit() in line 14.

The header file fdtd2.h is shown in Program 4.12. This file is largely the same as fdtd1.h.
The only significant difference is the function prototypes that are provided in lines 36–38 for three
of the functions called by main() (note that the prototypes for the functions related to the source
are provided in ezInc2.h).



96 CHAPTER 4. IMPROVING THE FDTD CODE

Program 4.12 fdtd2.h: Header file to accompany the second version of the improved code
showin in Program 4.11. The differences between this file and fdtd1.h are shown in dark red
bold.

1 #ifndef _FDTD2_H
2 #define _FDTD2_H
3

4 #include <stdio.h>
5 #include <stdlib.h>
6

7 struct Grid {
8 double *ez;
9 double *hy;

10 int sizeX;
11 int time, maxTime;
12 double cdtds;
13 };
14

15 typedef struct Grid Grid;
16

17 /* memory allocation macro */
18 #define ALLOC_1D(PNTR, NUM, TYPE) \
19 PNTR = (TYPE *)calloc(NUM, sizeof(TYPE)); \
20 if (!PNTR) { \
21 perror("ALLOC_1D"); \
22 fprintf(stderr, \
23 "Allocation failed for " #PNTR ". Terminating...\n");\
24 exit(-1); \
25 }
26

27 /* macros for accessing arrays and such */
28 #define Hy(MM) g->hy[MM]
29 #define Ez(MM) g->ez[MM]
30 #define SizeX g->sizeX
31 #define Time g->time
32 #define MaxTime g->maxTime
33 #define Cdtds g->cdtds
34

35 /* function prototypes */
36 void gridInit2(Grid *g);
37 void updateH2(Grid *g);
38 void updateE2(Grid *g);
39

40 #endif /* matches #ifndef _FDTD2_H */

Program 4.13 shows the contents of the file update2.c. The static global variable imp0 rep-



4.7. IMPROVEMENT NUMBER TWO 97

resents the characteristic impedance of free space and is set to 377.0 in line 6. This variable is never
changed throughout the program. The magnetic field is updated with the function updateH2()
which is given between lines 9 and 16. Note that the update equation uses Hy() and Ez() to refer
to the elements of the field arrays. The macros in fdtd2.h translate these to the necessary syntax
(which is essentially g->hy[] and g->ez[]). The electric field is updated using updateE2()
which is given between lines 19 and 26.

Program 4.13 update2.c: Source code for the functions updateH2() and updateE2().

1 /* update2.c: Functions to update the electric and magnetic fields. */
2

3 #include "fdtd2.h"
4

5 /* characteristic impedance of free space */
6 static double imp0 = 377.0;
7

8 /* update magnetic field */
9 void updateH2(Grid *g) {

10 int mm;
11

12 for (mm = 0; mm < SizeX - 1; mm++)
13 Hy(mm) = Hy(mm) + (Ez(mm + 1) - Ez(mm)) / imp0;
14

15 return;
16 }
17

18 /* update electric field */
19 void updateE2(Grid *g) {
20 int mm;
21

22 for (mm = 1; mm < SizeX - 1; mm++)
23 Ez(mm) = Ez(mm) + (Hy(mm) - Hy(mm - 1)) * imp0;
24

25 return;
26 }

Program 4.14 shows the source code for the function gridInit2(). This function is used to
set the value of various elements of the Grid. (For this rather simple simulation, this program is
itself quite simple.) Line 6 sets the size of the Grid, SizeX, to 200. Actually, after the preprocessor
has processed the code, this line will be

g->sizeX = 200;

Line 7 sets the duration of the simulation to 250 time-steps. Line 8 sets the Courant number to
unity. Lines 10 and 11 use the ALLOC 1D() macro to allocate the necessary memory for the
electric and magnetic field arrays.



98 CHAPTER 4. IMPROVING THE FDTD CODE

Program 4.14 gridInit2.c: Source code for the function gridInit2().

1 /* gridInit2.c: Function to initialize the Grid structure. */
2

3 #include "fdtd2.h"
4

5 void gridInit2(Grid *g) {
6 SizeX = 200; // set the size of the grid
7 MaxTime = 250; // set duration of simulation
8 Cdtds = 1.0; // set Courant number
9

10 ALLOC_1D(g->ez, SizeX, double); // allocate memory for Ez
11 ALLOC_1D(g->hy, SizeX, double); // allocate memory for Hy
12

13 return;
14 }

Finally, Program 4.15 shows the contents of the file ezInc2.c which contains the code to
implement the functions ezIncInit() and ezInc(). The function ezInc() is a Gaussian
pulse whose width and delay are parameters that are set by ezIncInit(). The implementation
of this source function is slightly different than in the original bare-bones code in that here the
user is prompted for the width and delay. Additionally, the source function ezInc() takes two
arguments, the time and the location, so that this function can be used in a TFSF formulation.
When ezInc() is called from main(), the location is simply hardwired to zero (ref. line 20 of
Program 4.11).

Program 4.15 ezInc2.c: File for the functions ezIncInit() and ezInc(). ezInc() is a
traveling-wave implementation of a Gaussian pulse. There are three private static global variables
in this code. These variables, representing the width and delay of the pulse as well as the Courant
number, are determined and set by the initialization function ezIncInit(). The Courant num-
ber is taken from the Grid pointer that is passed as an argument while the user is prompted to
provide the width and delay.

1 /* Functions to calculate the source function (i.e., the incident
2 * field). */
3

4 #include "ezInc2.h"
5

6 /* global variables -- but private to this file */
7 static double delay, width = 0, cdtds;
8

9 /* prompt user for source-function width and delay. */



4.7. IMPROVEMENT NUMBER TWO 99

10 void ezIncInit(Grid *g){
11

12 cdtds = Cdtds;
13 printf("Enter temporal delay [number of time steps to peak]: ");
14 scanf(" %lf", &delay);
15 printf("Enter width [time steps between peak and 1/e]: ");
16 scanf(" %lf", &width);
17

18 return;
19 }
20

21 /* calculate source function at given time and location */
22 double ezInc(double time, double location) {
23 if (width <= 0) {
24 fprintf(stderr,
25 "ezInc: must call ezIncInit before ezInc.\n"
26 " Width must be positive.\n");
27 exit(-1);
28 }
29 return exp(-pow((time - delay - location / cdtds) / width, 2));
30 }

In Program 4.15 the variable width is used to determine if initialization has been done.
width is initialized to zero when it is declared in line 7. If it is not positive when ezInc()
is called, an error message is printed and the program terminates. In practice one should check that
all the parameters have been set to reasonable values, but here we only check the width.

The private variable cdtds declared in line 7 is distinct from Cdtds which the preprocessor
expands to g->cdtds. That is to say the Courant number cdtds that is an element within the
Grid is different from the private variable cdtds in this file. But, of course, we want these values
to be the same and line 12 assures this.

The header file to accompany ezInc2.c is shown in Program ezInc2.h. As well as provid-
ing the necessary function prototypes, this file ensures the inclusion of fdtd2.h (which provides
the description a Grid structure).

Program 4.16 ezInc2.h: Header file that accompanies ezInc2.c and is also included in the
file that specifies main() (i.e., the file improved2.c.

1 /* Header file to accompany ezInc2.c. */
2

3 #ifndef _EZINC2_H
4 #define _EZINC2_H
5

6 #include <math.h>
7 #include <stdio.h>
8 #include <stdlib.h>



100 CHAPTER 4. IMPROVING THE FDTD CODE

9 #include "fdtd2.h"
10

11 void ezIncInit(Grid *g);
12 double ezInc(double time, double location);
13

14 #endif /* matches #ifndef _EZINC2_H */

4.8 Compiling Modular Code
When a program is divided between multiple files it is typically not necessary to recompile every
file if there was a change in only some of them. Each source file can be compiled individually to an
“object file” or object code. An object file, by itself, is not executable. (To create executable code,
all the object code must be linked together.) To create an object file with the GNU C compiler, one
uses the -c flag. Thus, for example, to obtain the object file for ezInc2.c, one would issue a
command such as

gcc -Wall -O -c ezInc2.c

The flag -Wall means to show all warnings, while -O tells the compiler to optimize the code
(greater optimization can be obtained by instead using -O2 or -O3—the greater optimization
usually comes at the cost of slower compilation and larger object and executable files). When this
command is issued the compiler will create the object file ezInc2.o.

The object files for all the components of the program can be created separately by reissuing
commands similar to the one shown above, e.g.,

gcc -Wall -O -c ezInc2.c
gcc -Wall -O -c improved2.c
gcc -Wall -O -c update2.c
gcc -Wall -O -c gridInit2.c

These commands would create the object files ezInc2.o, improved2.o, update2.o, and
gridInit2.o. Alternatively, one can create all the object files at once using a command such as

gcc -Wall -O -c ezInc2.c improved2.c update2.c gridInit2.c

No matter how the object files are created, they need to be linked together to obtain an exe-
cutable. The command to accomplish this is

gcc ezInc2.o improved2.o update2.o gridInit2.o -lm -o improved2

The flag -lm tells the compiler to link to the math library** The -o flag allows one to specify the
name of the output/executable file, in this case improved2.

For small programs there is not much advantage to incremental compilation. However, as the
software increases in size and complexity, there may be a significant savings in time realized by

**On some systems this is necessary because of the math functions used in ezInc2.c. On other system this flag
may be unnecessary, but including it shouldn’t cause problems, some sytems my not require this flag.



4.9. IMPROVEMENT NUMBER THREE 101

recompiling only the code that has changed. For example, assume a change was made in the file
gridInit2.c but in no other. Also assume that the object code for each file has previously been
created. To obtain an executable that reflects this change one merely needs to recompile this one
file and then link the resulting object file to the others, i.e.,

gcc -Wall -O -c gridInit2.c
gcc ezInc2.o improved2.o update2.o gridInit2.o -lm -o improved2

The details of incremental compilations can actually be handled by utilities that detect the files
that need to be recompiled and react accordingly. Those who are interested in an example of such
a utility may be interested in the make utility which is available on most Unix-based machines.
Another helpful utility, which goes hand-in-hand with make is makedepend which sorts out
the dependence of all the source files on the header files. make is a rather old utility—going
back to the early days of Unix—and there are alternatives available such as SCons available from
www.scons.org.

4.9 Improvement Number Three
Now let us modularize the program that contained the matched lossy layer (Program 3.9). As
shown in Fig. 4.3, we will use separate functions for initializing the grid, taking snapshots, applying
the TFSF boundary, updating the grid, and applying the ABC. Additionally, the calculation of the
incident source function will be handled by a separate function. This source function will be called
by the function that implements the TFSF boundary, but no other. Each box in Fig. 4.3 represents a
separate file that contains one or more functions. The dashed lines indicate the inclusion of header
files and the heavy lines indicate function calls from one file to another.

The source code improved3.c which contains the main() function is shown in Program
4.17. Note that nearly all activities associated with the FDTD simulation are now done by separate
functions. main() merely serves to ensure that proper initialization is done and then implements
the time-stepping loop in which the various functions are called.

Program 4.17 improved3.c: Source code containing the main() function. Nearly all the
FDTD related activities have been relegated to separate functions which are called from main().

1 /* improved3.c: FDTD simulation where main() is primarily used to call
2 * other functions that perform the necessary operations. */
3

4 #include "fdtd3.h"
5

6 int main()
7 {
8 Grid *g;
9

10 ALLOC_1D(g, 1, Grid); // allocate memory for Grid
11

www.scons.org


102 CHAPTER 4. IMPROVING THE FDTD CODE

improved3.c

main()
fdtd3.h

ezInc3.h

ezInc3.c

ezIncInit()
ezInc()

update3.c

updateE3()
updateH3()

gridInit3.c

gridInit3()

tfsf.c

tfsfInit()
tfsfUpdate()

abc.c

abcInit()
abc()

snapshot.c

snapshotInit()
snapshot()

Figure 4.3: The files associated with the third improvement of the FDTD code. The header file
fdtd3.h is explicitly included in the source files to which it is joined by a dashed line. (Wherever
ezInc3.h appears it also ensures fdtd3.h is included.) The file improved3.c contains
the main() function but the initialization of the grid, the application of the absorbing boundary
condition, the calculation of the source function, the updating of the fields, and the taking of the
snapshots is no longer done in main(). Instead, other functions are called to accomplish these
tasks.



4.9. IMPROVEMENT NUMBER THREE 103

12 gridInit3(g); // initialize the grid
13 abcInit(g); // initialize ABC
14 tfsfInit(g); // initialize TFSF boundary
15 snapshotInit(g); // initialize snapshots
16

17 /* do time stepping */
18 for (Time = 0; Time < MaxTime; Time++) {
19 updateH3(g); // update magnetic field
20 tfsfUpdate(g); // correct field on TFSF boundary
21 abc(g); // apply ABC
22 updateE3(g); // update electric field
23 snapshot(g); // take a snapshot (if appropriate)
24 } // end of time-stepping
25

26 return 0;
27 }

We have any number of options in terms of how functions should be initialized or what argu-
ments they should be passed. Thus, one should not consider this code to be optimum in any way.
Rather this code is being used to illustrate implementation options.

As in the previous program, main() starts by defining a Grid pointer and allocating space for
the actual structure. Then, in lines 12–15, four initialization functions are called. gridInit3()
initializes the Grid (this will be discussed in more detail shortly). abcInit() handles any ini-
tialization associated with the ABC (as we will see, in this particular case there is nothing for this
initialization function to do). tfsfInit() initializes the TFSF boundary while snapshotInit()
does the necessary snapshot initialization. Following these initialization steps is the time-stepping
loop where the various functions are called that do the actual calculations.

The header fdtd3.h is shown in Program 4.18. Looking just at improved3.c you would
be unaware that the Grid structure has changed. However, four pointers have been added that
will contain the update-equation coefficients. As can be seen in lines 8 and 9 of Program 4.18,
these pointers are named ceze, cezh, chyh, and chye. Besides this and besides providing the
function prototypes for the new functions, this header file is largely the same as fdtd2.h.

Program 4.18 fdtd3.h: Header file to accompany improved3.c. Differences from fdtd2.h
are shown in dark red bold.

1 #ifndef _FDTD3_H
2 #define _FDTD3_H
3

4 #include <stdio.h>
5 #include <stdlib.h>
6

7 struct Grid {
8 double *ez, *ceze, *cezh;



104 CHAPTER 4. IMPROVING THE FDTD CODE

9 double *hy, *chyh, *chye;
10 int sizeX;
11 int time, maxTime;
12 double cdtds;
13 };
14

15 typedef struct Grid Grid;
16

17 /* macros for accessing arrays and such */
18 #define Hy(MM) g->hy[MM]
19 #define Chyh(MM) g->chyh[MM]
20 #define Chye(MM) g->chye[MM]
21

22 #define Ez(MM) g->ez[MM]
23 #define Ceze(MM) g->ceze[MM]
24 #define Cezh(MM) g->cezh[MM]
25

26 #define SizeX g->sizeX
27 #define Time g->time
28 #define MaxTime g->maxTime
29 #define Cdtds g->cdtds
30

31 /* memory allocation macro */
32 #define ALLOC_1D(PNTR, NUM, TYPE) \
33 PNTR = (TYPE *)calloc(NUM, sizeof(TYPE)); \
34 if (!PNTR) { \
35 perror("ALLOC_1D"); \
36 fprintf(stderr, \
37 "Allocation failed for " #PNTR ". Terminating...\n");\
38 exit(-1); \
39 }
40

41 /* Function prototypes */
42 void abcInit(Grid *g);
43 void abc(Grid *g);
44

45 void gridInit3(Grid *g);
46

47 void snapshotInit(Grid *g);
48 void snapshot(Grid *g);
49

50 void tfsfInit(Grid *g);
51 void tfsfUpdate(Grid *g);
52

53 void updateE3(Grid *g);
54 void updateH3(Grid *g);
55



4.9. IMPROVEMENT NUMBER THREE 105

56 #endif /* matches #ifndef _FDTD3_H */

The function gridInit3() is contained in the file gridInit3.c shown in Program 4.19.
Keep in mind that it does not matter what file names are—file names do not have to match the
contents of the file in any way, but, of course, it is best to use names that are descriptive of the
contents.

The preprocessor directives in lines 5–7 are simply to provide convenient names to the amount
of loss, the starting location of the lossy layer, and the relatively permittivity of the half space.
These parameters are the same as they were in Program 3.9.

Program 4.19 gridInit3.c: The gridInit3() function to initialize the Grid.

1 /* gridInit3.c: Function to initialize the Grid structure. */
2

3 #include "fdtd3.h"
4

5 #define LOSS 0.02
6 #define LOSS_LAYER 180 // node at which lossy layer starts
7 #define EPSR 9.0
8

9 void gridInit3(Grid *g) {
10 double imp0 = 377.0;
11 int mm;
12

13 SizeX = 200; // size of domain
14 MaxTime = 450; // duration of simulation
15 Cdtds = 1.0; // Courant number
16

17 ALLOC_1D(g->ez, SizeX, double);
18 ALLOC_1D(g->ceze, SizeX, double);
19 ALLOC_1D(g->cezh, SizeX, double);
20 ALLOC_1D(g->hy, SizeX - 1, double);
21 ALLOC_1D(g->chyh, SizeX - 1, double);
22 ALLOC_1D(g->chye, SizeX - 1, double);
23

24 /* set electric-field update coefficients */
25 for (mm = 0; mm < SizeX; mm++)
26 if (mm < 100) {
27 Ceze(mm) = 1.0;
28 Cezh(mm) = imp0;
29 } else if (mm < LOSS_LAYER) {
30 Ceze(mm) = 1.0;
31 Cezh(mm) = imp0 / EPSR;
32 } else {
33 Ceze(mm) = (1.0 - LOSS) / (1.0 + LOSS);



106 CHAPTER 4. IMPROVING THE FDTD CODE

34 Cezh(mm) = imp0 / EPSR / (1.0 + LOSS);
35 }
36

37 /* set magnetic-field update coefficients */
38 for (mm = 0; mm < SizeX - 1; mm++)
39 if (mm < LOSS_LAYER) {
40 Chyh(mm) = 1.0;
41 Chye(mm) = 1.0 / imp0;
42 } else {
43 Chyh(mm) = (1.0 - LOSS) / (1.0 + LOSS);
44 Chye(mm) = 1.0 / imp0 / (1.0 + LOSS);
45 }
46

47 return;
48 }

Lines 13–15 set the size of the Grid, the duration of the simulation, and the Courant number.
Lines 17–22 allocate the necessary memory for the various arrays. The coefficient arrays are then
set as they were in Program 3.9.

The functions to update the electric and magnetic fields, i.e., updateE3() and updateH3()
are contained in the file update3.c. The contents of this file are shown in Program 4.20. The
functions are largely unchanged from those that appeared in Program 4.13. The only significant
differences are the appearance of the coefficient arrays in the update equations that start on lines
10 and 21.

Program 4.20 update3.c: Functions to update the electric and magnetic fields.

1 /* update3.c: Functions to update the electric and magnetic fields. */
2

3 #include "fdtd3.h"
4

5 /* update magnetic field */
6 void updateH3(Grid *g) {
7 int mm;
8

9 for (mm = 0; mm < SizeX - 1; mm++)
10 Hy(mm) = Chyh(mm) * Hy(mm) +
11 Chye(mm) * (Ez(mm + 1) - Ez(mm));
12

13 return;
14 }
15

16 /* update electric field */
17 void updateE3(Grid *g) {
18 int mm;



4.9. IMPROVEMENT NUMBER THREE 107

19

20 for (mm = 1; mm < SizeX - 1; mm++)
21 Ez(mm) = Ceze(mm) * Ez(mm) +
22 Cezh(mm) * (Hy(mm) - Hy(mm - 1));
23

24 return;
25 }

The function to apply the absorbing boundary conditions is rather trivial and is shown in Pro-
gram 4.21. Also shown in Program 4.21 is the initialization function abcInit(). In this partic-
ular case the ABC is so simple that there is no initialization that needs to be done and hence this
function simply returns. In Chap. 6 we will begin to consider more sophisticated ABC’s that do
indeed require some initialization. Thus, this call to the initialization function is done in anticipa-
tion of that. As was the case in Program 3.9, the ABC is only applied to the left side of the grid.
The right side of the grid is terminated with a lossy layer.

Program 4.21 abc.c: Absorbing boundary condition used by improved3.c. For this partic-
ular simple ABC there is nothing for the initialization function to do and hence it simply returns.

1 /* abc.c: Functions to terminate left side of grid. */
2

3 #include "fdtd3.h"
4

5 // Initialize the ABC -- in this case, there is nothing to do.
6 void abcInit(Grid *g) {
7

8 return;
9 }

10

11 // Apply the ABC -- in this case, only to the left side of grid.
12 void abc(Grid *g) {
13

14 /* simple ABC for left side of grid */
15 Ez(0) = Ez(1);
16

17 return;
18 }

The code associated with the TFSF boundary is shown in Program 4.22. Line 7 declares a
static global variable tfsfBoundary which specifies the location of the TFSF boundary. This
variable is initialized to zero with the understanding that when the code is initialized it will be set
to some meaningful (positive) value.



108 CHAPTER 4. IMPROVING THE FDTD CODE

Program 4.22 tfsf.c: Code to implement the TFSF boundary.

1 /* tfsf.c Functions to implement a 1D TFSF boundary. */
2

3 #include <math.h>
4 #include "fdtd3.h"
5 #include "ezInc3.h"
6

7 static int tfsfBoundary = 0; // location of TFSF boundary
8

9 void tfsfInit(Grid *g) {
10

11 printf("Enter location of TFSF boundary: ");
12 scanf(" %d", &tfsfBoundary);
13

14 ezIncInit(g); // initialize source function
15

16 return;
17 }
18

19 void tfsfUpdate(Grid *g) {
20 /* check if tfsfInit() has been called */
21 if (tfsfBoundary <= 0) {
22 fprintf(stderr,
23 "tfsfUpdate: tfsfInit must be called before tfsfUpdate.\n"
24 " Boundary location must be set to positive value.\n");
25 exit(-1);
26 }
27

28 /* correct Hy adjacent to TFSF boundary */
29 Hy(tfsfBoundary) -= ezInc(Time, 0.0) * Chye(tfsfBoundary);
30

31 /* correct Ez adjacent to TFSF boundary */
32 Ez(tfsfBoundary + 1) += ezInc(Time + 0.5, -0.5);
33

34 return;
35 }

The initialization function tfsfInit() begins on line 9. The user is prompted to enter the
location of the TFSF boundary. Then the initialization function for the source ezIncInit() is
called to set the parameters that control the shape of the pulse.

The code to calculate the source function, i.e., the functions ezIncInit() and ezInc()
is identical to that shown in Program 4.15. However, there would be one slight change to the file:
instead of including ezInc2.h, line 4 of Program 4.15 would be changed to include ezInc3.h.
We assume this modified program is in the file ezInc3.c which is not shown. The header file
ezInc3.h would be nearly identical to the code shown in Program 4.16 except the “2” in lines 3,



4.9. IMPROVEMENT NUMBER THREE 109

4, and 9, would be changed to “3” (thus ensuring the proper inclusion of the header file fdtd3.h
instead of fdtd2.h). Again, since this is such a minor change, the contents of ezInc3.h are
not shown.

The function tfsfUpdate() which begins on line 19 is called once every time-step. This
function applies the necessary correction to the nodes adjacent to the TFSF boundary. Because of
the implicit timing within this file, this function needs to be called after the magnetic-field update,
but before the electric-field update. The function first checks that the boundary location is positive.
If it is not, an error message is printed and the program terminates, otherwise the fields adjacent to
the boundary are corrected.

Finally, the code associated with taking snapshots of the field is shown in Program 4.23.
snapshotInit() allows the user to specify the time at which snapshots should start, the tem-
poral stride between snapshots, the node at which a snapshot should start, the node at which it
should end, the spatial stride between nodes, and the base name of the output files. Assuming the
user entered a base name of sim, then, as before, the output files would be named sim.0, sim.1,
sim.2, and so on. If the user said the startTime is 105 and the temporalStride is 10, then
snapshots would be taken at time-steps 105, 115, 125, and so on. Similarly, if the user specified
that the startNode and endNode are 0 and 180, respectively, and the spatialStride is 1,
then the value of every electric field node between 0 and 180, inclusive, would be recorded to the
snapshot file. If the spatialStride were 2, every other node would be recorded. If it were
3, every third node would be recorded. (Because of this, the endNode only corresponds to the
actual last node in the snapshot file if its offset from the startNode is an even multiple of the
spatial stride.)

Program 4.23 snapshot.c: Code for taking snapshots of the electric field.

1 /* snapshot.c: Functions for taking snapshots of a 1D grid. */
2

3 #include "fdtd3.h"
4

5 static int temporalStride = 0, spatialStride, startTime,
6 startNode, endNode, frame = 0;
7 static char basename[80];
8

9 void snapshotInit(Grid *g) {
10

11 printf("For the snapshots:\n");
12 printf(" Duration of simulation is %d steps.\n", MaxTime);
13 printf(" Enter start time and temporal stride: ");
14 scanf(" %d %d", &startTime, &temporalStride);
15 printf(" Grid has %d total nodes (ranging from 0 to %d).\n",
16 SizeX, SizeX-1);
17 printf(" Enter first node, last node, and spatial stride: ");
18 scanf(" %d %d %d", &startNode, &endNode, &spatialStride);
19 printf(" Enter the base name: ");
20 scanf(" %s", basename);



110 CHAPTER 4. IMPROVING THE FDTD CODE

21

22 return;
23 }
24

25 void snapshot(Grid *g) {
26 int mm;
27 char filename[100];
28 FILE *snapshot;
29

30 /* ensure temporal stride set to a reasonable value */
31 if (temporalStride <= 0) {
32 fprintf(stderr,
33 "snapshot: snapshotInit must be called before snapshot.\n"
34 " Temporal stride must be set to positive value.\n");
35 exit(-1);
36 }
37

38 /* get snapshot if temporal conditions met */
39 if (Time >= startTime &&
40 (Time - startTime) % temporalStride == 0) {
41 sprintf(filename, "%s.%d", basename, frame++);
42 snapshot = fopen(filename, "w");
43 for (mm = startNode; mm <= endNode; mm += spatialStride)
44 fprintf(snapshot, "%g\n", Ez(mm));
45 fclose(snapshot);
46 }
47

48 return;
49 }

As shown in line 9, snapshotInit() takes a single argument, a pointer to a Grid structure.
This function prompts the user to set the appropriate snapshot control values. The snapshot files
themselves are created by the function snapshot() which starts on line 25. This function starts
by checking that the temporal stride has been set to a reasonable value. If not, an error message
is printed and the program terminates. The program then checks if time is greater than or equal
to startTime and the difference between the current time and the startTime is a multiple of
temporalStride. If not, the function returns. If those conditions are met, then, as we have
seen before, a snapshot file is written and the frame counter is advanced. However, now there
is some control over which nodes are actually written. Note that the function snapshot() is
called every time-step. We could easily have checked in the main() function if the time-step
was such that a snapshot should be generated and only then called snapshot(). Reasons for
adopting either approach could be made but be aware that the overhead for calling a function is
typically small. Thus, the savings realized by calling snapshot() less often (but still ultimately
generating the same number of snapshots) is likely to be trivial. The approach used here keeps all
the snapshot-related data in the snapshot code itself.

After compiling all this code (and linking it), the executable will produce the same results as



4.9. IMPROVEMENT NUMBER THREE 111

were obtained from Program 3.9 (assuming, of course, the user enters the same parameters as
were used in Program 3.9). With the new version of the code there are several improvements we
could potentially use to our advantage. Assume, for instance, we wanted to do simulations of
two different scenarios. We could create two Grid structures, one for each scenario. Each grid
would have its own gridInit() function, but other than that all the code could be used by either
grid. The update functions could be applied, without any modification, to any grid. The snapshot
function could be applied to any grid, and so on.



112 CHAPTER 4. IMPROVING THE FDTD CODE



Chapter 5

Scaling FDTD Simulations to Any
Frequency

5.1 Introduction
The FDTD method requires the discretization of time and space. Samples in time are ∆t apart
whereas, in simulations with one spatial dimension, samples in space are ∆x apart. It thus appears
that one must specify ∆t and ∆x in order to perform a simulation. However, as shown in Sec. 3.3,
it is possible to write the coefficients ∆t/ϵ∆x and ∆t/µ∆x in terms of the material parameters
and the Courant number (ref. (3.19) and (3.20)). Since the Courant number contains the ratio of
the temporal step to the spatial step, it allows one to avoid explicitly stating a definite temporal
or spatial step—all that matters is their ratio. This chapter continues to examine ways in which
FDTD simulations can be treated as generic simulations that can be scaled to any size/frequency.
As will be shown, the important factors which dictate the behavior of the fields in a simulation
are the Courant number and the points per wavelength for any given frequency. We conclude the
chapter by considering how one can obtain the transmission coefficient for a planar interface from
a FDTD simulation.

5.2 Sources

5.2.1 Gaussian Pulse
In the previous chapters the source function, whether hardwired, additive, or incorporated in a
TFSF formulation, was always a Gaussian. In the continuous world this function can be expressed
as

fg(t) = e
−
(

t−dg
wg

)2

(5.1)

where dg is the temporal delay and wg is a pulse-width parameter. The Gaussian has its peak value
at t = dg (when the exponent is zero) and has a value of e−1 when t = dg ± wg. Since (5.1) is
only a function of time, i.e., a function of q∆t in the discretized world, it again appears as if the
temporal step ∆t must be given explicitly. However, if one specifies the delay and pulse width in

Lecture notes by John Schneider. fdtd-dimensionless.tex

113



114 CHAPTER 5. SCALING FDTD SIMULATIONS TO ANY FREQUENCY

terms of temporal steps, the term ∆t appears in both the numerator and the denominator of the
exponent. For example, in (3.29) dg was 30∆t and wg was 10∆t so the source function could be
written

fg(q∆t) = fg[q] = e−(
q−30
10 )

2

. (5.2)

Note that ∆t does not appear on the right-hand side.
As has been done previously, the discretized version of a function f(q∆t) will be written f [q],

i.e., the temporal step will be dropped from the argument since it does not appear explicitly in the
expression for the function itself. The key to being able to discard ∆t from the source function was
the fact that the source parameters were all expressed in terms of the number of temporal steps.

5.2.2 Harmonic Sources
For a harmonic source, such as

fh(t) = cos(ωt), (5.3)

there is no explicit numerator and denominator in the argument. Replacing t with q∆t it again
appears as if the temporal step must be given explicitly. However, keep in mind that with electro-
magnetic fields there is an explicit relationship between frequency and wavelength. For a plane
wave propagating in free space, the wavelength λ and frequency f are related by

fλ = c ⇒ f =
c

λ
. (5.4)

Thus the argument ωt (i.e., 2πft) can also be written as

ωt =
2πc

λ
t. (5.5)

For a given frequency, the wavelength is a fixed length. Being a length, it can be expressed in terms
of the spatial step, i.e.,

λ = Nλ∆x (5.6)

where Nλ is the number of points per wavelength. Thus, the frequency ω can be written as

ω =
2πc

Nλ∆x

. (5.7)

Note that Nλ does not need to be an integer.
By relating frequency to wavelength and the wavelength to Nλ, the discretized version of the

harmonic function can be written

fh(q∆t) = cos

(
2πc

Nλ∆x

q∆t

)
= cos

(
2π

Nλ

c∆t

∆x

q

)
, (5.8)

or, simply,

fh[q] = cos

(
2πSc
Nλ

q

)
. (5.9)

The expression on the right now contains the Courant number and the parameter Nλ. In this
form one does not need to state an explicit value for the temporal step. Rather, one specifies the



5.2. SOURCES 115

Courant number Sc and the number of spatial steps per wavelength Nλ. Note that Nλ will always
be defined in terms of the number of spatial steps per the wavelength in free space. Furthermore,
the wavelength is the one in the continuous world—we will see later that the wavelength in the
FDTD grid is not always the same.

The period for a harmonic function is the inverse of the frequency

T =
1

f
=
λ

c
=
Nλ∆x

c
. (5.10)

The number of time steps in a period is thus given by

T

∆t

=
Nλ∆x

c∆t

=
Nλ

Sc
. (5.11)

A harmonic wave traveling in the positive x direction is given by

fh(x, t) = cos(ωt− βx) = cos

(
ω

(
t− β

ω
x

))
(5.12)

where β is the wavenumber which is more meaningfully thought of as the spatial frequency.* Since
β = ω

√
µ0µrϵ0ϵr = ω

√
µrϵr/c, the argument can be written

ω

(
t− β

ω
x

)
= ω

(
t−

√
µrϵr

c
x

)
. (5.13)

Using (5.7), t = q∆t, and x = m∆x, in the FDTD grid we have

ω

(
t−

√
µrϵr

c
x

)
=

2πc

Nλ∆x

(
q∆t −

√
µrϵr

c
m∆x

)
=

2π

Nλ

(Scq −
√
µrϵrm). (5.14)

Therefore the discretized form of (5.12) is given by

fh[m, q] = cos

(
2π

Nλ

(Scq −
√
µrϵrm)

)
. (5.15)

This equation could, in theory, be used as the source in a 1D total-field/scattered-field implemen-
tation since we have an expression that yields the field for all of space and time. However, note
that when the temporal and spatial indices are zero this source has a value of unity. If that is the
initial “turn-on” value of the source, i.e., if there is a step change in the excitation, that may cause
artifacts which are undesirable. Essentially, the step change introduces a broad range of spectral
components into the simulation, not simple the nominal frequency of the harmonic source. The
consquences of having energy at very high frequencies in the grid, i.e., one for which the number
of points per wavelength is low, will be considered further when dispersion is discussed. To mit-
igate this affect, it is generally better to ramp the source up gradually. One simple improvement
is offered by using a sine function instead of a cosine since sine is initially zero (assuming the
temporal value starts at zero and spatial values are evaluated in the vicinity of the origin).

*The wavenumber is also referred to as the phase constant. Many texts use k to represent the wavenumber.



116 CHAPTER 5. SCALING FDTD SIMULATIONS TO ANY FREQUENCY

Note that we generally would not want to use a harmonic source in an FDTD simulation be-
cause that essentially limits us to considering one frequency whereas with pulsed excitation we
can, as will be shown, consider a spectrum of frequency with a single simulation. Nevertheless, it
is worth mentioning that if one truly wants to consider harmonic excitation one way in which to
ramp up the excitation is to use a raised cosine function.

Consider the raised cosine function given by

r(t) =


0 for t < 0,

1
2

(
1− cos

(
2π
Tr
t
))

for 0 ≤ t ≤ Tr/2,

1 for t > Tr/2.

(5.16)

r(t) varies from 0 at t = 0 to 1 at t = Tr/2 (typically we would not be concerned with negative
values of t where the function is zero). Furthermore, taking the derivative with respect to time
yields

r′(t) =
π

Tr
sin

(
2π

Tr
t

)
for 0 ≤ t ≤ Tr/2. (5.17)

Thus, r′(0) = 0 and r′(Tr/2) = 0. Therefore this function starts at 0 at time zero with a slope of
zero. The function then increases to 1 at a time of Tr/2. But when it arrives at that value, it has done
so smoothly, again, with a slope of zero. Thus, it appears r(t) would be an excellent ramp function
to shape the turn-on of a harmonic function. Assume we want Tr to be some multiple of the period
of the harmonic function, for example Tr = MrT . Employing (5.10), MrT = MrNλ∆t/Sc and
the ramp function can be written as

r(t) = r(q∆t) =
1

2

(
1− cos

(
2πSc
MrNλ

q

))
= r[q]. (5.18)

Returning to the harmonic function of (5.9) but now multiply it by this ramp function r(q∆t) =
r[q] creates a ramped harmonic:

fhr[q] =


0 for q < 0

1
2

(
1− cos

(
2πSc

MrNλ
q
))

cos
(

2πSc

Nλ
q
)

for 0 ≤ q ≤ MrNλ

2Sc
,

cos
(

2πSc

Nλ
q
)

for q > MrNλ

2Sc
.

(5.19)

Figure 5.1(a) shows fhr[q] when Mr = 10, Nλ = 40, and Sc = 1. Because there are Tr/2 =
MrT/2 cycles for the ramp to go from 0 to 1, the ramp reaches 1 on the fifth cycle of the cosine
function. In Fig. 5.1(b) Mr is changed to 4 and the ramp get to 1 after two cycles of the cosine
function. In Figs. 5.1(c) and (d), the Courant number is 1/

√
2 (which is the optimal value for

2D). This serves to delay when the ramp reaches its peak value, but it corresponding increases the
number of time steps per cylce such that the peak is still reached after five cycles of the harmonic
function in (c) and after two cycles in (d).

Equation (5.19) could be converted to a traveling wave as was done with (5.15). This is left as
an exercise for the reader.



5.2. SOURCES 117

0 50 100 150 200 250 300

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(a) (b)

0 50 100 150 200 250 300

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(c) (d)

Figure 5.1: Ramped harmonic function fhr[q] with Nλ = 40. (a) Mr = 10, Sc = 1. (b) Mr = 4,
Sc = 1. (c) Mr = 10, Sc = 1/

√
2. (d) Mr = 4, Sc = 1/

√
2.



118 CHAPTER 5. SCALING FDTD SIMULATIONS TO ANY FREQUENCY

5.2.3 The Ricker Wavelet
One of the features of the FDTD technique is that it allows the modeling of a broad range of fre-
quencies using a single simulation. Therefore it is generally advantageous to use pulsed sources—
which can introduce a wide spectrum of frequencies—rather than a harmonic source. The Gaussian
pulse is potentially an acceptable source except that it contains a dc component. In fact, for a Gaus-
sian pulse dc is the frequency with the greatest energy. Generally one would not use the FDTD
technique to model dc fields. Sources with dc components also have the possibility of introducing
artifacts which are not physical (e.g., charges which sit in the grid). Therefore we consider a dif-
ferent pulsed source which has no dc component and which can have its most energetic frequency
set to whatever frequency (or discretization) is desired.

The Ricker wavelet is equivalent to the second derivative of a Gaussian;† it is simple to imple-
ment; it has no dc component; and, its spectral content is fixed by a single parameter. The Ricker
wavelet is often written

fr(t) =
(
1− 2

{
πfP [t− dr]

}2)
exp
(
−
{
πfP [t− dr]

}2) (5.20)

where fP is the “peak frequency” and dr is the temporal delay. As will be more clear when the
spectral representation of the function is shown below, the peak frequency is the frequency with
the greatest spectral content.

The delay dr can be set to any desired amount, but it is convenient to express it as a multiple of
1/fP , i.e.,

dr =Md
1

fP
(5.21)

where Md is the delay multiple (which need not be an integer). An FDTD simulation is typically
assumed to start at t = 0, but fr(t) is not zero for t < 0—rather fr(t) asymptotically approaches
zero for large and small values of the argument, but never actually reaches zero (other than at
two discrete zero-crossings). However, with a delay of dr = 1/fP (i.e., Md = 1), |fr(t < 0)| is
bound by 0.001, which is small compared to the peak value of unity. Thus, the transient caused
by “switching on” fr(t) at t = 0 is relatively small with this amount of delay. Said another way,
since the magnitude of fr(t) is small for t < 0, these values can be approximated by zero. For
situations that may demand a smoother transition (i.e., a smaller initial turn-on value), the bound
on |fr(t < 0)| can be made arbitrarily small by increasing dr. For example, with a delay multiple
Md of 2, |fr(t < 0)| is bound by 10−15.

The Fourier transform of (5.20) is

Fr(ω) = − 2

fP
√
π

(
ω

2πfP

)2

exp

(
−jdrω −

[
ω

2πfP

]2)
. (5.22)

Note that the delay dr only appears as the imaginary part of the exponent. Thus it affects only the
phase of Fr(ω), not the magnitude.

The functions fr(t) and |Fr(ω)| are shown in Fig. 5.2. For the sake of illustration, fP is arbi-
trarily chosen to be 1 Hz and the delay is 1 s. Different values of fP change the horizontal axes
(with appropriate scaling as mentioned in the caption) but they do not change the general shape of
the curves. To obtain unit amplitude at the peak frequency, Fr(ω) has been scaled by fP e

√
π/2.

†Albeit with a sign change.



5.2. SOURCES 119

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 5.2: Normalized spectrum of the Ricker wavelet with fP = 1 Hz. The corresponding
temporal form fr(t) is shown in the inset box where a delay of 1 s has been assumed. For other
values of fP , the horizontal axis in the time domain is scaled by 1/fP . For example, if fP were 1
MHz, the peak would occur at 1 µs rather than at 1 s. In the spectral domain, the horizontal axis is
directly scaled by fP so that if fP were 1 MHz, the peak would occur at 1 MHz.



120 CHAPTER 5. SCALING FDTD SIMULATIONS TO ANY FREQUENCY

The peak frequency fP has a corresponding wavelength λP . This wavelength can be expressed
in terms of the spatial step such that λP = NP∆x, where NP does not need to be an integer. Thus

fP =
c

λP
=

c

NP∆x

(5.23)

The Courant number Sc is c∆t/∆x so the spatial step can be expressed as ∆x = c∆t/Sc. Using
this in (5.23) yields

fP =
Sc

NP∆t

. (5.24)

The delay can thus be expressed as

dr =Md
1

fP
=Md

NP∆t

Sc
. (5.25)

Letting time t be q∆t and expressing fP and dr as in (5.24) and (5.25), the discrete form of (5.20)
can be written as

fr[q] =

(
1− 2π2

[
Scq

NP

−Md

]2)
exp

(
−π2

[
Scq

NP

−Md

]2)
. (5.26)

Note that the parameters that specify fr[q] are the Courant number Sc, the points per wavelength
at the peak frequency NP , and the delay multiple Md—there is no ∆t in (5.26). This function
appears to be independent of the temporal and spatial steps, but it does depend on their ratio via
the Courant number Sc.

Equation (5.20) gives the Ricker wavelet as a function of only time. However, as was discussed
in Sec. 3.10, when implementing a total-field/scattered-field boundary, it is necessary to parame-
terize an incident field in both time and space. As shown in Sec. 2.16, one can always obtain a
traveling plane-wave solution to the wave equation simply by tweaking the argument of any func-
tion that is twice differentiable. Given the Ricker wavelet fr(t), fr(t ± x/c) is a solution to the
wave equation where c is the speed of propagation. The plus sign corresponds to a wave traveling
in the negative x direction and the negative sign corresponds to a wave traveling in the positive x
direction.‡ Therefore, a traveling Ricker wavelet can be constructed by replacing the argument t in
(5.20) with t ± x/c. The value of the function now depends on both time and location, i.e., it is a
function of two variables:

fr(t± x/c) = fr(x, t),

=

(
1− 2π2f 2

P

[
t± x

c
− dr

]2)
exp

(
−π2f 2

P

[
t± x

c
− dr

]2)
. (5.27)

As before, (5.25) and (5.24) can be used to rewrite dr and fP in terms of the Courant number, the
points per wavelength at the peak frequency, the temporal step, and the delay multiple. Replacing
t with q∆t, x with m∆x, and employing the identity x/c = m∆x/c = m∆t/Sc, yields

fr[m, q] =

(
1− 2π2

[
Scq ±m

NP

−Md

]2)
exp

(
−π2

[
Scq ±m

NP

−Md

]2)
. (5.28)

This gives the value of the Ricker wavelet at temporal index q and spatial index m. Note that when
m is zero (5.28) reduces to (5.26).

‡Although only 1D propagation will be considered here, this type of “tweaking” can also be done in 2D and 3D to
describe plane-wave propagation.



5.3. MAPPING FREQUENCIES TO DISCRETE FOURIER TRANSFORMS 121

5.3 Mapping Frequencies to Discrete Fourier Transforms
Assume the field was recorded during an FDTD simulation and then the recorded field was trans-
formed to the frequency domain via a discrete Fourier transform (DFT).§ The discrete transform
yields a set of complex numbers that represents the amplitude of discrete spectral components. The
question naturally arises: what is the correspondence between the indices of the transformed set
and the actual frequency?

In any simulation, the highest frequency fmax that can exist is the inverse of the shortest period
that can exist. In a discrete simulation one must have at least two samples per period. Since the
time samples are ∆t apart, the shortest possible period is 2∆t. Therefore

fmax =
1

2∆t

. (5.29)

The change in frequency from one discrete frequency to the next is the spectral resolution ∆f . The
spectral resolution is dictated by the total number of samples which we will call NT (an integer
value). In general NT would correspond to the number of time steps in an FDTD simulation. The
spectral resolution is given by

∆f =
fmax

NT/2
. (5.30)

The factor of two is a consequence of the fact that there are both positive and negative frequencies.
Thus one can think of the entire spectrum as ranging from −fmax to fmax, i.e., an interval of
2fmax which is then divided by NT . Alternatively, to find ∆f we can divide the maximum positive
frequency by NT/2 as done in (5.30). Plugging (5.29) into (5.30) yields

∆f =
1

NT∆t

. (5.31)

In Sec. 5.2.2 it was shown that a given frequency f could be written c/λ = c/(Nλ∆x) where
Nλ is the number of points per wavelength (for the free-space wavelength). After transforming to
the spectral domain, this frequency would have a corresponding index given by

Nfreq =
f

∆f

=
NT c∆t

Nλ∆x

=
NT

Nλ

c∆t

∆x

=
NT

Nλ

Sc. (5.32)

Thus, the spectral index is dictated by the duration of the simulation NT , the Courant number Sc,
and the points per wavelength Nλ. Equation (5.32) tells us, for a given frequency of interest f ,
what the “index” of that frequency is. In general, this will not be an integer value. However, after
performing an FFT, the result is an array of numbers that can only be accessed by specifying an
integer index. This fact is discussed further in the last paragraph of this section.

Note that in practice different software packages may index things differently. The most com-
mon practice is to have the first element in the spectral array correspond to dc, the next NT/2
elements correspond to the positive frequencies, and then the next (NT/2) − 1 elements corre-
spond to the negative frequencies, which will always be the complex conjugates of the positive

§A fast Fourier transform (FFT) is merely a discrete Fourier transform (DFT) that is implemented using a particular
algorithm. For our purposes, the terms DFT and FFT can be used interchangeably.



122 CHAPTER 5. SCALING FDTD SIMULATIONS TO ANY FREQUENCY

frequencies in any real FDTD simulation. (If there are an even number of samples, the element
that is offset (NT/2)−1 from either end of the array corresponds to the highest possible frequency
and, like the dc value, will always be real-valued, i.e., it does not require a complex conjugate
to yields a real sequence. This point is discussed further in Sec. 5.5.) The negative frequencies
typically are stored from highest frequency to lowest (i.e., fastest varying to slowest) so that the
last value in the array corresponds to the negative frequency closest to dc (−∆f ). Additionally,
note that in (5.32) dc corresponds to an Nfreq of zero (since Nλ is infinity for dc). However when
using MATLAB the dc term in the array obtained using the fft() command has an index of one
because the first element in the array has an index of one—there is no “zero” element in MATLAB
arrays. So, one must understand and keep in mind the implementation details for a given software
package.

From (5.24), the most energetic frequency in a Ricker wavelet can be written

fP =
Sc

NP∆t

. (5.33)

The spectral index corresponding to this is given by

Nfreq =
fP
∆f

=
NT

NP

Sc. (5.34)

This is identical to (5.32) except the generic value Nλ has been replaced by NP which is the points
per wavelength at the peak frequency.

A discrete Fourier transform yields an array of numbers which inherently has integer indices.
The array elements correspond to discrete frequencies at multiples of ∆f . However, Nfreq given
in (5.32) need not be thought of as an integer value. As an example, assume there were 65536
times steps in a simulation in which the Courant number was 1/

√
2. Further assume that we are

interested in the frequency which corresponds to 30 points per wavelength (Nλ = 30). In this case
Nfreq equals 65536/(30

√
2) = 1544.6983 · · · . There is no reason why one cannot think in terms of

this particular frequency. However, this frequency is not directly available from a discrete Fourier
transform of the temporal data since the transform will only have integer values of Nfreq. For this
simulation an Nfreq of 1544 corresponds 30.0136 · · · points per wavelength while an Nfreq of 1545
corresponds 29.9941 · · · points per wavelength. One can interpolate between these values if the
need is to measure the spectral output right at 30 points per wavelength.

5.4 Running Discrete Fourier Transform (DFT)
If one calculates the complete Fourier transform of the temporal data of length NT points, one
obtains information about the signal at NT distinct frequencies (if one counts both positive and
negative frequencies). However, much of that spectral information is of little practical use. Be-
cause of the dispersion error inherent in the FDTD method and other numerical artifacts, one does
not trust results which correspond to frequencies with too coarse a discretization.¶ When taking the
complete Fourier transform one often relies upon a separate software package such as Mathemat-
ica, MATLAB, or perhaps the FFTw routines (a suite of very good C routines to perform discrete

¶A rough rule of thumb is that there should be no fewer than 10 points per wavelength “at the highest frequency of
interest.”



5.4. RUNNING DISCRETE FOURIER TRANSFORM (DFT) 123

Fourier transforms). However, if one is only interested in obtaining spectral information at a few
frequencies, it is quite simple to implement a discrete Fourier transform (DFT) which can be in-
corporated directly into the FDTD code. The DFT can be performed as the simulation progresses
and hence the temporal data does not have to be recorded. This section outlines the steps involved
in computing such a “running DFT.”

Let us consider a discrete signal g[q] which is, at least in theory, periodic with a period of NT

so that g[q] = g[q+NT ] (in practice only one period of the signal is of interest and this corresponds
to the data obtained from an FDTD simulation). The discrete Fourier series representation of this
signal is

g[q] =
∑

k=⟨NT ⟩

ake
jk(2π/NT )q (5.35)

where k is an integer index and

ak =
1

NT

∑
q=⟨NT ⟩

g[q]e−jk(2π/NT )q (5.36)

The summations are taken over NT consecutive points—we do not care which ones, but in practice
for our FDTD simulations ak would be calculated with q ranging from 0 to NT − 1 (the term
below the summation symbols in (5.35) and (5.36) indicates the summations are done over NT

consecutive integers, but the actual start and stop points do not matter). The term ak gives the
spectral content at the frequency f = k∆f = k/(NT∆t). Note that ak is obtained simply by
taking the sum of the sequence g[q] weighted by an exponential.

Using Euler’s formula, the exponential in (5.36) can be written in terms of real and imaginary
parts, i.e.,

ak =
1

NT

∑
q=⟨NT ⟩

g[q]

(
cos

(
2πk

NT

q

)
− j sin

(
2πk

NT

q

))
(5.37)

Assuming g[q] is real, we can split this into real and imaginary parts:

ℜ[ak] =
1

NT

NT−1∑
q=0

g[q] cos

(
2πk

NT

q

)
, (5.38)

ℑ[ak] = − 1

NT

NT−1∑
q=0

g[q] sin

(
2πk

NT

q

)
, (5.39)

where ℜ[] indicates the real part and ℑ[] indicates the imaginary part. In practice, g[q] would be a
particular field component and these calculations would be performed concurrently with the time-
stepping. The value of ℜ[ak] would be initialized to zero. Then, at each time step ℜ[ak] would be
set equal to its previous value plus the current value of g[q] cos(2πkq/NT ), i.e., we would perform
a running sum. Once the time-stepping has completed, the stored value of ℜ[ak] would be divided
byNT . A similar procedure is followed for ℑ[ak] where the only difference is that the value used in
the running sum is −g[q] sin(2πkq/NT ). Note that the factor 2πk/NT is a constant for a particular
frequency, i.e., for a particular k.

Similar to the example at the end of the previous section, let us consider how we would extract
information at a few specific discretizations. Assume that NT = 8192 and Sc = 1/

√
2. Further



124 CHAPTER 5. SCALING FDTD SIMULATIONS TO ANY FREQUENCY

assume we want to find the spectral content of a particular field for discretizations of Nλ = 20, 30,
40, and 50 points per wavelength. Plugging these values into (5.32) yields corresponding spectral
indices (i.e., Nfreq or index k in (5.36)) of

Nλ = 20 ⇒ k = 289.631,

Nλ = 30 ⇒ k = 193.087,

Nλ = 40 ⇒ k = 144.815,

Nλ = 50 ⇒ k = 115.852.

The spectral index must be an integer. Therefore, rounding k to the nearest integer and solving for
the corresponding Nλ we find

k = 290 ⇒ Nλ = 19.9745,

k = 193 ⇒ Nλ = 30.0136,

k = 145 ⇒ Nλ = 39.9491,

k = 116 ⇒ Nλ = 49.9364.

Note that these values ofNλ differ slightly from the “desired” values. Assume that we are modeling
an object with some characteristic dimension of twenty cells, i.e., a = 20∆x. Given the initial list
of integer Nλ values, we could say that we were interested in finding the field at frequencies with
corresponding wavelengths of a, 3

2
a, 2a, and 5

2
a. However, using the non-integer Nλ’s that are

listed above, the values we obtain correspond to 0.99877a, 1.500678a, 1.997455a, and 2.496818a.
As long as one is aware of what is actually being calculated, this should not be a problem. Of
course, as mentioned previously, if we want to get closer to the desired values, we can interpolate
between the two spectral indices which bracket the desired value.

5.5 Real Signals and DFT’s
In nearly all FDTD simulations we are concerned with real signals, i.e., g[q] in (5.35) and (5.36) are
real. For a given spectral index k (which can be thought of as a frequency), the spectral coefficient
ak is as given in (5.36). Now, consider an index of NT − k. In this case the value of aNT−k is given
by

aNT−k = =
1

NT

∑
q=⟨NT ⟩

g[q]e−j(NT−k)(2π/NT )q,

=
1

NT

∑
q=⟨NT ⟩

g[q]e−j2πejk(2π/NT )q,

=
1

NT

∑
q=⟨NT ⟩

g[q]ejk(2π/NT )q,

aNT−k = a∗k, (5.40)

where a∗k is the complex conjugate of ak. Thus, for real signals, the calculation of one value of ak
actually provides the value of two coefficients: the one for index k and the one for index NT − k.



5.5. REAL SIGNALS AND DFT’S 125

Another important thing to note is that, similar to the continuous Fourier transform where there
are positive and negative frequencies, with the discrete Fourier transform there are also pairs of
frequencies that should typically be considered together. Let us assume that index k goes from
0 to NT − 1. The k = 0 frequency is dc. Assuming NT is even, k = NT/2 is the Nyquist
frequency where the spectral basis function exp(jπq) alternates between positive and negative one
at each successive time-step. Both a0 and aNT /2 will be real. All other spectral components can be
complex, but for real signals it will always be true that aNT−k = a∗k.

If we are interested in the amplitude of a spectral component at a frequency of k, we really
need to consider the contribution from both k and NT −k since the oscillation at both these indices
is at the same frequency. Let us assume we are interested in reconstructing just the k′th frequency
of a signal. The spectral components would be given in the time domain by

f [q] = ak′e
jk′(2π/NT )q + aNT−k′e

j(NT−k′)(2π/NT )q,

= ak′e
jk′(2π/NT )q + a∗k′e

j2πqe−jk
′(2π/NT )q,

= 2ℜ[ak′ ] cos
(
2k′π

NT

q

)
− 2ℑ[ak′ ] sin

(
2k′π

NT

q

)
,

= 2|ak′ | cos
(
2k′π

NT

q + tan−1

(
ℑ[ak′ ]
ℜ[ak′ ]

))
. (5.41)

Thus, importantly, the amplitude of this harmonic function is given by 2|ak′ | (and not merely |ak′|).
Let us explore this further by considering the x component of an electric field at some arbitrary

point that is given by

E[q] = Ex0 cos[ωk′q + θe]âx,

= ℜ[Ex0ejθeejωk′q]âx,

=
1

2
[Êx0e

jωk′q + Ê∗
x0e

−jωk′q]âx, (5.42)

where

ωk′ = k′
2π

NT

, (5.43)

Êx0 = Ex0e
jθe , (5.44)

and k′ is some arbitrary integer constant. Plugging (5.42) into (5.36) and dropping the unit vector
yields

ak =
1

2NT

∑
q=⟨NT ⟩

[Êx0e
jωk′q + Ê∗

x0e
−jωk′q]e−jωkq,

=
1

2NT

∑
q=⟨NT ⟩

[Êx0e
j(ωk′−ωk)q + Ê∗

x0e
−j(ωk′+ωk)q],

=
1

2NT

∑
q=⟨NT ⟩

[Êx0e
j(k′−k)(2π/NT )q + Ê∗

x0e
−j(k′+k)(2π/NT )q]. (5.45)



126 CHAPTER 5. SCALING FDTD SIMULATIONS TO ANY FREQUENCY

Without loss of generality, let us now assume q varies between 0 and NT −1 while k and k′ are
restricted to be between 0 and NT − 1. Noting the following relationship for geometric series

N−1∑
q=0

xq = 1 + x+ x2 + · · ·+ xN−1 =
1− xN

1− x
(5.46)

we can express the sum of the first exponential expression in (5.45) as

NT−1∑
q=0

ej(k
′−k)(2π/NT )q =

1− ej(k
′−k)2π

1− ej(k′−k)(2π/NT )
. (5.47)

Since k and k′ are integers, the second term in the numerator on the right side, exp(j(k′ − k)2π),
equals 1 for all values of k and k′ and thus this numerator is always zero. Provided k ̸= k′,
the denominator is non-zero and we conclude that for k ̸= k′ the sum is zero. For k = k′, the
denominator is also zero and hence the expression on the right does not provide a convenient way
to determine the value of the sum. However, when k = k′ the terms being summed are simply
1 for all values of q. Since there are NT terms, the sum is NT . Given this, we can write the
“orthogonality relationship” for the exponentials

NT−1∑
q=0

ej(k
′−k)(2π/NT )q =

{
0 k′ ̸= k
NT k′ = k

(5.48)

Using this orthogonality relationship in (5.45), we find that for the harmonic signal given in (5.42),
one of the non-zero spectral coefficients is

ak′ =
1

2
Êx0. (5.49)

Conversely, expressing the (complex) amplitude in terms of the spectral coefficient from the DFT,
we have

Êx0 = 2ak′ . (5.50)

For the sake of completeness, now consider the sum of the other complex exponential term in
(5.45). Here the orthogonality relationship is

NT−1∑
q=0

e−j(k
′+k)(2π/NT )q =

{
0 k ̸= NT − k′

NT k = NT − k′
(5.51)

Using this in (5.45) tells us

aNT−k′ =
1

2
Ê∗
x0. (5.52)

Or, expressing the (complex) amplitude in terms of this spectral coefficient from the DFT, we have

Êx0 = 2a∗NT−k′ . (5.53)

Now, let us consider the calculation of the time-averaged Poynting vector Pavg which is given
by

Pavg =
1

2
ℜ
[
Ê× Ĥ∗

]
(5.54)



5.6. AMPLITUDE AND PHASE FROM TWO TIME-DOMAIN SAMPLES 127

where the carat indicates the phasor representation of the field, i.e.,

Ê = Êx0âx + Êy0ây + Êz0âz,

= 2ae,x,kâx + 2ae,y,kây + 2ae,z,kâz (5.55)

where ae,w,k is the kth spectral coefficient for the w component of the electric field with w ∈
{x, y, z}. Defining things similarly for the magnetic field yields

Ĥ = Ĥx0âx + Ĥy0ây + Ĥz0âz,

= 2ah,x,kâx + 2ah,y,kây + 2ah,z,kâz. (5.56)

The time-averaged Poynting vector can now be written in terms of the spectral coefficients as

Pavg = 2ℜ
[ [
ae,y,ka

∗
h,z,k − ae,z,ka

∗
h,y,k

]
âx +

[
ae,z,ka

∗
h,x,k − ae,x,ka

∗
h,z,k

]
ây +[

ae,x,ka
∗
h,y,k − ae,y,ka

∗
h,x,k

]
âz

]
. (5.57)

Thus, importantly, when directly using these DFT coefficients in the calculation of the Poynting
vector, instead of the usual “one-half the real part of E cross H,” the correct expression is “two
times the real part of E cross H.”

5.6 Amplitude and Phase from Two Time-Domain Samples
In some applications the FDTD method is used in a quasi-harmonic way, meaning the source is
turned on, or ramped up, and then run continuously in a harmonic way until the simulation is ter-
minated. Although this prevents one from obtaining broad spectrum output, for applications that
have highly inhomogeneous media and where only a single frequency is of interest, the FDTD
method used in a quasi-harmonic way may still be the best numerical tool to analyze the problem.
The FDTD method is often used in this way in the study of the interaction of electromagnetic
fields with the human body. (Tissues in the human body are typically quite dispersive. Imple-
menting dispersive models that accurately describe this dispersion over a broad spectrum can be
quite challenging. When using a quasi-harmonic approach one can simply use constant coefficients
for the material constants, i.e., use the values that pertain at the frequency of interest which also
corresponds to the frequency of the excitation.)

When doing a quasi-harmonic simulation, the simulation terminates when the fields have
reached steady state. Steady state can be defined as the time beyond which temporal changes in
the amplitude and phase of the fields are negligibly small. Thus, one needs to know the amplitude
and phase of the fields at various points. Fortunately the amplitude and phase can be calculated
from only two sample points of the time-domain field.

Let us assume the field at some point (x, y, z) is varying harmonically as

f(x, y, z, t) = A(x, y, z) cos(ωt+ ϕ(x, y, z)). (5.58)

where A is the amplitude and ϕ is the phase, both of which are initially unknown, but assumed to
be constant once steady state has been achieved. We will drop the explicit argument of space in
the following with the understanding that we are talking about the field at a fixed point.



128 CHAPTER 5. SCALING FDTD SIMULATIONS TO ANY FREQUENCY

Consider two different samples of the field in time

f(t1) = f1 = A cos(ωt1 + ϕ), (5.59)
f(t2) = f2 = A cos(ωt2 + ϕ). (5.60)

We will assume that the samples are taken roughly a quarter of a cycle apart to ensure the samples
are never simultaneously zero. A quarter of a cycle is given by T/4 where T is the period. We can
express this in terms of time steps as

T

4
=

1

4f
=

λ

4c
=
Nλ∆x

4c

∆t

∆t

=
Nλ

4Sc
∆t. (5.61)

Since we only allow an integer number of time-steps between t1 and t2, the temporal separation
between t1 and t2 would correspond to the integer number of time steps given by round(Nλ/4Sc),
where round() returns the closest to its argument.

Given these two samples, f1 and f2, we wish to determine A and ϕ. Using the trig identity for
the cosine of the sum of two values, we can express these fields as

f1 = A(cos(ωt1) cos(ϕ)− sin(ωt1) sin(ϕ)), (5.62)
f2 = A(cos(ωt2) cos(ϕ)− sin(ωt2) sin(ϕ)). (5.63)

We are assuming that f1 and f2 are known and we know the times at which the samples were taken.
Using (5.62) to solve for A we obtain

A =
f1

cos(ωt1) cos(ϕ)− sin(ωt1) sin(ϕ)
. (5.64)

Plugging (5.64) into (5.63) and rearranging terms ultimately leads to

sin(ϕ)

cos(ϕ)
= tan(ϕ) =

f2 cos(ωt1)− f1 cos(ωt2)

f2 sin(ωt1)− f1 sin(ωt2)
. (5.65)

The time at which we take the first sample, t1, is almost always arbitrary. We are free to call that
“time zero,” i.e., t1 = 0. By doing this we have cos(ωt1) = 1 and sin(ωt1) = 0. Using these values
in (5.65) and (5.64) yields

ϕ = tan−1

(
cos(ωt2)− f2

f1

sin(ωt2)

)
, (5.66)

and
A =

f1
cos(ϕ)

. (5.67)

Note that these equations assume that f1 ̸= 0 and, similarly, that ϕ ̸= ±π/2 radians (which is the
same as requiring that cos(ϕ) ̸= 0).

If f1 is identically zero, we can say that ϕ is ±π/2 (where the sign can be determined by the
other sample point: ϕ = −π/2 if f2 > 0 and ϕ = +π/2 if f2 < 0). If f1 is not identically zero, we
can use (5.66) to calculate the phase since the inverse tangent function has no problem with large
arguments. However, if the phase is close to ±π/2, the amplitude as calculated by (5.67) would



5.7. CONDUCTIVITY 129

involve the division of two small numbers which is generally not a good way to determine a value.
Rather than doing this, we can use (5.63) to express the amplitude as

A =
f2

cos(ωt2) cos(ϕ)− sin(ωt2) sin(ϕ)
. (5.68)

This equation should perform well when the phase is close to ±π/2.
At this point we have the following expressions for the phase and magnitude (the reason for

adding a prime to the phase and magnitude will become evident shortly):

ϕ′ =


−π/2 if f1 = 0 and f2 > 0
π/2 if f1 = 0 and f2 < 0

tan−1

(
cos(ωt2)− f2

f1

sin(ωt2)

)
otherwise

(5.69)

and

A′ =

{
f1

cos(ϕ′)
if |f1| ≥ |f2|

f2
cos(ωt2) cos(ϕ′)−sin(ωt2) sin(ϕ′)

otherwise
(5.70)

There is one final step in calculating the magnitude and phase. The inverse-tangent function returns
values between −π/2 and π/2. As given by (5.70), the amplitude A′ can be either positive or
negative. Generally we think of phase as varying between −π and π and assume the amplitude is
non-negative. To obtained such values we can obtain the final values for the amplitude and phase
as follows

(A, ϕ) =


(A′, ϕ′) if A′ > 0
(−A′, ϕ′ − π) if A′ < 0 and ϕ′ ≥ 0
(−A′, ϕ′ + π) if A′ < 0 and ϕ′ < 0

(5.71)

Finally, we have assumed that t1 = 0. Correspondingly, that means that t2 can be expressed as
t2 = N2∆t where N2 is the (integer) number of time steps between the samples f1 and f2. Thus
the argument of the trig functions above can be written as

ωt2 = 2πSc
N2

Nλ

(5.72)

where Nλ is the number of points per wavelength of the excitation (and frequency of interest).

5.7 Conductivity
When a material is lossless, the phase constant β for a harmonic plane wave is given by ω

√
µϵ

and the spatial dependence is given by exp(±jβx). When the material has a non-zero electri-
cal conductivity (σ ̸= 0), the material is lossy and the wave experiences exponential decay as it
propagates. The spatial dependence is given by exp(±γx) where

γ = jω

√
µϵ
(
1− j

σ

ωϵ

)
= α + jβ (5.73)



130 CHAPTER 5. SCALING FDTD SIMULATIONS TO ANY FREQUENCY

where α (the real part of γ) is the attenuation constant and β (the imaginary part of γ) is the phase
constant. The attenuation and phase constants can be expressed directly in terms of the material
parameters and the frequency:

α =
ω
√
µϵ

√
2

([
1 +

( σ
ωϵ

)2]1/2
− 1

)1/2

, (5.74)

β =
ω
√
µϵ

√
2

([
1 +

( σ
ωϵ

)2]1/2
+ 1

)1/2

. (5.75)

When the conductivity is zero, the attenuation constant is zero and the phase constant reduces to
that of the lossless case, i.e., γ = jβ = jω

√
µϵ.

Assume a wave is propagating in the positive x direction in a material with non-zero electrical
conductivity. The wave amplitude will decay as exp(−αx). The skin depth δskin is the distance
over which the wave decays an amount 1/e. Starting with a reference point of x = 0, the fields
would have decayed an amount 1/e when x is 1/α (so that the exponent is simply −1). Thus, δskin

is given by

δskin =
1

α
. (5.76)

Since the skin depth is merely a distance, it can be expressed in terms of the spatial step, i.e.,

δskin =
1

α
= NL∆x (5.77)

where NL is the number of spatial steps in the skin depth (think of the subscript L as standing for
loss). NL does not need to be an integer.

It is possible to use (5.74) to solve for the conductivity in terms of the attenuation constant.
The resulting expression is

σ = ωϵ

([
1 +

2α2

ω2µϵ

]2
− 1

)1/2

. (5.78)

As shown in Sec. 3.12, when the electrical conductivity is non-zero the electric-field update equa-
tion contains the term σ∆t/2ϵ. Multiplying both side of (5.78) by ∆t/(2ϵ) yields

σ∆t

2ϵ
=
ω∆t

2

([
1 +

2α2

ω2µϵ

]2
− 1

)1/2

. (5.79)

Assume that one wants to obtain a certain skin depth (or decay rate) at a particular frequency which
is discretized with Nλ points per wavelength, i.e., ω = 2πf = 2πc/(Nλ∆x). Thus the term ω∆t/2
can be rewritten

ω∆t

2
=

π

Nλ

c∆t

∆x

=
π

Nλ

Sc. (5.80)

Similarly, using the same expression for ω and using α = 1/NL∆x, one can write

2α2

ω2µϵ
=

2
(

1
NL∆x

)2
(

2πc
Nλ∆x

)2
µ0µrϵ0ϵr

=
N2
λ

2π2N2
Lϵrµr

. (5.81)



5.7. CONDUCTIVITY 131

Using (5.80) and (5.81) in (5.79) yields

σ∆t

2ϵ
=

π

Nλ

Sc

([
1 +

N2
λ

2π2N2
Lϵrµr

]2
− 1

)1/2

. (5.82)

Note that neither the temporal nor the spatial steps appear in the right-hand side.
As an example how (5.82) can be used, assume that one wants a skin depth of 20∆x for a

wavelength of 40∆x. Thus NL = 20 and Nλ = 40 and the skin depth is one half of the free-space
wavelength. Further assume the Courant number Sc is unity, ϵr = 4, and µr = 1. Plugging these
values into (5.82) yields σ∆t/2ϵ = 0.0253146.

Let us write a program where a TFSF boundary introduces a sine wave with a frequency that
is discretized at 40 points per wavelength. We will only implement electrical loss (the magnetic
conductivity is zero). Snapshots will be taken every time step after the temporal index is within 40
steps from the final time step. The lossy layer starts at node 100. To implement this program, we
can re-use nearly all the code that was described in Sec. 4.9. To implement this, we merely have
to change the gridInit3() function and the functions associated with the source function. The
new gridInit3() function is shown in Program 5.1. The harmonic source function is given by
the code presented in Program 5.2.

Program 5.1 gridInitLossy.c A Grid initialization function for modeling a lossy half
space. Here the conductivity results in a skin depth of 20 cells for an excitation that is discretized
using 40 cells per wavelength.

1 #include "fdtd3.h"
2

3 #define LOSS 0.0253146
4 #define LOSS_LAYER 100
5 #define EPSR 4.0
6

7 void gridInit3(Grid *g) {
8 double imp0 = 377.0;
9 int mm;

10

11 SizeX = 200; // size of domain
12 MaxTime = 450; // duration of simulation
13 Cdtds = 1.0; // Courant number
14

15 /* Allocate memory for arrays. */
16 ALLOC_1D(g->ez, SizeX, double);
17 ALLOC_1D(g->ceze, SizeX, double);
18 ALLOC_1D(g->cezh, SizeX, double);
19 ALLOC_1D(g->hy, SizeX - 1, double);
20 ALLOC_1D(g->chyh, SizeX - 1, double);
21 ALLOC_1D(g->chye, SizeX - 1, double);
22



132 CHAPTER 5. SCALING FDTD SIMULATIONS TO ANY FREQUENCY

23 /* set electric-field update coefficients */
24 for (mm=0; mm < SizeX; mm++)
25 if (mm < 100) {
26 Ceze(mm) = 1.0;
27 Cezh(mm) = imp0;
28 } else {
29 Ceze(mm) = (1.0 - LOSS) / (1.0 + LOSS);
30 Cezh(mm) = imp0 / EPSR / (1.0 + LOSS);
31 }
32

33 /* set magnetic-field update coefficients */
34 for (mm=0; mm < SizeX - 1; mm++) {
35 Chyh(mm) = 1.0;
36 Chye(mm) = 1.0 / imp0;
37 }
38

39 return;
40 }

Program 5.2 ezIncHarm.c Functions to implement a harmonic source. When initialized, the
user is prompted to enter the number of points per wavelength (in the results to follow it is assumed
the user enters 40).

1 #include "ezInc3.h"
2

3 /* global variables -- but private to this file */
4 static double ppw = 0, cdtds;
5

6 /* prompt user for source-function points per wavelength */
7 void ezIncInit(Grid *g){
8

9 cdtds = Cdtds;
10 printf("Enter points per wavelength: ");
11 scanf(" %lf", &ppw);
12

13 return;
14 }
15

16 /* calculate source function at given time and location */
17 double ezInc(double time, double location) {
18 if (ppw <= 0) {
19 fprintf(stderr,
20 "ezInc: must call ezIncInit before ezInc.\n"
21 " Points per wavelength must be positive.\n");



5.8. TRANSMISSION COEFFICIENT FOR A PLANAR INTERFACE 133

22 exit(-1);
23 }
24

25 return sin(2.0 * M_PI / ppw * (cdtds * time - location));
26 }

Assuming the user specified that the TFSF boundary should be at node 50 and there should be
40 points per wavelength for the harmonic source, Fig. 5.3(a) shows the resulting maximum of
the magnitude of the electric field as a function of position. For each position, all the snapshots
were inspected and the maximum recorded. Figure 5.3(b) shows a superposition of 41 snapshots
taken one time-step apart. One can see the exponential decay starting at node 100. Between node
50 and node 100 there is a standing-wave pattern caused by the interference of the incident and
reflected waves. From the start of the grid to node 50 the magnitude is flat. This is caused by the
fact that there is only scattered field here—there is nothing to interfere with the reflected wave and
we see the constant amplitude associated with a pure traveling wave. The ratio of the amplitude at
nodes 120 and 100 was found to be 0.3644 whereas the ideal value of 1/e is 0.3679 (thus there is
approximately a one percent error in this simulation).

If one were interested in non-zero magnetic conductivity σm, the loss term which appears in
the magnetic-field update equations is σm∆t/2µ. This term can be handled in exactly the same
way as the term resulting from electric conductivity.

5.8 Example: Obtaining the Transmission Coefficient for a
Planar Interface

In this last section, we demonstrate how the transmission coefficient for a planar dielectric bound-
ary can be obtained using the FDTD method. This serves to highlight many of the points that were
considered in the previous section. We will compare the results to the exact solution. The disparity
between the two provides motivation to determine the dispersion relation in the FDTD (which is
covered in Chap. 7).

The majority of instructional material concerning electromagnetics is expressed in terms of
harmonic, or frequency-domain, signals. A temporal dependence of exp(jωt) is understood and
therefore one only has to consider the spatial variation. In the frequency domain, the fields and
quantities such as the propagation constant and the characteristic impedance are represented by
complex numbers. These complex numbers give the magnitude and phase of the value and will
be functions of frequency. In the following discussion a caret (hat) will be used to indicate a
complex quantity and one should keep in mind that complex numbers are inherently tied to the
frequency domain. Given the frequency-domain representation of the field at a point, the temporal
signal is recovered by multiplying by exp(jωt) and taking the real part. Thus a 1D harmonic field
propagating in the +x direction could be written in any of these equivalent forms

Ez(x, t) = ℜ
[
Ê+
z (x, t)

]
= ℜ

[
Ê+
z (x)e

jωt
]
= ℜ

[
Ê+

0 e
−γ̂xejωt

]
= ℜ

[
Ê+

0 e
−(α+jβ)xejωt

]
, (5.83)

where ℜ[] indicates the real part. Ê+
z (x) is the frequency-domain representation of the field (i.e.,

a phasor that is a function of position), γ̂ is the propagation constant which has a real part α and



134 CHAPTER 5. SCALING FDTD SIMULATIONS TO ANY FREQUENCY

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 20 40 60 80 100 120 140 160 180 200

M
ax

im
u

m
 E

le
ct

ri
c 

F
ie

ld
 [

V
/m

]

Space [spatial index]

(a)

-1

-0.5

 0

 0.5

 1

 0  20  40  60  80  100  120  140  160  180  200

E
le

ct
ri

c 
F

ie
ld

 [
V

/m
]

Space [spatial index]

(b)

Figure 5.3: (a) Maximum electric field magnitude that exists at each point (obtained by obtaining
the maximum value in all the snapshots). The flat line over the first 50 nodes corresponds to the
scattered-field region. The reflected field travels without decay and hence produces the flat line.
The total-field region between nodes 50 and 100 contains a standing-wave pattern caused by the
interference of the incident and scattered fields. There is exponential decay of the fields beyond
node 100 which is where the lossy layer starts. (b) Superposition of 41 individual snapshots of the
field which illustrates the envelope of the field.



5.8. TRANSMISSION COEFFICIENT FOR A PLANAR INTERFACE 135

incident
field

reflected
field

transmitted
field

Ez

Ez

Ez

Hy

Hy

Hy

i

i

r

t

r

t

x = 0

ε1, μ1, σ1, σ1
m ε2, μ2, σ2, σ2

m

Figure 5.4: Planar interface between two media. The interface is at x = 0 and a wave is incident
on the interface from the left. When the impedances of the two media are not matched, a reflected
wave must exist in order to satisfy the boundary conditions.

an imaginary part β, and Ê+
0 is a complex constant that gives the amplitude of the wave (it is

independent of position; the superscript “+” is merely used to emphasize that we are discussing a
wave propagating in the +x direction). Note that if more than a single frequency is present, Ê+

0

does not need to be the same for each frequency.
More generally, Ê+

0 will be a function of frequency (we could write this expressly as Ê+
0 (ω)

but the caret implicitly indicates dependence on frequency). To construct a temporal signal that
consists of a multiple frequencies, or even a continuous spectrum of frequencies, one must sum the
contributions from each frequency such as is done with a Fourier integral.

In FDTD simulations the time-domain form of the signal is obtained directly. However, one
often is interested in the behavior of the fields as a function of frequency. As has been discussed
in Sec. 5.3, one merely has to take the Fourier transform of a signal to obtain its spectral content.
This transform, by itself, is typically of little use. One has to normalize the signal in some way.
Knowing what came out of a system is rather meaningless unless one knows what went into the
system. Here we will work through a couple of simple examples to illustrate how a broad range of
spectral information can be obtained from FDTD simulations.

5.8.1 Transmission through a Planar Interface (Continuous World)
Consider the planar interface at x = 0 between two media as depicted in Fig. 5.4. We restrict
consideration to electric polarization in the z direction and assume the incident field originates in
the first medium. In the frequency domain, the incident, reflected, and transmitted fields are given
by

Êi
z(x) = Ê+

a1e
−γ̂1x incident, (5.84)

Êr
z(x) = Ê−

a1e
+γ̂1x = Γ̂Ê+

a1e
+γ̂1x reflected, (5.85)

Êt
z(x) = Ê+

a2e
−γ̂2x = T̂ Ê+

a1e
−γ̂2x transmitted, (5.86)



136 CHAPTER 5. SCALING FDTD SIMULATIONS TO ANY FREQUENCY

where Γ̂ is the reflection coefficient, T̂ is the transmission coefficient, and γ̂n is the propagation
constant given by jω

√
µn(1− jσmn /ωµn)ϵn(1− jσn/ωϵn) where the n indicates the medium and

σm is the magnetic conductivity. The amplitude of the incident field Ê+
a1 is, in general, complex

and a function of frequency. By definition Γ̂ and T̂ are

Γ̂ =
Êr
z(x)

Êi
z(x)

∣∣∣∣∣
x=0

=
Ê−
a1

Ê+
a1

, (5.87)

T̂ =
Êt
z(x)

Êi
z(x)

∣∣∣∣∣
x=0

=
Ê+
a2

Ê+
a1

. (5.88)

The fact that these are defined at x = 0 is important.
The magnetic field is related to the electric field by

Ĥ i
y(x) = − 1

η̂1
Êi
z(x), (5.89)

Ĥr
y(x) =

1

η̂1
Êr
z(x), (5.90)

Ĥ t
y(x) = − 1

η̂2
Êt
z(x), (5.91)

where the characteristic impedance η̂n is given by
√
µn(1− jσmn /ωµn)/ϵn(1− jσn/ωϵn). Since

the magnetic and electric fields are purely tangential to the planar interface, the sum of the incident
and reflected field at x = 0 must equal the transmitted field at the same point. Matching the
boundary condition on the electric field yields

1 + Γ̂ = T̂ , (5.92)

while matching the boundary conditions on the magnetic field produces

1

η̂1
(1− Γ̂) =

1

η̂2
T̂ . (5.93)

Solving these for T̂ yields

T̂ =
2η̂2

η̂1 + η̂2
. (5.94)

Using this in (5.92) the reflection coefficient is found to be

Γ̂ =
η̂2 − η̂1
η̂2 + η̂1

. (5.95)

5.8.2 Measuring the Transmission Coefficient Using FDTD
Now consider two FDTD simulations. The first simulation will be used to record the incident
field. In this simulation the computational domain is homogeneous and the material properties
correspond to that of the first medium. The field is recorded at some observation point x1. Since
nothing is present to interfere with the incident field, the recorded field will be simply the incident



5.8. TRANSMISSION COEFFICIENT FOR A PLANAR INTERFACE 137

field at this location, i.e, Ei
z(x1, t). In the second simulation, the second medium is present. We

record the fields at the same observation point but we ensure the point was chosen such that it is
located in the second medium (i.e., the interface is to the left of the observation point). Performing
an FDTD simulation in this case yields the transmitted field Et

z(x1, t). The goal now is to obtain
the transmission coefficient using the temporal recordings of the field obtained from these two
simulations.

Note that in this section we will not distinguish between the way in which field propagate in
the continuous world and the way in which they propagate in the FDTD grid. In Chap. 7 we will
discuss in some detail how these differ.

One cannot use Et
z(x1, t)/E

i
z(x1, t) to obtain the transmission coefficient. The transmission

coefficient is inherently a frequency-domain concept and currently we have time-domain signals.
The division of these temporal signals is essentially meaningless (e.g., the result is undefined when
the incident signal is zero).

The incident and transmitted fields must be converted to the frequency domain using a Fourier
transform. Thus one obtains

Êi
z(x1) = F

(
Ei
z(x1, t)

)
, (5.96)

Êt
z(x1) = F

(
Et
z(x1, t)

)
, (5.97)

where F indicates the Fourier transform. The division of these two functions is meaningful—at
least at all frequencies where Êi

z(x1) is non-zero. (At frequencies where Êi
z(x1) is zero, there is

no incident spectral energy and hence one cannot obtain the transmitted field at those particular
frequencies. In practice it is relatively easy to introduce energy into an FDTD grid that spans a
broad range of frequencies.)

Since the observation point was not specified to be on the boundary, the ratio of these field
fields is

Êt
z(x1)

Êi
z(x1)

=
Ê+
a2e

−γ̂2x1

Ê+
a1e

−γ̂1x1
=
Ê+
a2

Ê+
a1

e(γ̂1−γ̂2)x1 = T̂ e(γ̂1−γ̂2)x1 . (5.98)

Solving this for T̂ yields

T̂ (ω) = e(γ̂2−γ̂1)x1
Êt
z(x1)

Êi
z(x1)

. (5.99)

To demonstrate how the transmission coefficient can be reconstructed from FDTD simulations,
let us consider an example where the first medium is free space and the second one has a relative
permittivity ϵr of 9. In this case γ̂1 = jω

√
µ0ϵ0 = jβ0 and γ̂2 = jω

√
µ09ϵ0 = j3β0. Therefore

(5.99) becomes

T̂ (ω) = ej(3β0−β0)x1
Êt
z(x1)

Êi
z(x1)

= ej2β0x1
Êt
z(x1)

Êi
z(x1)

. (5.100)

The terms in the exponent can be written

2β0x1 = 2
2π

λ
x1 =

4π

Nλ∆x

N1∆x =
4π

Nλ

N1 (5.101)

where N1 is the number of spatial steps between the interface and the observation point at x1 and,
as was discussed in Chap. 5, Nλ is the number of spatial steps per a free-space wavelength of λ.



138 CHAPTER 5. SCALING FDTD SIMULATIONS TO ANY FREQUENCY

The continuous-world transmission coefficient can be calculated quite easily from (5.94) and
this provides a reference solution. Ideally the FDTD simulation would yield this same value for
all frequencies. For this particular example the characteristic impedance of the first medium is
η̂1 = η0 while for the second medium it is η̂2 = η0/3. Thus the transmission coefficient is

T̂exact =
2η0/3

η0 + η0/3
= 1/2. (5.102)

Note that this is a real number and independent of frequency (so the tilde on T is somewhat mis-
leading).

For the FDTD simulations, let us record the field 80 spatial steps away from the interface, i.e.,
N1 = 80, and run the simulation for 8192 time steps, i.e., NT = 8192. The simulation is run at the
Courant limit Sc = 1. The source is a Ricker wavelet discretized so that the peak spectral content
exists at 50 points per wavelength (NP = 50). From Sec. 5.3, recall the relationship between the
points per wavelength Nλ and frequency index Nfreq which is repeated below:

Nfreq =
NT

Nλ

Sc. (5.103)

With a Courant number of unity and 8192 time steps, the points per wavelength for any given
frequency (or spectral index) is given by

Nλ =
8192

Nfreq

. (5.104)

Combining this with (5.99) and (5.101) yields

T̂FDTD = e
j
(

4πN1Nfreq
8192

)
Êt
z(x1)

Êi
z(x1)

. (5.105)

Ideally (5.102) and (5.105) will agree at all frequencies. To see if that is the case, Fig. 5.5 shows
three plots related to the incident and transmitted fields. Figure 5.5(a) shows the first 500 time
steps of the temporal signals recorded at the observation point both with and without the interface
present (i.e., the transmitted and incident fields, respectively). Figure 5.5(b) shows the magnitude
of the Fourier transforms of the incident and transmitted fields for the first 500 frequencies. Since
a Ricker wavelet was used, the spectra are essentially in accordance with the discussion of Sec.
5.2.3. There is no spectral energy at dc and the spectral content asymptotically approaches zero at
high frequencies.

Figure 5.5(c) plots the magnitude of the ratio of the transmitted and incident field as a function
of frequency. Ideally this would be 1/2 for all frequencies. Note the rather small vertical scale of
the plot. Near dc the normalized transmitted field differs rather significantly from the ideal value,
but this is in a region where the results should not be trusted because there is not enough incident
energy at these frequencies. At the higher frequencies some oscillations are present. The normal-
ized field generally remains within two percent of the ideal value over this range of frequencies.

Figure 5.6(a) provides the same information as Fig. 5.5(c) except now the result is plotted
versus the discretization Nλ. In this figure dc is off the scale to the right (since in theory dc has an
infinite number of points per wavelength). As the frequency goes up, the wavelength gets shorter



5.8. TRANSMISSION COEFFICIENT FOR A PLANAR INTERFACE 139

0 50 100 150 200 250 300 350 400 450 500
-0.5

0

0.5

1

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

0 50 100 150 200 250 300 350 400 450 500
0.44

0.46

0.48

0.5

0.52

0.54

Figure 5.5: (a) Time-domain fields at the observation point both with and the without the interface
present. The field without the interface is the incident field and the one with the interface is the
transmitted field. (b) Magnitude of the Fourier transforms of the incident and transmitted fields.
The transforms are plotted versus the frequency index Nfreq. It can be seen that the fields do not
have much spectral content near dc nor at high frequencies. (c) Magnitude of the transmitted field
normalized by the incident field versus the frequency index. Ideally this would be 1/2 for all
frequencies. Errors are clearly evident when the spectral content of the incident field is small.



140 CHAPTER 5. SCALING FDTD SIMULATIONS TO ANY FREQUENCY

and hence the number of points per wavelength decreases. Thus high frequencies are to the left
and low frequencies are to the right. The highest frequency in this plot corresponds to an Nfreq of
500. In terms of the discretization, this is Nλ = NT/Nfreq = 16.384. This may not seem like a
particularly coarse discretization, but one needs to keep in mind that this is the discretization in
free space. Within the dielectric, which here has ϵr = 9, the wavelength is three times smaller
and hence within the dielectric the fields are only discretized at approximately five points per
wavelength (which is considered a very coarse discretization). From this figure it is clear that
the FDTD simulations provide results which are close to the ideal over a fairly broad range of
frequencies.

Figure 5.6(b) shows the real and imaginary part of the reflection coefficient, i.e., T̂FDTD defined
in (5.105), as a function of the discretization. Ideally the imaginary part would be zero and the real
part would be 1/2. As can be seen, although the magnitude of the transmission coefficient is nearly
1/2 over the entire spectrum, the phase differs rather significantly as the discretization decreases
(i.e., the frequency increases).

The MATLAB code used to generate Fig. 5.5 is shown in Program 5.3 while the code which
generated Fig. 5.6 is given in Program 5.4. It is assumed the incident field from the FDTD simu-
lation is recorded to a file named inc-8192.dat while the transmitted field, i.e., the field when
the dielectric is present, is recorded in die-8192.dat. The code in Program 5.3 has to be run
prior to that of 5.4 in order to load and initialize the data.

Let us now consider the same scenario but let the observation point be four steps away from
the boundary instead of 80, i.e., N1 = 4. Following the previous steps, the incident and transmitted
fields are recorded, their transforms are taken, then divided, and finally the phase is adjusted to
obtain the transmission coefficient. The result for this observation point is shown in Fig. 5.7. The
real and imaginary parts stay closer to the ideal values over a larger range of frequencies than
when the observation point was 80 cells from the boundary. The fact that the quality of the results
are frequency sensitive as well as sensitive to the observation point location is a consequence of
numeric dispersion in the FDTD grid, i.e., different frequencies propagate at different speeds. (This
is the subject of Chap. 7.)

Program 5.3 MATLAB session used to generate Fig. 5.5.

1 incTime=readmatrix(’inc-8192.dat’); % incident field file
2 dieTime=readmatrix(’die-8192.dat’); % transmitted field file
3

4 inc=fft(incTime); % take Fourier transforms
5 die=fft(dieTime);
6

7 nSteps=length(incTime); % number of time steps
8 freqMin=1; % minimum frequency index of interest
9 freqMax=500; % maximum frequency of interest

10 freqIndex=freqMin:freqMax; % range of frequencies of interest
11 freqSlice=freqIndex+1; % correct for offset of 1 in matlab’s indexing
12

13 courantNumber = 1;
14 nLambda=nSteps./freqIndex; % points per wavelength of freq’s of interest



5.8. TRANSMISSION COEFFICIENT FOR A PLANAR INTERFACE 141

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 5.6: (a) The magnitude of the normalized transmitted field as a function of the (free space)
discretization Nλ. Ideally this would be 1/2 for all discretizations. (b) Real and imaginary part of
the transmission coefficient transformed back to the interface x = 0 versus discretization. Ideally
the real part would be 1/2 and the imaginary part would be zero for all discretization. For these
plots the observation point was 80 cells from the interface (N1 = 80).



142 CHAPTER 5. SCALING FDTD SIMULATIONS TO ANY FREQUENCY

0 50 100 150 200 250 300
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 5.7: Real and imaginary part of the transmission coefficient transformed back to the inter-
face x = 0 versus discretization. Ideally the real part would be 1/2 and the imaginary part would
be zero for all discretization. The observation point was four cells from the interface (N1 = 4).



5.8. TRANSMISSION COEFFICIENT FOR A PLANAR INTERFACE 143

15

16 clf
17 subplot(3,1,1)
18 hold on
19 plot(incTime(freqSlice),’-.’);
20 plot(dieTime(freqSlice));
21 grid on
22 legend(’Incident field’,’Transmitted field’, ...
23 ’Interpreter’, ’latex’);
24 xlabel(’Temporal Index’, ’Interpreter’, ’latex’);
25 ylabel(’$E_z(x_1, t)$ [V/m]’, ...
26 ’Interpreter’, ’latex’);
27 title(’(a) Temporal Fields’, ’Interpreter’, ’latex’);
28

29 subplot(3,1,2)
30 hold on
31 plot(freqIndex,abs(inc(freqSlice)),’-.’);
32 plot(freqIndex,abs(die(freqSlice)));
33 grid on
34 legend(’Incident field’,’Transmitted field’, ...
35 ’Interpreter’, ’latex’);
36 xlabel(’Frequency Index’, ’Interpreter’, ’latex’);
37 ylabel(’$|E_z(x_1,\omega)|$’, ’Interpreter’, ’latex’);
38 title(’(b) Transform vs. Frequency Index’, ...
39 ’Interpreter’, ’latex’);
40

41 subplot(3,1,3)
42 plot(freqIndex,abs(die(freqSlice)./inc(freqSlice)));
43 grid on
44 xlabel(’Frequency Index’, ’Interpreter’, ’latex’);
45 ylabel(’$|Eˆt_z(x_1,\omega)/Eˆi_z(x_1,\omega)|$’, ...
46 ’Interpreter’, ’latex’);
47 title(’(c) Normalized Transmitted Field vs. Frequency Index’, ...
48 ’Interpreter’, ’latex’);

Program 5.4 MATLAB session used to generate Fig. 5.6. The commands shown in Program 5.3
would have to be run prior to these commands in order to read the data, generate the Fourier
transforms, etc.

1 clf
2

3 subplot(2,1,1)
4 plot(nLambda,abs(die(freqSlice)./inc(freqSlice)));
5 grid on



144 CHAPTER 5. SCALING FDTD SIMULATIONS TO ANY FREQUENCY

6 xlabel(’Points per Wavelength’, ’Interpreter’, ’latex’);
7 ylabel(’$|Eˆt_z(x_1,\omega)/Eˆi_z(x_1,\omega)|$’, ...
8 ’Interpreter’, ’latex’);
9 title(’(a) Normalized Transmitted Field vs. Discretization’, ...

10 ’Interpreter’, ’latex’);
11 axis([0 300 0 1])
12

13 % Exponential has to be transposed to an array conformal with others.
14 % Simply using ’ (a prime) for transposition will yield the conjugat
15 % transpose. Instead have to use .’ (dot-prime) to get
16 % transposition without conjugation.
17 subplot(2,1,2)
18 hold on
19 plot(nLambda, ...
20 real(exp(j*pi*freqIndex/25.6).’.*die(freqSlice)./inc(freqSlice)));
21 plot(nLambda, ...
22 imag(exp(j*pi*freqIndex/25.6).’.*die(freqSlice)./inc(freqSlice)),’-.’);
23 grid on
24 xlabel(’Points per Wavelength’, ’Interpreter’, ’latex’);
25 ylabel(’Transmission Coefficient $T(\omega)$’, ...
26 ’Interpreter’, ’latex’);
27 title(’(b) Real and Imaginary Part of Transmission Coefficient’, ...
28 ’Interpreter’, ’latex’);
29 legend(’Real part’,’Imaginary part’, ’Interpreter’, ’latex’);
30 axis([0 300 -1 1])
31 grid on

Although we have only considered the transmission coefficient in this example, the reflection
coefficient could be obtained in a similar fashion. We have intentionally considered a very simple
problem in order to be able to compare easily the FDTD solution to the exact solution. How-
ever one should keep in mind that the FDTD method could be used to analyze the reflection or
transmission coefficient for a much more complicated scenario, e.g., one in which the material
properties varied continuously, and perhaps quite erratically (with some discontinuities present),
over the transition from one half-space to the next. Provided a sufficiently small spatial step-size
was used, the FDTD method can solve this problem with essentially no more effort than was used
to model the abrupt interface. However, to obtain the exact solution, one may have to work much
harder.



Chapter 6

Differential-Equation Based Absorbing
Boundary Conditions

6.1 Introduction
A simple absorbing boundary condition (ABC) was used in Chap. 3 to terminate the grid. It re-
lied upon the fact that the fields were propagating in one dimension and the speed of propagation
was such that the fields moved one spatial step for every time step, i.e., the Courant number was
unity. The node on the boundary was updated using the value of the adjacent interior node from
the previous time step. However, when a dielectric was introduced, and the local speed of propa-
gation was no longer equal to c, this ABC ceased to work properly. One would also find in higher
dimensions that this simple ABC would not work even in free space. This is because the Courant
number cannot be unity in higher dimensions and this ABC does not account for fields which may
be obliquely incident on the edge of the grid. The goal now is to find a more general technique to
terminate the grid.

Although the ABC we will discuss here is not considered state-of-the-art, it provides a rela-
tively simple way to terminate the grid that is more than adequate in many circumstances. Addi-
tionally, some of the mathematical tools we will develop in this chapter can be used in the analysis
of a wide range of FDTD-related topics.

6.2 The Advection Equation
The wave equation that governs the propagation of the electric field in one dimension is

∂2Ez
∂x2

− µϵ
∂2Ez
∂t2

= 0, (6.1)(
∂2

∂x2
− µϵ

∂2

∂t2

)
Ez = 0. (6.2)

The second form represents the equation in terms of an operator operating onEz where the operator
is enclosed in parentheses. This operator can be factored into the product of two operators and is

Lecture notes by John Schneider. fdtd-abc.tex

145



146 CHAPTER 6. DIFFERENTIAL-EQUATION BASED ABC’S

equivalent to (
∂

∂x
−√

µϵ
∂

∂t

)(
∂

∂x
+
√
µϵ
∂

∂t

)
Ez = 0. (6.3)

Note that it does not matter which operator in (6.3) is written first. They commute and will always
ultimately yield (6.1). If either of these operators acting individually on the field yields zero, the
wave equation is automatically satisfied. Thus an Ez that satisfies either of the following equations
will also be a solution to the wave equation:

∂Ez
∂x

−√
µϵ
∂Ez
∂t

= 0, (6.4)

∂Ez
∂x

+
√
µϵ
∂Ez
∂t

= 0. (6.5)

These equations are sometimes called advection equations. Note that a solution to the wave equa-
tion will not simultaneously satisfy both these advection equations (except in trivial cases). It may
satisfy one or the other but not both. In fact, fields may be a solution to the wave equation and yet
satisfy neither of the advection equations.*

A solution to (6.4) is Ez(t+
√
µϵx), i.e., a wave traveling in the negative x direction. The proof

proceeds along the same lines as the proof given in Sec. 2.16. Equate the argument with ξ so that

ξ = t+
√
µϵx. (6.6)

Derivatives of the argument with respect to time or space are given by
∂ξ

∂t
= 1 and

∂ξ

∂x
=

√
µϵ. (6.7)

Thus,
∂Ez
∂x

=
∂Ez
∂ξ

∂ξ

∂x
=

√
µϵ
∂Ez
∂ξ

, (6.8)

∂Ez
∂t

=
∂Ez
∂ξ

∂ξ

∂t
=
∂Ez
∂ξ

. (6.9)

Plugging the right-hand sides of (6.8) and (6.9) into (6.4) yields zero and the equation is satisfied.
It is worth mentioning that although Ez(t+

√
µϵx) is a solution to (6.4), it is not a solution to (6.5).

6.3 Terminating the Grid
Let us now consider how an advection equation can be used to provide an update equation for a
node at the end of the computational domain. Let the node Eq+1

z [0] be the node on the boundary
for which an update equation is sought. Since interior nodes can be updated before the boundary
node, assume that all the adjacent nodes in space-time are known, i.e., Eq+1

z [1], Eq
z [0], and Eq

z [1]
are known. At the left end of the grid, the fields should only be traveling to the left. Thus the fields
satisfy the advection equation (6.4). The finite-difference approximation of this equation provides
the necessary update equation, but the way to discretize the equation is not entirely obvious. A
stable ABC will result if the equation is expanded about the space-time point (∆x/2, (q+1/2)∆t).
This point is shown in Fig. 6.1.

*As an example, consider Ez(x, t) = cos(ωt) sin(βx) where β = ω
√
µϵ.



6.3. TERMINATING THE GRID 147

position, x

write difference equation
about this point

Ez     [0]q+1 Ez     [1]q+1

Ez [0]q Ez [1]q

time, t

avg. in
time

avg. in
space

avg. in
time

avg. in
space

Figure 6.1: Space-time in the neighborhood of the left end of the grid. Only the electric fields are
shown. The open circles indicated where an electric field is needed for the advection equation.
Since there are none there, averaging is used to approximate the field at those points.

At first it seems like this in an unacceptable point about which to expand the advection equation
since moving forward or backward in time or space a half step does not correspond to the location
of an electric field point. To fix this, the electric field will be averaged in either time or space
to obtain an estimate of the value at the desired location in space-time. For example, to obtain
an approximation of Eq+1

z [1/2], the average (Eq+1
z [0] + Eq+1

z [1])/2, would be used. Similarly, an
approximation of Eq

z [1/2] would be (Eq
z [0] + Eq

z [1])/2. Therefore the temporal derivative would
be approximated with the following finite difference:

√
µϵ
∂Ez
∂t

∣∣∣∣
∆x/2,(q+1/2)∆t

≈ √
µϵ

Eq+1
z [0]+Eq+1

z [1]
2

− Eq
z[0]+E

q
z[1]

2

∆t

. (6.10)

Averaging in time is used to obtain the fields at the proper locations for the spatial finite differ-
ence. The resulting finite difference is

∂Ez
∂x

∣∣∣∣
∆x/2,(q+1/2)∆t

≈
Eq+1

z [1]+Eq
z[1]

2
− Eq+1

z [0]+Eq
z[0]

2

∆x

. (6.11)

Combining (6.10) and (6.11) yields the finite-difference form of the advection equation

Eq+1
z [1]+Eq

z[1]
2

− Eq+1
z [0]+Eq

z[0]
2

∆x

−√
µϵ

Eq+1
z [0]+Eq+1

z [1]
2

− Eq
z[0]+E

q
z[1]

2

∆t

= 0. (6.12)

Letting
√
µϵ =

√
µrϵr/c and solving for Eq+1

z [0] yields

Eq+1
z [0] = Eq

z [1] +

Sc√
µrϵr

− 1

Sc√
µrϵr

+ 1

(
Eq+1
z [1]− Eq

z [0]
)
. (6.13)



148 CHAPTER 6. DIFFERENTIAL-EQUATION BASED ABC’S

where Sc is the Courant number c∆t/∆x. Equation (6.13) provides a first-order absorbing bound-
ary condition that updates the field on the boundary using the values of past and interior fields. This
is known as a first-order ABC because it was constructed from a first-order differential equation.
Note that when Sc/

√
µrϵr is unity, which would be the case of free space and a unit Courant num-

ber, (6.13) reduces to Eq+1
z [0] = Eq

z [1] which is the simple grid-termination technique presented
in Sec. 3.9.

At the other end of the grid, i.e., at the right end of the grid, an equation that is nearly identical
to (6.13) pertains. Equation (6.5) would be expanded in the neighborhood of the last node of the
grid. Although (6.4) and (6.5) differ in the sign of one term, when (6.5) is applied it is “looking”
in the negative x direction. That effectively cancels the change in sign. Hence the update equation
for the last node in the grid, which is identified here as Eq+1

z [M ], would be

Eq+1
z [M ] = Eq

z [M − 1] +

Sc√
µrϵr

− 1

Sc√
µrϵr

+ 1

(
Eq+1
z [M − 1]− Eq

z [M ]
)
. (6.14)

Recall that for a lossless medium, the coefficient in the electric-field update equation that mul-
tiplied the magnetic fields was ∆t/ϵ∆x and this could be expressed as Scη0/ϵr. On the other hand,
the coefficient in the magnetic-field update equation that multiplied the electric fields was ∆t/µ∆x

and this could be expressed as Sc/η0µr. Therefore, taking the product of these two coefficients and
taking the square root yields (

∆t

ϵ∆x

∆t

µ∆x

)1/2

=
Sc√
µrϵr

. (6.15)

Note that this is the term that appears in (6.13) and (6.14). Thus by knowing the update coefficients
that pertain at the ends of the grid, one can calculate the coefficients that appear in the ABC.

6.4 Implementation of a First-Order ABC
Program 3.7 modeled two half spaces: free space and a dielectric. That program was written as
a “monolithic” program with a main() function in which all the calculations were performed.
For that program we did not have a suitable way to terminate the grid within the dielectric. Let us
re-implement that program but use the modular design that was discussed in Chap. 4 and use the
ABC presented in the previous section.

Recalling the modular design used to model a lossy layer that was discussed in Sec. 4.9, we saw
that the ABC was so simple there was no need to do any initialization of the ABC. Nevertheless,
recalling the code shown in Program 4.17, an ABC initialization function was called, but it merely
returned without doing anything. Now that we wish to implement a first-order ABC, the ABC
initialization function actually needs to perform some calculations: it will calculate any of the
constants associated with the ABC.

Naturally, the code associated with the various “blocks” in our modular design will need to
change from what was presented in Sec. 4.9. However, the overall framework remains essentially
the same! The arrangement of files associated with our model of a halfspace that uses a first-order
ABC is shown in Fig. 6.2. Note that this figure and Fig. 4.3 are nearly the same. They both have
the same layout. All the functions have the same name, but the implementation of some of those



6.4. IMPLEMENTATION OF A FIRST-ORDER ABC 149

functions have changed. Note that the file names have changed for the files containing the main()
function, the gridInit() function, and the abc() and abcInit() function.

The code associated with the TFSF boundary, the snapshots, the source function, and the update
equations are all unchanged from that which was described in Chap. 4. The grid initialization
function gridInit() constructs a half-space dielectric consistent with Program 3.7. The code
is shown in Program 6.1.

Program 6.1 gridHalfSpace.c: Function to initialize the Grid such that there are two half-
spaces: free space to the left and a dielectric with ϵr = 9 to the right.

1 /* Function to initialize the Grid structure. */
2

3 #include "fdtd3.h"
4

5 #define EPSR 9.0
6

7 void gridInit(Grid *g) {
8 double imp0 = 377.0;
9 int mm;

10

11 SizeX = 200; // size of domain
12 MaxTime = 450; // duration of simulation
13 Cdtds = 1.0; // Courant number
14

15 ALLOC_1D(g->ez, SizeX, double);
16 ALLOC_1D(g->ceze, SizeX, double);
17 ALLOC_1D(g->cezh, SizeX, double);
18 ALLOC_1D(g->hy, SizeX - 1, double);
19 ALLOC_1D(g->chyh, SizeX - 1, double);
20 ALLOC_1D(g->chye, SizeX - 1, double);
21

22 /* set electric-field update coefficients */
23 for (mm = 0; mm < SizeX; mm++)
24 if (mm < 100) {
25 Ceze(mm) = 1.0;
26 Cezh(mm) = imp0;
27 } else {
28 Ceze(mm) = 1.0;
29 Cezh(mm) = imp0 / EPSR;
30 }
31

32 /* set magnetic-field update coefficients */
33 for (mm = 0; mm < SizeX - 1; mm++) {
34 Chyh(mm) = 1.0;
35 Chye(mm) = 1.0 / imp0;
36 }



150 CHAPTER 6. DIFFERENTIAL-EQUATION BASED ABC’S

abcDemo1.c

main()
fdtd3.h

ezInc3.h

ezInc3.c

ezIncInit()
ezInc()

update3.c

updateE3()
updateH3()

gridHalfSpace.c

gridInit()

tfsf.c

tfsfInit()
tfsfUpdate()

abcFirst.c

abcInit()
abc()

snapshot.c

snapshotInit()
snapshot()

Figure 6.2: Files associated with the modular implementation of a simulation of a dielectric half
space. Since a first-order ABC is now being used, some of these files differ from those of Fig. 4.3.
Nevertheless, the overall structure of the program is unchanged and all the function names are the
same as before.



6.4. IMPLEMENTATION OF A FIRST-ORDER ABC 151

37

38 return;
39 }

The contents of the file abcDemo1.c are shown in Program 6.2. The difference between
abcDemo1.c and improved3.c, which is given in Program 4.17, is shown in dark red bold. In
fact, the only change in the code is the location of the call of the ABC function abc(). Function
abc() is now called in line 23 which is after the updating of the electric fields. Since the ABC
relies on the “future” value of a neighboring interior electric field, this field must be updated before
the node on the grid boundary can be updated. (The ABC function presented in Program 4.17
could, in fact, have been written in such a way that it would be called after the electric-field update.
After all, the first-order ABC reduces to the simple ABC when the Courant number is one and the
medium is free space. Nevertheless, the code in Program 4.17 was written to be consistent with
the way in which the simple ABC was originally presented in Chap. 3.)

Program 6.2 abcDemo1.c: One-dimensional FDTD simulation employing a first-order ABC
(although the actual ABC code is contained in the file abcFirst.c which is shown in Program
6.3). The difference between this program and Program 4.17 is shown in dark red bold.

1 /* FDTD simulation where main() is primarily used to call other
2 * functions that perform the necessary operations. */
3

4 #include "fdtd3.h"
5

6 int main()
7 {
8 Grid *g;
9

10 ALLOC_1D(g, 1, Grid); // allocate memory for Grid
11

12 gridInit(g); // initialize the grid
13 abcInit(g); // initialize ABC
14 tfsfInit(g); // initialize TFSF boundary
15 snapshotInit(g); // initialize snapshots
16

17 /* do time stepping */
18 for (Time = 0; Time < MaxTime; Time++) {
19

20 updateH3(g); // update magnetic field
21 tfsfUpdate(g); // correct field on TFSF boundary
22 updateE3(g); // update electric field
23 abc(g); // apply ABC -- after E-field update
24 snapshot(g); // take a snapshot (if appropriate)
25

26 } /* end of time-stepping */



152 CHAPTER 6. DIFFERENTIAL-EQUATION BASED ABC’S

27

28 return 0;
29 }

The code for abcInit() and abc() is contained in the file abcFirst.c which is shown
in Program 6.3. The initialization function calculates the coefficients that appeared in (6.13) and
(6.14). Recall from (6.15) that these coefficients can be obtained as a function of the electric- and
magnetic-field update-equation coefficients. Since the material at the left and right side of the grid
may be different, there are separate coefficients for the two sides.

Program 6.3 abcFirst.c: Implementation of a first-order absorbing boundary condition.

1 /* Function to implement a first-order ABC. */
2

3 #include "fdtd3.h"
4 #include <math.h>
5

6 static int initDone = 0;
7 static double ezOldLeft = 0.0, ezOldRight = 0.0;
8 static double abcCoefLeft, abcCoefRight;
9

10 /* Initialization function for first-order ABC. */
11 void abcInit(Grid *g) {
12 double temp;
13

14 initDone = 1;
15

16 /* calculate coefficient on left end of grid */
17 temp = sqrt(Cezh(0) * Chye(0));
18 abcCoefLeft = (temp - 1.0) / (temp + 1.0);
19

20 /* calculate coefficient on right end of grid */
21 temp = sqrt(Cezh(SizeX - 1) * Chye(SizeX - 2));
22 abcCoefRight = (temp - 1.0) / (temp + 1.0);
23

24 return;
25 }
26

27 /* First-order ABC. */
28 void abc(Grid *g) {
29 /* check if abcInit() has been called */
30 if (!initDone) {
31 fprintf(stderr,
32 "abc: abcInit() must be called before abc().\n");
33 exit(-1);



6.5. ABC EXPRESSED USING OPERATOR NOTATION 153

34 }
35

36 /* ABC for left side of grid */
37 Ez(0) = ezOldLeft + abcCoefLeft * (Ez(1) - Ez(0));
38 ezOldLeft = Ez(1);
39

40 /* ABC for right side of grid */
41 Ez(SizeX - 1) = ezOldRight +
42 abcCoefRight * (Ez(SizeX - 2) - Ez(SizeX - 1));
43 ezOldRight = Ez(SizeX - 2);
44

45 return;
46 }

As shown in (6.13) and (6.14), for the first-order ABC both the “past” and the future value
of the interior neighbor nearest to the boundary are needed. However, once we update the fields,
past values are overwritten. Thus, the function abc(), which applies the ABC to the two ends
of the grid, locally stores the “past” values of the nodes that are adjacent to the ends of the grid.
For the left side of the grid the past neighbor is stored as ezOldLeft and on the right it is
stored as ezOldRight. These are static global variables that are retained from one invocation of
abc() to the next. Thus, even though the interior fields have been updated, these past values will
still be available. (Once the nodes at the ends of the grid have been updated, ezOldLeft and
ezOldRight are set to the current value of the neighboring nodes as shown in lines 38 and 43.
When abc() is called next, these are indeed the “old” values of these neighbors.)

Figure 6.3 shows the waterfall plot of the snapshots generated by Program 6.2. One can see
that this is the same as Fig. 3.13 prior to the transmitted field encountering the right end of the grid.
After that time there is a reflected field evident in Fig. 3.13 but none is evident here. The ABC has
absorbed the incident field and hence the grid behaves as if it were infinite. In reality this ABC
is only approximate and there is some reflected field at the right boundary. We will return to this
point in Sec. 6.6

6.5 ABC Expressed Using Operator Notation
Let us define an identity operator I , a forward spatial shift operator s1x, and a backward temporal
shift operator s−1

t . When they act on a node in the grid their affect is given by

IEq+1
z [m] = Eq+1

z [m] , (6.16)
s1xE

q+1
z [m] = Eq+1

z [m+ 1] , (6.17)
s−1
t Eq+1

z [m] = Eq
z [m] . (6.18)

Note that these operators all commute, e.g., s1xs
−1
t = s−1

t s1x. Furthermore, the identity operator
times another operator is merely that operator, e.g., Is1x = s1x likewise II = I . Using these
operators a spatial average of a node can be represented by

Eq+1
z [m] + Eq+1

z [m+ 1]

2
=

(
I + s1x

2

)
Eq+1
z [m] , (6.19)



154 CHAPTER 6. DIFFERENTIAL-EQUATION BASED ABC’S

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35

40

45

Space [spatial index]

Ti
m

e 
[fr

am
e 

nu
m

be
r]

Figure 6.3: Waterfall plot of the snapshots generated by Program 6.2. Comparing this to Fig. 3.13
one sees they are the same until the transmitted field encounters the right end of the grid. At that
point 3.13 shows there is a reflected field. However, because of the ABC used here, no reflected
field is evident.



6.5. ABC EXPRESSED USING OPERATOR NOTATION 155

while a temporal average can be written

Eq+1
z [m] + Eq

z [m]

2
=

(
I + s−1

t

2

)
Eq+1
z [m] . (6.20)

When applying the advection equation, the finite differences, as originally formulated, needed
electric-field nodes where none were present in space-time. Therefore, averaging had to be used
to obtain approximations to the fields at the desired locations. This required averaging in time
followed by a spatial finite difference or averaging in space followed by a temporal finite difference.
Consider the finite difference approximation to the temporal derivative at the point (∆x/2, (q +
1/2)∆t). Starting from the node Eq+1

z [0], this requires adding the node one spatial step to the right
and then dividing by two. Then, going back one step in time, these same two nodes are again
averaged and then subtracted from the previous average. The result is divided by the temporal step
to obtain the temporal finite difference. Expressed in operator notation this is

∂Ez
∂t

∣∣∣∣
∆x/2,(q+1/2)∆t

=

(
I − s−1

t

∆t

)(
I + s1x

2

)
Eq+1
z [0] , (6.21)

=
1

2∆t

(
I − s−1

t + s1x − s−1
t s1x

)
Eq+1
z [0] , (6.22)

=
1

2∆t

(
Eq+1
z [0]− Eq

z [0] + Eq+1
z [1]− Eq

z [1]
)
. (6.23)

The second term in parentheses in (6.21) accomplishes the averaging while the first term in paren-
theses yields the temporal finite difference. The result, shown in (6.23), is the same as (6.10) (other
than the factor of

√
µϵ).

A similar approach can be used for the spatial finite difference about the same point except now
the averaging is done in time

∂Ez
∂x

∣∣∣∣
∆x/2,(q+1/2)∆t

=

(
s1x − I

∆x

)(
I + s−1

t

2

)
Eq+1
z [0] (6.24)

=
1

2∆x

(
−I + s1x − s−1

t + s−1
t s1x

)
Eq+1
z [0] (6.25)

=
1

2∆x

(
−Eq+1

z [0] + Eq+1
z [1]− Eq

z [0] + Eq
z [1]
)
. (6.26)

This is exactly the same as (6.11).
From (6.21) and (6.24) we see the finite-difference form of the advection equation can be

expressed as {(
s1x − I

∆x

)(
I + s−1

t

2

)
−√

µϵ

(
I − s−1

t

∆t

)(
I + s1x

2

)}
Eq+1
z [0] = 0. (6.27)

Solving this equation for Eq+1
z [0] yields the update equation (6.13). The term in braces is the

finite-difference equivalent of the first advection operator that appeared on the left-hand side of
(6.3).



156 CHAPTER 6. DIFFERENTIAL-EQUATION BASED ABC’S

6.6 Second-Order ABC
Equation (6.27) provides an update equation which is, in general, approximate. In many circum-
stance the field reflected by a first-order ABC is unacceptably large. A more accurate update
equation can be obtained by applying the advection operator twice. Consider(

∂

∂x
−√

µϵ
∂

∂t

)(
∂

∂x
−√

µϵ
∂

∂t

)
Ez = 0. (6.28)

Without employing too many mathematical details, assume the field Ez is not a proper solution to
the advection equation. For example, the speed at which it is propagating is not precisely 1/

√
µϵ.

If the field is close to a proper solution, the advection operator operating on the field should yield
a number which is close to zero. However, if the advection operator acts on it again, the result
should be something smaller still—the equation is closer to the truth.

To demonstrate this, consider a wave Ez(t+x/c′) which is traveling in the negative x direction
with a speed c′ ̸= c. Following the notation used in Sec. 6.2, the advection operator operating on
this fields yields (

1

c′
− 1

c

)
∂Ez
∂ξ

. (6.29)

If the advection operator again operates on this, the result is(
1

c′
− 1

c

)2
∂2Ez
∂ξ2

. (6.30)

If c and c′ are close, (6.30) will be smaller than (6.29) for a broad class of signals. Hence the
repeated application of the advection operator may still only be approximately satisfied, but one
anticipates that it will perform better than the first-order operator alone.

The finite-difference form of the second-order advection operator operating on the nodeEq+1
z [0]

is [{(
s1x − I

∆x

)(
I + s−1

t

2

)
−√

µϵ

(
I − s−1

t

∆t

)(
I + s1x

2

)}
{(

s1x − I

∆x

)(
I + s−1

t

2

)
−√

µϵ

(
I − s−1

t

∆t

)(
I + s1x

2

)}]
Eq+1
z [0] = 0. (6.31)

One expands this equation and solves for Eq+1
z [0] to obtain the second-order ABC. The result is

Eq+1
z [0] =

−1

1/S ′
c + 2 + S ′

c

{
(1/S ′

c − 2 + S ′
c)
[
Eq+1
z [2] + Eq−1

z [0]
]

+ 2(S ′
c − 1/S ′

c)
[
Eq
z [0] + Eq

z [2]− Eq+1
z [1]− Eq−1

z [1]
]

− 4(1/S ′
c + S ′

c)E
q
z [1]} − Eq−1

z [2] . (6.32)

where S ′
c = ∆t/(

√
µϵ∆x) = Sc/

√
µrϵr. This update equation requires two interior points at time

step q + 1 as well as the boundary node and these same interior points at time steps q and q − 1.
Typically these past values would not be available to use in the update equation and must therefore
be stored in some auxiliary manner such as had to be done in Program 6.3 (there just a single



6.6. SECOND-ORDER ABC 157

point on either end of the grid needed to be stored). Two 3 × 2 arrays (one used at either end of
the computational domain) could be used to store the values at the three spatial locations and two
previous time steps required by (6.32). Alternatively, four 1D arrays (two used at either end) of
three points each could also be used to stored the old values. (It may be noted that Eq

z [0] would not
need to be stored since it would be available when updating the boundary node. However, for the
sake of symmetry when writing the loops which store the boundary values, it is simplest to store
this value explicitly.)

When S ′
c is unity, as would be the case for propagation in free space with a Courant number of

unity, (6.32) reduces to
Eq+1
z [0] = 2Eq

z [1]− Eq−1
z [2] . (6.33)

This may appear odd at first but keep in mind that the field is only traveling to the left and it moves
one spatial step per time step, thus Eq

z [1] and Eq−1
z [2] are equal. Therefore this effectively reduces

to Eq+1
z [0] = Eq

z [1] which is again the original grid termination approach used in Sec. 3.9.
As was the case for first-order, for the right side of the grid, the second-order termination is

essentially the same as the one on the left side. One merely uses interior nodes to the left of the
boundary instead of to the right.

To demonstrate the improvement realized by using a second-order ABC instead of a first-order
one, consider the same computational domain as was used in Program 6.2, i.e., a pulse is incident
from free space to a dielectric half-space with a relative permittivity of 9 which begins at node 100.
Figure 6.4 shows the electric field in the computational domain at time-step 550 (MaxTime was
increased from the 450 shown in Program 6.1). Ideally the transmitted pulse would be perfectly
absorbed and the reflected fields should be zero. However, for both the first- and second-order
ABC’s there is a reflected field, but it is significantly smaller in the case of the second-order ABC.



158 CHAPTER 6. DIFFERENTIAL-EQUATION BASED ABC’S

-0.004

-0.003

-0.002

-0.001

0

0.001

0.002

0.003

0 25 50 75 100 125 150 175 200

E
z
 (

V
/m

)

Spatial index

First-Order ABC
Second-Order ABC

Figure 6.4: Plot of the fields at time step 550 when the grid is terminated with either a first- or
second-order ABC. This snapshot is taken after the transmitted pulse has encountered the right
edge of the grid. Hence this shows the field reflected by the ABC. Ideally the reflected fields
should be zero.

6.7 Implementation of a Second-Order ABC
In order to implement a second-order ABC, one merely has to modify the functions abcInit()
and abc(). Thus, none of the code depicted in Fig. 6.2 needs to change except that which is
directly related to the ABC itself. If instead of using the file abcFirst.c, one uses the code
shown in Program 6.4, which we assume is stored in a file called abcSecond.c, then a second-
order ABC will be realized.

Program 6.4 abcSecond.c The abcInit() and abc() functions for implementation of a
second-order ABC.

1 /* Functions to implement a second-order ABC. */
2

3 #include "fdtd3.h"
4 #include <math.h>
5

6 static int initDone = 0;
7 static double *ezOldLeft1, *ezOldLeft2,
8 *ezOldRight1, *ezOldRight2;
9 static double *abcCoefLeft, *abcCoefRight;

10

11 /* Initialization function for second-order ABC. */



6.7. IMPLEMENTATION OF A SECOND-ORDER ABC 159

12 void abcInit(Grid *g) {
13 double temp1, temp2;
14

15 initDone = 1;
16

17 ALLOC_1D(ezOldLeft1, 3, double);
18 ALLOC_1D(ezOldLeft2, 3, double);
19 ALLOC_1D(ezOldRight1, 3, double);
20 ALLOC_1D(ezOldRight2, 3, double);
21

22 ALLOC_1D(abcCoefLeft, 3, double);
23 ALLOC_1D(abcCoefRight, 3, double);
24

25 /* calculate coefficients on left end of grid */
26 temp1 = sqrt(Cezh(0) * Chye(0));
27 temp2 = 1.0 / temp1 + 2.0 + temp1;
28 abcCoefLeft[0] = -(1.0 / temp1 - 2.0 + temp1) / temp2;
29 abcCoefLeft[1] = -2.0 * (temp1 - 1.0 / temp1) / temp2;
30 abcCoefLeft[2] = 4.0 * (temp1 + 1.0 / temp1) / temp2;
31

32 /* calculate coefficients on right end of grid */
33 temp1 = sqrt(Cezh(SizeX - 1) * Chye(SizeX - 2));
34 temp2 = 1.0 / temp1 + 2.0 + temp1;
35 abcCoefRight[0] = -(1.0 / temp1 - 2.0 + temp1) / temp2;
36 abcCoefRight[1] = -2.0 * (temp1 - 1.0 / temp1) / temp2;
37 abcCoefRight[2] = 4.0 * (temp1 + 1.0 / temp1) / temp2;
38

39 return;
40 }
41

42 /* Second-order ABC. */
43 void abc(Grid *g) {
44 int mm;
45

46 /* check if abcInit() has been called */
47 if (!initDone) {
48 fprintf(stderr,
49 "abc: abcInit() must be called before abc().\n");
50 exit(-1);
51 }
52

53 /* ABC for left side of grid */
54 Ez(0) = abcCoefLeft[0] * (Ez(2) + ezOldLeft2[0])
55 + abcCoefLeft[1] * (ezOldLeft1[0] + ezOldLeft1[2] -
56 Ez(1) - ezOldLeft2[1])
57 + abcCoefLeft[2] * ezOldLeft1[1] - ezOldLeft2[2];
58



160 CHAPTER 6. DIFFERENTIAL-EQUATION BASED ABC’S

59 /* ABC for right side of grid */
60 Ez(SizeX-1) =
61 abcCoefRight[0] * (Ez(SizeX - 3) + ezOldRight2[0])
62 + abcCoefRight[1] * (ezOldRight1[0] + ezOldRight1[2] -
63 Ez(SizeX - 2) - ezOldRight2[1])
64 + abcCoefRight[2] * ezOldRight1[1] - ezOldRight2[2];
65

66 /* update stored fields */
67 for (mm = 0; mm < 3; mm++) {
68 ezOldLeft2[mm] = ezOldLeft1[mm];
69 ezOldLeft1[mm] = Ez(mm);
70

71 ezOldRight2[mm] = ezOldRight1[mm];
72 ezOldRight1[mm] = Ez(SizeX - 1 - mm);
73 }
74

75 return;
76 }

Lines 7–9 declare six static, global pointers, each of which will ultimately serve as an array of
three points. Four of the arrays will store previous values of the electric field (two arrays dedicated
to the left side and two to the right). The remaining two arrays store the coefficients used in the
ABC (one array for the left, one for the right). The memory for these arrays is allocated in the
abcInit() function in lines 17–23. That is followed by calculation of the coefficients on the
two side of the grid.

Within the function abc(), which is called once per time-step, the values of the nodes on the
edge of the grid are updated by the statements starting on lines 54 and 60. Finally, starting on line
67, the stored values are updated. The array exOldLeft1 represents the field one time-step in
the past while exOldLeft2 represents the field two time-steps in the past. Similar naming is
employed on the right.



Chapter 7

Dispersion, Impedance, Reflection, and
Transmission

7.1 Introduction
A dispersion relation gives the relationship between frequency and the speed of propagation. This
relationship is rather simple in the continuous world and is reviewed in the next section. Unfor-
tunately dispersion in the FDTD grid is not as simple. Nevertheless, it provides a great deal of
insight into the inherent limitations of the FDTD method and hence it is important that one have at
least a basic understanding of it.

The tools developed in the analysis of FDTD dispersion can also be used to determine the
characteristic impedance of the grid. Furthermore, as will be shown, knowing the dispersion rela-
tionship one can obtain exact analytic expressions for the reflection and transmission coefficients
in the FDTD grid.

7.2 Dispersion in the Continuous World
Consider a plane wave propagating in the +x direction in a lossless medium. In time-harmonic
form the temporal and spatial dependence of the wave are given by exp(j[ωt − βx]) where ω is
the frequency and β is the phase constant (wave number). The speed of the wave can be found by
determining how fast a given point on the wave travels. In this context “point” is taken to mean
a point of constant phase. The phase is dictated by ωt − βx. Setting this equal to a constant and
differentiating with respect to time gives

d

dt
(ωt− βx) =

d

dt
(constant), (7.1)

ω − β
dx

dt
= 0. (7.2)

In this expression x is taken to be the position which provides a particular phase. In that sense
it is not an independent variable. The location x which yields the desired phase will change as a

†Lecture notes by John Schneider. fdtd-dispersion.tex

161



162 CHAPTER 7. DISPERSION, IMPEDANCE, REFLECTION, AND TRANSMISSION

function of time. Therefore, dx/dt is the speed of the wave, or, more properly, the phase speed cp.
Solving (7.2) for the phase speed yields

cp =
dx

dt
=
ω

β
. (7.3)

This is apparently a function of frequency, but for a plane wave the phase constant β is given by
ω
√
µϵ. Thus the phase speed is

cp =
ω

ω
√
µϵ

=
1

√
µrµ0ϵrϵ0

=
c

√
µrϵr

(7.4)

where c is the speed of light in free space. Note that, in the continuous world for a lossless medium,
the phase speed is independent of frequency and the dispersion relationship is

cp =
ω

β
=

c
√
µrϵr

. (7.5)

Since c is a constant, and we are assuming µr and ϵr are constant for the given material, all fre-
quencies propagate at the same speed. Unfortunately this is not the case in the discretized FDTD
world—different frequencies have different phase speeds.*

7.3 Harmonic Representation of the FDTD Method
The spatial shift-operator sx and the temporal shift-operator st were introduced in Sec. 6.5. Gen-
eralizing these slightly, let a fractional superscript represent a corresponding fractional step. For
example,

s1/2x Hq
y [m] = Hq

y

[
m+

1

2

]
, (7.6)

s
1/2
t E

q+ 1
2

z [m] = Eq+1
z [m] , (7.7)

s
−1/2
t E

q+ 1
2

z [m] = Eq
z [m] . (7.8)

Using these shift operators the finite-difference version of Ampere’s law (ref. (3.17)) can be written

ϵ

(
s
1/2
t − s

−1/2
t

∆t

)
E
q+ 1

2
z [m] =

(
s
1/2
x − s

−1/2
x

∆x

)
H
q+ 1

2
y [m] . (7.9)

Note that both fields have a temporal index of q+ 1/2. The index can be changed to q if the 1/2 is
accounted for by a temporal shift. Thus Ampere’s law can also be written

s
1/2
t ϵ

(
s
1/2
t − s

−1/2
t

∆t

)
Eq
z [m] = s

1/2
t

(
s
1/2
x − s

−1/2
x

∆x

)
Hq
y [m] . (7.10)

*Later we will consider FDTD models of materials that are dispersive in the continuous world, i.e., materials for
which ϵ or µ are functions of frequency. In fact, we have already considered dispersive behavior to some degree since
lossy materials have phase speeds that are a function of frequency.



7.3. HARMONIC REPRESENTATION OF THE FDTD METHOD 163

Let us define the finite-difference operator ∂̃i as

∂̃i =

(
s
1/2
i − s

−1/2
i

∆i

)
(7.11)

where i is either x or t. Using this notation the Yee version of Ampere’s law can be written

ϵs
1/2
t ∂̃tE

q
z [m] = s

1/2
t ∂̃xH

q
y [m] . (7.12)

Rather than obtaining an update equation from this, the goal is to determine the phase speed
for a given frequency. To that end, we assume there is a single (forward-going) harmonic wave
propagating such that

Êq
z [m] = Ê0e

j(ωq∆t−β̃m∆x), (7.13)

Ĥq
y [m] = Ĥ0e

j(ωq∆t−β̃m∆x), (7.14)

where β̃ is the phase constant which exists in the FDTD grid and Ê0 and Ĥ0 are constant ampli-
tudes. A tilde will be used to indicate quantities in the FDTD grid which will typically (but not
always!) differ from the corresponding value in the continuous world. Thus, the phase constant β̃
in the FDTD grid will differ, in general, from the phase constant β in the continuous world. As
was done in Sec. 5.8 a caret (hat) will be used to indicate a harmonic quantity.

We will assume the frequency ω is the same in both the FDTD grid and the continuous world.
Note that one has complete control over the frequency of the excitation—one merely has to ensure
that the phase of the source changes a particular number of radians every time step. However, one
does not have control over the phase constant, i.e., the spatial frequency. The grid dictates what β̃
will be for a given temporal frequency.

The plane-wave space-time dependence which appears in (7.13) and (7.14) essentially serves
as an eigenfunction for the FDTD governing equations. If the governing equations operate on a
function with this dependence, they will yield another function which has the same space-time
dependence, albeit scaled by some value. To illustrate this, consider the temporal shift-operator
acting on the electric field

s
±1/2
t Êq

z [m] = Ê0e
j[ω(q±1/2)∆t−β̃m∆x]

= e±jω∆t/2Ê0e
j[ωq∆t−β̃m∆x]

= e±jω∆t/2Êq
z [m] . (7.15)

Similarly, the spatial shift-operator acting on the electric field yields

s±1/2
x Êq

z [m] = Ê0e
j[ωq∆t−β̃(m±1/2)∆x]

= e∓jβ̃∆x/2Ê0e
j[ωq∆t−β̃m∆x]

= e∓jβ̃∆x/2Êq
z [m] . (7.16)

Thus, for a plane wave, one can equate the shift operators with multiplication by an appropriate
term:

s
±1/2
t ⇔ e±jω∆t/2, (7.17)

s±1/2
x ⇔ e∓jβ̃∆x/2. (7.18)



164 CHAPTER 7. DISPERSION, IMPEDANCE, REFLECTION, AND TRANSMISSION

Carrying this a step further, for plane-wave propagation the finite-difference operators ∂̃t and ∂̃x
are equivalent to

∂̃t =
e+jω∆t/2 − e−jω∆t/2

∆t

= j
2

∆t

sin

(
ω∆t

2

)
, (7.19)

∂̃x =
e−jβ̃∆x/2 − e+jβ̃∆x/2

∆x

= −j 2

∆x

sin

(
β̃∆x

2

)
. (7.20)

We define Ω and Kx as

Ω =
2

∆t

sin

(
ω∆t

2

)
, (7.21)

Kx =
2

∆x

sin

(
β̃∆x

2

)
. (7.22)

Note that as the discretization goes to zero, Ω approaches ω and Kx approaches β̃ (and, in fact,
β̃ would approach β, the phase constant in the continuous world). Using this notation, taking a
finite-difference with respect to time is equivalent to multiplication by jΩ while a finite difference
with respect to space is equivalent to multiplication by −jKx, i.e.,

∂̃t ⇔ jΩ (7.23)
∂̃x ⇔ −jKx. (7.24)

Using (7.17), (7.23), and (7.24) in Ampere’s law (7.12) yields

jϵΩejω∆t/2Êq
z [m] = −jKxe

jω∆t/2Ĥq
y [m] . (7.25)

The temporal shift exp(jω∆t/2) is common to both side and hence can be canceled. Using the
assumed form of the electric and magnetic fields from (7.13) and (7.14) in (7.25) yields

ϵΩÊ0e
j(ωq∆t−β̃m∆x) = −KxĤ0e

j(ωq∆t−β̃m∆x). (7.26)

Canceling the exponential space-time dependence which is common to both sides produces

ϵΩÊ0 = −KxĤ0. (7.27)

Solving for the ratio of the electric and magnetic field amplitudes yields

Ê0

Ĥ0

= −Kx

ϵΩ
= − ∆t

ϵ∆x

sin
(
β̃∆x

2

)
sin
(
ω∆t

2

) . (7.28)

It appears that (7.28) is the “numeric impedance” since it is the ratio of the electric field to the
magnetic field. In fact it is the numeric impedance, but it is only part of the story. As will be shown,
the impedance in the FDTD method is exact. This fact is far from obvious if one only considers
(7.28). It is also worth considering the corresponding continuous-world quantity β/(ϵω):

β

ϵω
=
ω/cp
ϵω

=
1

ϵcp
=

√
µϵ

ϵ
=

√
µ

ϵ
= η (7.29)

Thus the fact that the grid numeric impedance is given by Kx/(ϵΩ) is consistent with continuous-
world behavior. (The negative sign in (7.28) merely accounts for the orientation of the fields.)



7.4. DISPERSION IN THE FDTD GRID 165

7.4 Dispersion in the FDTD Grid

Another equation relating Ê0 and Ĥ0 can be obtained from Faraday’s law. Expressed in terms of
shift operators, the finite-difference form of Faraday’s law (ref. (3.14)) is

µs1/2x ∂̃tH
q
y [m] = s1/2x ∂̃xE

q
z [m] . (7.30)

As before, assuming plane-wave propagation, the shift operators can be replaced with multiplica-
tive equivalents. The resulting equation is

jµΩe−jβ̃∆x/2Ĥq
y [m] = −jKxe

−jβ̃∆x/2Êq
z [m] . (7.31)

Canceling terms common to both sides and rearranging yields

Ê0

Ĥ0

= −µΩ
Kx

= −µ∆x

∆t

sin
(
ω∆t

2

)
sin
(
β̃∆x

2

) . (7.32)

Equating (7.28) and (7.32) and cross-multiplying gives

µϵΩ2 = K2
x. (7.33)

This is the FDTD dispersion relation. Alternatively, expanding terms and rearranging slightly
yields

sin2

(
ω∆t

2

)
=

∆2
t

ϵµ∆2
x

sin2

(
β̃∆x

2

)
. (7.34)

Taking the square root of both sides of either form of the dispersion relation yields
√
µϵΩ = Kx, (7.35)

or

sin

(
ω∆t

2

)
=

∆t√
ϵµ∆x

sin

(
β̃∆x

2

)
. (7.36)

These equations dictate the relationship between ω and β̃. Contrast this to the dispersion relation
(7.5) which pertains to the continuous world. The two appear quite dissimilar! However, the two
equations do agree in the limit as the discretization gets small.

The first term in the Taylor series expansion of sin(ξ) is ξ. Thus ξ provides a good approxi-
mation of sin(ξ) when ξ is small. Assume that the spatial and temporal steps are small enough so
that the arguments of the sine functions in (7.36) are small. Retaining the first-order term in the
Taylor-series expansion of the sine functions in (7.36) yields

ω∆t

2
=

∆t√
ϵµ∆x

β̃∆x

2
. (7.37)

From this β̃ is seen to be
β̃ = ω

√
µϵ, (7.38)



166 CHAPTER 7. DISPERSION, IMPEDANCE, REFLECTION, AND TRANSMISSION

which is exactly the same as in the continuous world. However, this is only true when the dis-
cretization goes to zero. For finite discretization, the phase speed in the FDTD grid and in the
continuous world differ.

In the continuous world the phase speed is cp = ω/β. In the FDTD world the same relation
holds, i.e., c̃p = ω/β̃ where the tilde indicates this is the phase speed in the discretized world. In
one dimension, a closed form solution for β̃ is possible (a similar dispersion relation holds in two
and three dimensions, but there a closed-form solution is not possible). Bringing the coefficient to
the other side of (7.36) and taking the arc sine yields

β̃∆x

2
= sin−1

[
∆x

√
µϵ

∆t

sin

(
ω∆t

2

)]
. (7.39)

As was shown in Sec. 5.2.2 (ref. (5.8) and (5.9)), the factor ω∆t/2 is equivalent to πSc/Nλ where
Sc = c∆t/∆x. Thus (7.39) can be written

β̃∆x

2
= sin−1

[√
µrϵr

Sc
sin

(
πSc
Nλ

)]
. (7.40)

Consider the ratio of the phase speed in the grid to the true phase speed

c̃p
cp

=
ω/β̃

ω/β
=
β

β̃
=

β∆x

2

β̃∆x

2

. (7.41)

The phase constant in the continuous world can be written

β = ω
√
µϵ = 2π

c

λ

√
µ0ϵ0µrϵr =

2π

λ

√
µrϵr =

2π

Nλ∆x

√
µrϵr (7.42)

where Nλ is the number of points per free-space wavelength. Using this in the numerator of the
last term on the right-hand side of (7.41) and using (7.40) in the denominator, this ratio becomes

c̃p
cp

=
π
√
µrϵr

Nλ sin
−1
[√

µrϵr
Sc

sin
(
πSc

Nλ

)] . (7.43)

This equation is a function of the material parameters (ϵr and µr), the Courant number (Sc), and
the number of points per wavelength (Nλ).

For propagation in free space, i.e., ϵr = µr = 1, when there are 20 points per wavelength and
the Courant number Sc is 1/2, the ratio of the numeric to the exact phase speed is approximately
0.9969 representing an error of 0.31 percent. Thus, for every wavelength of travel, the FDTD wave
will accumulate about 1.12 degrees of phase error (0.0031× 360◦). If the discretization is lowered
to 10 points per wavelength, the ratio drops to 0.9873, or about a 1.27 percent error. Note that as
the discretization was halved, the error increased by roughly a factor of four. This is as should be
expected for a second-order method.

Consider the case of propagation in free space and a Courant number of 1. In that case the ratio
collapses to

c̃p
cp

=
π

Nλ sin
−1
[
sin
(

π
Nλ

)] = 1. (7.44)



7.4. DISPERSION IN THE FDTD GRID 167

2 4 6 8 10 12 14 16 18 20
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Figure 7.1: Ratio of the FDTD and exact phase speeds (c̃p/cp) versus the discretization. Propa-
gation in free space is assumed. Ideally the ratio would be unity for all discretizations. Courant
numbers of 1/4, 1/2, and 3/4 are considered.

Thus the phase speed in the FDTD grid is exactly what it is in the continuous world! This is true
for all discretization.

Figure 7.1 shows a plot of the ratio of the FDTD and exact phase speeds as a function of
discretization. Three different Courant numbers are used. Ideally the ratio would be unity for all
discretizations. As can be seen, the greater the Courant number, the closer the curve is to ideal.
A large Courant number is thus desirable for two reasons. First, the larger the Courant number,
the greater the temporal step and hence the more quickly a simulation advances (i.e., each update
represents a greater advance in time). Second, the larger the Courant number, the smaller the
dispersion error. In one dimension a Courant number of unity is the greatest possible and, since
there is no dispersion error with this Courant number, the corresponding time step is known as the
magic time-step. Unfortunately a magic time-step does not exist in higher dimensions.

Figure 7.2 shows snapshots of Ricker wavelets propagating to the right that have been dis-
cretized at either 20 or 10 points per wavelength at the most energetic frequency (i.e., the param-
eter NP discussed in Sec. 5.2.3 is either 20 or 10). The wavelets are propagating in grids that
have a Courant number of either 1 or 0.5. In Figs. 7.2(a) and (b) the discretizations are 20 and 10,
respectively, and the Courant number is unity. Since this corresponds to the magic time-step, the
wavelets propagate without distortion. The discretizations in Figs. 7.2(c) and (d) are also 20 and
10, respectively, but now the Courant number is 0.5. The snapshots in (a) and (b) were taken after
100 time-steps while the snapshots in (c) and (d) were taken after 200 time-steps (since the time
step is half as large in (c) and (d) as it is in (a) and (b), this ensures the snapshots are depicting
the field at the same time). In Fig. 7.2(c) the distortion of the Ricker wavelet is visible in that the



168 CHAPTER 7. DISPERSION, IMPEDANCE, REFLECTION, AND TRANSMISSION

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140 160 180

E
le

ct
ri

c 
F

ie
ld

 [
V

/m
]

spatial index

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140 160 180

E
le

ct
ri

c 
F

ie
ld

 [
V

/m
]

spatial index

(a) NP = 20, Sc = 1 (b) NP = 10, Sc = 1

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140 160 180

E
le

ct
ri

c 
F

ie
ld

 [
V

/m
]

spatial index

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140 160 180

E
le

ct
ri

c 
F

ie
ld

 [
V

/m
]

spatial index

(c) NP = 20, Sc = 0.5 (d) NP = 10, Sc = 0.5

Figure 7.2: Snapshots of Ricker wavelets with different discretization propagating in grids with
different Courant numbers. (a) 20 points per wavelength at the most energetic frequency, i.e.,
NP = 20, Sc = 1, (b) NP = 10, Sc = 1, (c) NP = 20, Sc = 0.5, and (d) NP = 10, Sc = 0.5. The
snapshots were taken after 100 time-steps for (a) and (b), and after 200 time-steps for (c) and (d).

function is no longer symmetric about the peak. In Fig. 7.2(d) the distortion caused by dispersion
is rather extreme and the function is no longer recognizable as a Ricker wavelet. The reason that
Fig. 7.2(d) is so much more distorted than Fig. 7.2(c) is that the spectral energy lies at a coarser
discretization. The more coarsely a harmonic is discretized, the more dispersion it will suffer—the
higher frequencies propagate more slowly than the lower frequencies. This causes the ringing that
is evident on the trailing side of the pulse.



7.5. NUMERIC IMPEDANCE 169

Ez

Hy Hy Hy HyHy

EzEzEzEz

ε1 ε1 ε2 ε2

µ µµ µµ

ε2

Hy

Ez

position, x

x=0
transmitted fieldincident + reflected field

Figure 7.3: One-dimensional simulation where the permittivity changes abruptly at x = 0. The in-
terface between the two media coincides with a magnetic-field node. The permeability is assumed
to be constant throughout the computational domain. The figure depicts the nodes and the material
values associated with their updates. The field to the left of the interface is the sum of the incident
and reflected fields. The transmitted field exists to the right of the boundary.

7.5 Numeric Impedance
Let us return to (7.28) which nominally gave the numeric impedance and which is repeated below

Ê0

Ĥ0

= −Kx

ϵΩ
. (7.45)

The dispersion relation (7.35) expressed Kx in terms of Ω. Plugging this into (7.45) yields

Ê0

Ĥ0

= −
√
µϵΩ

ϵΩ
=

√
µ

ϵ
= η. (7.46)

Thus, despite the inherent approximations in the FDTD method, the impedance in the grid is
exactly the same as in the continuous world (this also holds in higher dimensions).

7.6 Analytic FDTD Reflection and Transmission Coefficients
Section 5.8.2 discussed the way in which an FDTD simulation could be used to measure the trans-
mission coefficient associated with a planar interface. In this section, instead of using a simulation
to measure the transmission coefficient, an expression will be derived that gives the transmission
coefficient for the FDTD grid.

Consider a one-dimensional FDTD simulation as shown in Fig. 7.3. The permittivity changes
abruptly at the magnetic field which is assumed to coincide with the interface at x = 0. The
permeability is constant throughout the computational domain.

Assume there is an incident unit-amplitude plane wave propagating in the +x direction. Be-
cause of the change in permittivity, a reflected field will exist to the left of the boundary which
propagates in the −x direction. Additionally, there will be a transmitted field which propagates to



170 CHAPTER 7. DISPERSION, IMPEDANCE, REFLECTION, AND TRANSMISSION

the right of the boundary. The incident, reflected, and transmitted electrics fields are given by

Êi
z[m, q] = Êi

z[m]ejωq∆t = e−jβ̃1m∆xejωq∆t , (7.47)

Êr
z [m, q] = Êr

z [m]ejωq∆t = ˆ̃Γejβ̃1m∆xejωq∆t , (7.48)

Êt
z[m, q] = Êt

z[m]ejωq∆t = ˆ̃Te−jβ̃2m∆xejωq∆t (7.49)

where ˆ̃Γ and ˆ̃T are the FDTD reflection and transmission coefficients, respectively. Note that all
fields will have the common temporal phase factor exp(jωq∆t). Therefore this term will not be
explicitly written (its existence is implicit in the fact that we are doing harmonic analysis).

As shown in the previous section, the characteristic impedance in the FDTD grid is exact.
Therefore the magnetic fields can be related to the electric fields in the same manner as they are in
the continuous world, i.e.,

Ĥ i
y[m] = − 1

η1
e−jβ̃1m∆x , (7.50)

Ĥr
y [m] =

ˆ̃Γ

η1
ejβ̃1m∆x , (7.51)

Ĥ t
y[m] = −

ˆ̃T

η2
e−jβ̃2m∆x . (7.52)

The incident and reflected waves exist to the left of the interface and the transmitted field exists
to the right of the interface. The magnetic field at the interface, i.e., the node at x = 0 is, in a sense,
common to both the left and the right half-spaces. The field at this node can be described equally
well as the sum of the incident and reflected waves or by the transmitted wave. This node enforces
the continuity of the magnetic field across the boundary. Hence, just as in the continuous world,
the fields are governed by the equation

− 1

η1
+

ˆ̃Γ

η1
= −

ˆ̃T

η2
. (7.53)

In the continuous world enforcing the continuity of the tangential electric and magnetic fields
at a boundary yields two equations. These two equations can be used to solve for the reflection
and transmission coefficients as was shown in Sec. 5.8.1. In FDTD, however, there are no electric
field nodes that coincide with the interface (at least not with this geometry). Therefore continuity
of the electric fields cannot be enforced directly nor is there a readily available second equation
with which to solve for the reflection and transmission coefficients.

The necessary second equation is obtained by considering the update equation for the magnetic
field at the interface. This node depends on the electric field to either side of the interface and hence
ties the two half-spaces together. Specifically, the harmonic form of Faraday’s law which governs
the magnetic-field node at the interface can be used to write the following

µs1/2x ∂̃tĤ
q
y [m]

∣∣∣
x=0

= s1/2x ∂̃xÊ
q
z [m]

∣∣∣
x=0

, (7.54)

µjΩĤy[m]
∣∣∣
x=0

=
1

∆x

(
s1/2x − s−1/2

x

)
Êz[m]

∣∣∣∣
x=0

, (7.55)

jΩĤy[m]
∣∣∣
x=0

=
1

µ∆x

(
ˆ̃Te−jβ̃2∆x/2 −

[
ejβ̃1∆x/2 + ˆ̃Γe−jβ̃1∆x/2

])
. (7.56)



7.6. ANALYTIC FDTD REFLECTION AND TRANSMISSION COEFFICIENTS 171

In the last form of the equation, we have used the fact that the transmitted field is present when
space is shifted a half spatial-step in the +x direction relative to the boundary. Conversely the field
is the sum of the incident and reflected waves when space is shifted a half spatial-step in the −x
direction relative to the boundary.

Equation (7.56) provides the second equation which, when coupled to (7.53), can be used to
solve for the transmission and reflection coefficients. However, what is Ĥy[m]

∣∣∣
x=0

? Since this
node is on the interface, the expression for either the transmitted field or the sum of the incident
and reflected field can be used. Using the transmitted field (evaluated at m = 0), the equation
becomes

jΩ

(
−

ˆ̃T

η2

)
=

1

µ∆x

(
ˆ̃Te−jβ̃2∆x/2 −

[
ejβ̃1∆x/2 + ˆ̃Γe−jβ̃1∆x/2

])
. (7.57)

Regrouping terms yields

ejβ̃1∆x/2 + ˆ̃Γe−jβ̃1∆x/2 =

(
e−jβ̃2∆x/2 + j

Ωµ∆x

η2

)
ˆ̃T. (7.58)

After multiplying through by −η1 exp(−jβ̃1∆x/2), (7.53) becomes

e−jβ̃1∆x/2 − ˆ̃Γe−jβ̃1∆x/2 =
η1
η2
e−jβ̃1∆x/2 ˆ̃T. (7.59)

Adding the left- and right-hand sides of (7.58) and (7.59) yields an expression that does not depend
on the reflection coefficient. Multiplying this expression through by η2 yields

η2

(
ejβ̃1∆x/2 + e−jβ̃1∆x/2

)
=
(
η1e

−jβ̃1∆x + η2e
−jβ̃2∆x/2 + jΩµ∆x

)
ˆ̃T. (7.60)

Let us consider the third term in parentheses on the right-hand side. Recall from (7.35) that Ω =
Kx/

√
µϵ. Taking the material and propagation constants that pertain in the second medium,† we

can write

jΩµ∆x = j
Kx2√
µϵ2

µ∆x, (7.61)

= j

√
µ

ϵ2

2

∆x

sin

(
β̃2∆x

2

)
∆x, (7.62)

= jη22

(
ejβ̃2∆x/2 − e−jβ̃2∆x/2

j2

)
, (7.63)

= η2

(
ejβ̃2∆x/2 − e−jβ̃2∆x/2

)
, (7.64)

where (7.22) was used to go from (7.61) to (7.62). Plugging this final form into (7.60), employing
Euler’s formula, and solving for the transmission coefficient yields

ˆ̃T =
2η2 cos

(
β̃1∆x

2

)
η1e−jβ̃1∆x/2 + η2ejβ̃2∆x/2

. (7.65)

†As will be more obvious at the end of this derivation, we could instead select the material properties that pertain
in the first medium and still obtain the same final result.



172 CHAPTER 7. DISPERSION, IMPEDANCE, REFLECTION, AND TRANSMISSION

This can be compared to the exact transmission coefficient which is given in (5.94). At first it
may appear that these are quite dissimilar. However, if the discretization is sufficiently small, the
cosine and complex exponentials are close to unity (and become one as the discretization goes
to zero). Hence the FDTD reflection coefficient reduces to the exact reflection coefficient as the
discretization goes to zero.

The complex exponentials in (7.65) make it appear that the FDTD transmission coefficient is
complex. This would impart a phase shift to the transmitted field that is not present in the contin-
uous world. However, this is not the case—(7.65) can be simplified further. The one-dimensional
dispersion relation (7.36) dictates that

sin

(
β̃∆x

2

)
=

√
ϵµ∆x

∆t

sin

(
ω∆t

2

)
. (7.66)

Now consider the denominator of (7.65)

η1e
−jβ̃1∆x/2 + η2e

jβ̃2∆x/2

= η1

(
cos

(
β̃1∆x

2

)
− j sin

(
β̃1∆x

2

))
+ η2

(
cos

(
β̃2∆x

2

)
+ j sin

(
β̃2∆x

2

))
(7.67)

Using (7.66) to convert the sine terms and employing the definition of impedance, the denominator
can be written

η1 cos

(
β̃1∆x

2

)
+ η2 cos

(
β̃2∆x

2

)

−j
√
µ

ϵ1

√
ϵ1µ∆x

∆t

sin

(
ω∆t

2

)
+ j

√
µ

ϵ2

√
ϵ2µ∆x

∆t

sin

(
ω∆t

2

)
. (7.68)

Upon canceling the ϵ’s, the imaginary parts cancel and hence the denominator is purely real. There-
fore another expression for the FDTD transmission coefficient is

ˆ̃T =
2η2 cos

(
β̃1∆x

2

)
η2 cos

(
β̃2∆x

2

)
+ η1 cos

(
β̃1∆x

2

) . (7.69)

Combining this with (7.53) yields the reflection coefficient

ˆ̃Γ =
η2 cos

(
β̃2∆x

2

)
− η1 cos

(
β̃1∆x

2

)
η2 cos

(
β̃2∆x

2

)
+ η1 cos

(
β̃1∆x

2

) . (7.70)

Because the permeability is assumed to be constant throughout the computational domain, the
reflection and transmission coefficients can be written as

ˆ̃T =
2
√
ϵ1 cos

(
β̃1∆x

2

)
√
ϵ1 cos

(
β̃2∆x

2

)
+
√
ϵ2 cos

(
β̃1∆x

2

) , (7.71)

ˆ̃Γ =

√
ϵ1 cos

(
β̃2∆x

2

)
−√

ϵ2 cos
(
β̃1∆x

2

)
√
ϵ1 cos

(
β̃2∆x

2

)
+
√
ϵ2 cos

(
β̃1∆x

2

) . (7.72)



7.7. REFLECTION FROM A PEC 173

10 15 20 25 30 35 40

Points per wavelength, N
λ

−0.42

−0.4

−0.38

−0.36

−0.34

−0.32

R
ef

le
ct

io
n
 C

o
ef

fi
ci

en
t,

 Γ

Exact
FDTD

ε
1
 = 1.0 ε

2
 = 4.0

Figure 7.4: Reflection coefficient versus discretization for a wave traveling from free space to a
dielectric with a relative permittivity of 4.0 (i.e., ϵr1 = 1.0 and ϵr2 = 4.0). The Courant number
is Sc = 1/

√
3. The discretization Nλ shown on the horizontal axis is that which pertains to free

space. (These values should be halved to give the discretization pertaining to the dielectric.)

Figure 7.4 shows a plot of the FDTD reflection coefficient versus the points per wavelength (in
free space) when a wave is incident from free space to a dielectric with a relative permittivity of
4.0. Despite this nominally being a 1D problem, the Courant number is Sc = 1/

√
3 (corresponding

to the 3D limit). For these materials the exact reflection coefficient, which is independent of the
discretization and is also shown in the plot, is Γ̂ = (1−2)/(1+2) = −1/3. When the discretization
is 10 points per wavelength the FDTD reflection coefficient is nearly −0.42 which corresponds to
an error of approximately 26 percent. This error is rather large, but one must keep in mind that in
the dielectric the discretization is only five points per wavelength. This coarse discretization affects
the quality of the results throughout the computational domain, not just in the dielectric. Thus,
even though one may ultimately be interested in the fields over only a portion of the computational
domain, nevertheless, one must assure that a proper level of discretization is maintained throughout
the grid.

7.7 Reflection from a PEC
A perfect electric conductor is realized by setting to zero electric field nodes. Let us assume that
one wants to continue to define the interface as shown in Fig. 7.3, i.e., the boundary is assumed



174 CHAPTER 7. DISPERSION, IMPEDANCE, REFLECTION, AND TRANSMISSION

Ez

Hy HyHy

Ez=0Ez

ε1 ε1

µ µµHy

Ez

position, x

x=0
incident + reflected field

Figure 7.5: One-dimensional space with a perfect electric conductor realized by setting an electric
field node to zero. No fields propagate beyond the zeroed node. The reference point x = 0 is still
assumed to coincide with a magnetic-field node.

to coincide with a magnetic-field node. The new scenario is shown in Fig. 7.5. The electric-field
node to the right of the interface is set to zero. We now seek to find the reflection coefficient for
this case. There is no transmitted field so the transmission coefficient ˆ̃T must be zero. That might
lead one to think, given (7.53), that the reflection coefficient must be −1 as it is in the continuous
world for a PEC boundary. However, that is not correct. Implicit in (7.53) is the assumption that
the magnetic field is continuous across the interface. When a PEC is present, this is no longer the
case. In the continuous world the discontinuity in the magnetic field is accounted for by a surface
current.

When a PEC is present there is only one unknown, the reflection coefficient can be obtained
from a single equation since the transmission coefficient is known a priori. This equation is pro-
vided, as before, by the update equation of the magnetic-field node at the interface. To this end,
(7.56) is used with the transmission coefficient set to zero. Also, instead of using the transmitted
form of the magnetic field at the interface as was done to obtain (7.57), the sum of the incident and
reflected fields is used to obtain:

jΩ

(
− 1

η1
+

ˆ̃Γ

η1

)
=

1

µ∆x

(
0−

[
ejβ̃1∆x/2 + ˆ̃Γe−jβ̃1∆x/2

])
. (7.73)

Solving for the reflection coefficient yields

ˆ̃ΓPEC =
jΩµ∆x − η1e

jβ̃1∆x/2

jΩµ∆x + η1e−jβ̃1∆x/2
. (7.74)

As was shown in (7.61)–(7.64), the factor jΩµ∆x can be expressed in terms of the impedance and a
difference of complex exponentials. Employing such a conversion allows the reflection coefficient
to be written as

ˆ̃ΓPEC = −e−jβ̃1∆x . (7.75)

Note that the magnitude of the reflection coefficient is unity so that the entire incident field, regard-
less of the frequency, is reflected from the interface.

It appears that the FDTD reflection coefficient for a PEC is introducing a shift that is not present
in the continuous world. However, this is being a bit unfair to the FDTD method. The location



7.8. INTERFACE ALIGNED WITH AN ELECTRIC-FIELD NODE 175

Ez

Hy Hy Hy HyHy

EzEzEzEz

ε1 ε1 ε2 ε2

µ µµ µµ

εa

Hy

Ez

position, x

x=0
transmitted fieldincident + reflected field

Figure 7.6: One-dimensional space with a discontinuity in permittivity. The interface in the con-
tinuous world corresponds to an electric-field node in the FDTD grid. The permittivity to the left
of the interface is ϵ1 and is ϵ2 to the right. These values are dictated by those in the continuous
world. The permittivity of the node at the interface is ϵa.

of the PEC boundary really corresponds to the electric-field node that was set to zero. Thus, one
should really think of the PEC boundary existing at x = ∆x/2.

In the continuous world, let us consider a scenario where the origin is located a distance ∆x/2
in front of a PEC boundary. In that case the incident and reflected fields must sum to zero at
x = ∆x/2, i.e.,

E inc(x) + Eref(x)
∣∣
x=∆x/2

= 0, (7.76)

e−jβ1∆x/2 + Γ̂ejβ1∆x/2 = 0. (7.77)

Thus, in the continuous world the reflection coefficient is

Γ̂ = −e−jβ1∆x . (7.78)

When first comparing (7.75) and (7.78) it may appear that in this case the FDTD reflection coeffi-
cient is exact. However the two differ owing to the fact that phase constants β1 and β̃1 are different
in the two domains.

7.8 Interface Aligned with an Electric-Field Node
There are situations which necessitate that a discontinuity in permittivity be modeled as coinciding
with an electric field node. The permittivity that should be used to either side of the interface is
unambiguous but the permittivity of the node at the interface is open to question since it is neither in
one half-space nor the other. This scenario was mentioned in Sec. 3.11 where it was suggested that
the average permittivity be used for the node at the interface. In this section we wish to provide
a more rigorous analysis to justify this permittivity. For now, let the permittivity of the node at
the interface be ϵa as depicted in Fig. 7.6. The goal now is to find the reflection or transmission
coefficients for this geometry and find the value of ϵa which yields the best agreement with the
continuous-world values.

Although the origin x = 0 has shifted from that which was assumed in the previous section,
the incident, reflected, and transmitted fields are still assumed to be given by (7.47)–(7.49) and
(7.50)–(7.52). The electric-field node at the interface is a member of both half-spaces, i.e., the



176 CHAPTER 7. DISPERSION, IMPEDANCE, REFLECTION, AND TRANSMISSION

field is the same whether considered to be the sum of the incident and reflected field or simply to
be the transmitted field. This yields a boundary condition of

1 + ˆ̃Γ = ˆ̃T. (7.79)

Another equation relating the transmission and reflection coefficients is obtained via the update
equation for the electric-field node at the interface. Ampere’s law evaluated at the interface is

jϵaΩ
ˆ̃T =

1

∆x

(
−

ˆ̃T

η2
e−jβ̃2∆x/2 −

[
− 1

η1
ejβ̃1∆x/2 +

ˆ̃Γ

η1
e−jβ̃1∆x/2

])
. (7.80)

Using (7.79) ˆ̃T can be replaced with 1 + ˆ̃Γ. Then solving for ˆ̃Γ yields

ˆ̃Γ =
η2e

jβ̃1∆x/2 − η1e
−jβ̃2∆x/2 − jη1η2ϵaΩ∆x

η2e−jβ̃1∆x/2 + η1e−jβ̃2∆x/2 + jη1η2ϵaΩ∆x

. (7.81)

The term Ω∆x can be written as

Ω∆x =
2

∆t

sin

(
ω∆t

2

)
∆x, (7.82)

= 2c
∆x

c∆t

sin

(
ω∆t

2

)
, (7.83)

= 2c
1

Sc
sin

(
2πc

Nλ∆x

∆t

2

)
, (7.84)

= 2c
1

Sc
sin

(
π

Nλ

Sc

)
. (7.85)

The conversion of ω∆t/2 to πSc/Nλ was discussed in connection with (5.80). Using this last form
of Ω∆x, the third term in the numerator and denominator of (7.81) can be written

jη1η2ϵaΩ∆x = j

√
µ

ϵ0ϵr1

√
µ

ϵ0ϵr2
2cϵ0ϵra

1

Sc
sin

(
π

Nλ

Sc

)
, (7.86)

= j
ϵra√
ϵr1ϵr2

µ

ϵ0
2cϵ0

1

Sc
sin

(
π

Nλ

Sc

)
, (7.87)

= j
ϵra√
ϵr1ϵr2

2µc
1

Sc
sin

(
π

Nλ

Sc

)
, (7.88)

where ϵra is the relative permittivity of the node at the interface.
Assume that the permeability throughout the computational domain is the permeability of free

space so that µc in (7.88) can be written µ0c = µ0/
√
µ0ϵ0 =

√
µ0/ϵ0 = η0. The reflection

coefficient (7.81) can now be written as

ˆ̃Γ =

1√
ϵr2
η0e

jβ̃1∆x/2 − 1√
ϵr1
η0e

−jβ̃2∆x/2 − j ϵra√
ϵr1ϵr2

η0
2
Sc

sin
(

π
Nλ
Sc

)
1√
ϵr2
η0e−jβ̃1∆x/2 + 1√

ϵr1
η0e−jβ̃2∆x/2 + j ϵra√

ϵr1ϵr2
η0

2
Sc

sin
(

π
Nλ
Sc

) . (7.89)



7.8. INTERFACE ALIGNED WITH AN ELECTRIC-FIELD NODE 177

Multiplying numerator and denominator by
√
ϵr1ϵr2/η0 yields

ˆ̃Γ =

√
ϵr1e

jβ̃1∆x/2 −√
ϵr2e

−jβ̃2∆x/2 − jϵra
2
Sc

sin
(

π
Nλ
Sc

)
√
ϵr1e−jβ̃1∆x/2 +

√
ϵr2e−jβ̃2∆x/2 + jϵra

2
Sc

sin
(

π
Nλ
Sc

) . (7.90)

As is often the case, the expression for a quantity in the FDTD grid bears little resemblance to
that in the continuous world. However, as the discretization goes to zero (i.e., Nλ goes to infinity),
(7.90) does indeed reduce to the reflection coefficient in the continuous world.

The first two terms in the numerator and denominator of (7.90) depend on the material constants
to either side of the interface while the third term depends on the permittivity at the interface, the
Courant number, and the number of points per wavelength (in continuous-world free space). We
now seek the value of ϵa (or the corresponding relative permittivity ϵra) which minimizes the
difference between the reflection coefficient in the continuous world and the one in the FDTD
world. It is important to note that in general the FDTD reflection coefficient in this case is truly
complex—there will be a phase shift imparted that does not exist in the continuous world.

Before going further with the analysis, let us consider an example with specific parameters and
graphically solve for the optimum value of ϵa. Let ϵr1 = 1, ϵr2 = 4, and the discretization be
10 points per wavelength. In this case the reflection coefficient in the continuous world is −1/3
(independent of frequency). Figure 7.7 shows the FDTD reflection coefficient in the complex plane
for various values of ϵra. The continuous-world result, i.e., the exact result, is a single point on the
negative real axis. As ϵra varies a curve is obtained in the complex plane which is closest to the
exact value when ϵra is 2.5 which is the arithmetic average of 1 and 4. Thus the optimum value for
the interface permittivity is the average of the permittivities to either side. However, these results
are only for a specific discretization and for one set of permittivities. Is the average value the
optimum one for all permittivities and discretizations?

To answer this question, let us return to (7.81) and separate the numerator and denominator
into real and imaginary parts. The result is

ˆ̃Γ =
η2 cos(κ1)− η1 cos(κ2) + j [η2 sin(κ1) + η1 sin(κ2)− η1η2ϵaΩ∆x]

η2 cos(κ1) + η1 cos(κ2)− j [η2 sin(κ1) + η1 sin(κ2)− η1η2ϵaΩ∆x]
(7.91)

where

κ1 = β̃1∆x/2, (7.92)
κ2 = β̃2∆x/2. (7.93)

The continuous-world reflection coefficient is purely real and thus any imaginary part is an error.
Furthermore, the imaginary part goes to zero as the discretization goes to zero. Let us consider just
this imaginary part of the numerator and denominator. The sin(κ) terms can be related to the K
terms which have been used previously—one merely had to multiply (and divide) by 2/∆x. Thus
the imaginary part can be written

η2
2

∆x

sin(κ1)
∆x

2
+η1

2

∆x

sin(κ2)
∆x

2
−η1η2ϵaΩ∆x = η1η2

∆x

2

(
1

η1
K1 +

1

η2
K2 − 2ϵaΩ

)
. (7.94)



178 CHAPTER 7. DISPERSION, IMPEDANCE, REFLECTION, AND TRANSMISSION

-0.35 -0.3 -0.25 -0.2 -0.15

Real part of Γ

-0.1

-0.05

0

0.05

0.1

Im
ag

in
ar

y
 p

ar
t 

o
f 

Γ

Exact

ε
ra

 = 4.0

ε
ra

 = 3.5

ε
ra

 = 3.0

ε
ra

 = 2.5

ε
ra

 = 2.0

ε
ra

 = 1.5

ε
ra

 = 1.0

FDTD

ε
ra

ε
r1

 = 1.0 ε
r2

 = 4.0

Figure 7.7: Curve showing the FDTD reflection coefficient in the complex plane as a function
of ϵra as ϵra varies between the relative permittivity to the left of the interface (ϵra = 1) and the
relative permittivity to the right of the interface (ϵra = 4). The value of ϵra which minimizes the
difference between the FDTD reflection coefficient and the exact value of −1/3 is the average
permittivity, i.e., ϵra = 2.5.



7.8. INTERFACE ALIGNED WITH AN ELECTRIC-FIELD NODE 179

From the dispersion relation 7.33 we know that K1 =
√
µϵ1Ω and K2 =

√
µϵ2Ω. This allows the

imaginary part of the numerator and denominator of the reflection coefficient to be written

η1η2
∆x

2
Ω (ϵ1 + ϵ2 − 2ϵa) . (7.95)

Setting ϵa equal to (ϵ1 + ϵ2)/2 will yield zero for this imaginary term. Hence the average permit-
tivity is the optimum value for all permittivities and discretizations! Using the average permittivity
yields reflection and transmission coefficients of

ˆ̃Γ =
η2 cos(κ1)− η1 cos(κ2)

η2 cos(κ1) + η1 cos(κ2)
, (7.96)

ˆ̃T =
2η2 cos(κ1)

η2 cos(κ1) + η1 cos(κ2)
. (7.97)

Note that these equations appear almost identical to those which pertained to the case of an abrupt
interface (i.e., when no averaging is done and the resulting reflection and transmission coefficients
are (7.70) and (7.69)). However, these equations differ in the arguments of the cosine terms and,
in fact, it can be shown that the abrupt boundary is slightly more accurate than the one which is
implemented with the average permittivity at the interface. Nevertheless, when the situation calls
for the interface to coincide with a tangential electric field, the average permittivity is the optimum
one to use.



180 CHAPTER 7. DISPERSION, IMPEDANCE, REFLECTION, AND TRANSMISSION



Chapter 8

Two-Dimensional FDTD Simulations

8.1 Introduction
One of the truly compelling features of the FDTD method is that the simplicity the method enjoys
in one dimension is largely maintained in higher dimensions. The complexity of other numerical
techniques often increases substantially as the number of dimensions increases. With the FDTD
method, if you understand the algorithm in one dimension, you should have no problem under-
standing the basic algorithm in two or three dimensions. Nevertheless, introducing additional
dimensions has to come at the price of some additional complexity.

This chapter provides details concerning the implementation of two-dimensional simulations
with either the magnetic field or the electric field orthogonal to the normal to the plane of propa-
gation, i.e., TMz or TEz polarization, respectively. Multidimensional simulations require that we
think in terms of a multidimensional grid and thus we require multidimensional arrays to store the
fields. Since we are primarily interested in writing programs in C, we begin with a discussion of
multidimensional arrays in the C language.

8.2 Multidimensional Arrays
Whether an array is one-, two-, or three-dimensional, it ultimately is using a block of contiguous
memory where each element has a single address. The distinction between the different dimensions
is primarily a question of how we want to think about, and access, array elements. For higher-
dimensional arrays, we want to specify two, or more, indices to dictate the element of interest.
However, regardless of the number of indices, ultimately a single address dictates which memory
is being accessed. The translation of multiple indices to a single address can be left to the compiler
or that translation is something we can do ourselves.

The code shown in Fragment 8.1 illustrates how one can think and work with what is effec-
tively a two-dimensional array even though the memory allocation is essentially the same as was
used with the one-dimensional array considered in Fragment 4.1. In Fragment 8.1 the user is
prompted to enter the desired number of rows and columns which are stored in num rows and
num columns, respectively. In line 8 the pointer ez is set to the start of a block of memory

†Lecture notes by John Schneider. fdtd-multidimensional.tex

181



182 CHAPTER 8. TWO-DIMENSIONAL FDTD SIMULATIONS

which can hold num rows × num columns doubles. Thus sufficient space is available to store
the desired number of rows and columns, but this pointer is dereferenced with a single index (or
offset).

Fragment 8.1 Fragment of code demonstrating the construction of a two-dimensional array.

1 #define Ez(I, J) ez[(I) * num_columns + (J)]

...
2 double *ez;
3 int num_rows, num_columns, m, n;
4

5 printf("Enter the number of row and columns: ");
6 scanf("%d %d", &num_rows, &num_columns);
7

8 ez = calloc(num_rows * num_columns, sizeof(double));
9

10 for (m=0; m < num_rows; m++)
11 for (n=0; n < num_columns; n++)
12 Ez(m, n) = m * n;

In this code the trick to thinking and working in two dimensions, i.e., working with two indices
instead of one, is the macro which is shown in line 1. This macro tells the preprocessor that
every time the string Ez appears with two arguments—here the first argument is labeled I and the
second argument is labeled J—the compiler should translate that to ez[(I) * num columns
+ (J)]. Note the uppercase E in Ez distinguishes this from the pointer ez. I and J in the
macro are just dummy arguments. They merely specify how the first and second arguments should
be used in the translated code. Thus, if Ez(2, 3) appears in the source code, the macro tells
the preprocessor to translate that to ez[(2) * num columns + (3)]. In this way we have
specified two indices, but the macro translates those indices into an expression which evaluates
to a single number which represents the offset into a one-dimensional array (the array ez). Even
though Ez is technically a macro, we will refer to it as an array. Note that, as seen in line 12, Ez’s
indices are enclosed in parentheses, not brackets.

To illustrate this further, assume the user specified that there are 4 columns (num columns is
4) and 3 rows. When the row number increments by one, that corresponds to moving 4 locations
forward in memory. The following shows the arrangement of the two-dimensional array Ez(m,
n) where m is used for the row index and n is used for the column index.

n=0 n=1 n=2 n=3
m=0 Ez(0, 0) Ez(0, 1) Ez(0, 2) Ez(0, 3)
m=1 Ez(1, 0) Ez(1, 1) Ez(1, 2) Ez(1, 3)
m=2 Ez(2, 0) Ez(2, 1) Ez(2, 2) Ez(2, 3)

The Ez array really corresponds to the one-dimensional ez array. The macro calculates the index
for the ez array based on the arguments (i.e., indices) of the Ez array. The following shows the
same table of values, but in terms of the ez array.



8.2. MULTIDIMENSIONAL ARRAYS 183

n=0 n=1 n=2 n=3
m=0 ez[0] ez[1] ez[2] ez[3]
m=1 ez[4] ez[5] ez[6] ez[7]
m=2 ez[8] ez[9] ez[10] ez[11]

Again, in this example, when the row is incremented by one, the array index is incremented by 4
(which is the number of columns). This is due to the fact that we are storing the elements by rows.
An entire row of values is stored, then the next row, and so on. Each row contains num columns
elements.

Instead of storing things by rows, we could have easily employed “column-centric storage”
where an entire column is stored contiguously. This would be accomplished by using the macro

#define Ez(I, J) ez[(I) + (J) * num_rows]

This would be used instead of line 1 in Fragment 8.1. If this were used, each time the row is
incremented by one the index of ez is incremented by one. If the column is incremented by one,
the index of ez would be incremented by num rows. In this case the elements of the ez array
would correspond to elements of the Ez array as shown below:

n=0 n=1 n=2 n=3
m=0 ez[0] ez[3] ez[6] ez[9]
m=1 ez[1] ez[4] ez[7] ez[10]
m=2 ez[2] ez[5] ez[8] ez[11]

Note that when the row index is incremented by one, the index of ez is also incremented by
one. However, when the column is incremented by one, the index of ez is incremented by 3,
which is the number of rows. This type of column-centric storage is used in FORTRAN. However,
multidimensional arrays in C are generally assumed to be stored in row-order. Thus column-
centric storage will not be considered further and we will use row-centric macros similar to the
one presented in Fragment 8.1.

When an array is stored by rows, it is most efficient to access the array one row at a time—not
one column at a time. Lines 10 through 12 of Fragment 8.1 demonstrate this by using two loops to
set the elements of Ez to the product of the row and column indices. The inner loop is over the row
and the outer loop sets the column. This is more efficient than if these loops were interchanged
(although there is likely to be no difference for small arrays). This is a consequence of the way
memory is stored both on the disk and in the CPU cache.

Memory is accessed in small chunks known as pages. If the CPU needs access to a certain
variable that is not already in the cache, it will generate a page fault (and servicing a page fault
takes more time than if the variable were already in the cache). When the page gets to the cache
it contains more than just the variable the CPU wanted—it contains other variables which were
stored in memory adjacent to the variable of interest (the page may contain many variables). If the
subsequent CPU operations involve a variable that is already in the cache, that operation can be
done very quickly. It is most likely that that variable will be in the cache, and the CPU will not
have to generate a page fault, if that variable is adjacent in memory to the one used in the previous
operation. Thus, assuming row-centric storage, working with arrays row-by-row is the best way to
avoid needless page faults.

It is important to note that we should not feel constrained to visualize our arrays in terms of the
standard way in which arrays are displayed! Typically two-dimensional arrays are displayed in a



184 CHAPTER 8. TWO-DIMENSIONAL FDTD SIMULATIONS

table with the first element in the upper, left-hand corner of the table. The first index gives the row
number and the second index gives the column number. FDTD simulations are modeling a physical
space, not a table of numbers. In two dimensions we will be concerned with spatial dimensions x
and y. It is convention to give the x location as the first argument and the y location as the second
argument, i.e., Ez(x, y). It is also often the case that it is convenient to think of the lower left-hand
corner of some finite rectangular region of space as the origin. It is perfectly acceptable to use
the array mechanics which have been discussed so far but to imagine them corresponding to an
arrangement in space which corresponds to our usual notion of variation in the x and y directions.
So, for example, in the case of a 3 by 4 array, one can visualize the nodes as being arranged in the
following way:

n=3 Ez(0,3) Ez(1,3) Ez(2,3) n=3 ez[3] ez[7] ez[11]
n=2 Ez(0,2) Ez(1,2) Ez(2,2) n=2 ez[2] ez[6] ez[10]
n=1 Ez(0,1) Ez(1,1) Ez(2,1) ⇐⇒ n=1 ez[1] ez[5] ez[9]
n=0 Ez(0,0) Ez(1,0) Ez(2,0) n=0 ez[0] ez[4] ez[8]

m=0 m=1 m=2 m=0 m=1 m=2

Nothing has changed in terms of the implementation of the macro to realize this two-dimensional
array—the only difference is the way the elements have been displayed. The depiction here is
natural when thinking in terms of variations in x and y, where the first index corresponds to x and
the second index corresponds to y. The previous depiction was natural to the way most people
discuss tables of data. Regardless of how we think of the arrays, it is still true that the second index
is the one that should vary most rapidly in the case of nested loops (i.e., one should strive to have
consecutive operations access consecutive elements in memory).

As mentioned in Sec. 4.2, it is always best to check that an allocation of memory was success-
ful. If calloc() is unable to allocated the requested memory, it will return NULL. After every
allocation we could add code to check that the request was successful. However, as we did in
one-dimension, a better approach is again offered with the use of macros. Fragment 8.2 shows a
macro that can be used to allocate memory for a two-dimensional array.

Fragment 8.2 Macro for allocating memory for a two-dimensional array.

1 #define ALLOC_2D(PNTR, NUMX, NUMY, TYPE) \
2 PNTR = (TYPE *)calloc((NUMX) * (NUMY), sizeof(TYPE)); \
3 if (!PNTR) { \
4 perror("ALLOC_2D"); \
5 fprintf(stderr, \
6 "Allocation failed for " #PNTR ". Terminating...\n");\
7 exit(-1); \
8 }

The macro ALLOC 2D() is similar to ALLOC 1D(), which was presented in Fragment 4.2, except
it takes four arguments instead of three. The first argument is a pointer, the second is the number
of rows, the third is the number of columns, and the fourth is the data type. As an example of how
this macro could be used, line 8 of Fragment 8.1 could be replaced with



8.3. TWO DIMENSIONS: TMz POLARIZATION 185

ALLOC_2D(ez, num_rows, num_columns, double);

8.3 Two Dimensions: TMz Polarization
The one-dimensional problems considered thus far assumed a non-zero z component of the electric
field and variation only in the x direction. This required the existence of a non-zero y component
of the magnetic field. Here the field is assumed to vary in both the x and y directions, but not the
z direction. From the outset we will include the possibility of a magnetic conductivity σm. With
these assumptions Faraday’s law becomes

−σmH− µ
∂H

∂t
= ∇× E =

∣∣∣∣∣∣
âx ây âz
∂
∂x

∂
∂y

0

0 0 Ez

∣∣∣∣∣∣ = âx
∂Ez
∂y

− ây
∂Ez
∂x

. (8.1)

Since the right-hand side only has non-zero components in the x and y directions, the time-varying
components of the magnetic field can only have non-zero x and y components (we are not con-
cerned with static fields nor a rather pathological case where the magnetic current σmH cancels
the time-varying field ∂H/∂t). The magnetic field is transverse to the z direction and hence this is
designated the TMz case. Ampere’s law becomes

σE+ ϵ
∂E

∂t
= ∇×H =

∣∣∣∣∣∣
âx ây âz
∂
∂x

∂
∂y

0

Hx Hy 0

∣∣∣∣∣∣ = âz

(
∂Hy

∂x
− ∂Hx

∂y

)
. (8.2)

The scalar equations obtained from (8.1) and (8.2) are

−σmHx − µ
∂Hx

∂t
=

∂Ez
∂y

, (8.3)

σmHy + µ
∂Hy

∂t
=

∂Ez
∂x

, (8.4)

σEz + ϵ
∂Ez
∂t

=
∂Hy

∂x
− ∂Hx

∂y
. (8.5)

Note that, ignoring the conduction terms for a moment, the temporal derivative of the magnetic
field is related to the spatial derivative of the electric field and vice versa. The only difference
from the one-dimensional case is the additional field component Hx and the derivatives in the y
direction.

Space-time is now discretized so that (8.3)–(8.5) can be expressed in terms of finite-differences.
From these difference equations the future fields can be expressed in terms of past fields. Consis-
tent with the notation used in Sec. 3.3, the following notation will be used:

Hx(x, y, t) = Hx(m∆x, n∆y, q∆t) = Hq
x[m,n] , (8.6)

Hy(x, y, t) = Hy(m∆x, n∆y, q∆t) = Hq
y [m,n] , (8.7)

Ez(x, y, t) = Ez(m∆x, n∆y, q∆t) = Eq
z [m,n] . (8.8)



186 CHAPTER 8. TWO-DIMENSIONAL FDTD SIMULATIONS

As before, the index m corresponds to the spatial step in the x direction while the index q corre-
sponds to the temporal step. Additionally the index n represents the spatial step in the y direction.
The spatial step sizes in the x and y directions are ∆x and ∆y, respectively (these need not be
equal).

In order to obtain the necessary update-equations, each of the field components must be stag-
gered in space. However, it is not necessary to stagger all the field components in time. The electric
field must be offset from the magnetic field, but the magnetic field components do not need to be
staggered relative to each other—all the magnetic field components can exist at the same time. A
suitable spatial staggering of the electric and magnetic field components is shown in Fig. 8.1.

When we say the dimensions of a TMz grid is M × N , that corresponds to the dimensions
of the Ez array. We will ensure the grid is terminated such that there are electric-field nodes on
the edge of the grid. Thus, the Hx array would by M × (N − 1) while the Hy array would be
(M − 1)×N .

In the arrangement of nodes shown in Fig. 8.1 we will assume the electric field nodes fall at
integer spatial steps and the magnetic field nodes are offset a half spatial step in either the x or y
direction. For a given value of the indices m and n, there is a corresponding Ez, Hx, and Hy. We
will sometimes refer to this collection of fields for a fixed value of m and n as a “cell” as indicated
by the dashed enclosures in Fig. 8.1. For a uniform grid where ∆x = ∆y = δ, we will sometimes
use the term “cell” synonomously with the spatial step size. Thus, a statement such as “20 cells
wide” is taken to be a width of 20δ.

As in the one dimensional grid, the electric field is assumed to exist at integer multiples of the
temporal step while both magnetic fields components are offset a half time-step from the electric
fields. With this arrangement in mind, the finite difference approximation of (8.3) expanded about
the space-time point (m∆x, (n+ 1/2)∆y, q∆t) is

−σm
H
q+ 1

2
x

[
m,n+ 1

2

]
+H

q− 1
2

x

[
m,n+ 1

2

]
2

− µ
H
q+ 1

2
x

[
m,n+ 1

2

]
−H

q− 1
2

x

[
m,n+ 1

2

]
∆t

=

Eq
z [m,n+ 1]− Eq

z [m,n]

∆y

. (8.9)

This can be solved for the future valueH
q+ 1

2
x

[
m,n+ 1

2

]
in terms of the “past” values. The resulting

update equation is

H
q+ 1

2
x

[
m,n+

1

2

]
=

1− σm∆t

2µ

1 + σm∆t

2µ

H
q− 1

2
x

[
m,n+

1

2

]
− 1

1 + σm∆t

2µ

∆t

µ∆y

(Eq
z [m,n+ 1]− Eq

z [m,n]) .

(8.10)
As was the case in one dimension, the material parameters µ and σm are those which pertain at the
given evaluation point.

The update equation for the y component of the magnetic field is obtained by the finite-
difference approximation of (8.4) expanded about the space-time point ((m+1/2)∆x, n∆y, q∆t).
The resulting equation is

H
q+ 1

2
y

[
m+

1

2
, n

]
=

1− σm∆t

2µ

1 + σm∆t

2µ

H
q− 1

2
y

[
m+

1

2
, n

]
+

1

1 + σm∆t

2µ

∆t

µ∆x

(Eq
z [m+ 1, n]− Eq

z [m,n]) .

(8.11)



8.3. TWO DIMENSIONS: TMz POLARIZATION 187

same
indices

same
indices

same
indices

same
indices

same
indices

Δx

Δy

Ez(m,n)

y

xz

Hy(m,n)

Hx(m,n)

Ez[m,n]
Hy[m+1/2,n]

Hx[m,n+1/2]
y

xz

Figure 8.1: Spatial arrangement of electric- and magnetic-field nodes for TMz polarization. The
electric-field nodes are shown as circles and the magnetic-field nodes as squares with a line that
indicates the orientation of the field component. The somewhat triangularly shaped dashed lines
indicate groupings of nodes that have the same array indices, i.e., a “cell.” For example, in the lower
left corner of the grid all the nodes would have indices in a computer program of (m = 0, n = 0).
In this case the spatial offset of the fields is implicitly understood. This grouping is repeated
throughout the grid. However, groups at the top of the grid lack an Hx node and groups at the
right edge lack an Hy node. The diagram at the bottom left of the figure indicates nodes with their
offsets given explicitly in the spatial arguments whereas the diagram at the bottom right indicates
how the same nodes would be specified in a computer program where the offsets are understood
implicitly.



188 CHAPTER 8. TWO-DIMENSIONAL FDTD SIMULATIONS

Again, the material parameters µ and σm are those which pertain at the given evaluation point.
Note that Hy nodes are offset in space from Hx nodes. Hence the µ and σm appearing in (8.10)
and (8.11) are not necessarily the same even when m and n are the same.

The electric-field update equation is obtained via the finite-difference approximation of (8.5)
expanded about (m∆x, n∆y, (q + 1/2)∆t):

Eq+1
z [m,n] =

1− σ∆t

2ϵ

1 + σ∆t

2ϵ

Eq
z [m,n] +

1

1 + σ∆t

2ϵ

(
∆t

ϵ∆x

{
H
q+ 1

2
y

[
m+

1

2
, n

]
−H

q+ 1
2

y

[
m− 1

2
, n

]}
− ∆t

ϵ∆y

{
H
q+ 1

2
x

[
m,n+

1

2

]
−H

q+ 1
2

x

[
m,n− 1

2

]})
. (8.12)

A uniform grid is one in which the spatial step size is the same in all directions. Assuming a
uniform grid such that ∆x = ∆y = δ, we define the following quantities

Chxh(m,n+ 1/2) =
1− σm∆t

2µ

1 + σm∆t

2µ

∣∣∣∣∣
mδ,(n+1/2)δ

, (8.13)

Chxe(m,n+ 1/2) =
1

1 + σm∆t

2µ

∆t

µδ

∣∣∣∣∣
mδ,(n+1/2)δ

, (8.14)

Chyh(m+ 1/2, n) =
1− σm∆t

2µ

1 + σm∆t

2µ

∣∣∣∣∣
(m+1/2)δ,nδ

, (8.15)

Chye(m+ 1/2, n) =
1

1 + σm∆t

2µ

∆t

µδ

∣∣∣∣∣
(m+1/2)δ,nδ

, (8.16)

Ceze(m,n) =
1− σ∆t

2ϵ

1 + σ∆t

2ϵ

∣∣∣∣∣
mδ,nδ

, (8.17)

Cezh(m,n) =
1

1 + σ∆t

2ϵ

∆t

ϵδ

∣∣∣∣∣
mδ,nδ

. (8.18)

These quantities appear in the update equations and employ the following naming convention: the
first letter identifies the quantity as a constant which does not vary in time (one can also think of
this C as representing the word coefficient), the next two letters indicate the field being updated,
and the last letter indicates the type of field this quantity multiplies. For example, Chxh appears in
the update equation for Hx and it multiplies the previous value of the magnetic field. On the other
hand, Chxe , which also appears in the update equation for Hx, multiplies the electric fields.

To translate these update equations into a form that is suitable for use in a computer program,
we follow the approach that was used in one dimension: explicit references to the time step are
dropped and the spatial offsets are understood. As illustrated in Fig. 8.1, an Hy node is assumed
to be a half spatial step further in the x direction than the corresponding Ez node with the same
indices. Similarly, anHx node is assumed to be a half spatial step further in the y direction than the
corresponding Ez node with the same indices. Thus, in C, the update equations could be written

Hx(m, n) = Chxh(m, n) * Hx(m, n) -



8.4. TMz EXAMPLE 189

Chxe(m, n) * (Ez(m, n + 1) - Ez(m, n));
Hy(m, n) = Chyh(m, n) * Hy(m, n) +

Chye(m, n) * (Ez(m + 1, n) - Ez(m, n));
Ez(m, n) = Ceze(m, n) * Ez(m, n) +

Cezh(m, n) * ((Hy(m, n) - Hy(m - 1, n)) - (Hx(m, n) - Hx(m, n - 1)));

The reason that the “arrays” appearing in these equations start with an uppercase letter and use
parentheses (instead of two pairs of brackets that would be used with traditional two-dimensional
arrays in C) is because these terms are actually macros consistent with the usage described in
Sec. 8.2. In order for these equations to be useful, they have to be contained within loops that
cycle over the spatial indices and these loops must themselves be contained within a time-stepping
loop. Additional considerations are initialization of the arrays, the introduction of energy, and
termination of the grid. This issues are covered in the following sections.

8.4 TMz Example
To illustrate the simplicity of the FDTD method in two dimensions, let us consider a simulation of a
TMz grid which is 101 nodes by 81 nodes and filled with free space. The grid will be terminated on
electric field nodes which will be left at zero (so that the simulation is effectively of a rectangular
resonator with PEC walls). A Ricker wavelet with 20 points per wavelength at its most energetic
frequency is hardwired to the electric-field node at the center of the grid.

Before we get to the core of the code, we are now at a point where it is convenient to split the
main header file into multiple header files: one defining the Grid structure, one defining various
macros, one giving the allocation macros, and one providing the function prototypes. Not all the
“.c” files need to include each of these header files.

The arrangement of the code is shown in Fig. 8.2. In this figure the header files fdtd-grid1.h,
fdtd-alloc1.h, fdtd-macro-tmz.h, and fdtd-proto1.h are shown in a single box
but they exist as four separate files (as will be shown below).

The contents of fdtd-grid1.h are shown in Program 8.3. The Grid structure, which
begins on line 6, now has elements for any of the possible electric or magnetic field components as
well as their associated coefficient arrays. Note that just because all the pointers are declared, they
do not have to be used or point to anything useful. The Grid structure shown here could be used
for a 1D simulation—it provides elements for everything that was needed to do a 1D simulation—
but most of the pointers would be unused, i.e., those elements that pertain to anything other than a
1D simulation would be ignored.

The way we will distinguish between what different grids are being used for is by setting the
“type” field of the grid. Note that line 4 creates a GRIDTYPE enumeration. This command
merely serves to set the value of oneDGrid to zero, the value of teZGrid to one, and the value
of tmZGrid to two. (The value of threeDGrid would be three, but we are not yet concerned
with three-dimensional grids.) A Grid will have its type set to one of these values. Functions
can then check the type and act accordingly.

Program 8.3 fdtd-grid1.h: Contents of the header file that defines the Grid structure. This
structure now contains pointers for each of the possible field values. However, not all these pointers



190 CHAPTER 8. TWO-DIMENSIONAL FDTD SIMULATIONS

tmzdemo1.c

main()

fdtd-proto1.h

ezinc.h

ricker.c

ezIncInit()
ezInc()

updatetmz.c

updateE2d()
updateH2d()

gridtmz.c

gridInit()

snapshot2d.c

snapshotInit2d()
snapshot2d()

fdtd-alloc1.h

fdtd-macro-tmz.h

fdtd-grid1.h

Figure 8.2: The files associated with a simple TMz simulation with a hard source at the center of
the grid. The four header files with an fdtd- prefix are lumped into a single box. Not all these
files are included in each of the files to which this box is linked. See the code for the specifics
related to the inclusion of these files.



8.4. TMz EXAMPLE 191

would be used for any particular grid. The pointers that are meaningful would be determined by
the “type” of the grid. The type takes on one of the values of the GRIDTYPE enumeration.

1 #ifndef _FDTD_GRID1_H
2 #define _FDTD_GRID1_H
3

4 enum GRIDTYPE {oneDGrid, teZGrid, tmZGrid, threeDGrid};
5

6 struct Grid {
7 double *hx, *chxh, *chxe;
8 double *hy, *chyh, *chye;
9 double *hz, *chzh, *chze;

10 double *ex, *cexe, *cexh;
11 double *ey, *ceye, *ceyh;
12 double *ez, *ceze, *cezh;
13 int sizeX, sizeY, sizeZ;
14 int time, maxTime;
15 int type;
16 double cdtds;
17 };
18

19 typedef struct Grid Grid;
20

21 #endif

The contents of fdtd-alloc1.h are shown in Program 8.4. This header file merely provides
the memory-allocation macros that have been discussed previously.

Program 8.4 fdtd-alloc1.h: Contents of the header file that defines the memory allocation
macros suitable for 1D and 2D arrays.

1 #ifndef _FDTD_ALLOC1_H
2 #define _FDTD_ALLOC1_H
3

4 #include <stdio.h>
5 #include <stdlib.h>
6

7 /* memory allocation macros */
8 #define ALLOC_1D(PNTR, NUM, TYPE) \
9 PNTR = (TYPE *)calloc(NUM, sizeof(TYPE)); \

10 if (!PNTR) { \
11 perror("ALLOC_1D"); \
12 fprintf(stderr, \
13 "Allocation failed for " #PNTR ". Terminating...\n");\
14 exit(-1); \



192 CHAPTER 8. TWO-DIMENSIONAL FDTD SIMULATIONS

15 }
16

17 #define ALLOC_2D(PNTR, NUMX, NUMY, TYPE) \
18 PNTR = (TYPE *)calloc((NUMX) * (NUMY), sizeof(TYPE)); \
19 if (!PNTR) { \
20 perror("ALLOC_2D"); \
21 fprintf(stderr, \
22 "Allocation failed for " #PNTR ". Terminating...\n");\
23 exit(-1); \
24 }
25

26 #endif

The contents of fdtd-macro-tmz.h are shown in Program 8.5. This file provides the
macros used to access the field arrays and elements of a pointer to a Grid structure. Thus far all
the macros we have used assumed the Grid pointer was called g. The macros provided in lines
8–35 no longer make this assumption. Instead, one specifies the name of the pointer as the first
argument. To this point in our code there is no need for this added degree of freedom. We only
considered code that has one pointer to a Grid and we have consistently named it g. However,
as we will see when we discuss the TFSF boundary, it is convenient to have the ability to refer to
different grids.

The macros in lines 39–66 do assume the Grid pointer is named g. These macros are actually
defined in terms of the first set of macros, i.e., the macros in 8–35, where the first argument has
been set to g. This is merely done to provide a cleaner way of writing a program if, in fact, the
Grid pointer is named g. Note that although we are discussing a 2D TMz problem, this file still
provides macros that can be used for a 1D array. Again, we will see, when we implement a 2D
TFSF boundary, there are valid reasons for doing this. Since any function that is using these macros
will also need to know about a Grid structure, line 4 ensures that the fdtd-grid1.h header
file is also included.

Program 8.5 fdtd-macro-tmz.h: Header file providing macros suitable for accessing the
elements and arrays of either a 1D or 2D Grid. There are two distinct sets of macros. The first set
(lines 8–35) takes an argument that specifies the name of the pointer to the Grid structure. The
second set (lines 39–66) assumes the name of the pointer is g.

1 #ifndef _FDTD_MACRO_TMZ_H
2 #define _FDTD_MACRO_TMZ_H
3

4 #include "fdtd-grid1.h"
5

6 /* macros that permit the "Grid" to be specified */
7 /* one-dimensional grid */
8 #define Hy1G(G, M) G->hy[M]
9 #define Chyh1G(G, M) G->chyh[M]



8.4. TMz EXAMPLE 193

10 #define Chye1G(G, M) G->chye[M]
11

12 #define Ez1G(G, M) G->ez[M]
13 #define Ceze1G(G, M) G->ceze[M]
14 #define Cezh1G(G, M) G->cezh[M]
15

16 /* TMz grid */
17 #define HxG(G, M, N) G->hx[(M) * (SizeYG(G)-1) + (N)]
18 #define ChxhG(G, M, N) G->chxh[(M) * (SizeYG(G)-1) + (N)]
19 #define ChxeG(G, M, N) G->chxe[(M) * (SizeYG(G)-1) + (N)]
20

21 #define HyG(G, M, N) G->hy[(M) * SizeYG(G) + (N)]
22 #define ChyhG(G, M, N) G->chyh[(M) * SizeYG(G) + (N)]
23 #define ChyeG(G, M, N) G->chye[(M) * SizeYG(G) + (N)]
24

25 #define EzG(G, M, N) G->ez[(M) * SizeYG(G) + (N)]
26 #define CezeG(G, M, N) G->ceze[(M) * SizeYG(G) + (N)]
27 #define CezhG(G, M, N) G->cezh[(M) * SizeYG(G) + (N)]
28

29 #define SizeXG(G) G->sizeX
30 #define SizeYG(G) G->sizeY
31 #define SizeZG(G) G->sizeZ
32 #define TimeG(G) G->time
33 #define MaxTimeG(G) G->maxTime
34 #define CdtdsG(G) G->cdtds
35 #define TypeG(G) G->type
36

37 /* macros that assume the "Grid" is "g" */
38 /* one-dimensional grid */
39 #define Hy1(M) Hy1G(g, M)
40 #define Chyh1(M) Chyh1G(g, M)
41 #define Chye1(M) Chye1G(g, M)
42

43 #define Ez1(M) Ez1G(g, M)
44 #define Ceze1(M) Ceze1G(g, M)
45 #define Cezh1(M) Cezh1G(g, M)
46

47 /* TMz grid */
48 #define Hx(M, N) HxG(g, M, N)
49 #define Chxh(M, N) ChxhG(g, M, N)
50 #define Chxe(M, N) ChxeG(g, M, N)
51

52 #define Hy(M, N) HyG(g, M, N)
53 #define Chyh(M, N) ChyhG(g, M, N)
54 #define Chye(M, N) ChyeG(g, M, N)
55

56 #define Ez(M, N) EzG(g, M, N)



194 CHAPTER 8. TWO-DIMENSIONAL FDTD SIMULATIONS

57 #define Ceze(M, N) CezeG(g, M, N)
58 #define Cezh(M, N) CezhG(g, M, N)
59

60 #define SizeX SizeXG(g)
61 #define SizeY SizeYG(g)
62 #define SizeZ SizeZG(g)
63 #define Time TimeG(g)
64 #define MaxTime MaxTimeG(g)
65 #define Cdtds CdtdsG(g)
66 #define Type TypeG(g)
67

68 #endif /* matches #ifndef _FDTD_MACRO_TMZ_H */

Finally, the contents of fdtd-proto1.h are shown in Program 8.6. This file provides the
prototypes for the various functions associated with the simulation. Since a pointer to a Grid
appears as an argument to these functions, any file that includes this header will also need to
include fdtd-grid1.h as is done in line 4.

Program 8.6 fdtd-proto1.h: Header file providing the function prototypes.

1 #ifndef _FDTD_PROTO1_H
2 #define _FDTD_PROTO1_H
3

4 #include "fdtd-grid1.h"
5

6 /* Function prototypes */
7 void gridInit(Grid *g);
8

9 void snapshotInit2d(Grid *g);
10 void snapshot2d(Grid *g);
11

12 void updateE2d(Grid *g);
13 void updateH2d(Grid *g);
14

15 #endif

The file tmzdemo1.c, which contains the main() function, is shown in Program 8.7. The
program begins with the inclusion of the necessary header files. Note that only three of the four
fdtd- header files are explicitly included. However, both the header files fdtd-macro-tmz.h
and fdtd-proto1.h ensure that the “missing” file, fdtd-grid1.h, is included.

Fields are introduced into the grid by hardwiring the value of an electric-field node as shown
in line 22. Because the source function is used in main(), the header file ezinc.h had to be
included in this file. Other than those small changes, this program looks similar to many of the 1D
programs which we have previously considered.



8.4. TMz EXAMPLE 195

Program 8.7 tmzdemo1.c: FDTD implementation of a TMz grid with a Ricker wavelet source
at the center of the grid. No ABC have been implemented so the simulation is effectively of a
resonator.

1 /* TMz simulation with Ricker source at center of grid. */
2

3 #include "fdtd-alloc1.h"
4 #include "fdtd-macro-tmz.h"
5 #include "fdtd-proto1.h"
6 #include "ezinc.h"
7

8 int main()
9 {

10 Grid *g;
11

12 ALLOC_1D(g, 1, Grid); // allocate memory for Grid
13

14 gridInit(g); // initialize the grid
15 ezIncInit(g);
16 snapshotInit2d(g); // initialize snapshots
17

18 /* do time stepping */
19 for (Time = 0; Time < MaxTime; Time++) {
20 updateH2d(g); // update magnetic field
21 updateE2d(g); // update electric field
22 Ez(SizeX / 2, SizeY / 2) = ezInc(Time, 0.0); // add a source
23 snapshot2d(g); // take a snapshot (if appropriate)
24 } // end of time-stepping
25

26 return 0;
27 }

The contents of gridtmz.c, which contains the grid initialization function gridInit(),
is shown in Program 8.8. On line 9 the type of grid is defined. This is followed by statements
which set the size of the grid, in both the x and y directions, the duration of the simulation, and
the Courant number. Then, on lines 15 through 23, space is allocated for the field arrays and
their associated coefficients array. Note that although the Ez array is SizeX×SizeY, Hx is
SizeX×(SizeY − 1), and Hy is (SizeX − 1)×SizeY. The remainder of the program merely
sets the coefficient arrays. Here there is no need to include the header file fdtd-proto1.h since
this function does not call any of the functions listed in that file.

Program 8.8 gridtmz.c: Grid initialization function for a TMz simulation. Here the grid is
simply homogeneous free space.



196 CHAPTER 8. TWO-DIMENSIONAL FDTD SIMULATIONS

1 #include "fdtd-macro-tmz.h"
2 #include "fdtd-alloc1.h"
3 #include <math.h>
4

5 void gridInit(Grid *g) {
6 double imp0 = 377.0;
7 int mm, nn;
8

9 Type = tmZGrid;
10 SizeX = 101; // x size of domain
11 SizeY = 81; // y size of domain
12 MaxTime = 300; // duration of simulation
13 Cdtds = 1.0 / sqrt(2.0); // Courant number
14

15 ALLOC_2D(g->hx, SizeX, SizeY - 1, double);
16 ALLOC_2D(g->chxh, SizeX, SizeY - 1, double);
17 ALLOC_2D(g->chxe, SizeX, SizeY - 1, double);
18 ALLOC_2D(g->hy, SizeX - 1, SizeY, double);
19 ALLOC_2D(g->chyh, SizeX - 1, SizeY, double);
20 ALLOC_2D(g->chye, SizeX - 1, SizeY, double);
21 ALLOC_2D(g->ez, SizeX, SizeY, double);
22 ALLOC_2D(g->ceze, SizeX, SizeY, double);
23 ALLOC_2D(g->cezh, SizeX, SizeY, double);
24

25 /* set electric-field update coefficients */
26 for (mm = 0; mm < SizeX; mm++)
27 for (nn = 0; nn < SizeY; nn++) {
28 Ceze(mm, nn) = 1.0;
29 Cezh(mm, nn) = Cdtds * imp0;
30 }
31

32 /* set magnetic-field update coefficients */
33 for (mm = 0; mm < SizeX; mm++)
34 for (nn = 0; nn < SizeY - 1; nn++) {
35 Chxh(mm, nn) = 1.0;
36 Chxe(mm, nn) = Cdtds / imp0;
37 }
38

39 for (mm = 0; mm < SizeX - 1; mm++)
40 for (nn = 0; nn < SizeY; nn++) {
41 Chyh(mm, nn) = 1.0;
42 Chye(mm, nn) = Cdtds / imp0;
43 }
44

45 return;
46 }



8.4. TMz EXAMPLE 197

The functions for updating the fields are contained in the file updatetmz.c which is shown
in Program 8.9. In line 7 the Type is checked (i.e., g->type is checked). If it is oneDGrid
then only the Hy field is updated and it only has a single spatial index. If the grid is not a 1D grid,
it is assumed to be a TMz grid. Thus, starting on line 12, Hx and Hy are updated and they now
have two spatial indices.

Program 8.9 updatetmz.c: Functions to update the fields. Depending on the type of grid, the
fields can be treated as either one- or two-dimensional.

1 #include "fdtd-macro-tmz.h"
2

3 /* update magnetic field */
4 void updateH2d(Grid *g) {
5 int mm, nn;
6

7 if (Type == oneDGrid) {
8 for (mm = 0; mm < SizeX - 1; mm++)
9 Hy1(mm) = Chyh1(mm) * Hy1(mm)

10 + Chye1(mm) * (Ez1(mm + 1) - Ez1(mm));
11 } else {
12 for (mm = 0; mm < SizeX; mm++)
13 for (nn = 0; nn < SizeY - 1; nn++)
14 Hx(mm, nn) = Chxh(mm, nn) * Hx(mm, nn)
15 - Chxe(mm, nn) * (Ez(mm, nn + 1) - Ez(mm, nn));
16

17 for (mm = 0; mm < SizeX - 1; mm++)
18 for (nn = 0; nn < SizeY; nn++)
19 Hy(mm, nn) = Chyh(mm, nn) * Hy(mm, nn)
20 + Chye(mm, nn) * (Ez(mm + 1, nn) - Ez(mm, nn));
21 }
22

23 return;
24 }
25

26 /* update electric field */
27 void updateE2d(Grid *g) {
28 int mm, nn;
29

30 if (Type == oneDGrid) {
31 for (mm = 1; mm < SizeX - 1; mm++)
32 Ez1(mm) = Ceze1(mm) * Ez1(mm)
33 + Cezh1(mm) * (Hy1(mm) - Hy1(mm - 1));
34 } else {
35 for (mm = 1; mm < SizeX - 1; mm++)



198 CHAPTER 8. TWO-DIMENSIONAL FDTD SIMULATIONS

36 for (nn = 1; nn < SizeY - 1; nn++)
37 Ez(mm, nn) = Ceze(mm, nn) * Ez(mm, nn) +
38 Cezh(mm, nn) * ((Hy(mm, nn) - Hy(mm - 1, nn)) -
39 (Hx(mm, nn) - Hx(mm, nn - 1)));
40 }
41

42 return;
43 }

The function for updating the electric field, updateE2d(), only is responsible for updating
the Ez field. However, as shown in line 30, it still must check the grid type. If this is a 1D grid, Ez
only has a single spatial index and only depends on Hy. If it is not a 1D grid, it is assumed to be a
TMz grid and Ez now depends on both Hx and Hy.

The function to implement the Ricker wavelet is shown in Program 8.10. The header file
ezinc.h is virtually unchanged from Program 4.16. The one minor change is that instead of in-
cluding fdtd2.h, now the file fdtd-macro-tmz.h is included. Thus ezinc.h is not shown.
The initialization function ezIncInit() prompts the user to enter the points per wavelength at
which the Ricker wavelet has maximum energy. In line 10 it also makes a local copy of the Courant
number (since the Grid is not passed to the ezInc() function and would not otherwise know
this value).

Program 8.10 ricker.c: Function to implement a Ricker wavelet. This is a traveling-wave
version of the function so ezInc() takes arguments of both time and space.

1 #include "ezinc.h"
2

3 static double cdtds, ppw = 0;
4

5 /* initialize source-function variables */
6 void ezIncInit(Grid *g){
7

8 printf("Enter the points per wavelength for Ricker source: ");
9 scanf(" %lf", &ppw);

10 cdtds = Cdtds;
11 return;
12 }
13

14 /* calculate source function at given time and location */
15 double ezInc(double time, double location) {
16 double arg;
17

18 if (ppw <= 0) {
19 fprintf(stderr,
20 "ezInc: ezIncInit() must be called before ezInc.\n"
21 " Points per wavelength must be positive.\n");



8.4. TMz EXAMPLE 199

22 exit(-1);
23 }
24

25 arg = M_PI * ((cdtds * time - location) / ppw - 1.0);
26 arg = arg * arg;
27

28 return (1.0 - 2.0 * arg) * exp(-arg);
29 }

Finally, snapshot2d.c is shown in Program 8.11. The function snapshotInit2d()
obtains information from the user about the output that is desired. The goal is to write the data so
that the electric field can be visualized over the entire 2D computational domain.

Program 8.11 snapshot2d.c: Function to record the 2D field to a file. The data is stored as
binary data.

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include "fdtd-macro-tmz.h"
4

5 static int temporalStride = -2, frame = 0, startTime,
6 startNodeX, endNodeX, spatialStrideX,
7 startNodeY, endNodeY, spatialStrideY;
8 static char basename[80];
9

10 void snapshotInit2d(Grid *g) {
11

12 int choice;
13

14 printf("Do you want 2D snapshots? (1=yes, 0=no) ");
15 scanf("%d", &choice);
16 if (choice == 0) {
17 temporalStride = -1;
18 return;
19 }
20

21 printf("Duration of simulation is %d steps.\n", MaxTime);
22 printf("Enter start time and temporal stride: ");
23 scanf(" %d %d", &startTime, &temporalStride);
24 printf("In x direction grid has %d total nodes"
25 " (ranging from 0 to %d).\n", SizeX, SizeX - 1);
26 printf("Enter first node, last node, and spatial stride: ");
27 scanf(" %d %d %d", &startNodeX, &endNodeX, &spatialStrideX);
28 printf("In y direction grid has %d total nodes"
29 " (ranging from 0 to %d).\n", SizeY, SizeY - 1);



200 CHAPTER 8. TWO-DIMENSIONAL FDTD SIMULATIONS

30 printf("Enter first node, last node, and spatial stride: ");
31 scanf(" %d %d %d", &startNodeY, &endNodeY, &spatialStrideY);
32 printf("Enter the base name: ");
33 scanf(" %s", basename);
34

35 return;
36 }
37

38 void snapshot2d(Grid *g) {
39 int mm, nn;
40 float dim1, dim2, temp;
41 char filename[100];
42 FILE *out;
43

44 /* ensure temporal stride set to a reasonable value */
45 if (temporalStride == -1) {
46 return;
47 } if (temporalStride < -1) {
48 fprintf(stderr,
49 "snapshot2d: snapshotInit2d must be called before snapshot.\n"
50 " Temporal stride must be set to positive value.\n");
51 exit(-1);
52 }
53

54 /* get snapshot if temporal conditions met */
55 if (Time >= startTime &&
56 (Time - startTime) % temporalStride == 0) {
57 sprintf(filename, "%s.%d", basename, frame++);
58 out = fopen(filename, "wb");
59

60 /* write dimensions to output file --
61 * express dimensions as floats */
62 dim1 = (endNodeX - startNodeX) / spatialStrideX + 1;
63 dim2 = (endNodeY - startNodeY) / spatialStrideY + 1;
64 fwrite(&dim1, sizeof(float), 1, out);
65 fwrite(&dim2, sizeof(float), 1, out);
66

67 /* write remaining data */
68 for (nn = endNodeY; nn >= startNodeY; nn -= spatialStrideY)
69 for (mm = startNodeX; mm <= endNodeX; mm += spatialStrideX) {
70 temp = (float)Ez(mm, nn); // store data as a float
71 fwrite(&temp, sizeof(float), 1, out); // write the float
72 }
73

74 fclose(out); // close file
75 }
76



8.4. TMz EXAMPLE 201

77 return;
78 }

Similar to the snapshot code in one dimension, the Ez field is merely recorded (in binary
format) to a file at the appropriate time-steps. It is up to some other program or software to render
this data in a suitable way. In order to understand what is happening in the two-dimensional grid,
it is extremely helpful to display the fields in a manner that is consistent with the underlying two-
dimensional format. This can potentially be quite a bit of data. To deal with it efficiently, it is often
best to store the data directly in binary format, which we will refer to as “raw” data. In line 58 the
output file is opened as a binary file (hence “b” which appears in the second argument of the call
to fopen()).

The arrays being used to store the fields are doubles. However, storing a complete double can
be considered overkill when it comes to generating graphics. We certainly do not need 15 digits
of precision when viewing the fields. Instead of writing doubles, the output is converted to a float.
(By using floats instead of doubles, the file size is reduced by a factor of two.) Within each output
data file, first the dimensions of the array are written, as floats, as shown in lines 64 and 65. After
that, starting in line 68 of Program 8.11, two nested loops are used to write each element of the
array. Note that the elements are not written in what might be considered a standard way. The
elements are written consistent with how you would read a book in English: from left to right, top
to bottom. As mentioned previously, this is not the most efficient way to access arrays, but there
are some image-processing tools which prefer that data be stored this way.

Once this data is generated, there are several ways in which the data can be displayed. It
is possible to read the data directly using MATLAB and even create an animation of the field.
Appendix D presents a MATLAB function that can be used to generate a movie from the data
generated by Program 8.7.

After compiling Program 8.7 in accordance with all the files shown in Fig. 8.2, let us assume
the executable is named tmzdemo1. The following shows a typical session where this program is
run on a UNIX system (where the executable is entered at the command-line prompt of “>”). The
user’s entries are shown in dark red bold.

> tmzdemo1
Enter the points per wavelength for Ricker source: 20
Do you want 2D snapshots? (1=yes, 0=no) 1
Duration of simulation is 300 steps.
Enter start time and temporal stride: 10 10
In x direction grid has 101 total nodes (ranging from 0 to 100).
Enter first node, last node, and spatial stride: 0 100 1
In y direction grid has 81 total nodes (ranging from 0 to 80).
Enter first node, last node, and spatial stride: 0 80 1
Enter the base name: sim

In this case the user set the Ricker wavelet to have 20 points per wavelength at the most energetic
frequency. Snapshots were generated every 10 time-steps beginning at the 10th time-step. The
snapshots were taken of the entire computational domain since the start- and stop-points were the
first and last nodes in the x and y directions and the spatial stride was unity. The snapshots had a
common base name of sim.



202 CHAPTER 8. TWO-DIMENSIONAL FDTD SIMULATIONS

Figure 8.3 shows three snapshots of the electric field that are generated by Program 8.7. These
images are individual frames generated by the code presented in Appendix D (the frames are in
color when viewed on a suitable output device). These frames correspond to snapshots taken at
time-steps 30, 70, and 110. Logarithmic scaling is used so that the maximum normalized value
of one corresponds to the color identified as zero on the color-bar to the right of each image. A
normalization value of unity was used for these images. Three decades are displayed so that the
minimum visible normalized field is 10−3. This value is shown with a color corresponding to −3
on the color-bar (any values less than the minimum are also displayed using this same color).

At time-step 30, the field is seen to be radiating concentrically away from the source at the
center of the grid. At time-step 70 the field is just starting to reach the top and bottom edges
of the computational domain. Since the electric-field nodes along the edge of the computational
domain are not updated (due to these nodes lacking a neighboring magnetic-field node in their
update equations), these edges behave as PEC boundaries. Hence the field is reflected back from
these walls. The reflection of the field in clearly evident at time-step 110. As the simulation
progresses, the field bounces back and forth. (The field at a given point can be recorded and then
Fourier transformed. The peaks in the transform correspond to the resonant modes of this particular
structure.)

To model an infinite domain, the second-order ABC discussed in Sec. 6.6 can be applied to
every electric field node on the boundary. In one dimension the ABC needed to be applied to only
two nodes. In two dimensions, there would essentially be four lines of nodes to which the ABC
must be applied: nodes along the left, right, top, and bottom. However, in all cases the form of
the ABC is the same. For a second-order ABC, a node on the boundary depends on two interior
nodes as well as the field at the boundary and those same two interior nodes at two previous time
steps. As before, the old values would have to be stored in supplementary arrays—six old values
for each node on the boundary. This is accomplished fairly easily by extrapolating the 1D case so
that there are now four storage arrays (one for the left, right, top, and bottom). These would be
three-dimensional arrays. In addition to two indices which indicate displacement from the edge
(i.e., displacement into the interior) and the time step, there would be a third index to indicate
displacement along the edge. So, for example, this third index would specify the particular node
along the top or bottom (and hence would vary between 0 and “SizeX - 1”) or the node along
the left or right (and hence would vary between 0 and “SizeY - 1”).

For nodes in the corner of the computational domain, there is some ambiguity as to which
nodes are the neighboring “interior” nodes which should be used by the ABC. However, the corner
nodes never couple back to the interior and hence it does not matter what one does with these
nodes. They can be left zero or assumed to contain meaningless numbers and that will not affect
the values in the interior of the grid. The magnetic fields that are adjacent to corner nodes are
affected by the values of the field in the corners. However, these nodes themselves are not used be
any other nodes in their updates. The electric fields which are adjacent to these magnetic fields are
updated using the ABC; they ignore the field at the neighboring magnetic-field nodes. Therefore
no special consideration will be given to resolving the corner ambiguity.



8.4. TMz EXAMPLE 203

(a)

(b)

(c)

Figure 8.3: Display of Ez field generated by Program 8.7 at time steps (a) 30, (b) 70, and (c) 110.
A Ricker source with 20 points per wavelength at its most energetic frequency is hard-wired to the
Ez node at the center of the grid.



204 CHAPTER 8. TWO-DIMENSIONAL FDTD SIMULATIONS

8.5 The TFSF Boundary for TMz Polarization
For a distant source illuminating a scatterer, it is not feasible to discretize the space surrounding
the source, discretize the space between the source and the scatterer, and discretize the space
surrounding the scatterer. Even if a large enough computer could be obtained that was capable of
storing all that discretized space, one simply would not want to use the FDTD grid to propagate
the field from the source to the scatterer. Such an endeavor would be slow, incredibly inefficient,
and suffer from needless numerical artifacts. Instead, one should discretize the space surrounding
the scatterer and introduce the incident field via a total-field/scattered-field boundary. When the
source is distant from the scatterer, the incident field is nearly planar and thus we will restrict
consideration to incident plane waves.

Section 3.10 showed how the TFSF concept could be implemented in a one-dimensional prob-
lem. The TFSF boundary separated the grid into two regions: a total-field (TF) region and a
scattered-field (SF) region. There were two nodes adjacent to this boundary. One was in the SF
region and depended on a node in the TF region. The other was in the TF region and depended on
a node in the SF region. To obtain self-consistent update equations, when updating nodes in the
TF region, one must use the total field which pertains at the neighboring nodes. Conversely, when
updating nodes in the SF region, one must use the scattered field which pertains at neighboring
nodes. In one dimension, the two nodes adjacent to the boundary must have the incident field
either added to or subtracted from the field which exists at their neighbor on the other side of the
boundary. Thus, in one dimension we required knowledge of the incident field at two locations for
every time step.

In two dimensions, the grid is again divided into a TF region and a SF region. In this case
the boundary between the two regions is no longer a point. Figure 8.4 shows a TMz grid with a
rectangular TFSF boundary. (The boundary does not have to be rectangular, but the implementation
details are simplest when the boundary has straight sides and hence we will restrict ourselves to
TFSF boundaries which are rectangular.) In this figure the TF region is enclosed within the TFSF
boundary which is drawn with a dashed line. The SF region is any portion of the grid that is
outside this boundary. Nodes that have a neighbor on the other side of the boundary are enclosed
in a solid rectangle with rounded corners. Note that these encircled nodes are tangential to the
TFSF boundary (we consider the Ez field, which points out of the page, to be tangential to the
boundary if we envision the boundary extending into the third dimension). The fields that are
normal to the boundary, such as the Hy nodes along the top and bottom of the TFSF boundary,
do not have neighbors which are across the boundary (even though the field could be considered
adjacent to the boundary).

In the implementation used here, the TF region is defined by the indices of the “first” and “last”
electric-field nodes which are in the TF region. These nodes are shown in Fig. 8.4 where the “first”
node is the one in the lower left corner and the “last” one is in the upper right corner. Note that
electric fields and magnetic fields with the same indices are not necessarily on the same side of
the boundary. For example, the Ez nodes on the right side of the TF region have one of their
neighboring Hy nodes in the SF region. This is true despite the fact that these Hy nodes share the
same x-index as the Ez nodes.

Further note that in this particular construction of a TFSF boundary, the electric fields tan-
gential to the TFSF boundary are always in the TF region. These nodes will have at least one
neighboring magnetic field node that is in the SF region. Thus, the correction necessary to obtain a



8.5. THE TFSF BOUNDARY FOR TMz POLARIZATION 205

Total-Field Region

Scattered-Field Region

TF/SF Boundary

first node
in TF region

last node
in TF region

Figure 8.4: Depiction of a total-field/scattered-field boundary in a TMz grid. The size of the TF
region is defined by the indices of the first and last electric field nodes which are within the region.
Note that at the right-hand side of the boundary the Hy nodes with the same x-index (i.e., the same
“m” index) as the “last” node will be in the SF region. Similarly, at the top of the grid, Hx nodes
with the same y-index as the last node will be in the SF region. Therefore one must pay attention
to the field component as well as the indices to determine if a node is in the SF or TF region.



206 CHAPTER 8. TWO-DIMENSIONAL FDTD SIMULATIONS

consistent update of these electric field nodes would involve adding the incident field the neighbor-
ing magnetic fields on the other side of the TFSF boundary. Conversely, the magnetic field nodes
that are tangential to the TFSF boundary are always in the SF region. These nodes will have one
neighboring electric field node that is in the TF region. Thus, the correction necessary to obtain a
consistent update of these magnetic field nodes would involve subtracting the incident field from
the electric field node on the other side of the TFSF boundary.

As in the one-dimensional case, to implement the TFSF method, one must know the incident
field at every node which has a neighbor on the other side of the TFSF boundary. The incident
field must be known at all these points and for every time-step. In Section 3.10 analytic expres-
sions were used for the incident field, i.e., the expressions that describes propagation of the incident
field in the continuous world. However, the incident field does not propagate the same way in the
FDTD grid as the continuous world (except in the special case of one-dimensional propagation
with a Courant number of unity). Therefore, if the continuous-world expressions were used for
the incident field, there would be a mismatch between the fields in the grid and the fields given
by the continuous-world expressions. This mismatch would cause fields to leak across the bound-
ary. Another drawback to using the continuous-world expressions is that they typically involve a
transcendental function (such as a trigonometric function or an exponential). Calculation of these
functions is somewhat computationally expensive—at least compared to a few simple algebraic
calculations. If the transcendental functions have to be calculated at numerous points for every
time-step, this can impose a potentially significant computational cost. Fortunately, provided the
direction of the incident-field propagation coincides with one of the axes of the grid, there is a way
to ensure that the incident field exactly matches the way in which the incident field propagates in
the two-dimensional FDTD grid. Additionally, the calculation of the incident field can be done
efficiently.

The trick to calculating the incident field is to perform an auxiliary one-dimensional FDTD
simulation which calculates the incident field. This auxiliary simulation uses the same Courant
number and material parameters as pertain in the two-dimensional grid but is otherwise completely
separate from the two-dimensional grid. The one-dimensional grid is merely used to find the
incident fields needed to implement the TFSF boundary. (Each Ez and Hy node in the 1D grid
can be thought as providing Einc

z and H inc
y , respectively, at the appropriate point in space-time as

dictated by the discretization and time-stepping.)
Figure 8.5 shows the auxiliary 1D grid together with the 2D grid. The base of the vertical

arrows pointing from the 1D grid to the 2D grid indicate the nodes in the 1D grid from which
the nodes in the 2D grid obtain the incident field (only nodes in the 2D grid adjacent to the TFSF
boundary require knowledge of the incident field). Since the incident field propagates in the +x
direction, there is no incident Hx field. Hence nodes that depend on an Hx node on the other side
of the TFSF boundary do not need to be corrected since H inc

x = 0.
Despite the representation in Fig. 8.5, the 1D grid does not need to be the same width as the

2D grid, but it must be at least as long as necessary to provide the incident field for all the nodes
tangential to the TFSF boundary (i.e., it must be large enough to provide the values associated with
the base of each of the vertical arrows shown in Fig. 8.5). Additionally, the 1D grid must include
a source on the left and the right side of the grid must be suitably terminated so that the incident
field does not reflect back. Here we will assume fields are introduced into the 1D grid via a hard
source at the left end.

Using an auxiliary 1D grid, the TFSF boundary could be realized as follows. First, outside of



8.5. THE TFSF BOUNDARY FOR TMz POLARIZATION 207

hard
source

incident field obtained from 1D simulation

auxiliary 1D simulation

grid terminated
with suitable

ABC

direction of propagation

Figure 8.5: A one-dimensional auxiliary grid is used to calculate the incident field which is as-
sumed to be propagating in the +x direction. The vertical arrows indicate the nodes whose values
are needed to implement the TFSF boundary. The incidentHx field is zero and hence no correction
is needed in association with Ez nodes that have a neighboring Hx node on the other side of the
boundary. The 1D grid is driven by a hard source at the left side. The 1D grid must be suitably
terminated at the right side to model an infinite domain. The size of the 1D grid is somewhat
independent of the size of the 2D grid—it must be large enough to provide incident field associ-
ated with each of the vertical arrows shown above but otherwise may be larger or smaller than the
overall width of the 2D grid.



208 CHAPTER 8. TWO-DIMENSIONAL FDTD SIMULATIONS

the time-stepping loop, a function would be called to initialize the TFSF code. This initialization
would allocate arrays of the necessary size for the 1D auxiliary grid and set all the necessary
constants. Then, within the time-stepping loop, the following steps would be taken (where we use
the additional subscripts 1D and 2D to distinguish between arrays associated with the 1D and 2D
grids):

1. Update the magnetic fields in the two-dimensional grid using the usual update equations (i.e.,
do not account for the existence of TFSF boundary): H

q− 1
2

x2D ⇒ H
q+ 1

2
x2D and H

q− 1
2

y2D ⇒ H
q+ 1

2
y2D .

2. Call a function to make all calculations and corrections associated with the TFSF boundary:

(a) Correct the two-dimensional magnetic fields tangential to the TFSF boundary using the
incident electric field from the one-dimensional grid, i.e., using Eq

z1D.

(b) Update the magnetic field in the one-dimensional grid: H
q− 1

2
y1D ⇒ H

q+ 1
2

y1D .

(c) Update the electric field in the one-dimensional grid: Eq
z1D ⇒ Eq+1

z1D .

(d) Correct the electric field in the two-dimensional grid using the incident magnetic field
from the one-dimensional grid, i.e., using H

q+ 1
2

y1D . (Since there is no Hx1D in this partic-
ular case with grid-aligned propagation, no correction is necessary in association with
Ez nodes that have a neighboring Hx node on the other side of the TFSF boundary.)

3. Update the electric field in the two-dimensional grid using the usual update equations (i.e.,
do not account for the existence of TFSF boundary): Eq

z2D ⇒ Eq+1
z2D .

8.6 TMz TFSF Boundary Example
Figure 8.6 shows three snapshots of a computational domain that incorporates a TFSF boundary.
The size of the grid is 101 nodes wide and 81 nodes high. The incident field is a Ricker wavelet
with 30 points per wavelength at its most energetic frequency. The indices for the first electric-field
node in the TF region are (5, 5) and the indices of the last node in the TF region are (95, 75). There
is no scatterer present and hence there are no fields visible in the SF region.

In Fig. 8.6(a) the incident field is seen to have entered the left side of the TF region. There is
an abrupt discontinuity in the field as one cross the TFSF boundary. This discontinuity is visible
to the left of the TF region as well as along a portion of the top and bottom of the region. In Fig.
8.6(b) the pulse is nearly completely within the TF region. In Fig. 8.6(c) the incident pulse has
encountered the right side of the TF region. At this point the incident field seemingly disappears!
The corrections to the fields at the right side of the boundary are such that the incident field does
not escape the TF region.

Figure 8.7 shows three snapshots of a computational domain that is similar to the one shown in
Fig. 8.6. The only difference is that a PEC plate has been put into the grid. The plate is realized by
setting to zero the Ez nodes along a vertical line. This line of nodes is offset 20 cells from the left
side of the computational domain and runs vertically from 20 cells from the bottom of the domain
to 20 cells from the top. (The way in which one models a PEC in 2D grids will be discussed further
in Sec. 8.8.)



8.6. TMz TFSF BOUNDARY EXAMPLE 209

(a)

(b)

(c)

Figure 8.6: Display of Ez field in a computational domain employing a TFSF boundary. Snapshots
are taken at time-steps (a) 30, (b) 100, and (c) 170. The pulsed, plane-wave source corresponds to
a Ricker wavelet with 30 points per wavelength at its most energetic frequency.



210 CHAPTER 8. TWO-DIMENSIONAL FDTD SIMULATIONS

Second-order ABC’s are used to terminate the grid. (In Fig. 8.6 the fields were normalized to
1.0. In Fig. 8.7 they have been normalized to 2.0.)

In Fig. 8.7(a) the incident field has just barely reached the plate. There is no scattering evident
yet and hence no scattered fields are visible in the SF region. In Fig. 8.7(b) the interaction of the
field with the plate is obvious. One can see how the fields have diffracted around the edges of
the plate. As can be seen, the field scattered from the plate has had time to propagate into the SF
region. Figure 8.7(c) also shows the non-zero field in the SF region (together with the total field
throughout the TF region). The ABC’s must absorb the scattered field, but they do not have to
contend with the incident field since, as shown in Fig. 8.6, the incident field never escapes the TF
region (but, of course, the scattered field at any point along the edge of the computational domain
could be as large or larger than the incident field—it depends on how the scatterer scatters the
field).

The organization of code used to generate the results shown in Fig. 8.7 is depicted in Fig.
8.8. The header files are not shown. The contents of the files updatetmz.c, ricker.c, and
snapshot2d.c are unchanged from the previous section (refer to Programs 8.9, 8.10, and 8.11,
respectively). The file gridtmz.c has changed only slightly from the code shown in Program
8.8 in that a line of electric-field update coefficients are now set to zero corresponding to the
location of the PEC. Since this change is so minor, this file is not presented here. The header files
fdtd-alloc1.h, fdtd-grid1.h and fdtd-macro-tmz.h are also unchanged from the
previous section (refer to Programs 8.4, 8.3, and 8.5).

The contents of tmzdemo2.c are shown in Program 8.12. This program differs from Program
8.7 only in the call to the TFSF and ABC functions. Also, a different prototype header file is
included. These difference are shown in dark red bold.

Program 8.12 tmzdemo2.c: Program to perform a TMz simulation where the field is intro-
duced via a TFSF boundary and the grid is terminated with a second-order ABC. The differences
between this code and Program 8.7 are shown in dark red bold.

1 /* TMz simulation with a TFSF boundary and a second-order ABC. */
2

3 #include "fdtd-alloc1.h"
4 #include "fdtd-macro-tmz.h"
5 #include "fdtd-proto2.h"
6

7 int main()
8 {
9 Grid *g;

10

11 ALLOC_1D(g, 1, Grid); // allocate memory for grid
12 gridInit(g); // initialize 2D grid
13

14 abcInit(g); // initialize ABC
15 tfsfInit(g); // initialize TFSF boundary
16 snapshotInit2d(g); // initialize snapshots
17



8.6. TMz TFSF BOUNDARY EXAMPLE 211

(a)

(b)

(c)

Figure 8.7: Display of Ez field in a computational domain employing a TFSF boundary. There is a
PEC vertical plate which is realized by setting to zero the Ez field over a lines that is 41 cells high
and 20 cells from the left edge of the computational domain. Snapshots are taken at time steps (a)
30, (b) 100, and (c) 170. A second-order ABC is used to terminate the grid.



212 CHAPTER 8. TWO-DIMENSIONAL FDTD SIMULATIONS

tmzdemo2.c

main()

updatetmz.c

updateE2d()

updateH2d()

gridInit()

tfsftmz.c

tfsfInit()

tfsfUpdate()

abctmz.c

abcInit()

abc()

snapshot2d.c

snapshotInit2d()

snapshot2d()

gridtmz.c

ricker.c

ezIncInit()

ezInc()

gridInit1d()

grid1dez.c

Figure 8.8: Organization of files associated with a TMz simulation that employs a TFSF boundary
and a second-order ABC. The header files are not shown.

18 /* do time stepping */
19 for (Time = 0; Time < MaxTime; Time++) {
20 updateH2d(g); // update magnetic fields
21 tfsfUpdate(g); // apply TFSF boundary
22 updateE2d(g); // update electric fields
23 abc(g); // apply ABC
24 snapshot2d(g); // take a snapshot (if appropriate)
25 } // end of time-stepping
26

27 return 0;
28 }

After initialization of the 2D grid in line 11, the ABC, TFSF, and snapshot functions are ini-
tialized. Time-stepping begins in line 19. Within the time-stepping loop, first the magnetic fields
are updated. As already mentioned, the function updateH2d() is unchanged from before. We
merely pass to it the the Grid pointer g. Next, the function tfsfUpdate() is used to update
the fields adjacent to the TFSF boundary. This function takes (the 2D Grid pointer) g as an ar-
gument. As we will see, the TFSF function also keeps track of an auxiliary 1D that is completely
hidden from main(). The electric fields are then updated, the ABC is applied, and a snapshot is
generated (if the time-step is appropriate).

The header file fdtd-proto2.h is shown in Program 8.13. The only substantial changes
from Program 8.6 are the addition of the prototypes for the TFSF, ABC functions, and a function
used to initialize the 1D grid.

Program 8.13 fdtd-proto2.h: Header file that now includes the prototypes for the TFSF and
ABC functions. The differences between this file and 8.6 are shown in dark red bold.



8.6. TMz TFSF BOUNDARY EXAMPLE 213

1 #ifndef _FDTD_PROTO2_H
2 #define _FDTD_PROTO2_H
3

4 #include "fdtd-grid1.h"
5

6 /* Function prototypes */
7 void abcInit(Grid *g);
8 void abc(Grid *g);
9

10 void gridInit1d(Grid *g);
11 void gridInit(Grid *g);
12

13 void snapshotInit2d(Grid *g);
14 void snapshot2d(Grid *g);
15

16 void tfsfInit(Grid *g);
17 void tfsfUpdate(Grid *g);
18

19 void updateE2d(Grid *g);
20 void updateH2d(Grid *g);
21

22 #endif

The code to implement the TFSF boundary is shown in Program 8.14. There are five global
variables in this program. The four declared on lines 7 and 8 give the indices of the first and last
points in the TF region. The global variable g1, declared on line 10, is a Grid pointer that will be
used for the auxiliary 1D grid.

The function tfsfInit() starts by allocating space for g1. Once that space has been allo-
cated we could set the Courant number, the maximum number of time steps, and the size of the
grid. However, it is important that these values match, at least in some ways, the value of the 2D
grid that has already been declared. Thus, in line 15, the contents of the 2D grid structure are copy
to the 1D grid structure. To accomplish this copying the C function memcpy() is used. This
function takes three arguments: the destination memory address, the source memory address, and
the amount of memory to be copied. After this copying has been completed, there are some things
about the g1 which are incorrect. For example, its type corresponds to a 2D TMz grid. Also, the
pointers for its arrays are the same as those for the 2D grid. We do not want the 1D grid writing to
the same arrays as the 2D grid! Therefore these values within the Grid pointer g1 need to be fix
and this is accomplished with the grid-initialization function gridInit1D() called in 16. We
will consider the details of that function soon. Just prior to returning, tfsfInit() initializes the
source function by calling ezIncInit().

As we saw in the main() function in Program 8.12, tfsfUpdate() is called once per
time-step, after the magnetic fields have been updated and before the electric field is updated. Note
that the fields throughout the grid are not consistent until after the electric field has been updated
in the 2D grid (i.e., after step three in the algorithm described on page 208). This is because just



214 CHAPTER 8. TWO-DIMENSIONAL FDTD SIMULATIONS

prior to calling tfsfUpdate() the magnetic fields have not been corrected to account for the
TFSF boundary. Just after tfsfUpdate() has returned the electric field has been corrected in
anticipation of the next update.

Program 8.14 tfsftmz.c: Source code to implement a TFSF boundary for a TMz grid. The
incident field is assumed to propagate along the x direction and is calculated using an auxiliary 1D
simulation.

1 #include <string.h> // for memcpy
2 #include "fdtd-macro-tmz.h"
3 #include "fdtd-proto2.h"
4 #include "fdtd-alloc1.h"
5 #include "ezinc.h"
6

7 static int firstX = 0, firstY, // indices for first point in TF region
8 lastX, lastY; // indices for last point in TF region
9

10 static Grid *g1; // 1D auxiliary grid
11

12 void tfsfInit(Grid *g) {
13

14 ALLOC_1D(g1, 1, Grid); // allocate memory for 1D Grid
15 memcpy(g1, g, sizeof(Grid)); // copy information from 2D array
16 gridInit1d(g1); // initialize 1d grid
17

18 printf("Grid is %d by %d cell.\n", SizeX, SizeY);
19 printf("Enter indices for first point in TF region: ");
20 scanf(" %d %d", &firstX, &firstY);
21 printf("Enter indices for last point in TF region: ");
22 scanf(" %d %d", &lastX, &lastY);
23

24 ezIncInit(g); // initialize source function
25

26 return;
27 }
28

29 void tfsfUpdate(Grid *g) {
30 int mm, nn;
31

32 // check if tfsfInit() has been called
33 if (firstX <= 0) {
34 fprintf(stderr,
35 "tfsfUpdate: tfsfInit must be called before tfsfUpdate.\n"
36 " Boundary location must be set to positive value.\n");
37 exit(-1);
38 }



8.6. TMz TFSF BOUNDARY EXAMPLE 215

39

40 // correct Hy along left edge
41 mm = firstX - 1;
42 for (nn = firstY; nn <= lastY; nn++)
43 Hy(mm, nn) -= Chye(mm, nn) * Ez1G(g1, mm + 1);
44

45 // correct Hy along right edge
46 mm = lastX;
47 for (nn = firstY; nn <= lastY; nn++)
48 Hy(mm, nn) += Chye(mm, nn) * Ez1G(g1, mm);
49

50 // correct Hx along the bottom
51 nn = firstY - 1;
52 for (mm = firstX; mm <= lastX; mm++)
53 Hx(mm, nn) += Chxe(mm, nn) * Ez1G(g1, mm);
54

55 // correct Hx along the top
56 nn = lastY;
57 for (mm = firstX; mm <= lastX; mm++)
58 Hx(mm, nn) -= Chxe(mm, nn) * Ez1G(g1, mm);
59

60 updateH2d(g1); // update 1D magnetic field
61 updateE2d(g1); // update 1D electric field
62 Ez1G(g1, 0) = ezInc(TimeG(g1), 0.0); // set source node
63 TimeG(g1)++; // increment time in 1D grid
64

65 /* correct Ez adjacent to TFSF boundary */
66 // correct Ez field along left edge
67 mm = firstX;
68 for (nn = firstY; nn <= lastY; nn++)
69 Ez(mm, nn) -= Cezh(mm, nn) * Hy1G(g1, mm - 1);
70

71 // correct Ez field along right edge
72 mm = lastX;
73 for (nn = firstY; nn <= lastY; nn++)
74 Ez(mm, nn) += Cezh(mm, nn) * Hy1G(g1, mm);
75

76 // no need to correct Ez along top and bottom since
77 // incident Hx is zero
78

79 return;
80 }

The function tfsfUpdate(), which is called once per time-step, starts by ensuring that the
initialization function has been called. It then corrects Hy along the left and right edges and Hx

along the top and bottom edges. Then, in line 60, the magnetic field in the 1D grid is updated, then



216 CHAPTER 8. TWO-DIMENSIONAL FDTD SIMULATIONS

the 1D electric field. Then the source is realized by hard-wiring the first electric-field node in the
1D grid to the source function (in this case a Ricker wavelet). This is followed by incrementing the
time-step in the 1D grid. Now that the 1D grid has been updated, starting in line 67, the electric
fields adjacent to the TFSF boundary are corrected. Throughout tfsfUpdate() any macro that
pertains to g1 must explicitly specify the Grid as an argument.

The function used to initialize the 1D grid is shown in Program 8.15. After inclusion of the
appropriate header files, NLOSS is defined to be 20. The 1D grid is terminated with a lossy layer
rather than an ABC. NLOSS represents the number of nodes in this lossy region.

Program 8.15 grid1dez.c: Initialization function for the 1D auxiliary grid used by the TFSF
function to calculate the incident field.

1 #include <math.h>
2 #include "fdtd-macro-tmz.h"
3 #include "fdtd-alloc1.h"
4

5 #define NLOSS 20 // number of lossy cells at end of 1D grid
6 #define MAX_LOSS 0.35 // maximum loss factor in lossy layer
7

8 void gridInit1d(Grid *g) {
9 double imp0 = 377.0, depthInLayer, lossFactor;

10 int mm;
11

12 SizeX += NLOSS; // size of domain
13 Type = oneDGrid; // set grid type
14

15 ALLOC_1D(g->hy, SizeX - 1, double);
16 ALLOC_1D(g->chyh, SizeX - 1, double);
17 ALLOC_1D(g->chye, SizeX - 1, double);
18 ALLOC_1D(g->ez, SizeX, double);
19 ALLOC_1D(g->ceze, SizeX, double);
20 ALLOC_1D(g->cezh, SizeX, double);
21

22 /* set the electric- and magnetic-field update coefficients */
23 for (mm = 0; mm < SizeX - 1; mm++) {
24 if (mm < SizeX - 1 - NLOSS) {
25 Ceze1(mm) = 1.0;
26 Cezh1(mm) = Cdtds * imp0;
27 Chyh1(mm) = 1.0;
28 Chye1(mm) = Cdtds / imp0;
29 } else {
30 depthInLayer = mm - (SizeX - 1 - NLOSS) + 0.5;
31 lossFactor = MAX_LOSS * pow(depthInLayer / NLOSS, 2);
32 Ceze1(mm) = (1.0 - lossFactor) / (1.0 + lossFactor);
33 Cezh1(mm) = Cdtds * imp0 / (1.0 + lossFactor);
34 depthInLayer += 0.5;



8.6. TMz TFSF BOUNDARY EXAMPLE 217

35 lossFactor = MAX_LOSS * pow(depthInLayer / NLOSS, 2);
36 Chyh1(mm) = (1.0 - lossFactor) / (1.0 + lossFactor);
37 Chye1(mm) = Cdtds / imp0 / (1.0 + lossFactor);
38 }
39 }
40

41 return;
42 }

Recall that in tfsfInit() the values from the 2D grid were copied to the 1D grid (ref. line
15 of Program 8.14). Thus at the start of this function the value of SizeX is set to that of the 2D
grid. (The value of SizeY is also set to that of the 2D grid, but this value is ignored in the context
of a 1D grid.) In line 12 the size is increased by the number of nodes in the lossy layer. This is the
final size of the 1D grid: 20 cells greater than the x dimension of the 2D grid.

The grid type is specified as being a oneDGrid in line 13. (There is no need to set the Courant
number since that was copied from the 2D grid.) This is followed by memory allocation for the
various arrays in lines 15 to 20.

The update-equation coefficients are set by the for-loop that begins on line 23. (The final
electric-field node does not have its coefficient set as it will not be updated.) The region of the
1D grid corresponding to the width of the 2D grid is set to free space. Recalling the discussion of
Sec. 3.12, the remainder of the grid is set to a lossy layer where the electric and magnetic loss are
matched so that the characteristic impedance remains that of free space. However, unlike in Sec.
3.12, here the amount of loss is small at the start of the layer and grows towards the end of the
grid: The loss increases quadratically as one approaches the end of the grid. The maximum “loss
factor” (which corresponds to σ∆t/2ϵ in the electric-field update equations or σm∆t/2µ in the
magnetic-field update equations) is set by the #define statement on line 6 to 0.35. By gradually
ramping up the loss, the reflections associated with having an abrupt change in material constants
can be greatly reduced. Further note that although the loss factor associated with the electric and
magnetic fields are matches, because the electric and magnetic fields are spatially offset, the loss
factor that pertains at electric and magnetic field nodes differ even when they have the same spatial
index. The loss factor is based on the variable depthInLayer which represents how deep a
particular node is within the lossy layer. The greater the depth, the greater the loss.

Finally, the file abctmz.c is shown in Program 8.16. There are four arrays used to store the
old values of field needed by the ABC—one array for each side of the grid. For each node along
the edge of the grid, six values must be stored. Thus the arrays that store values along the left
and right sides have a total of 6× SizeY elements while the arrays that store values along the top
and bottom have 6× SizeX elements. Starting on line 17 four macros are defined that simplify
accessing the elements of these arrays. The macros take three arguments. One arguments specifies
displacement along the edge of the grid. Another specifies the displacement into the interior. The
third argument specifies the number of steps back in time.

Program 8.16 abctmz.c: Function to apply a second-order ABC to a TMz grid.



218 CHAPTER 8. TWO-DIMENSIONAL FDTD SIMULATIONS

1 /* Second-order ABC for TMz grid. */
2 #include <math.h>
3 #include "fdtd-alloc1.h"
4 #include "fdtd-macro-tmz.h"
5

6 /* Define macros for arrays that store the previous values of the
7 * fields. For each one of these arrays the three arguments are as
8 * follows:
9 *

10 * first argument: spatial displacement from the boundary
11 * second argument: displacement back in time
12 * third argument: distance from either the bottom (if EzLeft or
13 * EzRight) or left (if EzTop or EzBottom) side
14 * of grid
15 *
16 */
17 #define EzLeft(M, Q, N) ezLeft[(N) * 6 + (Q) * 3 + (M)]
18 #define EzRight(M, Q, N) ezRight[(N) * 6 + (Q) * 3 + (M)]
19 #define EzTop(N, Q, M) ezTop[(M) * 6 + (Q) * 3 + (N)]
20 #define EzBottom(N, Q, M) ezBottom[(M) * 6 + (Q) * 3 + (N)]
21

22 static int initDone = 0;
23 static double coef0, coef1, coef2;
24 static double *ezLeft, *ezRight, *ezTop, *ezBottom;
25

26 void abcInit(Grid *g) {
27 double temp1, temp2;
28

29 initDone = 1;
30

31 /* allocate memory for ABC arrays */
32 ALLOC_1D(ezLeft, SizeY * 6, double);
33 ALLOC_1D(ezRight, SizeY * 6, double);
34 ALLOC_1D(ezTop, SizeX * 6, double);
35 ALLOC_1D(ezBottom, SizeX * 6, double);
36

37 /* calculate ABC coefficients */
38 temp1 = sqrt(Cezh(0, 0) * Chye(0, 0));
39 temp2 = 1.0 / temp1 + 2.0 + temp1;
40 coef0 = -(1.0 / temp1 - 2.0 + temp1) / temp2;
41 coef1 = -2.0 * (temp1 - 1.0 / temp1) / temp2;
42 coef2 = 4.0 * (temp1 + 1.0 / temp1) / temp2;
43

44 return;
45 }
46

47 void abc(Grid *g)



8.6. TMz TFSF BOUNDARY EXAMPLE 219

48 {
49 int mm, nn;
50

51 /* ABC at left side of grid */
52 for (nn = 0; nn < SizeY; nn++) {
53 Ez(0, nn) = coef0 * (Ez(2, nn) + EzLeft(0, 1, nn))
54 + coef1 * (EzLeft(0, 0, nn) + EzLeft(2, 0, nn)
55 - Ez(1, nn) - EzLeft(1, 1, nn))
56 + coef2 * EzLeft(1, 0, nn) - EzLeft(2, 1, nn);
57

58 /* memorize old fields */
59 for (mm = 0; mm < 3; mm++) {
60 EzLeft(mm, 1, nn) = EzLeft(mm, 0, nn);
61 EzLeft(mm, 0, nn) = Ez(mm, nn);
62 }
63 }
64

65 /* ABC at right side of grid */
66 for (nn = 0; nn < SizeY; nn++) {
67 Ez(SizeX - 1, nn) = coef0 * (Ez(SizeX - 3, nn) + EzRight(0, 1, nn))
68 + coef1 * (EzRight(0, 0, nn) + EzRight(2, 0, nn)
69 - Ez(SizeX - 2, nn) - EzRight(1, 1, nn))
70 + coef2 * EzRight(1, 0, nn) - EzRight(2, 1, nn);
71

72 /* memorize old fields */
73 for (mm = 0; mm < 3; mm++) {
74 EzRight(mm, 1, nn) = EzRight(mm, 0, nn);
75 EzRight(mm, 0, nn) = Ez(SizeX - 1 - mm, nn);
76 }
77 }
78

79 /* ABC at bottom of grid */
80 for (mm = 0; mm < SizeX; mm++) {
81 Ez(mm, 0) = coef0 * (Ez(mm, 2) + EzBottom(0, 1, mm))
82 + coef1 * (EzBottom(0, 0, mm) + EzBottom(2, 0, mm)
83 - Ez(mm, 1) - EzBottom(1, 1, mm))
84 + coef2 * EzBottom(1, 0, mm) - EzBottom(2, 1, mm);
85

86 /* memorize old fields */
87 for (nn = 0; nn < 3; nn++) {
88 EzBottom(nn, 1, mm) = EzBottom(nn, 0, mm);
89 EzBottom(nn, 0, mm) = Ez(mm, nn);
90 }
91 }
92

93 /* ABC at top of grid */
94 for (mm = 0; mm < SizeX; mm++) {



220 CHAPTER 8. TWO-DIMENSIONAL FDTD SIMULATIONS

95 Ez(mm, SizeY - 1) = coef0 * (Ez(mm, SizeY - 3) + EzTop(0, 1, mm))
96 + coef1 * (EzTop(0, 0, mm) + EzTop(2, 0, mm)
97 - Ez(mm, SizeY - 2) - EzTop(1, 1, mm))
98 + coef2 * EzTop(1, 0, mm) - EzTop(2, 1, mm);
99

100 /* memorize old fields */
101 for (nn = 0; nn < 3; nn++) {
102 EzTop(nn, 1, mm) = EzTop(nn, 0, mm);
103 EzTop(nn, 0, mm) = Ez(mm, SizeY - 1 - nn);
104 }
105 }
106

107 return;
108 }

The initialization function starting on line 26 allocates space for the arrays and calculates the
coefficients used by the ABC. It is assumed the grid is uniform along the edge and the coefficients
are calculated based on the parameters that pertain at the first node in the grid (as indicated by the
statements starting on line 38).

The abc() function, which starts on line 47 and is called once per time step, systematically
applies the ABC to each node along the edge of the grid. After the ABC is applied to an edge, the
“old” stored values are updated.

8.7 TEz Polarization
In TEz polarization the non-zero fields areEx, Ey, andHz, i.e., the electric field is transverse to the
z direction. The fields may vary in the x and y directions but are invariant in z. These fields, and
the corresponding governing equations, are completely decoupled from those of TMz polarization.
The governing equations are

σEx + ϵ
∂Ex
∂t

=
∂Hz

∂y
, (8.19)

σEy + ϵ
∂Ey
∂t

= −∂Hz

∂x
, (8.20)

−σmHz − µ
∂Hz

∂t
=

∂Ey
∂x

− ∂Ex
∂y

. (8.21)

As usual, space-time is discretized so that (8.19)–(8.21) can be expressed in terms of finite-
differences. From these difference equations the future fields can be expressed in terms of past
fields. The following notation will be used:

Ex(x, y, t) = Ex(m∆x, n∆y, q∆t) = Eq
x[m,n] , (8.22)

Ey(x, y, t) = Ey(m∆x, n∆y, q∆t) = Eq
y [m,n] (8.23)

Hz(x, y, t) = Hz(m∆x, n∆y, q∆t) = Hq
z [m,n] . (8.24)



8.7. TEz POLARIZATION 221

As before the indices m, n, and q specify the step in the x, y, and t “directions.”
A suitable arrangement of nodes is shown in Fig. 8.9. The triangularly shaped dashed lines in

the lower left of the grid enclose nodes which would have the same indices in a computer program.
Note that the grid is terminated such that there are tangential electric field nodes adjacent to

the boundary. (When it comes to the application of ABC’s, these are the nodes to which the ABC
would be applied.) When we say a TEz grid has dimensions M×N , the arrays are dimensioned as
follows: Ex is (M−1)×N , Ey isM×(N−1), andHz is (M−1)×(N−1). Therefore, although
the grid is described as M ×N , no array actually has these dimensions! Each magnetic-field node
has four adjacent electric-field nodes that “swirl” about it. One can think of these four nodes as
defining a square with the magnetic field at the center of the square (if the grid is not uniform, the
square becomes a rectangle). An M × N grid would consist of (M − 1) × (N − 1) complete
squares.

The way in which the TEz arrays are dimensioned may seem odd but it is done with an eye
toward having a consistent grid in three dimensions. As an indication of where we will ultimately
end up, we can overlay a TMz and TEz grid as shown in Fig. 8.10. As will be shown in the
discussion of 3D grids, a 3D grid is essentially layers of TMz and TEz grids which are offset from
each other in the z direction. The update equations of these offset grids will have to be modified to
account for variations in the z directions. This modification will provide the coupling between the
TMz and TEz grids which is lacking in 2D.

Given the governing equations (8.19)–(8.21) and the arrangement of nodes shown in Fig. 8.9,
the Hz update equation is

H
q+ 1

2
z

[
m+

1

2
, n+

1

2

]
=

1− σm∆t

2µ

1 + σm∆t

2µ

H
q− 1

2
z

[
m+

1

2
, n+

1

2

]
− 1

1 + σm∆t

2ϵ

(
∆t

ϵ∆x

{
Eq
y

[
m+ 1, n+

1

2

]
− Eq

y

[
m,n+

1

2

]}
− ∆t

µ∆y

{
Eq
x

[
m+

1

2
, n+ 1

]
− Eq

x

[
m+

1

2
, n

]})
.(8.25)

The electric-field update equations are

Eq+1
x

[
m+

1

2
, n

]
=

1− σ∆t

2ϵ

1 + σ∆t

2ϵ

Eq
x

[
m+

1

2
, n

]
+

1

1 + σ∆t

2ϵ

∆t

ϵ∆y

(
H
q+ 1

2
z

[
m+

1

2
, n+

1

2

]
−H

q+ 1
2

z

[
m+

1

2
, n− 1

2

])
, (8.26)

Eq+1
y

[
m,n+

1

2

]
=

1− σ∆t

2ϵ

1 + σ∆t

2ϵ

Eq
y

[
m,n+

1

2

]
− 1

1 + σ∆t

2ϵ

∆t

ϵ∆x

(
H
q+ 1

2
z

[
m+

1

2
, n+

1

2

]
−H

q+ 1
2

z

[
m− 1

2
, n+

1

2

])
. (8.27)



222 CHAPTER 8. TWO-DIMENSIONAL FDTD SIMULATIONS

Δx

Δy

same
indices

same
indices

same
indices

same
indices

same
indices

Hz(m,n)y

xz

Ey(m,n)

Ex(m,n)

Hz[m+1/2,n+1/2]
Ey[m,n+1/2]

Ex[m+1/2,n]

y

xz

Figure 8.9: Spatial arrangement of electric- and magnetic-field nodes for TEz polarization. The
magnetic-field nodes are shown as squares and the electric-field nodes are circles with a line that
indicates the orientation of the field component. The somewhat triangularly shaped dashed lines
indicate groupings of nodes which have the same array indices. This grouping is repeated through-
out the grid. However, at the top of the grid the “group” only contains an Ex node and on the right
side of the grid the group only contains an Ey node. The diagram at the bottom left of the figure
indicates nodes with their offsets given explicitly in the spatial arguments whereas the diagram at
the bottom right indicates how the same nodes would be specified in a computer program where
the offsets are understood implicitly.



8.7. TEz POLARIZATION 223

Hz(m+1/2,n+1/2)

Ey(m,n+1/2)

Ex(m+1/2,n)

y

xz

Ez(m,n)

Hy(m+1/2,n)

Hx(m,n+1/2)

same
indices

same
indices

same
indices

same
indices

same
indices

Figure 8.10: Superposition of a TMz and TEz grid. The symbols used for the nodes is as before.
The dashed boxes enclose nodes which have the same indices. Although this is nominally identified
as an M ×N grid, only the Ez array has M ×N nodes.

Similar to the TMz case, we assume a uniform grid and define the following quantities

Chzh(m+ 1/2, n+ 1/2) =
1− σm∆t

2µ

1 + σm∆t

2µ

∣∣∣∣∣
(m+1/2)∆x,(n+1/2)∆y

, (8.28)

Chze(m+ 1/2, n+ 1/2) =
1

1 + σm∆t

2µ

∆t

µδ

∣∣∣∣∣
(m+1/2)∆x,(n+1/2)∆y

, (8.29)

Cexe(m+ 1/2, n) =
1− σ∆t

2ϵ

1 + σ∆t

2ϵ

∣∣∣∣∣
(m+1/2)∆x,n∆y

, (8.30)

Cexh(m+ 1/2, n) =
1

1 + σm∆t

2ϵ

∆t

ϵδ

∣∣∣∣∣
(m+1/2)∆x,n∆y

, (8.31)

Ceye(m,n+ 1/2) =
1− σ∆t

2ϵ

1 + σ∆t

2ϵ

∣∣∣∣∣
m∆x,(n+1/2)∆y

, (8.32)

Ceyh(m,n+ 1/2) =
1

1 + σ∆t

2ϵ

∆t

ϵδ

∣∣∣∣∣
m∆x,(n+1/2)∆y

. (8.33)

By discarding the explicit offsets of one-half (but leaving them as implicitly understood) the update
equations can be written in a form suitable for implementation in a computer. Because of the
arrangement of the nodes, this “discarding” implies that sometimes the one-half truly is discarded



224 CHAPTER 8. TWO-DIMENSIONAL FDTD SIMULATIONS

and sometimes it should be replaced with unity. The distinction is whether or not the one-half
indicates the nodes on the right side of the update equation are within the same grouping of cells
as the node on the left side of the equation. If they are, the one-half is truly discarded. If they are
not, the node on the right side of the update equation must have its index reflect which group of
cells it is within relative to the node on the left side of the equation. The resulting equations are

Hz(m, n) = Chzh(m, n) * Hz(m, n) +
Chze(m, n) * ((Ex(m, n + 1) - Ex(m, n)) -

(Ey(m + 1, n) - Ey(m, n)));
Ex(m, n) = Cexe(m, n) * Ex(m, n) +

Cexh(m, n) * (Hz(m, n) - Hz(m, n - 1));
Ey(m, n) = Ceye(m, n) * Ey(m, n) -

Ceyh(m, n) * (Hz(m, n) - Hz(m - 1, n));

A TFSF boundary can be incorporated in a TEz grid. Conceptually the implementation is the
same as has been shown in 1D and in the TMz grid. Nodes that are tangential to the boundary will
have a neighboring node on the other side of the boundary. The incident field will have to be either
added to or subtracted from that neighboring node to obtain consistent equations. A portion of a
TEz grid showing the TFSF boundary is shown in Fig. 8.11. We will specify the size of the TF
region as indicated in the figure. Indices that specify the start of the TF region correspond to the
first Ex and Ey nodes which are in the TF region. Referring to Figs. 8.4 and 8.10, these indices
would also correspond to the first Ez node in the TF region. The indices which specify the end
of the TF region correspond to Ex and Ey nodes which are actually in the SF region. These two
nodes, as shown in Fig. 8.10, are not tangential to the TFSF boundary and hence do to have to be
corrected. However, note that the Ez node in the overlain grid that has these indices does lie in the
TF region (and does, when dealing with a 3D or TMz grid, have to be corrected to account for the
presence of the boundary).

8.8 PEC’s in TEz and TMz Simulations
When modeling a PEC in a TMz grid, if an Ez node falls within the PEC, it is set to zero. Figure
8.12 shows a portion of a TMz grid that depicts how Ez would set to zero. The curved boundary
is the surface of the PEC and it is assumed that the PEC extends down and to the right of this
boundary. The Ez nodes which would be set to zero are indicated with gray boxes. Although the
goal is to model a continuously varying boundary, the discrete nature of the FDTD grid gives rise
to a “staircased” approximation of the surface.

When we say a node is “set to zero” this could mean various things. For example, it may mean
that the field is initially zero and then never updated. It could mean that it is updated, but the
update coefficients are set to zero. Or, it could even mean that the field is updated with non-zero
coefficients, but then additional code is used to set the field to zero each time-step. The means by
which a field is set to zero is not particularly important to us right now.

A thin PEC plate can be modeled in a TMz grid by setting to zero nodes along a vertical or
horizontal line. If the physical plate being modeled is not aligned with the grid, one would have
to zero nodes in a manner that approximates the true slope of the plate. Again, this would yield a
staircased approximate to the true surface. (One may have to be careful to ensure that there are no



8.8. PEC’S IN TEz AND TMz SIMULATIONS 225

Total-Field Region

Scattered-Field Region

indices specifying
start of TF region

indices specifying
end of TF region

Figure 8.11: TFSF boundary in a TEz grid. The rounded boxes indicate the nodes that have a
neighboring node on the other side of the boundary and hence have to have their update equations
corrected.



226 CHAPTER 8. TWO-DIMENSIONAL FDTD SIMULATIONS

Figure 8.12: TMz grid with a PEC object. The PEC is assumed to exist below and to the right of
the curved boundary. The PEC is realized by setting to zero the Ez nodes that fall within the PEC.
The nodes that would be set to zero are surrounded by gray boxes.



8.8. PEC’S IN TEz AND TMz SIMULATIONS 227

Figure 8.13: TEz grid with a PEC object. The PEC is assumed to exist below and to the right of the
curved boundary. The PEC is realized be setting to zero any electric field which has a neighboring
Hz node within the PEC. The nodes that would be set to zero are surrounded by gray rectangles.

“gaps” in the model of a thin PEC that is not aligned with the grid. Fields should only be able to
get from one side of the PEC to the other by propagating around the ends of the PEC.)

In a TEz grid, the realization of a PEC is slightly more complicated. For a PEC object which
has a specified cross section, one should not merely set to zero the electric-field nodes that fall
within the boundary of the PEC (as was done in the TMz case). Instead, one should consider the
PEC as consisting of a collection of patches of metal. If an Hz node falls within the PEC, then four
surrounding electric-field nodes should be set to zero. Thus, if an Hz node is in the PEC we fill the
square surrounding that node with PEC and this causes the four surrounding electric field nodes to
be zero. The TEz representation of a PEC object is depicted in Fig. 8.13. The object is the same
as shown in Fig. 8.12. In both figures the curved boundary is a portion of a circle that is center on
what would correspond to the location of an Ez node (regardless of whether or not an Ez node is
actually present). The nodes that are set to zero are enclosed in gray rectangles.

A horizontal PEC plate would be implemented by zeroing a horizontal line of Ex nodes while
a vertical plate would be realized by zeroing a vertical line of Ey nodes. A tilted plate would be
realized as a combination of zeroed Ex and Ey nodes.

For both TEz and TMz grids, all the magnetic fields are updated in the usual way. Magnetic



228 CHAPTER 8. TWO-DIMENSIONAL FDTD SIMULATIONS

fields are oblivious to the presence of PEC’s.

8.9 TEz Example
In this section we present the computer code to model a circular PEC scatterer in a TEz grid. The
scatterer is illuminated by a pulsed plane wave that is introduced via a TFSF boundary. We will
use a grid that is nominally 92 by 82 (keeping in mind that for TEz polarization none of the field
arrays will actually have these dimensions). The code is organized in essentially the same way as
was the TMz code presented in Sec. 8.6.

The PEC scatterer is assumed to have a radius of 12 cells and be centered on an Hz node. The
indices of the center are (45, 40). The PEC is realized by checking if an Hz node is within the
circle (specifically, if the distance from the center to the node is less than the radius). As we will
see, if an Hz is within the circle, the four surrounding electric-field nodes are set to zero by setting
the corresponding update coefficients to zero.

Program 8.17 contains the main() function. Other than the difference of one header file, this
program is identical to the TMz code presented in Program 8.12. However, despite similar names,
the functions that are called here differ from those used by Program 8.12—different files are linked
together for the different simulations.

Program 8.17 tezdemo.c: The main() function for a simulation involving a TEz grid.

1 /* TEz simulation with a TFSF boundary and a second-order ABC. */
2

3 #include "fdtd-alloc1.h"
4 #include "fdtd-macro-tez.h"
5 #include "fdtd-proto2.h"
6

7 int main()
8 {
9 Grid *g;

10

11 ALLOC_1D(g, 1, Grid); // allocate memory for grid
12 gridInit(g); // initialize 2D grid
13

14 abcInit(g); // initialize ABC
15 tfsfInit(g); // initialize TFSF boundary
16 snapshotInit2d(g); // initialize snapshots
17

18 /* do time stepping */
19 for (Time = 0; Time < MaxTime; Time++) {
20 updateH2d(g); // update magnetic fields
21 tfsfUpdate(g); // apply TFSF boundary
22 updateE2d(g); // update electric fields
23 abc(g); // apply ABC
24 snapshot2d(g); // take a snapshot (if appropriate)



8.9. TEz EXAMPLE 229

25 } // end of time-stepping
26

27 return 0;
28 }

The code to construct the TEz grid is shown in Program 8.18, i.e., the code to set the elements
of the Grid pointer g. The simulation is run at the Courant limit of 1/

√
2 as shown in line 16.

Between lines 31 and 41 the update coefficients for all the electric field nodes are set to that of free
space. Then, starting at line 49, each Hz node is checked to see if it is within the PEC scatterer. If
it is, the coefficients for the surrounding nodes are set to zero. Starting at line 71 all the magnetic-
field coefficients are set to that of free space. There is no need to change these coefficients to
account for the PEC—the PEC is realized solely by dictating the behavior of the electric field.

Program 8.18 gridtezpec.c: Function to initialize a TEz grid. A circular PEC scatterer is
present.

1 #include "fdtd-macro-tez.h"
2 #include "fdtd-alloc1.h"
3 #include <math.h>
4

5 void gridInit(Grid *g) {
6 double imp0 = 377.0;
7 int mm, nn;
8

9 /* terms for the PEC scatterer */
10 double rad, r2, xLocation, yLocation, xCenter, yCenter;
11

12 Type = teZGrid;
13 SizeX = 92; // size of domain
14 SizeY = 82;
15 MaxTime = 300; // duration of simulation
16 Cdtds = 1.0 / sqrt(2.0); // Courant number
17

18 ALLOC_2D(g->hz, SizeX - 1, SizeY - 1, double);
19 ALLOC_2D(g->chzh, SizeX - 1, SizeY - 1, double);
20 ALLOC_2D(g->chze, SizeX - 1, SizeY - 1, double);
21

22 ALLOC_2D(g->ex, SizeX - 1, SizeY, double);
23 ALLOC_2D(g->cexh, SizeX - 1, SizeY, double);
24 ALLOC_2D(g->cexe, SizeX - 1, SizeY, double);
25

26 ALLOC_2D(g->ey, SizeX, SizeY - 1, double);
27 ALLOC_2D(g->ceye, SizeX, SizeY - 1, double);
28 ALLOC_2D(g->ceyh, SizeX, SizeY - 1, double);
29



230 CHAPTER 8. TWO-DIMENSIONAL FDTD SIMULATIONS

30 /* set electric-field update coefficients */
31 for (mm = 0; mm < SizeX - 1; mm++)
32 for (nn = 0; nn < SizeY; nn++) {
33 Cexe(mm, nn) = 1.0;
34 Cexh(mm, nn) = Cdtds * imp0;
35 }
36

37 for (mm = 0; mm < SizeX; mm++)
38 for (nn = 0; nn < SizeY - 1; nn++) {
39 Ceye(mm, nn) = 1.0;
40 Ceyh(mm, nn) = Cdtds * imp0;
41 }
42

43 /* Set to zero nodes associated with PEC scatterer.
44 * Circular scatterer assumed centered on Hz node
45 * at (xCenter, yCenter). If an Hz node is less than
46 * the radius away from this node, set to zero the
47 * four electric fields that surround that node.
48 */
49 rad = 12; // radius of circle
50 xCenter = SizeX / 2;
51 yCenter = SizeY / 2;
52 r2 = rad * rad; // square of radius
53 for (mm = 1; mm < SizeX - 1; mm++) {
54 xLocation = mm - xCenter;
55 for (nn = 1; nn < SizeY - 1; nn++) {
56 yLocation = nn - yCenter;
57 if (xLocation * xLocation + yLocation * yLocation < r2) {
58 Cexe(mm, nn) = 0.0;
59 Cexh(mm, nn) = 0.0;
60 Cexe(mm, nn + 1) = 0.0;
61 Cexh(mm, nn + 1) = 0.0;
62 Ceye(mm + 1, nn) = 0.0;
63 Ceyh(mm + 1, nn) = 0.0;
64 Ceye(mm, nn) = 0.0;
65 Ceyh(mm, nn) = 0.0;
66 }
67 }
68 }
69

70 /* set magnetic-field update coefficients */
71 for (mm = 0; mm < SizeX - 1; mm++)
72 for (nn = 0; nn < SizeY - 1; nn++) {
73 Chzh(mm, nn) = 1.0;
74 Chze(mm, nn) = Cdtds / imp0;
75 }
76



8.9. TEz EXAMPLE 231

77 return;
78 }

The header file fdtd-macro-tez.h that defines the macros used in the TEz simulations is
shown in Program 8.19. The header files that define the function prototypes (fdtd-proto2.h),
the allocation macros (fdtd-alloc1.h), and the Grid structure (fdtd-grid1.h) are un-
changed from before and hence are not repeated here (refer to Programs 8.13, 8.4, and 8.3, respec-
tively).

Program 8.19 fdtd-macro-tez.h: Macros used for TEz grids.

1 #ifndef _FDTD_MACRO_TEZ_H
2 #define _FDTD_MACRO_TEZ_H
3

4 #include "fdtd-grid1.h"
5

6 /* macros that permit the "Grid" to be specified */
7 /* one-dimensional grid */
8 #define Hz1G(G, M) G->hz[M]
9 #define Chzh1G(G, M) G->chzh[M]

10 #define Chze1G(G, M) G->chze[M]
11

12 #define Ey1G(G, M) G->ey[M]
13 #define Ceye1G(G, M) G->ceye[M]
14 #define Ceyh1G(G, M) G->ceyh[M]
15

16 /* TEz grid */
17 #define HzG(G, M, N) G->hz[(M) * (SizeYG(G) - 1) + (N)]
18 #define ChzhG(G, M, N) G->chzh[(M) * (SizeYG(G) - 1) + (N)]
19 #define ChzeG(G, M, N) G->chze[(M) * (SizeYG(G) - 1) + (N)]
20

21 #define ExG(G, M, N) G->ex[(M) * SizeYG(G) + (N)]
22 #define CexeG(G, M, N) G->cexe[(M) * SizeYG(G) + (N)]
23 #define CexhG(G, M, N) G->cexh[(M) * SizeYG(G) + (N)]
24

25 #define EyG(G, M, N) G->ey[(M) * (SizeYG(G) - 1) + (N)]
26 #define CeyeG(G, M, N) G->ceye[(M) * (SizeYG(G) - 1) + (N)]
27 #define CeyhG(G, M, N) G->ceyh[(M) * (SizeYG(G) - 1) + (N)]
28

29 #define SizeXG(G) G->sizeX
30 #define SizeYG(G) G->sizeY
31 #define SizeZG(G) G->sizeZ
32 #define TimeG(G) G->time
33 #define MaxTimeG(G) G->maxTime
34 #define CdtdsG(G) G->cdtds



232 CHAPTER 8. TWO-DIMENSIONAL FDTD SIMULATIONS

35 #define TypeG(G) G->type
36

37 /* macros that assume the "Grid" is "g" */
38 /* one-dimensional grid */
39 #define Hz1(M) Hz1G(g, M)
40 #define Chzh1(M) Chzh1G(g, M)
41 #define Chze1(M) Chze1G(g, M)
42

43 #define Ey1(M) Ey1G(g, M)
44 #define Ceye1(M) Ceye1G(g, M)
45 #define Ceyh1(M) Ceyh1G(g, M)
46

47 /* TEz grid */
48 #define Hz(M, N) HzG(g, M, N)
49 #define Chzh(M, N) ChzhG(g, M, N)
50 #define Chze(M, N) ChzeG(g, M, N)
51

52 #define Ex(M, N) ExG(g, M, N)
53 #define Cexh(M, N) CexhG(g, M, N)
54 #define Cexe(M, N) CexeG(g, M, N)
55

56 #define Ey(M, N) EyG(g, M, N)
57 #define Ceye(M, N) CeyeG(g, M, N)
58 #define Ceyh(M, N) CeyhG(g, M, N)
59

60 #define SizeX SizeXG(g)
61 #define SizeY SizeYG(g)
62 #define SizeZ SizeZG(g)
63 #define Time TimeG(g)
64 #define MaxTime MaxTimeG(g)
65 #define Cdtds CdtdsG(g)
66 #define Type TypeG(g)
67

68 #endif /* matches #ifndef _FDTD_MACRO_TEZ_H */

The functions to update the fields are shown in Program 8.20. These functions can update
fields in either one- or two-dimensional grid. If the grid type is oneDGrid, here it is assumed
the non-zero fields are Ey and Hz. If that is not the case, it is assume the grid is a TEz grid with
non-zero fields Ex, Ey, and Hz. As has been the case in the past the electric field updates, starting
at line 37, update all the nodes except the nodes at the edge of the grid. However, since all the
magnetic-field nodes have all their neighbors, as shown starting on line 15, all the magnetic-field
nodes in the grid are updated.

Program 8.20 updatetez.c: Functions to update fields in a TEz grid.



8.9. TEz EXAMPLE 233

1 #include "fdtd-macro-tez.h"
2

3 /* update magnetic field */
4 void updateH2d(Grid *g) {
5 int mm, nn;
6

7 if (Type == oneDGrid) {
8

9 for (mm = 0; mm < SizeX - 1; mm++)
10 Hz1(mm) = Chzh1(mm) * Hz1(mm)
11 - Chze1(mm) * (Ey1(mm + 1) - Ey1(mm));
12

13 } else {
14

15 for (mm = 0; mm < SizeX - 1; mm++)
16 for (nn = 0; nn < SizeY - 1; nn++)
17 Hz(mm, nn) = Chzh(mm, nn) * Hz(mm, nn) +
18 Chze(mm, nn) * ((Ex(mm, nn + 1) - Ex(mm, nn))
19 - (Ey(mm + 1, nn) - Ey(mm, nn)));
20 }
21

22 return;
23 }
24

25 /* update electric field */
26 void updateE2d(Grid *g) {
27 int mm, nn;
28

29 if (Type == oneDGrid) {
30

31 for (mm = 1; mm < SizeX - 1; mm++)
32 Ey1(mm) = Ceye1(mm) * Ey1(mm)
33 - Ceyh1(mm) * (Hz1(mm) - Hz1(mm - 1));
34

35 } else {
36

37 for (mm = 0; mm < SizeX - 1; mm++)
38 for (nn = 1; nn < SizeY - 1; nn++)
39 Ex(mm, nn) = Cexe(mm, nn) * Ex(mm, nn) +
40 Cexh(mm, nn) * (Hz(mm, nn) - Hz(mm, nn - 1));
41

42 for (mm = 1; mm < SizeX - 1; mm++)
43 for (nn = 0; nn < SizeY - 1; nn++)
44 Ey(mm, nn) = Ceye(mm, nn) * Ey(mm, nn) -
45 Ceyh(mm, nn) * (Hz(mm, nn) - Hz(mm - 1, nn));
46 }
47



234 CHAPTER 8. TWO-DIMENSIONAL FDTD SIMULATIONS

48 return;
49 }

The second-order absorbing boundary condition is realized with the code in the file abctez.c
which is shown in Program 8.21. Because of the way the grid is constructed, the ABC is applied
to Ey nodes along the left and right side of the computational domain and to Ex nodes along the
top and bottom.

Program 8.21 abctez.c: Contents of file that implements the second-order absorbing bound-
ary condition for the TEz grid.

1 /* Second-order ABC for TEz grid. */
2 #include <math.h>
3 #include "fdtd-alloc1.h"
4 #include "fdtd-macro-tez.h"
5

6 /* Define macros for arrays that store the previous values of the
7 * fields. For each one of these arrays the three arguments are as
8 * follows:
9 *

10 * first argument: spatial displacement from the boundary
11 * second argument: displacement back in time
12 * third argument: distance from either the bottom (if EyLeft or
13 * EyRight) or left (if ExTop or ExBottom) side
14 * of grid
15 *
16 */
17 #define EyLeft(M, Q, N) eyLeft[(N) * 6 + (Q) * 3 + (M)]
18 #define EyRight(M, Q, N) eyRight[(N) * 6 + (Q) * 3 + (M)]
19 #define ExTop(N, Q, M) exTop[(M) * 6 + (Q) * 3 + (N)]
20 #define ExBottom(N, Q, M) exBottom[(M) * 6 + (Q) * 3 + (N)]
21

22 static int initDone = 0;
23 static double coef0, coef1, coef2;
24 static double *eyLeft, *eyRight, *exTop, *exBottom;
25

26 void abcInit(Grid *g) {
27 double temp1, temp2;
28

29 initDone = 1;
30

31 /* allocate memory for ABC arrays */
32 ALLOC_1D(eyLeft, (SizeY - 1) * 6, double);
33 ALLOC_1D(eyRight, (SizeY - 1) * 6, double);
34 ALLOC_1D(exTop, (SizeX - 1) * 6, double);



8.9. TEz EXAMPLE 235

35 ALLOC_1D(exBottom, (SizeX - 1) * 6, double);
36

37 /* calculate ABC coefficients */
38 temp1 = sqrt(Cexh(0, 0) * Chze(0, 0));
39 temp2 = 1.0 / temp1 + 2.0 + temp1;
40 coef0 = -(1.0 / temp1 - 2.0 + temp1) / temp2;
41 coef1 = -2.0 * (temp1 - 1.0 / temp1) / temp2;
42 coef2 = 4.0 * (temp1 + 1.0 / temp1) / temp2;
43

44 return;
45 }
46

47 void abc(Grid *g)
48 {
49 int mm, nn;
50

51 /* ABC at left side of grid */
52 for (nn = 0; nn < SizeY - 1; nn++) {
53 Ey(0, nn) = coef0 * (Ey(2, nn) + EyLeft(0, 1, nn))
54 + coef1 * (EyLeft(0, 0, nn) + EyLeft(2, 0, nn)
55 - Ey(1, nn) - EyLeft(1, 1, nn))
56 + coef2 * EyLeft(1, 0, nn) - EyLeft(2, 1, nn);
57

58 /* memorize old fields */
59 for (mm = 0; mm < 3; mm++) {
60 EyLeft(mm, 1, nn) = EyLeft(mm, 0, nn);
61 EyLeft(mm, 0, nn) = Ey(mm, nn);
62 }
63 }
64

65 /* ABC at right side of grid */
66 for (nn = 0; nn < SizeY - 1; nn++) {
67 Ey(SizeX - 1, nn) = coef0 * (Ey(SizeX - 3, nn) + EyRight(0, 1, nn))
68 + coef1 * (EyRight(0, 0, nn) + EyRight(2, 0, nn)
69 - Ey(SizeX - 2, nn) - EyRight(1, 1, nn))
70 + coef2 * EyRight(1, 0, nn) - EyRight(2, 1, nn);
71

72 /* memorize old fields */
73 for (mm = 0; mm < 3; mm++) {
74 EyRight(mm, 1, nn) = EyRight(mm, 0, nn);
75 EyRight(mm, 0, nn) = Ey(SizeX - 1 - mm, nn);
76 }
77 }
78

79 /* ABC at bottom of grid */
80 for (mm = 0; mm < SizeX - 1; mm++) {
81 Ex(mm, 0) = coef0 * (Ex(mm, 2) + ExBottom(0, 1, mm))



236 CHAPTER 8. TWO-DIMENSIONAL FDTD SIMULATIONS

82 + coef1 * (ExBottom(0, 0, mm) + ExBottom(2, 0, mm)
83 - Ex(mm, 1) - ExBottom(1, 1, mm))
84 + coef2 * ExBottom(1, 0, mm) - ExBottom(2, 1, mm);
85

86 /* memorize old fields */
87 for (nn = 0; nn < 3; nn++) {
88 ExBottom(nn, 1, mm) = ExBottom(nn, 0, mm);
89 ExBottom(nn, 0, mm) = Ex(mm, nn);
90 }
91 }
92

93 /* ABC at top of grid */
94 for (mm = 0; mm < SizeX - 1; mm++) {
95 Ex(mm, SizeY - 1) = coef0 * (Ex(mm, SizeY - 3) + ExTop(0, 1, mm))
96 + coef1 * (ExTop(0, 0, mm) + ExTop(2, 0, mm)
97 - Ex(mm, SizeY - 2) - ExTop(1, 1, mm))
98 + coef2 * ExTop(1, 0, mm) - ExTop(2, 1, mm);
99

100 /* memorize old fields */
101 for (nn = 0; nn < 3; nn++) {
102 ExTop(nn, 1, mm) = ExTop(nn, 0, mm);
103 ExTop(nn, 0, mm) = Ex(mm, SizeY - 1-nn);
104 }
105 }
106

107 return;
108 }

The contents of the file tfsftez.c are shown in Program 8.22. This closely follows the
TFSF code that was used for the TMz grid. Again, a 1D auxiliary grid is used to describe the
incident field. The 1D grid is available via in the Grid pointer g1 which is only visible to the
functions in this file. Space for the structure is allocated in line 16. In the following line the
contents of the 2D structure are copied to the 1D structure. This is done to set the size of the grid
and the Courant number. Then, in line 18, the function gridInit1d() is called to complete the
initialization of the 1D grid.

The function tfsfUpdate(), which starts on line 31, is called once per time-step. After
ensuring that the initialization function has been called, the magnetic fields adjacent to the TFSF
boundary are corrected. Following this, as shown starting on line 52, the magnetic field in the 1D
grid is updated, then the 1D electric field is updated, then the source function is applied to the first
node in the 1D grid, and finally the time-step of the 1D grid is incremented. Starting on line 58,
the electric fields in the 2D grid adjacent to the TFSF boundary are corrected.

The header file ezinctez.h differs from ezinc.h used in the TMz code only in that it in-
cludes fdtd-macro-tez.h instead of fdtd-macro-tmz.h. Hence it is not shown here nor
is the code used to realize the source function which is a Ricker wavelet (which is also essentially
unchanged from before).



8.9. TEz EXAMPLE 237

Program 8.22 tfsftez.c: Implementation of a TFSF boundary for a TEz grid. The incident
field propagates in the x direction and an auxiliary 1D grid is used to compute the incident field.

1 /* TFSF implementation for a TEz grid. */
2

3 #include <string.h> // for memcpy
4 #include "fdtd-macro-tez.h"
5 #include "fdtd-proto2.h"
6 #include "fdtd-alloc1.h"
7 #include "ezinctez.h"
8

9 static int firstX = 0, firstY, // indices for first point in TF region
10 lastX, lastY; // indices for last point in TF region
11

12 static Grid *g1; // 1D auxiliary grid
13

14 void tfsfInit(Grid *g) {
15

16 ALLOC_1D(g1, 1, Grid); // allocate memory for 1D Grid
17 memcpy(g1, g, sizeof(Grid)); // copy information from 2D array
18 gridInit1d(g1); // initialize 1d grid
19

20 printf("Grid is %d by %d cell.\n", SizeX, SizeY);
21 printf("Enter indices for first point in TF region: ");
22 scanf(" %d %d", &firstX, &firstY);
23 printf("Enter indices for last point in TF region: ");
24 scanf(" %d %d", &lastX, &lastY);
25

26 ezIncInit(g); // initialize source function
27

28 return;
29 }
30

31 void tfsfUpdate(Grid *g) {
32 int mm, nn;
33

34 // check if tfsfInit() has been called
35 if (firstX <= 0) {
36 fprintf(stderr,
37 "tfsfUpdate: tfsfInit must be called before tfsfUpdate.\n"
38 " Boundary location must be set to positive value.\n");
39 exit(-1);
40 }
41

42 // correct Hz along left edge
43 mm = firstX - 1;
44 for (nn = firstY; nn < lastY; nn++)



238 CHAPTER 8. TWO-DIMENSIONAL FDTD SIMULATIONS

45 Hz(mm, nn) += Chze(mm, nn) * Ey1G(g1, mm + 1);
46

47 // correct Hz along right edge
48 mm = lastX;
49 for (nn = firstY; nn < lastY; nn++)
50 Hz(mm, nn) -= Chze(mm, nn) * Ey1G(g1, mm);
51

52 updateH2d(g1); // update 1D magnetic field
53 updateE2d(g1); // update 1D electric field
54 Ey1G(g1, 0) = ezInc(TimeG(g1), 0.0); // set source node
55 TimeG(g1)++; // increment time in 1D grid
56

57 // correct Ex along the bottom
58 nn = firstY;
59 for (mm = firstX; mm < lastX; mm++)
60 Ex(mm, nn) -= Cexh(mm, nn) * Hz1G(g1, mm);
61

62 // correct Ex along the top
63 nn = lastY;
64 for (mm = firstX; mm < lastX; mm++)
65 Ex(mm, nn) += Cexh(mm, nn) * Hz1G(g1, mm);
66

67 // correct Ey field along left edge
68 mm = firstX;
69 for (nn = firstY; nn < lastY; nn++)
70 Ey(mm, nn) += Ceyh(mm, nn) * Hz1G(g1, mm - 1);
71

72 // correct Ey field along right edge
73 mm = lastX;
74 for (nn = firstY; nn < lastY; nn++)
75 Ey(mm, nn) -= Ceyh(mm, nn) * Hz1G(g1, mm);
76

77 // no need to correct Ex along top and bottom since
78 // incident Ex is zero
79

80 return;
81 }

The function to initialize the 1D auxiliary grid is shown in Program 8.23. As was the case for
the TMz case, the grid is terminated on the right with a lossy layer that is 20 cells wide. The rest
of the grid corresponds to free space. (The first node in the grid is the hard-wired source node and
hence the left side of the grid does not need to be terminated.)

Program 8.23 grid1dhz.c: Initialization function used for the 1D auxiliary grid for the TEz

TFSF boundary.



8.9. TEz EXAMPLE 239

1 /* Create a 1D grid suitable for an auxiliary grid used as part of
2 * the implementation of a TFSF boundary in a TEz simulations. */
3

4 #include <math.h>
5 #include "fdtd-macro-tez.h"
6 #include "fdtd-alloc1.h"
7

8 #define NLOSS 20 // number of lossy cells at end of 1D grid
9 #define MAX_LOSS 0.35 // maximum loss factor in lossy layer

10

11 void gridInit1d(Grid *g) {
12 double imp0 = 377.0, depthInLayer = 0.0, lossFactor;
13 int mm;
14

15 SizeX += NLOSS; // size of domain
16 Type = oneDGrid; // set grid type
17

18 ALLOC_1D(g->hz, SizeX - 1, double);
19 ALLOC_1D(g->chzh, SizeX - 1, double);
20 ALLOC_1D(g->chze, SizeX - 1, double);
21 ALLOC_1D(g->ey, SizeX, double);
22 ALLOC_1D(g->ceye, SizeX, double);
23 ALLOC_1D(g->ceyh, SizeX, double);
24

25 /* set electric-field update coefficients */
26 for (mm = 0; mm < SizeX - 1; mm++) {
27 if (mm < SizeX - 1 - NLOSS) {
28 Ceye1(mm) = 1.0;
29 Ceyh1(mm) = Cdtds * imp0;
30 Chzh1(mm) = 1.0;
31 Chze1(mm) = Cdtds / imp0;
32 } else {
33 depthInLayer += 0.5;
34 lossFactor = MAX_LOSS * pow(depthInLayer / NLOSS, 2);
35 Ceye1(mm) = (1.0 - lossFactor) / (1.0 + lossFactor);
36 Ceyh1(mm) = Cdtds * imp0 / (1.0 + lossFactor);
37 depthInLayer += 0.5;
38 lossFactor = MAX_LOSS * pow(depthInLayer / NLOSS, 2);
39 Chzh1(mm) = (1.0 - lossFactor) / (1.0 + lossFactor);
40 Chze1(mm) = Cdtds / imp0 / (1.0 + lossFactor);
41 }
42 }
43

44 return;
45 }



240 CHAPTER 8. TWO-DIMENSIONAL FDTD SIMULATIONS

Figure 8.14 shows snapshots of the magnetic field throughout the computational domain at
three different times. The snapshot in Fig. 8.14(a) was taken after 60 time steps. The leading edge
of the incident pulse has just started to interact with the scatterer. No scattered fields are evident
in the SF region. The snapshot in Fig. 8.14(b) was taken after 100 time steps. The entire scatterer
is now visible and scattered fields have just started to enter the SF region. The final snapshot was
taken after 140 time steps.

To obtain these snapshots, the snapshot code of Program 8.11 has to be slightly modified. Since
we are now interested in obtaining Hz instead of Ez, the limits of the for-loops starting in line 68
of Program 8.11 would have to be changed to that which pertain to the Hz array. Furthermore,
one would have to change Ez(mm, nn) in line 70 to Hz(mm, nn). Because these changes are
minor, the modified version of the program is not shown.



8.9. TEz EXAMPLE 241

(a)

(b)

(c)

Figure 8.14: Pulsed TEz illumination of a circular scatter. Display of the Hz field at time-steps (a)
60, (b) 100 and (c) 140. The field has been normalized by 1/377 (i.e., the characteristic impedance
of free space) and is shown with three decades of logarithmic scaling. The incident field is a Ricker
wavelet discretized such that there are 30 points per wavelength at the most energetic frequency.



242 CHAPTER 8. TWO-DIMENSIONAL FDTD SIMULATIONS



Chapter 9

Three-Dimensional FDTD

9.1 Introduction
With an understanding of the FDTD implementation of TEz and TMz grids, the additional steps
needed to implement a three-dimensional (3D) grid are almost trivial. A 3D grid can be viewed
as stacked layers of TEz and TMz grids which are offset a half spatial step in the z direction. The
update equations for the Hz and Ez nodes are nearly identical to those which have been given
already—the only difference is an additional index to specify the z location. The update equations
for the other field components require slight changes to account for variations in the z direction
(i.e., in the governing equations the partial derivative with respect to z is no longer zero).

We begin this chapter by discussing the implementation of 3D arrays in C. This is followed
by details concerning the arrangement of nodes in 3D and the associated update equations. The
chapter concludes with the code for an incremental dipole in a homogeneous space.

9.2 3D Arrays in C
For fields in a 3D space, it is, of course, natural to specify the location of a node using three indices
representing the displacement in the x, y, and z directions. However, as was done for 2D grids, we
will use a macro to translate the given indices into an offset into a 1D array. The memory associated
with the 1D array will be allocated dynamically and the amount of memory will be precisely what
is needed to store all the elements of the 3D “array.” (We will refer to the macro as a 3D array
since, other than the cleaner specification of the indices, its use in the code is indistinguishable
from a traditional 3D array.)

For 3D arrays, incrementing the third index by one changes the variable being specified to
the next consecutive variable in memory. Thinking of the third index as corresponding to the z
direction, this implies that nodes that are adjacent to each other in the z direction are also adjacent
to each other in memory. On the other hand, when the first or second index is incremented by one,
that will not correspond to the next variable in memory. When the second index is incremented,
one must move forward in memory an amount corresponding to the number of variables in the
third dimension. For example, if the array size in the third dimension was 32 elements, then

Lecture notes by John Schneider. fdtd-3d.tex

243



244 CHAPTER 9. THREE-DIMENSIONAL FDTD

Ez(0,0,0)

Ez(1,0,0)

Ez(2,0,0)

Ez(0,1,0)

Ez(1,1,0)

Ez(2,1,0)

Ez(0,2,0)

Ez(1,2,0)

Ez(2,2,0)

Ez(0,3,0)

Ez(1,3,0)

Ez(2,3,0)

Ez(0,0,1)

Ez(1,0,1)

Ez(2,0,1)

Ez(0,1,1)

Ez(1,1,1)

Ez(2,1,1)

Ez(0,2,1)

Ez(1,2,1)

Ez(2,2,1)

Ez(0,3,1)

Ez(1,3,1)

Ez(2,3,1)

Ez(0,0,2)

Ez(1,0,2)

Ez(2,0,2)

Ez(0,1,2)

Ez(1,1,2)

Ez(2,1,2)

Ez(0,2,2)

Ez(1,2,2)

Ez(2,2,2)

Ez(0,3,2)

Ez(1,3,2)

Ez(2,3,2)

n=0

m=0

n=3n=2n=1

m=1

m=2

p=0

p=2

p=1

y
x

z

Figure 9.1: Depiction of elements of an array with dimensions 3×4×3 in the x, y, and z directions,
respectively. The indices m, n, and p, are used to specify the x, y, and z locations, respectively.
The element at the “origin” has indices (0, 0, 0) and is shown in the upper left corner of the bottom
plane.

incrementing the second index by one would require that the offset in memory be advanced by
32. This is the same as in the 2D case where we can think of the size of the third dimension as
corresponding to the number of columns (or, said another way, the number of elements in a row).

When the first index is incremented by one, the offset in memory must account for the array
size in both the second and third dimension. To illustrate this, consider Fig. 9.1 which shows the
elements of the 3D array Ez. The array is 3×4×3, corresponding to the dimensions in the x, y and
z directions. In reality, these elements will map to elements of a 1D array called ezwhich is shown
in 9.2. Since ez is a 1D array, it takes a single index (or offset). Note that if one holds the m and n
indices fixed (corresponding to the x and y directions) but increments the p index (corresponding
to a movement in the z direction), the index of ez changes by one. However, if m and p are held
fixed and n is incremented by one, the index of ez changed by 3 which correspond to the number
of elements in the z directions. Finally, if n and p are held fixed but m is incremented by one,
the index of ez changed by 12 which is the product of the dimensions in the y and z directions.
Three-dimensional arrays can be thought of as a collection of 2D arrays. For the way in which
we perform the indexing, the 2D arrays correspond to constant-x planes. Each of these 2D arrays
must be large enough to hold the product of the number of elements along the y and z directions.

The construct we use for 3D arrays largely parallels that which was used for 2D arrays. The
allocation macro ALLOC 3D() is shown in Fragment 9.1. The only difference between this and
the allocation macros shown previously is the addition of another argument to specify the size of
the array in the third dimension (this is the argument NUMZ). This dimension is multiplied by the
other two dimensions and used as the first argument of calloc().



9.2. 3D ARRAYS IN C 245

ez[0]

ez[12]

ez[24]

ez[3]

ez[15]

ez[27]

ez[6]

ez[18]

ez[30]

ez[9]

ez[21]

ez[33]

ez[1]

ez[13]

ez[25]

ez[4]

ez[16]

ez[28]

ez[7]

ez[19]

ez[31]

ez[10]

ez[22]

ez[34]

ez[2]

ez[14]

ez[26]

ez[5]

ez[17]

ez[29]

ez[8]

ez[20]

ez[32]

ez[11]

ez[23]

ez[35]

n=0

m=0

n=3n=2n=1

m=1

m=2

p=0

p=2

p=1

y
x

z

Figure 9.2: The 1D array ez is used to store the elements of Ez. The three indices for each
elements of Ez shown in Fig. 9.1 map to the single index shown here.

Fragment 9.1 Macro for allocating memory for a 3D array.

1 #define ALLOC_3D(PNTR, NUMX, NUMY, NUMZ, TYPE) \
2 PNTR = (TYPE *)calloc((NUMX) * (NUMY) * (NUMZ), sizeof(TYPE)); \
3 if (!PNTR) { \
4 perror("ALLOC_3D"); \
5 fprintf(stderr, \
6 "Allocation failed for " #PNTR ". Terminating...\n"); \
7 exit(-1); \
8 }

To illustrate the construction and use of a 3D array, the code in Fragment 9.2 shows how
one could create a 6 × 7 × 8 array. In this example the array dimensions are set in #define-
statements in lines 1–3. Line 5 provides the macro Ez() which takes three (dummy) arguments.
The preprocessor will replace all occurrences of Ez() with the expression involving ez[] shown
at the right. The pointer ez is defined in line 6 and initially at run-time does not have any memory
associated with it. However, after line 9 has executed ez will point to a block of memory that is
sufficient to hold all the elements of the array and, at this point, ez can be treated as a 1D array (but
we never use ez directly in the code—instead, we use the macro Ez() to access array elements).
The nested for-loops starting at line 11 merely set each element equal to the product of the indices
for that element. Note that this order of nesting is the one that should be used in practice: the
inner-most loop should be over the z index and the outer-most loop should be over the x index.
(This order helps minimize page faults and hence maximize performance.)



246 CHAPTER 9. THREE-DIMENSIONAL FDTD

Fragment 9.2 Demonstration of the construction and manipulation of a 6× 7× 8 array.

1 #define num_rows 8
2 #define num_columns 7
3 #define num_planes 6
4

5 #define Ez(M, N, P) ez[((M) * num_columns + (N)) * num_rows + (P)]

...

6 double *ez;
7 int m, n, p;
8

9 ALLOC_3D(ez, num_planes, num_columns, num_rows, double);
10

11 for (m = 0; m < num_planes; m++)
12 for (n = 0; n < num_columns; n++)
13 for (p = 0; p < num_rows; p++)
14 Ez(m, n, p) = m * n * p;

9.3 Governing Equations and the 3D Grid
As has been the case previously, Ampere’s and Faraday’s laws are the relevant governing equations
in constructing the FDTD algorithm. These equations are

−σmH− µ
∂H

∂t
= ∇× E =

∣∣∣∣∣∣
âx ây âz
∂
∂x

∂
∂y

∂
∂z

Ex Ey Ez

∣∣∣∣∣∣ , (9.1)

σE+ ϵ
∂E

∂t
= ∇×H =

∣∣∣∣∣∣
âx ây âz
∂
∂x

∂
∂x

∂
∂z

Hx Hy Hz

∣∣∣∣∣∣ . (9.2)

The components of these equations, when approximated by finite-differences at the appropriate
points in space-time, yield the discretized update equations.

The necessary arrangement of nodes is show in Fig. 9.3. This grouping of six nodes can be
considered the fundamental building block of a 3D grid. The following notation is used:

Hx(x, y, z, t) = Hx(m∆x, n∆y, p∆z, q∆t) = Hq
x[m,n, p] , (9.3)

Hy(x, y, z, t) = Hy(m∆x, n∆y, p∆z, q∆t) = Hq
y [m,n, p] , (9.4)

Hz(x, y, z, t) = Hz(m∆x, n∆y, p∆z, q∆t) = Hq
z [m,n, p] , (9.5)

Ex(x, y, z, t) = Ex(m∆x, n∆y, p∆z, q∆t) = Eq
x[m,n, p] , (9.6)

Ey(x, y, z, t) = Ey(m∆x, n∆y, p∆z, q∆t) = Eq
y [m,n, p] , (9.7)

Ez(x, y, z, t) = Ez(m∆x, n∆y, p∆z, q∆t) = Eq
z [m,n, p] . (9.8)



9.3. GOVERNING EQUATIONS AND THE 3D GRID 247

Hz[m+1/2,n+1/2,p]

Ey[m,n+1/2,p]

Ex[m+1/2,n,p]

Hy[m+1/2,n,p+1/2]
Hx[m,n+1/2,p+1/2]

y

x

z

Ez[m,n,p+1/2]

Figure 9.3: Arrangement of nodes in three dimensions. In a computer program all these nodes
would have the same m, n, and p indices (the one-halves would be discarded from the equations—
the offset would be understood). Electric-field nodes are displaced a half step in the direction in
which they point while magnetic-field nodes are displaced a half step in the two directions they
do not point. It is also implicitly understood that the electric- and magnetic-field nodes are offset
from each other a half step in time.

In Fig. 9.3 the temporal location of the nodes is not specified. It is assumed the electric-field
nodes exist at integer multiples of the time step and the magnetic-field nodes exists one-half of
a temporal step away from the electric field nodes. As we will see when we implement the 3D
algorithm in a computer program, the halves are suppressed and these six nodes will all have the
same indices. Note that, for any given set of indices the electric-field nodes are displaced a half
step in the direction in which they point while magnetic-field nodes are displaced a half step in the
two directions they do not point.

Another view of a portion of the 3D grid is shown in Fig. 9.4. This type of depiction is typically
call the Yee cube or Yee cell. This cube consists of electric-field nodes on the edges of the cube
(hence four nodes of each electric-field component) and magnetic-field nodes on the faces (two
nodes of each magnetic-field component). In a 3D grid one can shift the origin of this cube so that
magnetic-field nodes are along the edges and electric-field nodes are on the faces. Although this is
done by some authors, we will use the arrangement shown in Fig. 9.4.

With the arrangement of nodes shown in Figs. 9.3 and 9.4, the components of (9.1) and (9.2)



248 CHAPTER 9. THREE-DIMENSIONAL FDTD

Ey[m,n+1/2,p+1]

Ex[m+1/2,n+1,p]

y

x

z

Ez[m,n+1,p+1/2]

Ez[m+1,n,p+1/2]

Ex[m+1/2,n,p+1]

Ey[m+1,n+1/2,p]

Δz

Δy
Δx

Figure 9.4: The nodes in a 3D FDTD grid are often drawn in the form of a Yee cube or Yee cell. In
this depiction the nodes do not all have the same indices. As drawn here the cube would consist of
four Ex nodes, four Ey nodes, and four Ez nodes, i.e., the electric fields are along the cube edges.
Magnetic fields are on the cube faces and hence there would be two Hx nodes, two Hy nodes, and
two Hz nodes.

expressed at the appropriate evaluation points are

−σmHx − µ
∂Hx

∂t
=

∂Ez
∂y

− ∂Ey
∂z

∣∣∣∣
x=m∆x,y=(n+1/2)∆y ,z=(p+1/2)∆z ,t=q∆t

, (9.9)

−σmHy − µ
∂Hy

∂t
=

∂Ex
∂z

− ∂Ez
∂x

∣∣∣∣
x=(m+1/2)∆x,y=n∆y ,z=(p+1/2)∆z ,t=q∆t

, (9.10)

−σmHz − µ
∂Hz

∂t
=

∂Ey
∂x

− ∂Ex
∂y

∣∣∣∣
x=(m+1/2)∆x,y=(n+1/2)∆y ,z=p∆z ,t=q∆t

, (9.11)

σEx + ϵ
∂Ex
∂t

=
∂Hz

∂y
− ∂Hy

∂z

∣∣∣∣
x=(m+1/2)∆x,y=n∆y ,z=p∆z ,t=(q+1/2)∆t

, (9.12)

σEy + ϵ
∂Ey
∂t

=
∂Hx

∂z
− ∂Hz

∂x

∣∣∣∣
x=m∆x,y=(n+1/2)∆y ,z=p∆z ,t=(q+1/2)∆t

, (9.13)

σEz + ϵ
∂Ez
∂t

=
∂Hy

∂x
− ∂Hx

∂y

∣∣∣∣
x=m∆x,y=n∆y ,z=(p+1/2)∆z ,t=(q+1/2)∆t

. (9.14)

In these equations, ignoring loss for a moment, the temporal derivative of each field-component is
always given by the spatial derivative of two components of the “other field.” Also, the components
of one field are related to the two orthogonal components of the other field. As has been done
previously, the loss term can be approximated by the average of the field at two times steps.

Given our experience with 1- and 2D grids, the 3D update equations can be written simply by



9.3. GOVERNING EQUATIONS AND THE 3D GRID 249

inspection of the governing equations in the continuous world. The update equations are

H
q+ 1

2
x

[
m,n+

1

2
, p+

1

2

]
=

1− σm∆t

2µ

1 + σm∆t

2µ

H
q− 1

2
x

[
m,n+

1

2
, p+

1

2

]
+

1

1 + σm∆t

2µ

(
∆t

µ∆z

{
Eq
y

[
m,n+

1

2
, p+ 1

]
− Eq

y

[
m,n+

1

2
, p

]}
− ∆t

µ∆y

{
Eq
z

[
m,n+ 1, p+

1

2

]
− Eq

z

[
m,n, p+

1

2

]})
, (9.15)

H
q+ 1

2
y

[
m+

1

2
, n, p+

1

2

]
=

1− σm∆t

2µ

1 + σm∆t

2µ

H
q− 1

2
y

[
m+

1

2
, n, p+

1

2

]
+

1

1 + σm∆t

2µ

(
∆t

µ∆x

{
Eq
z

[
m+ 1, n, p+

1

2

]
− Eq

z

[
m,n, p+

1

2

]}
− ∆t

µ∆z

{
Eq
x

[
m+

1

2
, n, p+ 1

]
− Eq

x

[
m+

1

2
, n, p

]})
, (9.16)

H
q+ 1

2
z

[
m+

1

2
, n+

1

2
, p

]
=

1− σm∆t

2µ

1 + σm∆t

2µ

H
q− 1

2
z

[
m+

1

2
, n+

1

2
, p

]
+

1

1 + σm∆t

2µ

(
∆t

µ∆y

{
Eq
x

[
m+

1

2
, n+ 1, p

]
− Eq

x

[
m+

1

2
, n, p

]}
− ∆t

ϵ∆x

{
Eq
y

[
m+ 1, n+

1

2
, p

]
− Eq

y

[
m,n+

1

2
, p

]})
. (9.17)

Eq+1
x

[
m+

1

2
, n, p

]
=

1− σ∆t

2ϵ

1 + σ∆t

2ϵ

Eq
x

[
m+

1

2
, n, p

]
+

1

1 + σ∆t

2ϵ

(
∆t

ϵ∆y

{
H
q+ 1

2
z

[
m+

1

2
, n+

1

2
, p

]
−H

q+ 1
2

z

[
m+

1

2
, n− 1

2
, p

]}
− ∆t

ϵ∆z

{
H
q+ 1

2
y

[
m+

1

2
, n, p+

1

2

]
−H

q+ 1
2

y

[
m+

1

2
, n, p− 1

2

]})
, (9.18)

Eq+1
y

[
m,n+

1

2
, p

]
=

1− σ∆t

2ϵ

1 + σ∆t

2ϵ

Eq
y

[
m,n+

1

2

]
+

1

1 + σ∆t

2ϵ

(
∆t

ϵ∆z

{
H
q+ 1

2
x

[
m,n+

1

2
, p+

1

2

]
−H

q+ 1
2

x

[
m,n+

1

2
, p− 1

2

]}
− ∆t

ϵ∆x

{
H
q+ 1

2
z

[
m+

1

2
, n+

1

2
, p

]
−H

q+ 1
2

z

[
m− 1

2
, n+

1

2
, p

]})
, (9.19)



250 CHAPTER 9. THREE-DIMENSIONAL FDTD

Eq+1
z

[
m,n, p+

1

2

]
=

1− σ∆t

2ϵ

1 + σ∆t

2ϵ

Eq
z

[
m,n, p+

1

2

]
+

1

1 + σ∆t

2ϵ

(
∆t

ϵ∆x

{
H
q+ 1

2
y

[
m+

1

2
, n, p+

1

2

]
−H

q+ 1
2

y

[
m− 1

2
, n, p+

1

2

]}
− ∆t

ϵ∆y

{
H
q+ 1

2
x

[
m,n+

1

2
, p+

1

2

]
−H

q+ 1
2

x

[
m,n− 1

2
, p+

1

2

]})
. (9.20)

The coefficients in the update equations are assumed constant (in time) but may be functions
of position. Consistent with the notation adopted previously and assuming a uniform grid in which
∆x = ∆y = ∆z = δ, the magnetic-field update coefficients can be expressed as

Chxh(m,n+ 1/2, p+ 1/2) =
1− σm∆t

2µ

1 + σm∆t

2µ

∣∣∣∣∣
mδ,(n+1/2)δ,(p+1/2)δ

, (9.21)

Chxe(m,n+ 1/2, p+ 1/2) =
1

1 + σm∆t

2µ

∆t

µδ

∣∣∣∣∣
mδ,(n+1/2)δ,(p+1/2)δ

, (9.22)

Chyh(m+ 1/2, n, p+ 1/2) =
1− σm∆t

2µ

1 + σm∆t

2µ

∣∣∣∣∣
(m+1/2)δ,nδ,(p+1/2)δ

, (9.23)

Chye(m+ 1/2, n, p+ 1/2) =
1

1 + σm∆t

2µ

∆t

µδ

∣∣∣∣∣
(m+1/2)δ,nδ,(p+1/2)δ

, (9.24)

Chzh(m+ 1/2, n+ 1/2, p) =
1− σm∆t

2µ

1 + σm∆t

2µ

∣∣∣∣∣
(m+1/2)δ,(n+1/2)δ,pδ

, (9.25)

Chze(m+ 1/2, n+ 1/2, p) =
1

1 + σm∆t

2µ

∆t

µδ

∣∣∣∣∣
(m+1/2)δ,(n+1/2)δ,pδ

. (9.26)



9.3. GOVERNING EQUATIONS AND THE 3D GRID 251

For the electric-field update equations the coefficients are

Cexe(m+ 1/2, n, p) =
1− σ∆t

2ϵ

1 + σ∆t

2ϵ

∣∣∣∣∣
(m+1/2)δ,nδ,pδ

, (9.27)

Cexh(m+ 1/2, n, p) =
1

1 + σ∆t

2ϵ

∆t

ϵδ

∣∣∣∣∣
(m+1/2)δ,nδ,pδ

, (9.28)

Ceye(m,n+ 1/2, p) =
1− σ∆t

2ϵ

1 + σ∆t

2ϵ

∣∣∣∣∣
mδ,(n+1/2)δ,pδ

, (9.29)

Ceyh(m,n+ 1/2, p) =
1

1 + σ∆t

2ϵ

∆t

ϵδ

∣∣∣∣∣
mδ,(n+1/2)δ,pδ

, (9.30)

Ceze(m,n, p+ 1/2) =
1− σ∆t

2ϵ

1 + σ∆t

2ϵ

∣∣∣∣∣
mδ,nδ,(p+1/2)δ

, (9.31)

Cezh(m,n, p+ 1/2) =
1

1 + σ∆t

2ϵ

∆t

ϵδ

∣∣∣∣∣
mδ,nδ,(p+1/2)δ

. (9.32)

These coefficients can be related to the Courant number c∆t/δ. For a uniform grid in three di-
mensions the Courant limit is 1/

√
3. There are rigorous derivations of this limit but there is also a

simple empirical argument. It takes three time-steps to communicate information across the diag-
onal of a cube in the grid. The distance traveled across this diagonal is

√
3δ. To ensure stability we

must have that the distance traveled in the continuous world over these three time steps is less than
the distance over which the grid can communicate information. Thus, we must have c3∆t ≤

√
3δ

or, rearranging, Sc ≤ 1/
√
3.

As has been done previously, the explicit reference to time is dropped. Additionally, so that
the indexing can be easily handled within a computer program, the spatial offsets of one-half are
dropped explicitly but left implicitly understood. Thus, all one-halves are discarded from the left
side of the update equations. Nodes on the right side of the equation will also have the one-halves
dropped if the node is within the same group of nodes as the node being updated (where a group of
nodes is as shown in Fig. 9.3). However, if the node on the right side is contained within a group
that is a neighbor to the group that contains the node being updated, the one-half is replaced with
a one. To illustrate further the grouping of nodes in three dimensions, Fig. 9.5 shows six groups
of nodes and the corresponding set of indices for each group. The update-equation coefficients are
evaluated at a point that is collocated with the node being updated. Thus, the 3D update equations
can be written (assuming a suitable collection of macros which will be considered later):

Hx(m, n, p) = Chxh(m, n, p) * Hx(m, n, p) +
Chxe(m, n, p) * ((Ey(m, n, p + 1) - Ey(m, n, p)) -

(Ez(m, n + 1, p) - Ez(m, n, p)));
Hy(m, n, p) = Chyh(m, n, p) * Hy(m, n, p) +

Chye(m, n, p) * ((Ez(m + 1, n, p) - Ez(m, n, p)) -
(Ex(m, n, p + 1) - Ex(m, n, p)));

Hz(m, n, p) = Chzh(m, n, p) * Hz(m, n, p) +



252 CHAPTER 9. THREE-DIMENSIONAL FDTD

y

x

z

(0,0,0)

(1,0,1)

(1,0,0)

(0,0,1) (0,1,1)

(0,1,0)

Figure 9.5: Arrangement of six groups of nodes where all of the nodes within the group have the
same set of indices. The nodes in a group are joined by gray lines and their indices are shown as
an ordered triplet in the center of the group.

Chze(m, n, p) * ((Ex(m, n + 1, p) - Ex(m, n, p)) -
(Ey(m + 1, n, p) - Ey(m, n, p)));

Ex(m, n, p) = Cexe(m, n, p) * Ex(m, n, p) +
Cexh(m, n, p) * ((Hz(m, n, p) - Hz(m, n - 1, p)) -

(Hy(m, n, p) - Hy(m, n, p - 1)));
Ey(m, n, p) = Ceye(m, n, p) * Ey(m, n, p) +

Ceyh(m, n, p) * ((Hx(m, n, p) - Hx(m, n, p - 1)) -
(Hz(m, n, p) - Hz(m - 1, n, p)));

Ez(m, n, p) = Ceze(m, n, p) * Ez(m, n, p) +
Cezh(m, n, p) * ((Hy(m, n, p) - Hy(m - 1, n, p)) -

(Hx(m, n, p) - Hx(m, n - 1, p)));

In our construction of 3D grids, the faces of the grid will always be terminated such that there
are two electric-field components tangential to the face and one magnetic field normal to it. This is
illustrated in Fig. 9.6. The computational domain shown in this figure is one which we describe as
having dimensions of 5× 9× 7 in the x, y, and z directions, respectively. Even though we call this
a 5× 9× 7 grid, none of the arrays associated with this computational domain actually have these



9.3. GOVERNING EQUATIONS AND THE 3D GRID 253

y

x

z

Ey and Ez

Ex and Ez

Ex and Ey

Figure 9.6: Faces of a computational domain which is 5 × 9 × 7 in the x, y, and z directions,
respectively. On the constant-x face the tangential fields are Ey and Ez, on the constant-y face
they are Ex and Ez, and on the constant-z face they are Ex and Ey. There are also magnetic-field
nodes which exist on these faces but their orientation is normal to the face.

dimensions! The fields of a computational domain that is M ×N × P would have dimensions of

Ex : (M − 1)×N × P (9.33)
Ey : M × (N − 1)× P (9.34)
Ez : M ×N × (P − 1) (9.35)
Hx : M × (N − 1)× (P − 1) (9.36)
Hy : (M − 1)×N × (P − 1) (9.37)
Hz : (M − 1)× (N − 1)× P (9.38)

Note that the electric fields have one less element in the direction in which they point than the
nominal size of this grid. This is because of the inherent displacement of electric-field nodes in the
direction in which they point. Rather than having an additional node essentially sticking beyond
the rest of the grid, the array is truncated in this direction. Recall that the displacement of the
magnetic-field nodes is in the two directions in which they do not point. Thus the magnetic-field
arrays are truncated in the two directions they do not point. In terms of Yee cubes, an M ×N ×P
grid would consists of (M − 1)× (N − 1)× (P − 1) complete cubes.



254 CHAPTER 9. THREE-DIMENSIONAL FDTD

9.4 3D Example
Here we provide the code to implement a simple 3D simulation in which a short dipole source is
embedded in a homogeneous domain. The dipole is merely an additive source applied to an Ex
node in the center of the grid. First-order ABC’s are used to terminate the grid. Since there are
two tangential electric fields on each face of the computational domain, the ABC must be applied
to two fields per face.

The main() function is shown in Program 9.3. The overall structure is little changed from
previous simulations. The ABC, the grid, the source function, and the snapshot code are initialized
by calling initialization functions outside of the time-stepping loop. Within the time-stepping loop
the magnetic fields are updated, the electric fields are updated, the source function is applied to the
Ex node at the center of the grid, the ABC is applied, and then, assuming it is the appropriate time
step, a snapshot is taken. Actually, as we will see, two different snapshots are taken. There are
many ways one might choose to display these 3D vector fields. We will merely record one field
component over a 2D plane (or perhaps multiple planes).

Program 9.3 3ddemo.c 3D simulation of an electric dipole realized with an additive source
applied to an Ex node.

1 /* 3D simulation with dipole source at center of grid. */
2

3 #include "fdtd-alloc.h"
4 #include "fdtd-macro.h"
5 #include "fdtd-proto.h"
6 #include "ezinc.h"
7

8 int main()
9 {

10 Grid *g;
11

12 ALLOC_1D(g, 1, Grid); // allocate memory for grid structure
13 gridInit(g); // initialize 3D grid
14

15 abcInit(g); // initialize ABC
16 ezIncInit(g);
17 snapshot3dInit(g); // initialize snapshots
18

19 /* do time stepping */
20 for (Time = 0; Time < MaxTime; Time++) {
21 updateH(g); // update magnetic fields
22 updateE(g); // update electric fields
23 Ex((SizeX - 1) / 2, SizeY / 2, SizeZ / 2) += ezInc(Time, 0.0);
24 abc(g); // apply ABC
25 snapshot3d(g); // take a snapshot (if appropriate)
26 } // end of time-stepping
27



9.4. 3D EXAMPLE 255

28 return 0;
29 }

The code used to realize the source function, i.e., the Ricker wavelet, is unchanged from be-
fore and hence not shown (ref. Program 8.10). The header fdtd-alloc.h merely provides the
three allocation macros ALLOC 1D(), ALLOC 2D(), and ALLOC 3D() and hence is not shown
here. Similarly, the header fdtd-grid1.h, which defines the elements of the Grid structure,
is unchanged from before and thus not shown (ref. Program 8.3). The header fdtd-proto.h
provides the prototypes for the various functions. Since these prototypes simply show that each
function takes a single argument (i.e., a pointer to a Grid structure), that header file is also not
shown.

The header fdtd-macro.h shown in Program 9.4 provides macros for all the types of grids
we have considered so far. In this particular program we only need the macros for the 3D arrays,
but having created this collection of macros we are well prepared to use it, unchanged, to tackle
a wide variety of FDTD problems. As was done in the previous chapter, there are macros which
assume that the Grid structure is named g while there is another set of macros that allows the
name of the Grid to be specified explicitly.

Program 9.4 fdtd-macro.h Header that provides the macros to access the elements of any of
the arrays that have been considered thus far. One set of macros assumes the name of the Grid is
g. Another set allows the name of the Grid to be specified as an additional argument.

1 #ifndef _FDTD_MACRO_H
2 #define _FDTD_MACRO_H
3

4 #include "fdtd-grid1.h"
5

6 /* macros that permit the "Grid" to be specified */
7 /* one-dimensional grid */
8 #define Hy1G(G, M) G->hy[M]
9 #define Chyh1G(G, M) G->chyh[M]

10 #define Chye1G(G, M) G->chye[M]
11

12 #define Ez1G(G, M) G->ez[M]
13 #define Ceze1G(G, M) G->ceze[M]
14 #define Cezh1G(G, M) G->cezh[M]
15

16 /* TMz grid */
17 #define Hx2G(G, M, N) G->hx[(M) * (SizeYG(G) - 1) + N]
18 #define Chxh2G(G, M, N) G->chxh[(M) * (SizeYG(G) - 1) + N]
19 #define Chxe2G(G, M, N) G->chxe[(M) * (SizeYG(G) - 1) + N]
20

21 #define Hy2G(G, M, N) G->hy[(M) * SizeYG(G) + N]
22 #define Chyh2G(G, M, N) G->chyh[(M) * SizeYG(G) + N]
23 #define Chye2G(G, M, N) G->chye[(M) * SizeYG(G) + N]
24

25 #define Ez2G(G, M, N) G->ez[(M) * SizeYG(G) + N]



256 CHAPTER 9. THREE-DIMENSIONAL FDTD

26 #define Ceze2G(G, M, N) G->ceze[(M) * SizeYG(G) + N]
27 #define Cezh2G(G, M, N) G->cezh[(M) * SizeYG(G) + N]
28

29 /* TEz grid */
30 #define Ex2G(G, M, N) G->ex[(M) * SizeYG(G) + N]
31 #define Cexe2G(G, M, N) G->cexe[(M) * SizeYG(G) + N]
32 #define Cexh2G(G, M, N) G->cexh[(M) * SizeYG(G) + N]
33

34 #define Ey2G(G, M, N) G->ey[(M) * (SizeYG(G) - 1) + N]
35 #define Ceye2G(G, M, N) G->ceye[(M) * (SizeYG(G) - 1) + N]
36 #define Ceyh2G(G, M, N) G->ceyh[(M) * (SizeYG(G) - 1) + N]
37

38 #define Hz2G(G, M, N) G->hz[(M) * (SizeYG(G) - 1) + N]
39 #define Chzh2G(G, M, N) G->chzh[(M) * (SizeYG(G) - 1) + N]
40 #define Chze2G(G, M, N) G->chze[(M) * (SizeYG(G) - 1) + N]
41

42 /* 3D grid */
43 #define HxG(G, M, N, P) G->hx[((M) * (SizeYG(G) - 1) + N) * (SizeZG(G) - 1) + P]
44 #define ChxhG(G, M, N, P) G->chxh[((M) * (SizeYG(G) - 1) + N) * (SizeZG(G) - 1) + P]
45 #define ChxeG(G, M, N, P) G->chxe[((M) * (SizeYG(G) - 1) + N) * (SizeZG(G) - 1) + P]
46

47 #define HyG(G, M, N, P) G->hy[((M) * SizeYG(G) + N) * (SizeZG(G) - 1) + P]
48 #define ChyhG(G, M, N, P) G->chyh[((M) * SizeYG(G) + N) * (SizeZG(G) - 1) + P]
49 #define ChyeG(G, M, N, P) G->chye[((M) * SizeYG(G) + N) * (SizeZG(G) - 1) + P]
50

51 #define HzG(G, M, N, P) G->hz[((M) * (SizeYG(G) - 1) + N) * SizeZG(G) + P]
52 #define ChzhG(G, M, N, P) G->chzh[((M) * (SizeYG(G) - 1) + N) * SizeZG(G) + P]
53 #define ChzeG(G, M, N, P) G->chze[((M) * (SizeYG(G) - 1) + N) * SizeZG(G) + P]
54

55 #define ExG(G, M, N, P) G->ex[((M) * SizeYG(G) + N) * SizeZG(G) + P]
56 #define CexeG(G, M, N, P) G->cexe[((M) * SizeYG(G) + N) * SizeZG(G) + P]
57 #define CexhG(G, M, N, P) G->cexh[((M) * SizeYG(G) + N) * SizeZG(G) + P]
58

59 #define EyG(G, M, N, P) G->ey[((M) * (SizeYG(G) - 1) + N) * SizeZG(G) + P]
60 #define CeyeG(G, M, N, P) G->ceye[((M) * (SizeYG(G) - 1) + N) * SizeZG(G) + P]
61 #define CeyhG(G, M, N, P) G->ceyh[((M) * (SizeYG(G) - 1) + N) * SizeZG(G) + P]
62

63 #define EzG(G, M, N, P) G->ez[((M) * SizeYG(G) + N) * (SizeZG(G) - 1) + P]
64 #define CezeG(G, M, N, P) G->ceze[((M) * SizeYG(G) + N) * (SizeZG(G) - 1) + P]
65 #define CezhG(G, M, N, P) G->cezh[((M) * SizeYG(G) + N) * (SizeZG(G) - 1) + P]
66

67 #define SizeXG(G) G->sizeX
68 #define SizeYG(G) G->sizeY
69 #define SizeZG(G) G->sizeZ
70 #define TimeG(G) G->time
71 #define MaxTimeG(G) G->maxTime
72 #define CdtdsG(G) G->cdtds
73 #define TypeG(G) G->type
74

75 /* macros that assume the "Grid" is "g" */
76 /* one-dimensional grid */
77 #define Hy1(M) Hy1G(g, M)
78 #define Chyh1(M) Chyh1G(g, M)
79 #define Chye1(M) Chye1G(g, M)



9.4. 3D EXAMPLE 257

80

81 #define Ez1(M) Ez1G(g, M)
82 #define Ceze1(M) Ceze1G(g, M)
83 #define Cezh1(M) Cezh1G(g, M)
84

85 /* TMz grid */
86 #define Hx2(M, N) Hx2G(g, M, N)
87 #define Chxh2(M, N) Chxh2G(g, M, N)
88 #define Chxe2(M, N) Chxe2G(g, M, N)
89

90 #define Hy2(M, N) Hy2G(g, M, N)
91 #define Chyh2(M, N) Chyh2G(g, M, N)
92 #define Chye2(M, N) Chye2G(g, M, N)
93

94 #define Ez2(M, N) Ez2G(g, M, N)
95 #define Ceze2(M, N) Ceze2G(g, M, N)
96 #define Cezh2(M, N) Cezh2G(g, M, N)
97

98 /* TEz grid */
99 #define Hz2(M, N) Hz2G(g, M, N)

100 #define Chzh2(M, N) Chzh2G(g, M, N)
101 #define Chze2(M, N) Chze2G(g, M, N)
102

103 #define Ex2(M, N) Ex2G(g, M, N)
104 #define Cexe2(M, N) Cexe2G(g, M, N)
105 #define Cexh2(M, N) Cexh2G(g, M, N)
106

107 #define Ey2(M, N) Ey2G(g, M, N)
108 #define Ceye2(M, N) Ceye2G(g, M, N)
109 #define Ceyh2(M, N) Ceyh2G(g, M, N)
110

111 /* 3D grid */
112 #define Hx(M, N, P) HxG(g, M, N, P)
113 #define Chxh(M, N, P) ChxhG(g, M, N, P)
114 #define Chxe(M, N, P) ChxeG(g, M, N, P)
115

116 #define Hy(M, N, P) HyG(g, M, N, P)
117 #define Chyh(M, N, P) ChyhG(g, M, N, P)
118 #define Chye(M, N, P) ChyeG(g, M, N, P)
119

120 #define Hz(M, N, P) HzG(g, M, N, P)
121 #define Chzh(M, N, P) ChzhG(g, M, N, P)
122 #define Chze(M, N, P) ChzeG(g, M, N, P)
123

124 #define Ex(M, N, P) ExG(g, M, N, P)
125 #define Cexe(M, N, P) CexeG(g, M, N, P)
126 #define Cexh(M, N, P) CexhG(g, M, N, P)
127

128 #define Ey(M, N, P) EyG(g, M, N, P)
129 #define Ceye(M, N, P) CeyeG(g, M, N, P)
130 #define Ceyh(M, N, P) CeyhG(g, M, N, P)
131

132 #define Ez(M, N, P) EzG(g, M, N, P)
133 #define Ceze(M, N, P) CezeG(g, M, N, P)



258 CHAPTER 9. THREE-DIMENSIONAL FDTD

134 #define Cezh(M, N, P) CezhG(g, M, N, P)
135

136 #define SizeX SizeXG(g)
137 #define SizeY SizeYG(g)
138 #define SizeZ SizeZG(g)
139 #define Time TimeG(g)
140 #define MaxTime MaxTimeG(g)
141 #define Cdtds CdtdsG(g)
142 #define Type TypeG(g)
143

144 #endif

The file update3d.c is shown in Program 9.5. When updateE() or updateH() are
called they begin by checking the Type of the grid. These same functions can be called whether
updating a 1D, 2D, or 3D grid. However, for the 1D grid there is the assumption that one is dealing
with a z-polarized wave and for 2D propagation one has either TMz- or TEz-polarization. (A
rotation of coordinate systems can be used to map any 1D simulation to one that is z-polarized or
any 2D simulation to one that is either TEz- or TMz-polarized.)

Program 9.5 update3d.c Function that can be used to update any of the grids.

1 #include "fdtd-macro.h"
2 #include <stdio.h>
3 #include <stdlib.h> // for exit()
4

5 /* update magnetic field */
6 void updateH(Grid *g) {
7 int mm, nn, pp;
8

9 if (Type == oneDGrid) {
10

11 for (mm = 0; mm < SizeX - 1; mm++)
12 Hy1(mm) = Chyh1(mm) * Hy1(mm)
13 + Chye1(mm) * (Ez1(mm + 1) - Ez1(mm));
14

15 } else if (Type == tmZGrid) {
16

17 for (mm = 0; mm < SizeX; mm++)
18 for (nn = 0; nn < SizeY - 1; nn++)
19 Hx2(mm, nn) = Chxh2(mm, nn) * Hx2(mm, nn)
20 - Chxe2(mm, nn) * (Ez2(mm, nn + 1) - Ez2(mm, nn));
21

22 for (mm = 0; mm < SizeX - 1; mm++)
23 for (nn = 0; nn < SizeY; nn++)
24 Hy2(mm, nn) = Chyh2(mm, nn) * Hy2(mm, nn)
25 + Chye2(mm, nn) * (Ez2(mm + 1, nn) - Ez2(mm, nn));



9.4. 3D EXAMPLE 259

26

27 } else if (Type == teZGrid) {
28

29 for(mm = 0; mm < SizeX - 1; mm++)
30 for(nn = 0; nn < SizeY - 1; nn++)
31 Hz2(mm, nn) = Chzh2(mm, nn) * Hz2(mm, nn) -
32 Chze2(mm, nn) * ((Ey2(mm + 1, nn) - Ey2(mm, nn)) -
33 (Ex2(mm, nn + 1) - Ex2(mm, nn)));
34

35 } else if (Type == threeDGrid) {
36

37 for (mm = 0; mm < SizeX; mm++)
38 for (nn = 0; nn < SizeY - 1; nn++)
39 for (pp = 0; pp < SizeZ - 1; pp++)
40 Hx(mm, nn, pp) = Chxh(mm, nn, pp) * Hx(mm, nn, pp) +
41 Chxe(mm, nn, pp) * ((Ey(mm, nn, pp + 1) - Ey(mm, nn, pp)) -
42 (Ez(mm, nn + 1, pp) - Ez(mm, nn, pp)));
43

44 for (mm = 0; mm < SizeX - 1; mm++)
45 for (nn = 0; nn < SizeY; nn++)
46 for (pp = 0; pp < SizeZ - 1; pp++)
47 Hy(mm, nn, pp) = Chyh(mm, nn, pp) * Hy(mm, nn, pp) +
48 Chye(mm, nn, pp) * ((Ez(mm + 1, nn, pp) - Ez(mm, nn, pp)) -
49 (Ex(mm, nn, pp + 1) - Ex(mm, nn, pp)));
50

51 for (mm = 0; mm < SizeX - 1; mm++)
52 for (nn = 0; nn < SizeY - 1; nn++)
53 for (pp = 0; pp < SizeZ; pp++)
54 Hz(mm, nn, pp) = Chzh(mm, nn, pp) * Hz(mm, nn, pp) +
55 Chze(mm, nn, pp) * ((Ex(mm, nn + 1, pp) - Ex(mm, nn, pp)) -
56 (Ey(mm + 1, nn, pp) - Ey(mm, nn, pp)));
57

58 } else {
59 fprintf(stderr, "updateH: Unknown grid type. Terminating...\n");
60 exit(-1);
61 }
62

63 return;
64 } /* end updateH() */
65

66

67 /* update electric field */
68 void updateE(Grid *g) {
69 int mm, nn, pp;
70

71 if (Type == oneDGrid) {
72



260 CHAPTER 9. THREE-DIMENSIONAL FDTD

73 for (mm = 1; mm < SizeX - 1; mm++)
74 Ez1(mm) = Ceze1(mm) * Ez1(mm)
75 + Cezh1(mm) * (Hy1(mm) - Hy1(mm - 1));
76

77 } else if (Type == tmZGrid) {
78

79 for (mm = 1; mm < SizeX - 1; mm++)
80 for (nn = 1; nn < SizeY - 1; nn++)
81 Ez2(mm, nn) = Ceze2(mm, nn) * Ez2(mm, nn) +
82 Cezh2(mm, nn) * ((Hy2(mm, nn) - Hy2(mm - 1, nn)) -
83 (Hx2(mm, nn) - Hx2(mm, nn - 1)));
84

85 } else if (Type == teZGrid) {
86

87 for(mm = 1; mm < SizeX - 1; mm++)
88 for(nn = 1; nn < SizeY - 1; nn++)
89 Ex2(mm, nn) = Cexe2(mm, nn) * Ex2(mm, nn) +
90 Cexh2(mm, nn) * (Hz2(mm, nn) - Hz2(mm, nn - 1));
91

92 for(mm = 1; mm < SizeX - 1; mm++)
93 for(nn = 1; nn < SizeY - 1; nn++)
94 Ey2(mm, nn) = Ceye2(mm, nn) * Ey2(mm, nn) -
95 Ceyh2(mm, nn) * (Hz2(mm, nn) - Hz2(mm - 1, nn));
96

97 } else if (Type == threeDGrid) {
98

99 for (mm = 0; mm < SizeX - 1; mm++)
100 for (nn = 1; nn < SizeY - 1; nn++)
101 for (pp = 1; pp < SizeZ - 1; pp++)
102 Ex(mm, nn, pp) = Cexe(mm, nn, pp) * Ex(mm, nn, pp) +
103 Cexh(mm, nn, pp) * ((Hz(mm, nn, pp) - Hz(mm, nn - 1, pp)) -
104 (Hy(mm, nn, pp) - Hy(mm, nn, pp - 1)));
105

106 for (mm = 1; mm < SizeX - 1; mm++)
107 for (nn = 0; nn < SizeY - 1; nn++)
108 for (pp = 1; pp < SizeZ - 1; pp++)
109 Ey(mm, nn, pp) = Ceye(mm, nn, pp) * Ey(mm, nn, pp) +
110 Ceyh(mm, nn, pp) * ((Hx(mm, nn, pp) - Hx(mm, nn, pp - 1)) -
111 (Hz(mm, nn, pp) - Hz(mm - 1, nn, pp)));
112

113 for (mm = 1; mm < SizeX - 1; mm++)
114 for (nn = 1; nn < SizeY - 1; nn++)
115 for (pp = 0; pp < SizeZ - 1; pp++)
116 Ez(mm, nn, pp) = Ceze(mm, nn, pp) * Ez(mm, nn, pp) +
117 Cezh(mm, nn, pp) * ((Hy(mm, nn, pp) - Hy(mm - 1, nn, pp)) -
118 (Hx(mm, nn, pp) - Hx(mm, nn - 1, pp)));
119



9.4. 3D EXAMPLE 261

120 } else {
121 fprintf(stderr, "updateE: Unknown grid type. Terminating...\n");
122 exit(-1);
123 }
124

125 return;
126 } /* end updateE() */

The code to realize the first-order ABC is shown in Program 9.6. A first-order ABC requires
that a single “old” value be recorded for each electric field that is tangential to a face of the grid.
There are two tangential components per face. For example, at the “x = 0” face, Ey and Ez are the
tangential components. These fields are stored in arrays named Eyx0(n, p) and Ezx0(n, p).
The “x0” part of the name specifies that these values are at the start of the grid in the x-direction.
Since these old fields are recorded over a constant-x face, only the indices corresponding to the
y and z directions are specified (hence these arrays only take two indices). The array Eyx1(n,
p) and Ezx1(n, p) correspond to the tangential field at the end of the grid in the x-direction.
There are similarly named arrays for the other two directions.

Program 9.6 abc3dfirst.c The code used to implement a first-order ABC on each face of
the 3D domain.

1 #include "fdtd-alloc.h"
2 #include "fdtd-macro.h"
3

4 /* Macros to access stored "old" value */
5 #define Eyx0(N, P) eyx0[(N) * (SizeZ) + (P)]
6 #define Ezx0(N, P) ezx0[(N) * (SizeZ - 1) + (P)]
7 #define Eyx1(N, P) eyx1[(N) * (SizeZ) + (P)]
8 #define Ezx1(N, P) ezx1[(N) * (SizeZ - 1) + (P)]
9

10 #define Exy0(M, P) exy0[(M) * (SizeZ) + (P)]
11 #define Ezy0(M, P) ezy0[(M) * (SizeZ - 1) + (P)]
12 #define Exy1(M, P) exy1[(M) * (SizeZ) + (P)]
13 #define Ezy1(M, P) ezy1[(M) * (SizeZ - 1) + (P)]
14

15 #define Exz0(M, N) exz0[(M) * (SizeY) + (N)]
16 #define Eyz0(M, N) eyz0[(M) * (SizeY - 1) + (N)]
17 #define Exz1(M, N) exz1[(M) * (SizeY) + (N)]
18 #define Eyz1(M, N) eyz1[(M) * (SizeY - 1) + (N)]
19

20 /* global variables not visible outside of this package */
21 static double abccoef = 0.0;
22 static double *exy0, *exy1, *exz0, *exz1,
23 *eyx0, *eyx1, *eyz0, *eyz1,
24 *ezx0, *ezx1, *ezy0, *ezy1;



262 CHAPTER 9. THREE-DIMENSIONAL FDTD

25

26 /* initialization function */
27 void abcInit(Grid *g)
28 {
29

30 abccoef = (Cdtds - 1.0) / (Cdtds + 1.0);
31

32 /* allocate memory for ABC arrays */
33 ALLOC_2D(eyx0, SizeY - 1, SizeZ, double);
34 ALLOC_2D(ezx0, SizeY, SizeZ - 1, double);
35 ALLOC_2D(eyx1, SizeY - 1, SizeZ, double);
36 ALLOC_2D(ezx1, SizeY, SizeZ - 1, double);
37

38 ALLOC_2D(exy0, SizeX - 1, SizeZ, double);
39 ALLOC_2D(ezy0, SizeX, SizeZ - 1, double);
40 ALLOC_2D(exy1, SizeX - 1, SizeZ, double);
41 ALLOC_2D(ezy1, SizeX, SizeZ - 1, double);
42

43 ALLOC_2D(exz0, SizeX - 1, SizeY, double);
44 ALLOC_2D(eyz0, SizeX, SizeY - 1, double);
45 ALLOC_2D(exz1, SizeX - 1, SizeY, double);
46 ALLOC_2D(eyz1, SizeX, SizeY - 1, double);
47

48 return;
49 } /* end abcInit() */
50

51 /* function that applies ABC -- called once per time step */
52 void abc(Grid *g)
53 {
54 int mm, nn, pp;
55

56 if (abccoef == 0.0) {
57 fprintf(stderr,
58 "abc: abcInit must be called before abc. Terminating...\n");
59 exit(-1);
60 }
61

62 /* ABC at "x0" */
63 mm = 0;
64 for (nn = 0; nn < SizeY - 1; nn++)
65 for (pp = 0; pp < SizeZ; pp++) {
66 Ey(mm, nn, pp) = Eyx0(nn, pp) +
67 abccoef * (Ey(mm + 1, nn, pp) - Ey(mm, nn, pp));
68 Eyx0(nn, pp) = Ey(mm + 1, nn, pp);
69 }
70 for (nn = 0; nn < SizeY; nn++)
71 for (pp = 0; pp < SizeZ - 1; pp++) {



9.4. 3D EXAMPLE 263

72 Ez(mm, nn, pp) = Ezx0(nn, pp) +
73 abccoef * (Ez(mm + 1, nn, pp) - Ez(mm, nn, pp));
74 Ezx0(nn, pp) = Ez(mm + 1, nn, pp);
75 }
76

77 /* ABC at "x1" */
78 mm = SizeX - 1;
79 for (nn = 0; nn < SizeY - 1; nn++)
80 for (pp = 0; pp < SizeZ; pp++) {
81 Ey(mm, nn, pp) = Eyx1(nn, pp) +
82 abccoef * (Ey(mm - 1, nn, pp) - Ey(mm, nn, pp));
83 Eyx1(nn, pp) = Ey(mm - 1, nn, pp);
84 }
85 for (nn = 0; nn < SizeY; nn++)
86 for (pp = 0; pp < SizeZ - 1; pp++) {
87 Ez(mm, nn, pp) = Ezx1(nn, pp) +
88 abccoef * (Ez(mm - 1, nn, pp) - Ez(mm, nn, pp));
89 Ezx1(nn, pp) = Ez(mm - 1, nn, pp);
90 }
91

92 /* ABC at "y0" */
93 nn = 0;
94 for (mm = 0; mm < SizeX - 1; mm++)
95 for (pp = 0; pp < SizeZ; pp++) {
96 Ex(mm, nn, pp) = Exy0(mm, pp) +
97 abccoef * (Ex(mm, nn + 1, pp) - Ex(mm, nn, pp));
98 Exy0(mm, pp) = Ex(mm, nn + 1, pp);
99 }

100 for (mm = 0; mm < SizeX; mm++)
101 for (pp = 0; pp < SizeZ - 1; pp++) {
102 Ez(mm, nn, pp) = Ezy0(mm, pp) +
103 abccoef * (Ez(mm, nn + 1, pp) - Ez(mm, nn, pp));
104 Ezy0(mm, pp) = Ez(mm, nn + 1, pp);
105 }
106

107 /* ABC at "y1" */
108 nn = SizeY - 1;
109 for (mm = 0; mm < SizeX - 1; mm++)
110 for (pp = 0; pp < SizeZ; pp++) {
111 Ex(mm, nn, pp) = Exy1(mm, pp) +
112 abccoef * (Ex(mm, nn - 1, pp) - Ex(mm, nn, pp));
113 Exy1(mm, pp) = Ex(mm, nn - 1, pp);
114 }
115 for (mm = 0; mm < SizeX; mm++)
116 for (pp = 0; pp < SizeZ - 1; pp++) {
117 Ez(mm, nn, pp) = Ezy1(mm, pp) +
118 abccoef * (Ez(mm, nn - 1, pp) - Ez(mm, nn, pp));



264 CHAPTER 9. THREE-DIMENSIONAL FDTD

119 Ezy1(mm, pp) = Ez(mm, nn - 1, pp);
120 }
121

122 /* ABC at "z0" (bottom) */
123 pp = 0;
124 for (mm = 0; mm < SizeX - 1; mm++)
125 for (nn = 0; nn < SizeY; nn++) {
126 Ex(mm, nn, pp) = Exz0(mm, nn) +
127 abccoef * (Ex(mm, nn, pp + 1) - Ex(mm, nn, pp));
128 Exz0(mm, nn) = Ex(mm, nn, pp + 1);
129 }
130 for (mm = 0; mm < SizeX; mm++)
131 for (nn = 0; nn < SizeY - 1; nn++) {
132 Ey(mm, nn, pp) = Eyz0(mm, nn) +
133 abccoef * (Ey(mm, nn, pp + 1) - Ey(mm, nn, pp));
134 Eyz0(mm, nn) = Ey(mm, nn, pp + 1);
135 }
136

137 /* ABC at "z1" (top) */
138 pp = SizeZ - 1;
139 for (mm = 0; mm < SizeX - 1; mm++)
140 for (nn = 0; nn < SizeY; nn++) {
141 Ex(mm, nn, pp) = Exz1(mm, nn) +
142 abccoef * (Ex(mm, nn, pp - 1) - Ex(mm, nn, pp));
143 Exz1(mm, nn) = Ex(mm, nn, pp - 1);
144 }
145 for (mm = 0; mm < SizeX; mm++)
146 for (nn = 0; nn < SizeY - 1; nn++) {
147 Ey(mm, nn, pp) = Eyz1(mm, nn) +
148 abccoef * (Ey(mm, nn, pp - 1) - Ey(mm, nn, pp));
149 Eyz1(mm, nn) = Ey(mm, nn, pp - 1);
150 }
151

152 return;
153 } /* end abc() */

The function to initialize the 3D grid is shown in Program 9.7. Here the grid is simply homoge-
neous free space. The function starts by setting various parameters of the grid, such as the size and
the number of time steps, in lines 9–14. The function then allocates space for the various arrays
(lines 17–35). Finally, the function initializes the values of the coefficient arrays to correspond to
free space (lines 38–79).

Program 9.7 grid3dhomo.c Function to initialize a homogeneous 3D grid.

1 #include "fdtd-macro.h"



9.4. 3D EXAMPLE 265

2 #include "fdtd-alloc.h"
3 #include <math.h>
4

5 void gridInit(Grid *g) {
6 double imp0 = 377.0;
7 int mm, nn, pp;
8

9 Type = threeDGrid;
10 SizeX = 32; // size of domain
11 SizeY = 31;
12 SizeZ = 31;
13 MaxTime = 300; // duration of simulation
14 Cdtds = 1.0 / sqrt(3.0); // Courant number
15

16 /* memory allocation */
17 ALLOC_3D(g->hx, SizeX, SizeY - 1, SizeZ - 1, double);
18 ALLOC_3D(g->chxh, SizeX, SizeY - 1, SizeZ - 1, double);
19 ALLOC_3D(g->chxe, SizeX, SizeY - 1, SizeZ - 1, double);
20 ALLOC_3D(g->hy, SizeX - 1, SizeY, SizeZ - 1, double);
21 ALLOC_3D(g->chyh, SizeX - 1, SizeY, SizeZ - 1, double);
22 ALLOC_3D(g->chye, SizeX - 1, SizeY, SizeZ - 1, double);
23 ALLOC_3D(g->hz, SizeX - 1, SizeY - 1, SizeZ, double);
24 ALLOC_3D(g->chzh, SizeX - 1, SizeY - 1, SizeZ, double);
25 ALLOC_3D(g->chze, SizeX - 1, SizeY - 1, SizeZ, double);
26

27 ALLOC_3D(g->ex, SizeX - 1, SizeY, SizeZ, double);
28 ALLOC_3D(g->cexe, SizeX - 1, SizeY, SizeZ, double);
29 ALLOC_3D(g->cexh, SizeX - 1, SizeY, SizeZ, double);
30 ALLOC_3D(g->ey, SizeX, SizeY - 1, SizeZ, double);
31 ALLOC_3D(g->ceye, SizeX, SizeY - 1, SizeZ, double);
32 ALLOC_3D(g->ceyh, SizeX, SizeY - 1, SizeZ, double);
33 ALLOC_3D(g->ez, SizeX, SizeY, SizeZ - 1, double);
34 ALLOC_3D(g->ceze, SizeX, SizeY, SizeZ - 1, double);
35 ALLOC_3D(g->cezh, SizeX, SizeY, SizeZ - 1, double);
36

37 /* set electric-field update coefficients */
38 for (mm = 0; mm < SizeX - 1; mm++)
39 for (nn = 0; nn < SizeY; nn++)
40 for (pp = 0; pp < SizeZ; pp++) {
41 Cexe(mm, nn, pp) = 1.0;
42 Cexh(mm, nn, pp) = Cdtds * imp0;
43 }
44

45 for (mm = 0; mm < SizeX; mm++)
46 for (nn = 0; nn < SizeY - 1; nn++)
47 for (pp = 0; pp < SizeZ; pp++) {
48 Ceye(mm, nn, pp) = 1.0;



266 CHAPTER 9. THREE-DIMENSIONAL FDTD

49 Ceyh(mm, nn, pp) = Cdtds * imp0;
50 }
51

52 for (mm = 0; mm < SizeX; mm++)
53 for (nn = 0; nn < SizeY; nn++)
54 for (pp = 0; pp < SizeZ - 1; pp++) {
55 Ceze(mm, nn, pp) = 1.0;
56 Cezh(mm, nn, pp) = Cdtds * imp0;
57 }
58

59 /* set magnetic-field update coefficients */
60 for (mm = 0; mm < SizeX; mm++)
61 for (nn = 0; nn < SizeY - 1; nn++)
62 for (pp = 0; pp < SizeZ - 1; pp++) {
63 Chxh(mm, nn, pp) = 1.0;
64 Chxe(mm, nn, pp) = Cdtds / imp0;
65 }
66

67 for (mm = 0; mm < SizeX - 1; mm++)
68 for (nn = 0; nn < SizeY; nn++)
69 for (pp = 0; pp < SizeZ - 1; pp++) {
70 Chyh(mm, nn, pp) = 1.0;
71 Chye(mm, nn, pp) = Cdtds / imp0;
72 }
73

74 for (mm = 0; mm < SizeX - 1; mm++)
75 for (nn = 0; nn < SizeY - 1; nn++)
76 for (pp = 0; pp < SizeZ; pp++) {
77 Chzh(mm, nn, pp) = 1.0;
78 Chze(mm, nn, pp) = Cdtds / imp0;
79 }
80

81 return;
82 } /* end gridInit() */

As mentioned, there are many ways one might display 3D vector data. Here we merely record
the Ex field over a constant-x and a constant-y plane. In this way, the core of the snapshot code is
quite similar to that which was used in the 2D simulations. The snapshot code to accomplish this
is shown in Program 9.8.

Program 9.8 snapshot3d.c Functions used to record 2D snapshots of the Ex field. At the
appropriate time steps, two snapshots are taken: one over a constant-x plane and another over a
constant-y plane. These snapshots are written to separate files.

1 #include <stdio.h>



9.4. 3D EXAMPLE 267

2 #include <stdlib.h>
3 #include "fdtd-macro.h"
4

5 static int temporalStride = -2, frameX = 0, frameY = 0, startTime;
6 static char basename[80];
7

8 void snapshot3dInit(Grid *g) {
9

10 int choice;
11

12 printf("Do you want 2D snapshots of the 3D grid? (1=yes, 0=no) ");
13 scanf("%d", &choice);
14 if (choice == 0) {
15 temporalStride = -1;
16 return;
17 }
18

19 printf("Duration of simulation is %d steps.\n", MaxTime);
20 printf("Enter start time and temporal stride: ");
21 scanf(" %d %d", &startTime, &temporalStride);
22 printf("Enter the base name: ");
23 scanf(" %s", basename);
24

25 return;
26 } /* end snapshot3dInit() */
27

28

29 void snapshot3d(Grid *g) {
30 int mm, nn, pp;
31 float dim1, dim2, temp;
32 char filename[100];
33 FILE *out;
34

35 /* ensure temporal stride set to a reasonable value */
36 if (temporalStride == -1) {
37 return;
38 } if (temporalStride < -1) {
39 fprintf(stderr,
40 "snapshot2d: snapshotInit2d must be called before snapshot.\n"
41 " Temporal stride must be set to positive value.\n");
42 exit(-1);
43 }
44

45 /* get snapshot if temporal conditions met */
46 if (Time >= startTime &&
47 (Time - startTime) % temporalStride == 0) {
48



268 CHAPTER 9. THREE-DIMENSIONAL FDTD

49 /************ write the constant-x slice ************/
50 sprintf(filename, "%s-x.%d", basename, frameX++);
51 out = fopen(filename, "wb");
52

53 /* write dimensions to output file */
54 dim1 = SizeY; // express dimensions as floats
55 dim2 = SizeZ; // express dimensions as floats
56 fwrite(&dim1, sizeof(float), 1, out);
57 fwrite(&dim2, sizeof(float), 1, out);
58

59 /* write remaining data */
60 mm = (SizeX - 1) / 2;
61 for (pp = SizeZ - 1; pp >= 0; pp--)
62 for (nn = 0; nn < SizeY; nn++) {
63 temp = (float)Ex(mm, nn, pp); // store data as a float
64 fwrite(&temp, sizeof(float), 1, out); // write the float
65 }
66

67 fclose(out); // close file
68

69 /************ write the constant-y slice ************/
70 sprintf(filename, "%s-y.%d", basename, frameY++);
71 out = fopen(filename, "wb");
72

73 /* write dimensions to output file */
74 dim1 = SizeX - 1; // express dimensions as floats
75 dim2 = SizeZ; // express dimensions as floats
76 fwrite(&dim1, sizeof(float), 1, out);
77 fwrite(&dim2, sizeof(float), 1, out);
78

79 /* write remaining data */
80 nn = SizeY / 2;
81 for (pp = SizeZ - 1; pp >= 0; pp--)
82 for (mm = 0; mm < SizeX - 1; mm++) {
83 temp = (float)Ex(mm, nn, pp); // store data as a float
84 fwrite(&temp, sizeof(float), 1, out); // write the float
85 }
86

87 fclose(out); // close file
88 }
89

90 return;
91 } /* end snapshot3d() */

Figure 9.7 shows snapshots of Ex taken over two different planes at time step 40. The Ricker
wavelet is such that there are 15 points per wavelength at the most energetic frequency. The field
has been normalized by 0.3 and three decades of scaling are used. In Fig. 9.7(a), taken over a



9.5. TFSF BOUNDARY 269

constant-x plane, the field is seen to radiate isotropically away from the dipole source—the dipole
is normal to the plane. In Fig. 9.7(b), taken over a constant-y plane, the source is contained in the
plane and oriented horizontally. Therefore the radiated field is stronger above and below the dipole
than along the line of the dipole.

9.5 TFSF Boundary
A total-field scattered-field boundary can be used in 3D grids to introduce the incident field. Al-
though we have only considered using the TFSF boundary to introduce plane waves, it is worth
noting that in principle any field could be introduced over the boundary. So, for example, if the
incident field were due to a dipole source which was located physically outside of the grid, the
field due to that source could be introduced over the TFSF boundary. But, whatever the type of
incident field, one should be careful to ensure that the description of the incident field over the
boundary matches the way the field actually behaves in the grid. Simply using the expression for
the incident field in the continuous world will invariably cause some leakage across the boundary
(the amount of leakage can always be reduced by using a finer discretization and may be accept-
ably small for various applications). Here we will restrict consideration to an incident plane wave
and a one-dimensional auxiliary grid will be used to determine the incident field. Furthermore, we
will assume the direction of wave propagation is along one of the grid axes.

Figure 9.8 shows a 3D computational domain in which a TFSF boundary exists. The TFSF
boundary can be any shape, but we will restrict consideration to the cuboid shape shown in the
figure. The boundary has six faces. Each face has two electric-field components and two magnetic-
field components tangential to the boundary. These are the fields that must have their values cor-
rected to account for the presence of the TFSF boundary since they will have at least one neighbor
on the opposite side of the boundary.

To illustrate the dependence of nodes across the boundary, 2D slices are taken through a com-
putational domain with nominal dimensions 9 × 7 × 8. Figure 9.9 shows the orientation of two
constant-x slices. These slices are separated by a half spatial-step in the x direction. The fields
contained in these slices are shown in Fig. 9.10. The TFSF boundary is shown as a dashed line and
nodes that must be corrected owing to the existence of a neighbor on the other side of the boundary
are enclosed in a “box” with rounded edges. Figure 9.10(a) shows the plane that contains Ey, Ez,
and Hx while Fig. 9.10(b) contains Ex, Hy, and Hz. These two slices can be overlain to show the
view seen looking along the x axis. The TFSF boundary would be specified by the first and last
node associated with the boundary, i.e., two ordered triplets. The correspondence of these nodes to
the boundary dimensions are indicated by the nodes enclosed by a dashed line and labeled “First”
and “Last.” In the example shown here, the indices of the first node would be (2, 2, 2) and the in-
dices of the last node would be (6, 4, 5). (However, from just these two slices we cannot determine
the extent of the TF region in the x direction. Instead, that will be shown in subsequent figures.)

Note that along the “bottom” and “top” of the TFSF boundary in Fig. 9.10(a) there are two
pairs of nodes that must be corrected while in Fig. 9.10(b) there are three pairs of nodes that must
be corrected. Similarly, there are different numbers of pairs along the two sides. The construction
of the TFSF boundary used here is such that corrections are only applied to electric fields within
the total-field region and are only applied to magnetic fields in the scattered-field region.

Figure 9.11 shows the orientation of two constant-y slices and Fig. 9.12 shows the fields over



270 CHAPTER 9. THREE-DIMENSIONAL FDTD

−3

−2.5

−2

−1.5

−1

−0.5

0

5 10 15 20 25 30

5

10

15

20

25

30

y location

z
 l
o
c
a
ti
o
n

(a)

−3

−2.5

−2

−1.5

−1

−0.5

0

5 10 15 20 25 30

5

10

15

20

25

30

x location

z
 l
o
c
a
ti
o
n

(b)

Figure 9.7: Color map of the Ex field at time-step 40. (a) Field over a constant-x plane that
passes through the source node. (b) Field over a constant-y plane that passes through the source
node. The field has been normalize by 0.3 and three decades of scaling are used. These images
were generated using the MATLAB commands in Appendix D. The image could be interpolated
to smooth the obvious pixelization but that is not done here in order to emphasizes the inherent
discrete nature of the simulation.



9.5. TFSF BOUNDARY 271

y

x

z

TFSF

Boundary

Figure 9.8: Three-dimensional computational domain which contains a TFSF boundary.

y

x

z Slice containing

 Ey, Ez, and HxSlice containing

 Ex, Hy, and Hz

Figure 9.9: Constant-x slices of the computational domain used to illustration the relationship of
nodes across the TFSF boundary. The slices are separated by a half spatial-step in the x direction.



272 CHAPTER 9. THREE-DIMENSIONAL FDTD

Hx(m,n,p)

Ey(m,n,p)

Ez(m,n,p)z

x

Total-Field Region

Scattered-Field Region

Last

First

y

(a)

Ex(m,n,p)
Hz(m,n,p)

Hy(m,n,p)
z

yx

Total-Field Region

Scattered-Field Region

First

Last

(b)

Figure 9.10: Fields over the constant-x slices depicted in Fig. 9.9. (a) Slice containing Ey, Ez, and
Hx. (b) Slice containing Ex, Hy, and Hz.



9.5. TFSF BOUNDARY 273

y

x

z

Slice containing

 Ex, Ez, and Hy

Slice containing

 Ey, Hx, and Hz

Figure 9.11: Constant-y slices of the computational domain used to illustration the relationship of
nodes across the TFSF boundary. The slices are separated by a half spatial-step in the y direction.

these two slices. The slices are separated by a half spatial-step in the y direction. As before, these
slices can be overlain to see the view looking along the axis (in this case the y axis). From this
view one can see that the first and last indices in the x direction are 2 and 6, respectively.

Figure 9.13 shows the orientation of two constant-z slices and Fig. 9.14 shows the fields over
these two slices. The slices are separated by a half spatial-step in the z direction. These slices
correspond to the TEz and TMz grids which were studied in Chap. 8.

Figures 9.10, 9.12, and 9.14 show all the possible dependencies across the TFSF boundary.
However, in some applications not all these dependencies may be relevant. For example, consider
the case when the incident electric field is polarized in the z direction and propagating in the x
direction. In this case there are only two non-zero components of the incident field: Ez and Hy.
Thus, not all of the fields tangential to the TFSF boundary would have to be corrected. Only
those fields that depend on an Ez or Hy node on the other side of the boundary would need to be
corrected.

Continuing with the assumption of an incident field whose only non-zero components are Ez
and Hy, one sees from Fig. 9.10(a) that Hx nodes on the constant-y faces would have to be cor-
rected since they depend on Ez nodes on the other side of the boundary (these are the nodes along
the left and right side of the TFSF boundary in Fig. 9.10(a)). However, the correspondingEz nodes
would not have to be corrected because there is no incident Hx field. From Fig. 9.10(b) it is seen
that Ex nodes on the constant-z faces would have to be be corrected since they depend on Hy

on the other side of the boundary. But, the corresponding Hy nodes do not have to be corrected
because there is no incident Ex field.

Figure 9.12(a) shows that Ex must be corrected over constant-z faces (the top and bottom of
the TFSF boundary in the figure). (This agrees with the conclusion drawn from inspection of Fig.
9.10(a). There is redundant information in these figures.) Figure 9.12(a) also shows that both Ez



274 CHAPTER 9. THREE-DIMENSIONAL FDTD

Hy(m,n,p)

Ex(m,n,p)

Ez(m,n,p)z

y

Total-Field Region

Scattered-Field Region

Last

First

x

(a)

Ey(m,n,p)
Hz(m,n,p)

Hx(m,n,p)
z

xy

Total-Field Region

Scattered-Field Region

First

Last

(b)

Figure 9.12: Fields over the constant-y slices depicted in Fig. 9.11. (a) Slice containing Ex, Ez,
and Hy. (b) Slice containing Ey, Hx, and Hz.



9.6. TFSF DEMONSTRATION 275

y

x

z

Slice containing

 Ex, Ey, and Hz

Slice containing

 Ez, Hx, and Hy

Figure 9.13: Constant-z slices of the computational domain used to illustration the relationship of
nodes across the TFSF boundary. The slices are separated by a half spatial-step in the z direction.

and Hy must be corrected on constant-x faces. Inspection of Fig. 9.12(b) shows that there is no
need to correct Ey, Hx, or Hz over constant-x or constant-z faces since there is no incident field at
the nodes that neighbor these components.

Figure 9.14(a) indicates, for the assumed incident field, there is no need to correct Ex, Ey, or
Hz over constant-x and constant-y faces. Figure 9.14(b) shows that Hx must be corrected over
constant-y faces. This is the same conclusion one draws from inspection of Fig. 9.10(a). It also
shows, as was seen in Fig. 9.12(a), that both Ez and Hy must be corrected over constant-x faces.

9.6 TFSF Demonstration
To demonstrate the implementation of a 3D TFSF boundary, we will model an incident field that
is polarized in the z direction and propagating in the x direction. This corresponds to the scenario
described in the previous section. Because of the given polarization and direction of propagation,
many of the dependencies shown in Figs. 9.10–9.14 will not require any coding.

The grid will be 35× 35× 35. A Courant number equal to the limit of 1/
√
3 will be used. Two

simulations will be performed. In one there will be no scatterer and in the other a spherical PEC
scatterer will be present. In 3D, the simplest way to model a solid PEC is to test if the center of a
given Yee cube is within the PEC. If it is, as will be shown below, the 12 electric-field nodes on
the edges of the cube are set to zero.

Program 9.9 shows the main body of the program. This program is essentially the same as
the 2D program that contained a TFSF boundary (ref. Program 8.12). As shown in line 14, the
TFSF code is initialized by calling an initialization function outside of the time-stepping loop. The
corrections to the TFSF boundary are applied by the function tfsf() which, as shown in line 21,
is called once per time-step. To work properly, this function must be called after the magnetic-field
update, but before the electric-field update. After the magnetic fields are updated, the function



276 CHAPTER 9. THREE-DIMENSIONAL FDTD

Hz(m,n,p)

Ex(m,n,p)

Ey(m,n,p)y

z

Total-Field Region

Scattered-Field Region

Last

First

x

(a)

Ez(m,n,p)
Hy(m,n,p)

Hx(m,n,p)
y

xz

Total-Field Region

Scattered-Field Region

First

Last

(b)

Figure 9.14: Fields over the constant-z slices depicted in Fig. 9.13. (a) Slice containing Ex, Ey,
and Hz. (b) Slice containing Ez, Hx, and Hy.



9.6. TFSF DEMONSTRATION 277

tfsf() applies the necessary correction to the fields tangential to the TFSF boundary. Immedi-
ately after returning from this function, the electric fields are not in a consistent state in that the
correction has been applied to the electric fields in anticipation of the impending update. This is
the same as the case for the 2D implementation of a TFSF boundary discussed in Sec. 8.6.

Program 9.9 3d-tfsf-demo.c Main body of a program to implement a TFSF boundary in
3D.

1 /* 3D simulation with a TFSF boundary. */
2

3 #include "fdtd-alloc.h"
4 #include "fdtd-macro.h"
5 #include "fdtd-proto.h"
6

7 int main()
8 {
9 Grid *g;

10

11 ALLOC_1D(g, 1, Grid); // allocate memory for grid structure
12 gridInit(g); // initialize 3D grid
13

14 tfsfInit(g); // initialize TFSF boundary
15 abcInit(g); // initialize ABC
16 snapshot3dInit(g); // initialize snapshots
17

18 /* do time stepping */
19 for (Time = 0; Time < MaxTime; Time++) {
20 updateH(g); // update magnetic fields
21 tfsf(g); // apply correction to TFSF boundary
22 updateE(g); // update electric fields
23 abc(g); // apply ABC
24 snapshot3d(g); // take a snapshot (if appropriate)
25 } // end of time-stepping
26

27 return 0;
28 }

Program 9.10 provides the code for the TFSF functions. The function tfsfInit() take a
single Grid argument, i.e., the 3D grid. There are seven static local variables in this program.
Six of those specify the first and last points in the total-field region. The seventh is the Grid
pointer g1 that is used for the 1D auxiliary grid that represents the incident field. The initialization
function tfsfInit() starts by allocating memory for g1 and then copying the values from the
3D grid to the 1D grid. As discussed in connection with the 2D TFSF boundary, this is done to
ensure the duration and Courant number are the same in both grids. Then, in line 21, the function
gridInit1D() is called to complete the initialization of the 1D grid. This function is unchanged



278 CHAPTER 9. THREE-DIMENSIONAL FDTD

from that shown in Program 8.15. Starting in line 23, tfsfInit() prompts the user for indices
for the first and last points in the total-field region. Finally, the source function initialization is
called (line 29). In the results to be shown, the source function was a Ricker wavelet discretized
such that there were 20 points per wavelength at the most energetic frequency.

Program 9.10 tfsf-3d-ez.c Three-dimensional TFSF implementation that assumes the elec-
tric field is polarized in the z direction and propagation is in the x direction.

1 /* TFSF boundary for a 3D grid. A 1D auxiliary grid is used to
2 * calculate the incident field which is assumed to be propagating in
3 * the x direction and polarized in the z direction. */
4

5 #include <string.h> // for memcpy
6 #include "fdtd-macro.h"
7 #include "fdtd-proto.h"
8 #include "fdtd-alloc.h"
9 #include "ezinc.h"

10

11 static int
12 firstX = 0, firstY, firstZ, // indices for first point in TF region
13 lastX, lastY, lastZ; // indices for last point in TF region
14

15 static Grid *g1; // 1D auxiliary grid
16

17 void tfsfInit(Grid *g) {
18

19 ALLOC_1D(g1, 1, Grid); // allocate memory for 1D Grid
20 memcpy(g1, g, sizeof(Grid)); // copy information from 3D array
21 gridInit1d(g1); // initialize 1d grid
22

23 printf("Grid is %d by %d by %d.\n", SizeX, SizeY, SizeZ);
24 printf("Enter indices for first point in TF region: ");
25 scanf(" %d %d %d", &firstX, &firstY, &firstZ);
26 printf("Enter indices for last point in TF region: ");
27 scanf(" %d %d %d", &lastX, &lastY, &lastZ);
28

29 ezIncInit(g); // initialize source function
30

31 return;
32 } /* end tfsfInit() */
33

34

35 void tfsf(Grid *g) {
36 int mm, nn, pp;
37

38 // check if tfsfInit() has been called



9.6. TFSF DEMONSTRATION 279

39 if (firstX <= 0) {
40 fprintf(stderr,
41 "tfsf: tfsfInit must be called before tfsfUpdate.\n"
42 " Boundary location must be set to positive value.\n");
43 exit(-1);
44 }
45

46 /****** constant x faces -- scattered-field nodes ******/
47

48 // correct Hy at firstX-1/2 by subtracting Ez_inc
49 mm = firstX;
50 for (nn = firstY; nn <= lastY; nn++)
51 for (pp = firstZ; pp < lastZ; pp++)
52 Hy(mm - 1, nn, pp) -= Chye(mm, nn, pp) * Ez1G(g1, mm);
53

54 // correct Hy at lastX + 1/2 by adding Ez_inc
55 mm = lastX;
56 for (nn = firstY; nn <= lastY; nn++)
57 for (pp = firstZ; pp < lastZ; pp++)
58 Hy(mm, nn, pp) += Chye(mm, nn, pp) * Ez1G(g1, mm);
59

60 /**** constant y faces -- scattered-field nodes ****/
61

62 // correct Hx at firstY-1/2 by adding Ez_inc
63 nn = firstY;
64 for (mm = firstX; mm <= lastX; mm++)
65 for (pp = firstZ; pp < lastZ; pp++)
66 Hx(mm, nn - 1, pp) += Chxe(mm, nn - 1, pp) * Ez1G(g1, mm);
67

68 // correct Hx at lastY+1/2 by subtracting Ez_inc
69 nn = lastY;
70 for (mm = firstX; mm <= lastX; mm++)
71 for (pp = firstZ; pp < lastZ; pp++)
72 Hx(mm, nn, pp) -= Chxe(mm, nn, pp) * Ez1G(g1, mm);
73

74 /**** constant z faces -- scattered-field nodes ****/
75

76 // nothing to correct on this face
77

78 /**** update the fields in the auxiliary 1D grid ****/
79 updateH(g1); // update 1D magnetic field
80 updateE(g1); // update 1D electric field
81 Ez1G(g1, 0) = ezInc(TimeG(g1), 0.0); // set source node
82 TimeG(g1)++; // increment time in 1D grid
83

84 /**** constant x faces -- total-field nodes ****/
85



280 CHAPTER 9. THREE-DIMENSIONAL FDTD

86 // correct Ez at firstX face by subtracting Hy_inc
87 mm = firstX;
88 for (nn = firstY; nn <= lastY; nn++)
89 for (pp = firstZ; pp < lastZ; pp++)
90 Ez(mm, nn, pp) -= Cezh(mm, nn, pp) * Hy1G(g1, mm - 1);
91

92 // correct Ez at lastX face by adding Hy_inc
93 mm = lastX;
94 for (nn = firstY; nn <= lastY; nn++)
95 for (pp = firstZ; pp < lastZ; pp++)
96 Ez(mm, nn, pp) += Cezh(mm, nn, pp) * Hy1G(g1, mm);
97

98 /**** constant y faces -- total-field nodes ****/
99

100 // nothing to correct on this face
101

102 /**** constant z faces -- total-field nodes ****/
103

104 // correct Ex at firstZ face by adding Hy_inc
105 pp = firstZ;
106 for (mm = firstX; mm < lastX; mm++)
107 for (nn = firstY; nn <= lastY; nn++)
108 Ex(mm, nn, pp) += Cexh(mm, nn, pp) * Hy1G(g1, mm);
109

110 // correct Ex at lastZ face by subtracting Hy_inc
111 pp = lastZ;
112 for (mm = firstX; mm < lastX; mm++)
113 for (nn = firstY; nn <= lastY; nn++)
114 Ex(mm, nn, pp) -= Cexh(mm, nn, pp) * Hy1G(g1, mm);
115

116 return;
117 } /* end tfsf() */

The function tfsf() begins on line 35. This function, which is called once per time-step,
applies the corrections to the various faces of the TFSF boundary as described in the previous
section.

The code to implement the 3D grid is shown in Program 9.11. This code is almost identical
to the code for the homogeneous grid that was given in Program 9.7. The the only significant
difference is the possible inclusion of the PEC sphere. The variables associated with the sphere
are listed in lines 10 and 11. The users is queried if the sphere is present. If it is, the variable
isSpherePresent is set to one. Otherwise it is set to zero. The radius of the sphere, which
is stored in radius, is set to 8 cells while the indices for the center of the sphere are set to
(17, 17, 17). The grid is initially set to uniform free space. However, if the sphere is present, as
shown starting at line 67, the center of each Yee cube is checked. If it is within a distance of
radius cells from the center of the sphere, all 12 electric-field nodes on the edges of the cube
are set to zero. (In the for-loops associated with this check, the squared values of the distances are



9.6. TFSF DEMONSTRATION 281

used so as to avoid having to calculate square roots.) The update coefficients for the magnetic field
are unaffected by the presence of the PEC.

Program 9.11 grid3dsphere.c Function to initialize a Grid structure. The user is prompted
to determine if a PEC sphere of radius 8-cells should be present. If it is not, the grid is homoge-
neous free space.

1 #include "fdtd-macro.h"
2 #include "fdtd-alloc.h"
3 #include <math.h>
4

5 void gridInit(Grid *g) {
6 double imp0 = 377.0;
7 int mm, nn, pp;
8

9 // sphere parameters
10 int m_c = 17, n_c = 17, p_c = 17, isSpherePresent;
11 double m2, n2, p2, r2, radius = 8.0;
12

13 Type = threeDGrid;
14 SizeX = 35; // size of domain
15 SizeY = 35;
16 SizeZ = 35;
17 MaxTime = 300; // duration of simulation
18 Cdtds = 1.0 / sqrt(3.0); // Courant number
19

20 printf("Is the sphere present: (1=yes, 0=no) ");
21 scanf(" %d", &isSpherePresent);
22

23 /* memory allocation */
24 ALLOC_3D(g->hx, SizeX, SizeY - 1, SizeZ - 1, double);
25 ALLOC_3D(g->chxh, SizeX, SizeY - 1, SizeZ - 1, double);
26 ALLOC_3D(g->chxe, SizeX, SizeY - 1, SizeZ - 1, double);
27 ALLOC_3D(g->hy, SizeX - 1, SizeY, SizeZ - 1, double);
28 ALLOC_3D(g->chyh, SizeX - 1, SizeY, SizeZ - 1, double);
29 ALLOC_3D(g->chye, SizeX - 1, SizeY, SizeZ - 1, double);
30 ALLOC_3D(g->hz, SizeX - 1, SizeY - 1, SizeZ, double);
31 ALLOC_3D(g->chzh, SizeX - 1, SizeY - 1, SizeZ, double);
32 ALLOC_3D(g->chze, SizeX - 1, SizeY - 1, SizeZ, double);
33

34 ALLOC_3D(g->ex, SizeX - 1, SizeY, SizeZ, double);
35 ALLOC_3D(g->cexe, SizeX - 1, SizeY, SizeZ, double);
36 ALLOC_3D(g->cexh, SizeX - 1, SizeY, SizeZ, double);
37 ALLOC_3D(g->ey, SizeX, SizeY - 1, SizeZ, double);
38 ALLOC_3D(g->ceye, SizeX, SizeY - 1, SizeZ, double);
39 ALLOC_3D(g->ceyh, SizeX, SizeY - 1, SizeZ, double);



282 CHAPTER 9. THREE-DIMENSIONAL FDTD

40 ALLOC_3D(g->ez, SizeX, SizeY, SizeZ - 1, double);
41 ALLOC_3D(g->ceze, SizeX, SizeY, SizeZ - 1, double);
42 ALLOC_3D(g->cezh, SizeX, SizeY, SizeZ - 1, double);
43

44 /* set electric-field update coefficients */
45 for (mm = 0; mm < SizeX - 1; mm++)
46 for (nn = 0; nn < SizeY; nn++)
47 for (pp = 0; pp < SizeZ; pp++) {
48 Cexe(mm, nn, pp) = 1.0;
49 Cexh(mm, nn, pp) = Cdtds * imp0;
50 }
51

52 for (mm = 0; mm < SizeX; mm++)
53 for (nn = 0; nn < SizeY - 1; nn++)
54 for (pp = 0; pp < SizeZ; pp++) {
55 Ceye(mm, nn, pp) = 1.0;
56 Ceyh(mm, nn, pp) = Cdtds * imp0;
57 }
58

59 for (mm = 0; mm < SizeX; mm++)
60 for (nn = 0; nn < SizeY; nn++)
61 for (pp = 0; pp < SizeZ - 1; pp++) {
62 Ceze(mm, nn, pp) = 1.0;
63 Cezh(mm, nn, pp) = Cdtds * imp0;
64 }
65

66 // zero the nodes associated with the PEC sphere
67 if (isSpherePresent) {
68 r2 = radius * radius;
69 for (mm = 2; mm < SizeX - 2; mm++) {
70 m2 = (mm + 0.5 - m_c) * (mm + 0.5 - m_c);
71 for (nn = 2; nn < SizeY - 2; nn++) {
72 n2 = (nn + 0.5 - n_c) * (nn + 0.5 - n_c);
73 for (pp = 2; pp < SizeZ - 2; pp++) {
74 p2 = (pp + 0.5 - p_c) * (pp + 0.5 - p_c);
75 // if distance to center of a cube is less than radius
76 // of the sphere, zero all the surrounding electric
77 // field nodes
78 if (m2 + n2 + p2 < r2) {
79 // zero surrounding Ex nodes
80 Cexe(mm, nn, pp) = 0.0;
81 Cexe(mm, nn + 1, pp) = 0.0;
82 Cexe(mm, nn, pp + 1) = 0.0;
83 Cexe(mm, nn + 1, pp + 1) = 0.0;
84 Cexh(mm, nn, pp) = 0.0;
85 Cexh(mm, nn + 1, pp) = 0.0;
86 Cexh(mm, nn, pp + 1) = 0.0;



9.6. TFSF DEMONSTRATION 283

87 Cexh(mm, nn + 1, pp + 1) = 0.0;
88 // zero surrounding Ey nodes
89 Ceye(mm, nn, pp) = 0.0;
90 Ceye(mm + 1, nn, pp) = 0.0;
91 Ceye(mm, nn, pp + 1) = 0.0;
92 Ceye(mm + 1, nn, pp + 1) = 0.0;
93 Ceyh(mm, nn, pp) = 0.0;
94 Ceyh(mm + 1, nn, pp) = 0.0;
95 Ceyh(mm, nn, pp + 1) = 0.0;
96 Ceyh(mm + 1, nn, pp + 1) = 0.0;
97 // zero surrounding Ez nodes
98 Ceze(mm, nn, pp) = 0.0;
99 Ceze(mm + 1, nn, pp) = 0.0;

100 Ceze(mm, nn + 1, pp) = 0.0;
101 Ceze(mm + 1, nn + 1, pp) = 0.0;
102 Cezh(mm, nn, pp) = 0.0;
103 Cezh(mm + 1, nn, pp) = 0.0;
104 Cezh(mm, nn + 1, pp) = 0.0;
105 Cezh(mm + 1, nn + 1, pp) = 0.0;
106 } // end of radius check
107 } // pp loop
108 } // nn loop
109 } // mm loop
110 } // end of check if sphere present
111

112 /* set magnetic-field update coefficients */
113 for (mm = 0; mm < SizeX; mm++)
114 for (nn = 0; nn < SizeY - 1; nn++)
115 for (pp = 0; pp < SizeZ - 1; pp++) {
116 Chxh(mm, nn, pp) = 1.0;
117 Chxe(mm, nn, pp) = Cdtds / imp0;
118 }
119

120 for (mm = 0; mm < SizeX - 1; mm++)
121 for (nn = 0; nn < SizeY; nn++)
122 for (pp = 0; pp < SizeZ - 1; pp++) {
123 Chyh(mm, nn, pp) = 1.0;
124 Chye(mm, nn, pp) = Cdtds / imp0;
125 }
126

127 for (mm = 0; mm < SizeX - 1; mm++)
128 for (nn = 0; nn < SizeY - 1; nn++)
129 for (pp = 0; pp < SizeZ; pp++) {
130 Chzh(mm, nn, pp) = 1.0;
131 Chze(mm, nn, pp) = Cdtds / imp0;
132 }
133



284 CHAPTER 9. THREE-DIMENSIONAL FDTD

134 return;
135 } /* end gridInit() */

Figure 9.15 show the Ez field take over a constant y slice along the center of the computational
domain. The figures on the left show the field when there is no scatterer while the figures on the
right show the field at the same time-step but when the spherical scatterer is present. In the absence
of a scatterer, one can see that there are no fields in the scattered-field region. The first point in the
total-field region has indices of (5, 5, 5) while the last point had indices of (30, 30, 30).

In these simulations a first-order ABC is used and the code is unchanged from that presented
in Program 9.6. The snapshot code used to generate the data for Fig. 9.15 is slightly different from
Program 9.8 in that here the Ez field is being recorded while in Program 9.8 the Ex field was being
recorded. However, this represents a minor change and hence the modified snapshot code is not
shown. Another minor change that is not explicitly shown is that it would be necessary for the
header file fdtd-proto.h to include the prototypes for the TFSF functions tfsfInit() and
tfsf(). As with nearly all the other functions, these prototypes would merely show that these
functions have a pointer to a Grid structure as their single argument.

9.7 Unequal Spatial Steps
In the previous discussion we have always assumed that ∆x = ∆y = ∆z = δ. But how do things
change if ∆x ̸= ∆y ̸= ∆z? We will consider that question in this section. First, let us introduce
the following notation

δ = ∆x ⇒ ∆x = δ,

ry =
∆y

∆x

⇒ ∆y = ryδ,

rz =
∆z

∆x

⇒ ∆z = rzδ.

Furthermore, we will defined scaled field quantities such that

ex = ∆xEx, hx = ∆xHx,

ey = ∆yEy, hy = ∆yHy,

ez = ∆zEz, hz = ∆zHz.

With these definitions in place, let us consider a rewritten form of (9.18)

1

∆x

∆xE
q+1
x

[
m+

1

2
, n, p

]
=

1− σ∆t

2ϵ

1 + σ∆t

2ϵ

1

∆x

∆xE
q
x

[
m+

1

2
, n, p

]
+

1

1 + σ∆t

2ϵ

(
∆t

ϵ∆y∆z

{
∆zH

q+ 1
2

z

[
m+

1

2
, n+

1

2
, p

]
−∆zH

q+ 1
2

z

[
m+

1

2
, n− 1

2
, p

]}
− ∆t

ϵ∆y∆z

{
∆yH

q+ 1
2

y

[
m+

1

2
, n, p+

1

2

]
−∆yH

q+ 1
2

y

[
m+

1

2
, n, p− 1

2

]})
. (9.39)



9.7. UNEQUAL SPATIAL STEPS 285

10 20 30

5

10

15

20

25

30

(a) time−step 20, no scatterer

x location

z
 l
o

c
a

ti
o

n

10 20 30

5

10

15

20

25

30

(b) time−step 20, with sphere

x location

z
 l
o

c
a

ti
o

n

10 20 30

5

10

15

20

25

30

(c) time−step 40, no scatterer

x location

z
 l
o

c
a

ti
o

n

10 20 30

5

10

15

20

25

30

(d) time−step 40, with sphere

x location

z
 l
o

c
a

ti
o

n

10 20 30

5

10

15

20

25

30

(e) time−step 60, no scatterer

x location

z
 l
o

c
a

ti
o

n

10 20 30

5

10

15

20

25

30

(f) time−step 60, with sphere

x location

z
 l
o

c
a

ti
o

n

Figure 9.15: The Ez field over a constant-y plane taken from a 3D simulation in which the incident
electric field is z-polarized and propagation is in the x direction. In the figures on the left no
scatterer is present. Figures (a), (c), and (e) are taken at time-steps, 20, 40, and 60, respectively.
The figures on the right show the field at the same time-steps, but a spherical scatterer is present.



286 CHAPTER 9. THREE-DIMENSIONAL FDTD

Multiplying through by ∆x and employing the definitions given above, this update equation be-
comes

eq+1
x

[
m+

1

2
, n, p

]
=

1− σ∆t

2ϵ

1 + σ∆t

2ϵ

eqx

[
m+

1

2
, n, p

]
+

1

1 + σ∆t

2ϵ

∆t

ϵδ

1

ryrz

({
h
q+ 1

2
z

[
m+

1

2
, n+

1

2
, p

]
− h

q+ 1
2

z

[
m+

1

2
, n− 1

2
, p

]}
−
{
h
q+ 1

2
y

[
m+

1

2
, n, p+

1

2

]
− h

q+ 1
2

y

[
m+

1

2
, n, p− 1

2

]})
. (9.40)

Importantly, all the (scaled) magnetic fields are multiplied by the same coefficient.
From inspection of (9.18), it might have appeared that when the spatial step sizes are not equal,

another set of coefficients would have to be introduced (i.e., one for the term involving 1/∆y and
one for the term involving 1/∆z). This is true if the field components are not scaled by their
respective lengths. However, by scaling the fields, it is still only necessary to have two coefficients
per update equation.

The complete set up update equations for the scaled fields are:

h
q+ 1

2
x

[
m,n+

1

2
, p+

1

2

]
=

1− σm∆t

2µ

1 + σm∆t

2µ

h
q− 1

2
x

[
m,n+

1

2
, p+

1

2

]
+

1

1 + σm∆t

2µ

∆t

µδ

1

ryrz

({
eqy

[
m,n+

1

2
, p+ 1

]
− eqy

[
m,n+

1

2
, p

]}
−
{
eqz

[
m,n+ 1, p+

1

2

]
− eqz

[
m,n, p+

1

2

]})
, (9.41)

h
q+ 1

2
y

[
m+

1

2
, n, p+

1

2

]
=

1− σm∆t

2µ

1 + σm∆t

2µ

h
q− 1

2
y

[
m+

1

2
, n, p+

1

2

]
+

1

1 + σm∆t

2µ

∆t

µδ

ry
rz

({
eqz

[
m+ 1, n, p+

1

2

]
− eqz

[
m,n, p+

1

2

]}
−
{
eqx

[
m+

1

2
, n, p+ 1

]
− eqx

[
m+

1

2
, n, p

]})
, (9.42)

h
q+ 1

2
z

[
m+

1

2
, n+

1

2
, p

]
=

1− σm∆t

2µ

1 + σm∆t

2µ

h
q− 1

2
z

[
m+

1

2
, n+

1

2
, p

]
+

1

1 + σm∆t

2ϵ

∆t

µδ

rz
ry

({
eqx

[
m+

1

2
, n+ 1, p

]
− eqx

[
m+

1

2
, n, p

]}
−
{
eqy

[
m+ 1, n+

1

2
, p

]
− eqy

[
m,n+

1

2
, p

]})
. (9.43)



9.7. UNEQUAL SPATIAL STEPS 287

eq+1
x

[
m+

1

2
, n, p

]
=

1− σ∆t

2ϵ

1 + σ∆t

2ϵ

eqx

[
m+

1

2
, n, p

]
+

1

1 + σ∆t

2ϵ

∆t

ϵδ

1

ryrz

({
h
q+ 1

2
z

[
m+

1

2
, n+

1

2
, p

]
− h

q+ 1
2

z

[
m+

1

2
, n− 1

2
, p

]}
−
{
h
q+ 1

2
y

[
m+

1

2
, n, p+

1

2

]
− h

q+ 1
2

y

[
m+

1

2
, n, p− 1

2

]})
. (9.44)

eq+1
y

[
m,n+

1

2
, p

]
=

1− σ∆t

2ϵ

1 + σ∆t

2ϵ

eqy

[
m,n+

1

2

]
+

1

1 + σ∆t

2ϵ

∆t

ϵδ

ry
rz

({
h
q+ 1

2
x

[
m,n+

1

2
, p− 1

2

]
− h

q+ 1
2

x

[
m,n+

1

2
, p− 1

2

]}
−
{
h
q+ 1

2
z

[
m+

1

2
, n+

1

2
, p

]
− h

q+ 1
2

z

[
m− 1

2
, n+

1

2
, p

]})
, (9.45)

eq+1
z

[
m,n, p+

1

2

]
=

1− σ∆t

2ϵ

1 + σ∆t

2ϵ

eqz

[
m,n, p+

1

2

]
+

1

1 + σ∆t

2ϵ

∆t

ϵδ

rz
ry

({
h
q+ 1

2
y

[
m+

1

2
, n, p+

1

2

]
− h

q+ 1
2

y

[
m− 1

2
, n, p+

1

2

]}
−
{
h
q+ 1

2
x

[
m,n+

1

2
, p+

1

2

]
− h

q+ 1
2

x

[
m,n− 1

2
, p+

1

2

]})
. (9.46)

Thinking now in terms of coefficients, note that all the “self-term” coefficients are virtually
unchanged from those given previously, i.e., Chxh , Chyh , Chzh , Cexe , Ceye , and Ceze are as given
in (9.21), (9.23), (9.25), (9.27), (9.29), and (9.27), respectively. (There is a slight difference in
that those expressions listed the evaluation points merely in terms of a uniform spatial step size of
δ—one would now have to think in terms of ∆x, ∆y, and ∆z, for displacements in the x, y, and z
directions, respectively.)

The “cross” coefficients, such as Chze and Ceyh , are nearly the same as before where the only
differences are that δ specifically represents the spatial step ∆x, the scale factors ry and rz now
appear, and the locations are specifically in terms of ∆x, ∆y, and ∆z. These scaled coefficients are



288 CHAPTER 9. THREE-DIMENSIONAL FDTD

now

Chxe(m,n+ 1/2, p+ 1/2) =
1

1 + σm∆t

2µ

∆t

µδ

1

ryrz

∣∣∣∣∣
m∆x,(n+1/2)∆y ,(p+1/2)∆z

, (9.47)

Chye(m+ 1/2, n, p+ 1/2) =
1

1 + σm∆t

2µ

∆t

µδ

ry
rz

∣∣∣∣∣
(m+1/2)∆x,n∆y ,(p+1/2)∆z

, (9.48)

Chze(m+ 1/2, n+ 1/2, p) =
1

1 + σm∆t

2µ

∆t

µδ

rz
ry

∣∣∣∣∣
(m+1/2)∆x,(n+1/2)∆y ,p∆z

, (9.49)

Cexh(m+ 1/2, n, p) =
1

1 + σ∆t

2ϵ

∆t

ϵδ

1

ryrz

∣∣∣∣∣
(m+1/2)∆x,n∆y ,p∆z

, (9.50)

Ceyh(m,n+ 1/2, p) =
1

1 + σ∆t

2ϵ

∆t

ϵδ

ry
rz

∣∣∣∣∣
m∆x,(n+1/2)∆y ,p∆z

, (9.51)

Cezh(m,n, p+ 1/2) =
1

1 + σ∆t

2ϵ

∆t

ϵδ

rz
ry

∣∣∣∣∣
m∆x,n∆y ,(p+1/2)∆z

. (9.52)

Finally, stability dictates that

∆t ≤
1

c
√

1
∆2

x
+ 1

∆2
y
+ 1

∆2
z

(9.53)

which, after employing the definitions given above and rearranging, can be written as
c∆t

δ
≤ 1√

1 + 1
r2y

+ 1
r2z

(9.54)

Note that when ry = rz = 1 all the update equations and coefficients are identical to what was
previously given for a uniform grid. This may seem rather odd because now we are discussing
scaled fields instead of the fields themselves, e.g., we are dealing with ex = ∆xEx instead of Ex.
(The scaled “electric” and “magnetic” fields have units of volts and amperes, respectively, instead
of volts per meter and ampere per meter, and hence these fields are really voltages and currents.)
However, one must keep in mind that for these scaled fields the source terms would corresponding
have to be scaled. For example, if there were an additive source current in the update equation for
Ex, in the scaled version of the update equation this source term would also be scaled by ∆x. Thus,
if one were to compare the values in a simulation involving the scaled and unscaled x-component
of the electric field, the scaled values would be larger by a factor of ∆x. When the scaled field is
divided by ∆x one obtains the same electric field that would be obtained directly from a simulation
with unscaled fields.

Returning to the question raised at the beginning of the section: But how do things change if
∆x ̸= ∆y ̸= ∆z? The answer is that very little changes. The same code can be used for simulations
with either equal or unequal spatial steps. The only differences will be in the Courant number, as
given by (9.54), in the coefficients of the “cross” coefficients, as given by (9.47)–(9.52), and the
fact that one is now modeling the scaled fields rather than the fields themselves. Source terms
should also be appropriately scaled but that will not be considered further here.



Chapter 10

Dispersive Material

10.1 Introduction
For many problems one can obtain acceptably accurate results by assuming material parameters are
constants. However, constant material parameters are inherently an approximation. For example,
it is impossible to have a lossless dielectric with constant permittivity (except, of course, for free
space). If such a material did exist it would violate causality. (For a material to behave causally, the
Kramers-Kronig relations show that for any deviation from free-space behavior the imaginary part
of the permittivity or permeability, i.e., the loss, cannot vanish for all frequencies. Nevertheless, as
far as causality is concerned, the loss can be arbitrarily small.)

A non-unity, scalar, constant relative permittivity is equivalent to assuming the polarization
of charge within a material is instantaneous and in perfect proportion to the applied electric field.
Furthermore, the reaction is the same at all frequencies, is the same in all directions, is the same for
all times, and the same proportionality constant holds for all field strengths. In reality, essentially
none of the these assumptions are absolutely correct. The relationship between the electric flux
density D and the electric field E can reflect all the complexity of the real world. Instead of simply
having D = ϵE where ϵ is a scalar constant, one can make ϵ a tensor to describe different behaviors
in different directions (off diagonal terms would indicate the amount of coupling from one direction
to another). The permittivity can also be written as a nonlinear function of the applied electric field
to account for nonlinear media. The material parameters can be functions of time (such as might
pertain to a material which is being heated). Finally, one should not forget that the permittivity can
be a function of position to account for spatial inhomogeneities.

When the speed of light in a material is a function of frequency, the material is said to be
dispersive. The fact that the FDTD grid is dispersive has been discussed in Chap. 7. That dispersion
is a numerical artifact and is distinct from the subject of this chapter. We have also considered
lossy materials. Even when the conductivity of a material is assumed to be constant, the material
is dispersive (ref. (5.75) which shows that the phase constant is not linearly proportional to the
frequency which must be the case for non-dispersive propagation).

When the permittivity or permeability of a material are functions of frequency, the material is
dispersive. In time-harmonic form one can account for the frequency dependence of permittivity
by writing D̂(ω) = ϵ̂(ω)Ê(ω), where a caret is used to indicate a quantity in the frequency domain.

†Lecture notes by John Schneider. fdtd-dispersive-material.tex

289



290 CHAPTER 10. DISPERSIVE MATERIAL

This expression is simple in the frequency domain, but the FDTD method is a time-domain tech-
nique. The multiplication of harmonic functions is equivalent to convolution in the time domain.
Therefore it requires some additional effort to model these types of dispersive materials. We start
with a brief review of dispersive materials and then consider two ways in which to model such
materials in the FDTD method.

10.2 Constitutive Relations and Dispersive Media
The electric flux density and magnetic field are related to the electric field and the magnetic flux
density via

D = ϵ0E+P, (10.1)

H =
B

µ0

−M, (10.2)

where P and M account for the electric and magnetic dipoles, respectively, induced in the media.
Keep in mind that force on a charge is a function of E and B so in some sense E and B are the
“real” fields. The polarization vector P accounts for the local displacement of bound charge in a
material. Because of the way in which P is constructed, by adding it to ϵ0E the resulting electric
flux density D has the local effect of bound charge removed. In this way, the integral of D over
a closed surface yields the free charge (thus Gauss’s law, as expressed using the D field, is true
whether material is present or not).

The magnetic field H ignores the local effect of bound charge in motion. Thus, the integration
of H over a closed loop yields the current flowing through the surface enclosed by that loop where
the current is due to either the flow of free charge or displacement current (i.e., the integral form
of Ampere’s law). Rearranging the terms in (10.2) and multiplying by µ0 yields an expression for
the magnetic flux density*, i.e.,

B = µ0(H+M). (10.3)

At a given frequency, for a linear, isotropic medium, the polarization vectors can be related to
the electric and magnetic fields via an electric or magnetic susceptibility

P̂(ω) = ϵ0χ̂e(ω)Ê(ω), (10.4)
M̂(ω) = χ̂m(ω)Ĥ(ω), (10.5)

where χ̂e(ω) and χ̂m(ω) are the electric and magnetic susceptibility, respectively.† Thus we can
write

D̂(ω) = ϵ0Ê(ω) + ϵ0χ̂e(ω)Ê(ω), (10.6)
B̂(ω) = µ0Ĥ(ω) + µ0χ̂m(ω)Ĥ(ω). (10.7)

*Note that there are those (e.g., Feynman) who advocate that one should avoid using D and H. Others (e.g.,
Sommerfeld) have discussed the unfortunate naming of the magnetic field and the magnetic flux density. However,
those issues are peripheral to the main subject of interest here and we will employ the notation and usage as is
commonly found in engineering electromagnetics.

†Here we will assume that χ̂e(ω) and χ̂m(ω) are not functions of time. Thus the frequency response of the material
“today” is the same as it will be “tomorrow.”



10.2. CONSTITUTIVE RELATIONS AND DISPERSIVE MEDIA 291

For the time being we restrict discussion to the electric fields where the permittivity ϵ̂(ω) is defined
as

ϵ̂(ω) = ϵ0ϵ̂r(ω) = ϵ0(ϵ∞ + χ̂e(ω)). (10.8)

where ϵ̂r is the relative permittivity and, as will be seen, the constant ϵ∞ accounts for the effect of
the charged material at high frequencies where the susceptibility function goes to zero. Equation
(10.6) implicity assumes ϵ∞ is unity while the permittivity presented in (10.8) provides a general-
ization to account for the constant at infinite frequency.

The time-domain electric flux density can be obtain by inverse transforming (10.6). The prod-
uct of χ̂e and Ê in the frequency domain yields a convolution in the time domain. The fields are
assumed to be zero prior to t = 0, so this yields

D(t) = ϵ0E(t) +

t∫
τ=0

ϵ0χe(τ)E(t− τ)dτ (10.9)

where χe(t) is the inverse transform of χ̂e(ω):

χe(t) =
1

2π

∞∫
−∞

χ̂e(ω)e
jωtdω. (10.10)

The time-domain function ϵ0χe(t) corresponds to the polarization vector P(t) for an impulsive
electric field—effectively the impulse response of the medium.

We now consider three common susceptibility functions. As will be shown these are based on
either simple mechanical or electrical models.

10.2.1 Drude Materials
In the Drude model, which often provides a good model of the behavior of conductors, charges are
assumed to move under the influence of the electric field but they experience a damping force as
well. This can be described by the following simple mechanical model

M
d2x

dt2
= QE(t)−Mg

dx

dt
(10.11)

where M is the mass of the charge, g is the damping coefficient, Q is the amount of charge, and x
is the vector displacement of the charge.‡ The left side of this equation is mass times acceleration
and the right side is the sum of the forces on the charge, i.e., a driving force and a damping force.
Rearranging this and converting to the frequency domain yields

M(jω)2x̂(ω) +Mg(jω)x̂(ω) = QÊ(ω). (10.12)

Thus the displacement can be expressed as

x̂(ω) = − Q

M (ω2 − jgω)
Ê(ω). (10.13)

‡The symbol x is a vector which, in general, has components in the x, y, and z directions. This displacement in an
arbitrary direction should not be mistaken for displacement along the x axis.



292 CHAPTER 10. DISPERSIVE MATERIAL

The polarization vector P is related to the dipole moment of individual charges. IfN is the number
of dipoles per unit volume, the polarization vector is given by

P̂ = NQx̂. (10.14)

Note that P has units of charge per units area (C/m2) and thus, as would be expected from (10.1),
has the same units as electric flux. Combining (10.13) and (10.14) yields

P̂(ω) = −ϵ0
NQ2

Mϵ0

ω2 − jgω
Ê(ω). (10.15)

The electric susceptibility for Drude materials is thus given by

χ̂e(ω) = −
ω2
p

ω2 − jgω
(10.16)

where ω2
p = NQ2/(Mϵ0). However, we are not overly concerned with the specifics behind any

one constant. For example, some authors may elect to combine the mass and damping coefficient
which were kept as separate quantities in (10.11) (the product of the two dictates the damping
force). Regardless of how the constants are defined, ultimately the Drude susceptibility will take
the form shown in (10.16).

The relative permittivity for a Drude material can thus be written

ϵ̂r(ω) = ϵ∞ −
ω2
p

ω2 − jgω
. (10.17)

Note that as ω goes to infinity the relative permittivity reduces to ϵ∞. Consider a rather special
case in which ϵ∞ = 1 and g = 0. When ω = ωp/

√
2 the relative permittivity is −1. It is

possible, at least to some extent, to construct a material which has not only this kind of behavior
for permittivity but also for the behavior for the permeability, i.e., µr = ϵr = −1. This kind
of material, which is known by various names including meta material, double-negative material,
backward-wave material, and left-handed material, possesses many interesting properties. Some
properties of these “meta materials” are also rather controversial as some people have made claims
that others dispute (such as the ability to construct a “perfect” lens using a planar slab of this
material).

The impulse response for the medium is the inverse Fourier transform of (10.16):

χe(t) =
ω2
p

g

(
1− e−gt

)
u(t) (10.18)

where u(t) is the unit step function. The factor g is seen to determine the rate at which the response
goes to zero, i.e., its inverse is the relaxation time. The factor ωp is known as the plasma frequency.

10.2.2 Lorentz Material
Lorentz material is based on a second-order mechanical model of charge motion. In this case, in
addition to a damping force, there is a restoring force (effectively a spring force which wants to



10.2. CONSTITUTIVE RELATIONS AND DISPERSIVE MEDIA 293

bring the charge back to its initial position). The sum of the forces can be expressed as

M
d2x

dt2
= QE(t)−Mg

dx

dt
−MKx. (10.19)

The terms in common with those in (10.11) maintain the same meaning as they had in the case of
the Drude model. The additional term represents the restoring force (which is proportional to the
displacement) and is scaled by the spring constant K.

Converting to the frequency domain and rearranging yields

−Mω2x̂(ω) + jMgωx̂(ω) +MKx̂(ω) = QÊ(ω). (10.20)

Thus the displacement is given by

x̂(ω) =
Q

M (K + jgω − ω2)
Ê(ω). (10.21)

Relating displacement to the polarization vector via P̂ = NQx̂ yields

P̂(ω) = ϵ0
NQ2

Mϵ0 (K + jgω − ω2)
Ê(ω). (10.22)

From this the susceptibility is identified as

χ̂e(ω) =
NQ2

Mϵ0 (K + jgω − ω2)
(10.23)

However, as before, the important thing is the form of the function, not the individual constants.
We thus write this as

χ̂e(ω) =
ϵℓω

2
ℓ

ω2
ℓ + 2jgℓω − ω2

(10.24)

where ωℓ is the undamped resonant frequency, gℓ is the damping coefficient, and ϵℓ (together with
ϵ∞) accounts for the relatively permittivity at zero frequency. The corresponding relative permit-
tivity is given by

ϵ̂r(ω) = ϵ∞ +
ϵℓω

2
ℓ

ω2
ℓ + 2jgℓω − ω2

. (10.25)

Note that when the frequency goes to zero the relative permittivity becomes ϵ∞+ ϵℓ whereas when
the frequency goes to infinity the relative permittivity is simply ϵ∞.

The time-domain form of the susceptibility function is given by the inverse transform of (10.24).
This yields

χe(t) =
ϵℓω

2
ℓ√

ω2
ℓ − g2ℓ

e−gℓt sin

(
t
√
ω2
ℓ − g2ℓ

)
u(t). (10.26)



294 CHAPTER 10. DISPERSIVE MATERIAL

10.2.3 Debye Material
Debye materials can be thought of as a simple RC circuit§ where the amount of polarization is
related to the voltage across the capacitor. The “source” driving the circuit is the electric field. For
a step in the source, there may be a constant polarization. As the frequency goes to infinity, the po-
larization goes to zero (leaving just the constant residual high-frequency term). The susceptibility
is thus written

χ̂e(ω) =
ϵd

1 + jωτd
(10.27)

where τd is the time constant and ϵd (together with ϵ∞) accounts for the relative permittivity when
the frequency is zero. The relative permittivity is given by

ϵ̂r(ω) = ϵ∞ +
ϵd

1 + jωτd
. (10.28)

The time-domain form of the susceptibility function is

χe(t) =
ϵd
τd
e−t/τdu(t). (10.29)

10.3 Debye Materials Using the ADE Method
The finite-difference approximation of the differential equation that relates the polarization and the
electric field can be used to obtain the polarization at future times in terms of its past value and
an expression involving the electric field. By doing so, one can obtain a consistent FDTD model
that requires that a quantity related to the polarization be stored as an additional variable. This
approach is known as the auxiliary differential equation (ADE) method.

In the frequency domain Ampere’s law can be written

ϵ0ϵ∞jωÊ+ σÊ+ Ĵp = ∇× Ĥ (10.30)

where the polarization current Ĵp is given by

Ĵp = jωP̂ = jωϵ0χ̂eÊ. (10.31)

For a Debye material this becomes

Ĵp = jωϵ0
ϵd

1 + jωτd
Ê. (10.32)

Multiplying through by 1 + jωτd yields

Ĵp + jωτdĴp = jωϵ0ϵdÊ. (10.33)

§Envision a current source, a resistor, and a capacitor all in parallel where the frequency of the current source may
vary



10.3. DEBYE MATERIALS USING THE ADE METHOD 295

Converting to the time domain produces

Jp + τd
∂Jp
∂t

= ϵ0ϵd
∂E

∂t
. (10.34)

Discretizing this about the time-step q + 1/2 yields

Jq+1
p + Jqp

2
+ τd

Jq+1
p − Jqp
∆t

= ϵ0ϵd
Eq+1 − Eq

∆t

. (10.35)

Since we are assuming an isotropic medium, the polarization current is aligned with the electric
field. Hence in (10.35) the x component of Jp depends only on the x component of E (and similarly
for the y and z components).

Solving (10.35) for Jq+1
p yields

Jq+1
p =

1− ∆t

2τd

1 + ∆t

2τd

Jqp +
∆t

τd

1 + ∆t

2τd

ϵ0ϵd
∆t

(
Eq+1 − Eq

)
. (10.36)

Whatever the time-constant τd is, it can be expressed in terms of some multiple of the time-step,
i.e., τd = Nτ∆t where Nτ does not need to be an integer. As will be shown, it is convenient to
multiply both sides of (10.36) by the spatial step size. We will assume a uniform grid in which
∆x = ∆y = ∆z = δ. Thus (10.36) can be written

δJq+1
p =

1− 1
2Nτ

1 + 1
2Nτ

δJqp +
1
Nτ

1 + 1
2Nτ

ϵ0ϵdδ

∆t

(
Eq+1 − Eq

)
. (10.37)

Consider the factor ϵ0ϵdδ/∆t:

ϵ0ϵdδ

∆t

=

√
ϵ0µ0ϵdδ√
µ0
ϵ0
∆t

=
ϵdδ

η0c∆t

=
ϵd
η0Sc

. (10.38)

Therefore (10.37) can be written

δJq+1
p = Cjj δJ

q
p + Cje

(
Eq+1 − Eq

)
, (10.39)

where

Cjj =
1− 1

2Nτ

1 + 1
2Nτ

, (10.40)

Cje =
1
Nτ

1 + 1
2Nτ

ϵd
η0Sc

. (10.41)

Recall that Ampere’s law is discretized about the time-step (q + 1/2)∆t. Since the polarization
current appears in Ampere’s law, we thus need an expression for δJq+1/2

p . This is simply given by
the average of δJq+1

p (which is given by (10.39)) and δJqp:

δJq+1/2
p =

δJq+1
p + δJqp

2
=

1

2

(
[1 + Cjj ]δJ

q
p + Cje

(
Eq+1 − Eq

))
. (10.42)



296 CHAPTER 10. DISPERSIVE MATERIAL

The discrete time-domain form of Ampere’s law expanded about the time-step (q + 1/2) is

ϵ0ϵ∞
Eq+1 − Eq

∆t

+ σ
Eq+1 + Eq

2
+ Jq+1/2

p = ∇×Hq+1/2. (10.43)

Multiplying through by δ and using (10.42) in (10.43) yields

ϵ∞ϵ0δ

∆t

(
Eq+1 − Eq

)
+
σδ

2

(
Eq+1 + Eq

)
+

1

2

(
[1 + Cjj ]δJ

q
p + Cje

(
Eq+1 − Eq

))
= δ∇×Hq+1/2.

(10.44)
The curl of the magnetic field, which involves spatial derivatives, will have a δ in the denominator
of the finite differences. Thus δ∇ × Hq+1/2 will involve merely the difference of the various
magnetic-field components.

Regrouping terms in (10.44) produces

Eq+1

(
ϵ∞ϵ0δ

∆t

+
σδ

2
+

1

2
Cje

)
= Eq

(
ϵ∞ϵ0δ

∆t

− σδ

2
+

1

2
Cje

)
+ δ∇×Hq+1/2 − 1

2
[1 + Cjj ] δJ

q
p.

(10.45)
The term multiplying the electric fields can be written as

ϵ∞ϵ0δ

∆t

(
1± σ∆t

2ϵ∞ϵ0
+

Cje∆t

2ϵ∞ϵ0δ

)
=

ϵ∞
η0Sc

(
1± σ∆t

2ϵ∞ϵ0
+
Cjeη0Sc
2ϵ∞

)
. (10.46)

Therefore (10.45) can be written

Eq+1 =
1− σ∆t

2ϵ∞ϵ0
+

Cjeη0Sc

2ϵ∞

1 + σ∆t

2ϵ∞ϵ0
+

Cjeη0Sc

2ϵ∞

Eq +

η0Sc

ϵ∞

1 + σ∆t

2ϵ∞ϵ0
+

Cjeη0Sc

2ϵ∞

(
δ∇×Hq+1/2 − 1

2
[1 + Cjj ] δJ

q
p

)
.

(10.47)
The way in which the term σ∆t/(2ϵ0) could be expressed in terms of the skin depth was discussed
in Sec. 5.7.

The FDTD model of a Debye material would be implemented as follows:

1. Update the magnetic fields in the usual way. Hq−1/2 ⇒ Hq+1/2.

2. For each electric-field component, do the following:

(a) Copy the electric field to a temporary variable. Etmp = Eq.
(b) Update the electric field using (10.47). Eq ⇒ Eq+1.
(c) Update the polarization current (actually δ times the polarization current) using (10.39).

Jqp ⇒ Jq+1
p . This update requires both Eq+1 and Eq (which is stored in Etmp).

3. Repeat.

The polarization current (actually the product of the spatial step-size and the polarization current,
i.e., δJp) must be stored as a separate quantity. Of course it only needs to be stored for nodes at
which it is non-zero.

If the polarization current is initially zero and Cje is zero, the polarization current will always
be zero and the material behaves as a standard non-dispersive material (although, of course, dis-
persion is always present in the grid itself). Thus the update equations presented here can be used
throughout a simulation which is a mix of dispersive and non-dispersive media. One merely has to
set the constants to the appropriate values for a given location.



10.4. DRUDE MATERIALS USING THE ADE METHOD 297

10.4 Drude Materials Using the ADE Method
The electric susceptibility for a Drude material is given in (10.16) and can also be written

χ̂e(ω) =
ω2
p

jω(jω + g)
. (10.48)

The associated polarization current is

Ĵp = jωP̂ = jωϵ0χ̂eÊ = jωϵ0
ω2
p

jω(jω + g)
Ê. (10.49)

Canceling jω and cross multiplying by g + jω yields

gĴp + jωĴp = ϵ0ω
2
pÊ. (10.50)

Expressed in the time-domain, this is

gJp +
∂Jp
∂t

= ϵ0ω
2
pE. (10.51)

Discretizing time and expanding this about the time-step q + 1/2 yields

g
Jq+1
p + Jqp

2
+

Jq+1
p − Jqp
∆t

= ϵ0ω
2
p

Eq+1 + Eq

2
. (10.52)

Solving for Jq+1
p we obtain

Jq+1
p =

1− g∆t

2

1 + g∆t

2

Jqp +
1

1 + g∆t

2

ϵ0ω
2
p∆t

2

(
Eq+1 + Eq

)
. (10.53)

The damping or loss term g is the inverse of the relaxation time and hence can be expressed as a
multiple of the number of time steps, i.e.,

g =
1

Ng∆t

(10.54)

where Ng does not need to be integer. Consider the term multiplying the electric field

ϵ0ω
2
p∆t

2
=

√
ϵ0µ04π

2f 2
p∆t√

µ0
ϵ0
2

=
2π2c2∆t

η0λ2pc
=

2π2c∆t

η0(Npδ)2
=

2π2Sc
η0N2

p δ
(10.55)

where fp is the plasma frequency in Hertz, λp is the free-space wavelength at this frequency, and
Np is the number of points per wavelength at the plasma frequency. Since this term contains δ in
the denominator, we multiply (10.53) by δ to obtain

δJq+1
p = Cjj δJ

q
p + Cje

(
Eq+1 + Eq

)
(10.56)



298 CHAPTER 10. DISPERSIVE MATERIAL

where

Cjj =
1− 1

2Ng

1 + 1
2Ng

, (10.57)

Cje =
1

1 + 1
2Ng

2π2Sc
η0N2

p

. (10.58)

Note the similarity between (10.39) and (10.56). These equations have nearly identical forms but
the constants are different and there is a different sign associated with the “old” value of the electric
field.

The general discretized form of Ampere’s law expanded about the time-step (q + 1/2) is un-
changed from (10.43) and is repeat below

ϵ0ϵ∞
Eq+1 − Eq

∆t

+ σ
Eq+1 + Eq

2
+ Jq+1/2

p = ∇×Hq+1/2. (10.59)

As before, δJq+1/2
p can be obtained by the average of δJq+1

p and δJqp:

δJq+1/2
p =

δJq+1
p + δJqp

2
=

1

2

(
[1 + Cjj ]δJ

q
p + Cje

(
Eq+1 + Eq

))
. (10.60)

Multiplying through by δ and using (10.60) for the polarization current yields

ϵ∞ϵ0δ

∆t

(
Eq+1 − Eq

)
+
σδ

2

(
Eq+1 + Eq

)
+

1

2

(
[1 + Cjj ]δJ

q
p + Cje

(
Eq+1 + Eq

))
= δ∇×Hq+1/2.

(10.61)
Note that, other than the constants being those for a Drude material, the only way in which this
expression differs from (10.44) is the sign of the “old” electric field associated with the polarization
current. Therefore (10.47) again yields the expression for the “future” electric field if we make the
appropriate change of sign. The result is

Eq+1 =
1− σ∆t

2ϵ∞ϵ0
− Cjeη0Sc

2ϵ∞

1 + σ∆t

2ϵ∞ϵ0
+

Cjeη0Sc

2ϵ∞

Eq +

η0Sc

ϵ∞

1 + σ∆t

2ϵ∞ϵ0
+

Cjeη0Sc

2ϵ∞

(
δ∇×Hq+1/2 − 1

2
[1 + Cjj ] δJ

q
p

)
.

(10.62)
The implementation of an FDTD algorithm for Drude material now parallels that for Debye

material:

1. Update the magnetic fields in the usual way. Hq−1/2 ⇒ Hq+1/2.

2. For each electric-field component, do the following

(a) Copy the electric field to a temporary variable. Etmp = Eq.

(b) Update the electric field using (10.62). Eq ⇒ Eq+1.

(c) Update the polarization current (actually δ times the polarization current) using (10.56).
Jq ⇒ Jq+1. This update requires both Eq+1 and Eq (which is stored in Etmp).

3. Repeat.



10.5. MAGNETICALLY DISPERSIVE MATERIAL 299

10.5 Magnetically Dispersive Material
In the frequency domain Faraday’s law is

∇× Ê = −jωB̂− σmĤ (10.63)

where σm is the magnetic conductivity. Generalizing (10.7) slightly, the permeability can be writ-
ten as

µ̂(ω) = µ0µ̂r(ω) = µ0(µ∞ + χ̂m(ω)). (10.64)

where the factor µ∞ accounts for the permeability at high frequencies. Faraday’s law can thus be
written

∇× Ê = −jωµ0µ∞Ĥ(ω)− σmĤ− Ĵm. (10.65)

where the magnetic polarization current Ĵm is given by

Ĵm = jωµ0M̂ = jωµ0χ̂m(ω)Ĥ(ω). (10.66)

The derivation of the equations which govern an FDTD implementation of a magnetically
dispersive material parallel that of electrically dispersive material. Here we consider the case of
Drude dispersion where

χ̂m(ω) = −
ω2
p

ω2 − jgω
=

ω2
p

jω(jω + g)
. (10.67)

(The plasma frequency ωp and damping term g for magnetic susceptibility are distinct from those
of electric susceptibility.) Thus the polarization current and magnetic field are related by

Ĵm = jωµ0

ω2
p

jω(jω + g)
Ĥ =

µ0ω
2
p

(jω + g)
Ĥ. (10.68)

Multiplying by g + jω yields
(g + jω)Ĵm = µ0ω

2
pĤ. (10.69)

The time-domain equivalent of this is

gJm +
∂Jm
∂t

= µ0ω
2
pH. (10.70)

Discretizing time and expanding this about the time-step q yields

g
J
q+1/2
m + J

q−1/2
m

2
+

J
q+1/2
m − J

q−1/2
m

∆t

= µ0ω
2
p

Hq+1/2 +Hq−1/2

2
. (10.71)

Solving for Jq+1/2
m yields

Jq+1/2
m =

1− g∆t

2

1 + g∆t

2

Jq−1/2
m +

1

1 + g∆t

2

µ0ω
2
p∆t

2

(
Hq+1/2 +Hq−1/2

)
. (10.72)

Consider the term multiplying the magnetic field

µ0ω
2
p∆t

2
=

√
µ0
ϵ0

√
ϵ0µ04π

2f 2
p∆t

2
=

2π2η0c
2∆t

λ2pc
=

2π2η0c∆t

(Npδ)2
=

2π2η0Sc
N2
p δ

. (10.73)



300 CHAPTER 10. DISPERSIVE MATERIAL

where, as before, fp is the plasma frequency in Hertz, λp is the free-space wavelength at this fre-
quency, and Np is the number of points per wavelength at the plasma frequency. Again expressing
the damping coefficient in terms of some multiple of the time step, i.e., g = 1/(Ng∆t), multiply-
ing all terms in (10.72) by δ, and employing the final form of the term given in (10.73), the update
equation for the polarization current can be written as

δJq+1/2
m = Cjj δJ

q−1/2
m + Cjh

(
Hq+1/2 +Hq−1/2

)
(10.74)

where

Cjj =
1− 1

2Ng

1 + 1
2Ng

, (10.75)

Cjh =
1

1 + 1
2Ng

2π2η0Sc
N2
p

. (10.76)

To obtain the magnetic polarization current at time-step q, the current at time-steps q + 1/2 and
q − 1/2 are averaged:

δJqm =
δJ

q+1/2
m + δJ

q−1/2
m

2
=

1

2

(
[1 + Cjj ]δJ

q−1/2
m + Cjh

(
Hq+1/2 +Hq−1/2

))
. (10.77)

The discretized form of Faraday’s law expanded about time-step q is

−µ0µ∞
Hq+1/2 −Hq−1/2

∆t

− σm
Hq+1/2 −Hq−1/2

2
− Jqm = ∇× Eq. (10.78)

Multiplying through by −δ and using (10.77) for the polarization current yields

µ∞µ0δ

∆t

(
Hq+1/2 −Hq−1/2

)
+
σmδ

2

(
Hq+1/2 +Hq−1/2

)
+

1

2

(
[1 + Cjj ]δJ

q−1/2
m + Cjh

(
Hq+1/2 +Hq−1/2

))
= −δ∇× Eq. (10.79)

After regrouping terms we obtain

Hq+1/2

(
µ∞µ0δ

∆t

+
σmδ

2
+

1

2
Cjh

)
=

Hq−1/2

(
µ∞µ0δ

∆t

− σmδ

2
+

1

2
Cjh

)
− δ∇× Eq − 1

2
[1 + Cjj ] δJ

q−1/2
m . (10.80)

The factor µ0δ/∆t is equivalent to η0/Sc so that the update equation for the magnetic field can be
written

Hq+1/2 =
1− σm∆t

2µ∞µ0
− CjhSc

2η0µ∞

1 + σm∆t

2µ∞µ0
+

CjhSc

2η0µ∞

Hq−1/2+

Sc

η0µ∞

1 + σm∆t

2µ∞µ0
+

CjhSc

2η0µ∞

(
−δ∇× Eq − 1

2
[1 + Cjj ] δJ

q−1/2
m

)
.

(10.81)
An FDTD model of a magnetically dispersive material would be implemented as follows:



10.6. PIECEWISE LINEAR RECURSIVE CONVOLUTION 301

1. For each magnetic-field component, do the following

(a) Copy the magnetic field to a temporary variable. Htmp = Hq−1/2.

(b) Update the magnetic field using (10.81). Hq−1/2 ⇒ Hq+1/2.

(c) Update the polarization current (actually δ times the polarization current) using (10.74).
J
q−1/2
m ⇒ J

q+1/2
m . This update requires both Hq+1/2 and Hq−1/2 (which is stored in

Htmp).

2. Update the electric fields in whatever way is appropriate (which may include the dispersive
implementations described previously) Eq ⇒ Eq+1.

3. Repeat.

10.6 Piecewise Linear Recursive Convolution
An alternative implementation of dispersive material is offered by the piecewise linear recursive
convolution (PLRC) method. Recall that multiplication in the frequency domain is equivalent to
convolution in the time domain. Thus, the frequency-domain relationship

D̂(ω) = ϵ0ϵ∞Ê(ω) + ϵ0χ̂e(ω)Ê(ω) (10.82)

is equivalent to the time-domain relationship

D(t) = ϵ0ϵ∞E(t) + ϵ0

t∫
ζ=0

E(t− ζ)χe(ζ)dζ (10.83)

where ζ is a dummy variable of integration. In discrete form the electric flux density at time-step
q∆t can be written

Dq = ϵ0ϵ∞Eq + ϵ0

q∆t∫
ζ=0

E(q∆t − ζ)χe(ζ)dζ. (10.84)

Although in an FDTD simulation the electric field E would only be available at discrete points
in time, we wish to treat the field as if it varies continuously insofar as the integral is concerned.
This is accomplished by assuming the field varies linearly between sample points. For example,
assume the continuous variable t is between i∆t and (i+1)∆t. Over this range the electric field is
approximated by

E(t) = Ei +
Ei+1 − Ei

∆t

(t− i∆t) for i∆t ≤ t ≤ (i+ 1)∆t. (10.85)

When t is equal to i∆t we obtain Ei and when t is (i + 1)∆t we obtain Ei+1. The field varies
linearly between these points.

To obtain a more general representation of the electric field, let us define the pulse function
pi(t) which is given by

pi(t) =

{
1 if i∆t ≤ t < (i+ 1)∆t,
0 otherwise. (10.86)



302 CHAPTER 10. DISPERSIVE MATERIAL

Using this pulse function the electric field can be written as

E(t) =
M−1∑
i=0

[
Ei +

Ei+1 − Ei

∆t

(t− i∆t)

]
pi(t). (10.87)

This provides a piecewise-linear approximation of the electric field over M segments. Despite the
summation, the pulse function ensures that only one segment is turned on for any given value of t.
Hence the summation can be thought of as serving more to collect together the various segments
rather than as serving to add several terms.

In the integrand of (10.84) the argument of the electric field is q∆t − ζ where q∆t is constant
with respect to the variable of integration ζ . When ζ varies from i∆t to (i+ 1)∆t the electric field
should vary from the discrete points Eq−i to Eq−i−1. Thus, the electric field can be represented by

E(q∆t − ζ) = Eq−i +
Eq−i−1 − Eq−i

∆t

(ζ − i∆t) for i∆t ≤ ζ ≤ (i+ 1)∆t. (10.88)

Using the pulse function, the field over all values of ζ can be written

E(q∆t − ζ) =

q−1∑
i=0

[
Eq−i +

Eq−i−1 − Eq−i

∆t

(ζ − i∆t)

]
pi(ζ). (10.89)

Note the limits of the summation. The upper limit of integration is q∆t which corresponds to the
end-point of the segment which varies from (q − 1)∆t to q∆t. This segment has an index of q − 1
(segment 0 varies from 0 to ∆t, segment 1 varies from ∆t to 2∆t, and so on). The lower limit used
here is not actually dictated by the electric field. Rather, when we combine the electric field with
the susceptibility function the product is zero for ζ less than zero since the susceptibility is zero
for ζ less than zero (due to the material impulse response being causal). Hence we start the lower
limit of the summation at zero.

Substituting (10.89) into (10.84) yields

Dq = ϵ0ϵ∞Eq + ϵ0

q∆t∫
ζ=0

q−1∑
i=0

[
Eq−i +

Eq−i−1 − Eq−i

∆t

(ζ − i∆t)

]
pi(ζ)χe(ζ)dζ. (10.90)

The summation and integration can be interchanged. However, the pulse function dictates that the
integration only needs to be carried out over the range of values where the pulse function is unity.
Thus we can write

Dq = ϵ0ϵ∞Eq + ϵ0

q−1∑
i=0

(i+1)∆t∫
ζ=i∆t

[
Eq−i +

Eq−i−1 − Eq−i

∆t

(ζ − i∆t)

]
χe(ζ)dζ. (10.91)

The samples of the electric field are constants with respect to the variable of integration and can be
taken outside of the integral. This yields

Dq = ϵ0ϵ∞Eq +

ϵ0

q−1∑
i=0

Eq−i

 (i+1)∆t∫
ζ=i∆t

χe(ζ)dζ

+
Eq−i−1 − Eq−i

∆t

 (i+1)∆t∫
ζ=i∆t

(ζ − i∆t)χe(ζ)dζ

 .(10.92)



10.6. PIECEWISE LINEAR RECURSIVE CONVOLUTION 303

To simplify the notation, we define the following

χi =

(i+1)∆t∫
ζ=i∆t

χe(ζ)dζ, (10.93)

ξi =
1

∆t

(i+1)∆t∫
ζ=i∆t

(ζ − i∆t)χe(ζ)dζ. (10.94)

This allows us to write

Dq = ϵ0ϵ∞Eq + ϵ0

q−1∑
i=0

[
Eq−iχi +

(
Eq−i−1 − Eq−i) ξi] . (10.95)

In discrete form and using the electric flux density, Ampere’s law can be written

∇×Hq+1/2 =
Dq+1 −Dq

∆t

. (10.96)

Equation (10.95) gives Dq in terms of the electric field. This equation can also be used to express
Dq+1 in terms of the electric field: one merely replaces q with q + 1. This yields

Dq+1 = ϵ0ϵ∞Eq+1 + ϵ0

q∑
i=0

[
Eq−i+1χi +

(
Eq−i − Eq−i+1

)
ξi
]
. (10.97)

In order to obtain an update equation for the electric field, we must express Eq+1 in terms of other
known (or past) quantities. As things stand now, there is an Eq+1 “buried” inside the the summation
in (10.97). To express that explicitly, we extract the i = 0 term and then have the summation start
from i = 1. This yields

Dq+1 = ϵ0ϵ∞Eq+1 + ϵ0E
q+1χ0 + ϵ0

(
Eq − Eq+1

)
ξ0

+ϵ0

q∑
i=1

[
Eq−i+1χi +

(
Eq−i − Eq−i+1

)
ξi
]
. (10.98)

Ultimately we want to combine the summations in (10.95) and (10.98) and thus the limits of the
summations must be the same. The limits of the summation in (10.98) can be adjusting by using a
new index i′ = i− 1 (thus i = i′ + 1). Substituting i′ for i, (10.98) can be written

Dq+1 = Eq+1ϵ0(ϵ∞ + χ0 − ξ0) + Eqϵ0ξ
0

+ϵ0

q−1∑
i′=0

[
Eq−i′χi

′+1 +
(
Eq−i′−1 − Eq−i′

)
ξi

′+1
]
. (10.99)

Since i′ is just an index, we can return to calling is merely i.



304 CHAPTER 10. DISPERSIVE MATERIAL

The temporal finite-difference of the flux density is obtained by combining (10.95) and (10.99).
The result is

Dq+1 −Dq

∆t

=
1

∆t

(
Eq+1ϵ0(ϵ∞ − χ0 + ξ0) + Eqϵ0(−ϵ∞ + ξ0)

−ϵ0
q−1∑
i=0

[
Eq−i∆χi +

(
Eq−i−1 − Eq−i)∆ξi]) (10.100)

where

∆χi = χi − χi+1, (10.101)
∆ξi = ξi − ξi+1. (10.102)

The summation in (10.100) does not contain Eq+1. Hence, using (10.100) to replace the right
side of (10.96) and solving for Eq+1 yields

Eq+1 =
ϵ∞ − ξ0

ϵ∞ + χ0 − ξ0
Eq +

∆t

ϵ0

ϵ∞ + χ0 − ξ0
∇×Hq+1/2 +

1

ϵ∞ + χ0 − ξ0
Ψq (10.103)

where Ψq, known as the recursive accumulator, is given by

Ψq =

q−1∑
i=0

[
Eq−i∆χi +

(
Eq−i−1 − Eq−i)∆ξi] (10.104)

Equation (10.103) is used to update the electric field. It appears that a summation must be
computed which requires knowledge of all the previous values of the electric field. Clearly this
would be prohibitive if this were the case in practice. Fortunately, provided the material impulse
response can be expressed in terms of exponentials, there is a recursive formulation which can be
used to efficiently express this summation.

Consider Ψq with the i = 0 term written explicitly, i.e.,

Ψq = Eq(∆χ0 −∆ξ0) + Eq−1∆ξ0 +

q−1∑
i=1

[
Eq−i∆χi +

(
Eq−i−1 − Eq−i)∆ξi]. (10.105)

Employing a change of indices for the summation so that the new limits range from 0 to q− 2, this
can be written:

Ψq = Eq(∆χ0 −∆ξ0) +Eq−1∆ξ0 +

q−2∑
i=0

[
Eq−i−1∆χi+1 +

(
Eq−i−2 − Eq−i−1

)
∆ξi+1

]
. (10.106)

Now consider Ψq−1 by writing (10.104) with q replaced by q − 1:

Ψq−1 =

q−2∑
i=0

[
Eq−i−1∆χi +

(
Eq−i−2 − Eq−i−1

)
∆ξi
]

(10.107)

Note the similarity between the summation in (10.106) and the right-hand side of (10.107). These
are the same except in (10.106) the summation involves ∆χi+1 and ∆ξi+1 while in (10.107) the



10.7. PLRC FOR DEBYE MATERIAL 305

summation involves ∆χi and ∆ξi. As we will see, for certain materials it is possible to relate these
values to each other in a simple way. Specifically, we will find that these are related by

∆χi+1 = Crec∆χ
i, (10.108)

∆ξi+1 = Crec∆ξ
i, (10.109)

where Crec is a “recursion constant” (which is yet to be determined). Given that this recursion
relationship exists for ∆χi+1 and ∆ξi+1, (10.106) can be written

Ψq = Eq(∆χ0 −∆ξ0) + Eq−1∆ξ0 + Crec

q−2∑
i=0

[
Eq−i−1∆χi +

(
Eq−i−2 − Eq−i−1

)
∆ξi
]
,

= Eq(∆χ0 −∆ξ0) + Eq−1∆ξ0 + CrecΨ
q−1, (10.110)

or, after replacing q with q + 1, this becomes

Ψq+1 = Eq+1(∆χ0 −∆ξ0) + Eq∆ξ0 + CrecΨ
q. (10.111)

The PLRC algorithm is now, at least in the abstract sense, complete. The implementation is as
follows:

1. Update the magnetic field in the usual way (perhaps using a dispersive formulation).

2. Update the electric field using (10.103) (being sure to first store the previous value of the
electric field).

3. Updated the recursive accumulator as specified by (10.111) (using both the updated electric
field and the stored value).

4. Repeat.

It now remains to determine the various constants for a given material. Specifically, one must know
χ0, ξ0, ϵ∞ (which appear in (10.103)), as well as ∆χ0, ∆ξ0, and Crec (which appear in (10.111)).

10.7 PLRC for Debye Material
The time-domain form of the susceptibility function for Debye materials was given in (10.29).
Using this in (10.93) and (10.94) yields

χi = ϵd
(
1− e−∆t/τd

)
e−i∆t/τd , (10.112)

ξi =
ϵdτd
∆t

(
1−

[
∆t

τd
+ 1

]
e−∆t/τd

)
e−i∆t/τd . (10.113)

Setting i equal to zero yields

χ0 = ϵd
(
1− e−∆t/τd

)
, (10.114)

ξ0 =
ϵdτd
∆t

(
1−

[
∆t

τd
+ 1

]
e−∆t/τd

)
. (10.115)



306 CHAPTER 10. DISPERSIVE MATERIAL

The time-constant τd can be expressed in terms of multiples of the time step ∆t, e.g., τd = Nd∆t.
Note that the time step is always divided by τd in these expressions so that the only important
consideration is the ratio of these quantities, i.e., ∆t/τd = 1/Nd.

From (10.112) we observe

χi+1 = ϵd
(
1− e−∆t/τd

)
e−(i+1)∆t/τd ,

= e−∆t/τdϵd
(
1− e−∆t/τd

)
e−i∆t/τd ,

= e−∆t/τdχi. (10.116)

Now consider ∆χi which is given by

∆χi = χi − χi+1,

= χi − e−∆t/τdχi,

= χi(1− e−∆t/τd). (10.117)

Thus ∆χi+1 can be written as

∆χi+1 = χi+1(1− e−∆t/τd),

= e−∆t/τdχi(1− e−∆t/τd),

= e−∆t/τd∆χi. (10.118)

Similar arguments pertain to ξi and ∆ξi resulting in

∆ξi+1 = e−∆t/τd∆ξi. (10.119)

From (10.118) and (10.119), and in accordance with the description of Crec given in (10.108)
and (10.109), we conclude that

Crec = e−∆t/τd . (10.120)

The factor exp(−∆t/τd), i.e., Crec , appears in several of the terms given above. Writing the ratio
∆t/τd as 1/Nd, all the terms involved in the implementation of the PLRC method can be expressed
as

Crec = e−1/Nd , (10.121)
χ0 = ϵd (1− Crec) , (10.122)

ξ0 = ϵdNd

(
1−

[
1

Nd

+ 1

]
Crec

)
, (10.123)

∆χ0 = χ0(1− Crec), (10.124)
∆ξ0 = ξ0(1− Crec). (10.125)

Nearly all the terms involved in the PLRC method are unitless and independent of scale. The
only term which is not is ∆t/ϵ0 which multiplies the curl of the magnetic field in (10.103). How-
ever, this is a term which has appeared in all the electric-field update equations we have ever con-
sidered and, after extracting the 1/δ inherent in the finite-difference form of the curl operator, it can
be expressed in terms of the Courant number and characteristic impedance, i.e., ∆t/(δϵ0) = Scη0.



Chapter 11

Perfectly Matched Layer

11.1 Introduction
The perfectly matched layer (PML) is generally considered the state-of-the-art for the termination
of FDTD grids. There are some situations where specially designed ABC’s can outperform a PML,
but this is very much the exception rather than the rule. The theory behind a PML is typically perti-
nent to the continuous world. In the continuous world the PML should indeed work “perfectly” (as
its name implies) for all incident angles and for all frequencies. However, when a PML is imple-
mented in the discretized world of FDTD, there are always some imperfections (i.e., reflections)
present.

There are several different PML formulations. However, all PML’s essentially act as a lossy
material. The lossy material, or lossy layer, is used to absorb the fields traveling away from the
interior of the grid. The PML is anisotropic and constructed in such a way that there is no loss
in the direction tangential to the interface between the lossless region and the PML (actually there
can be loss in the non-PML region too, but we will ignore that fact for the moment). However, in
the PML there is always loss in the direction normal to the interface.

The PML was originally proposed by J.-P. Bérenger in 1994. In that original work he split
each field component into two separate parts. The actual field components were the sum of these
two parts but by splitting the field Bérenger could create an (non-physical) anisotropic medium
with the necessary phase velocity and conductivity to eliminate reflections at an interface between
a PML and non-PML region. Since Bérenger first paper, others have described PML’s using dif-
ferent approaches such as the complex coordinate-stretching technique put forward by Chew and
Weedon, also in 1994.

Arguably the best PML formulation today is the Convolutional-PML (CPML). CPML con-
structs the PML from an anisotropic, dispersive material. CPML does not require the fields to be
split and can be implemented in a relatively straightforward manner.

Before considering CPML, it is instructive to first consider a simple lossy layer. Recall that a
lossy layer provided an excellent ABC for 1D grids. However, a traditional lossy layer does not
work in higher dimensions where oblique incidence is possible. We will discuss this and show how
the split-field PML fixes this problem.

†Lecture notes by John Schneider. fdtd-pml.tex

307



308 CHAPTER 11. PERFECTLY MATCHED LAYER

11.2 Lossy Layer, 1D
A lossy layer was previously introduced in Sec. 3.12. Here we will revisit lossy material but
initially focus of the continuous world and time-harmonic fields. For continuous, time-harmonic
fields, the governing curl equations can be written

∇×H = jωϵE+ σE = jω
(
ϵ− j

σ

ω

)
E = jωϵ̃E, (11.1)

∇× E = −jωµH− σmH = −jω
(
µ− j

σm
ω

)
H = −jωµ̃H, (11.2)

where the complex permittivity and permeability are given by

ϵ̃ = ϵ− j
σ

ω
, (11.3)

µ̃ = µ− j
σm
ω
. (11.4)

For now, let us restrict consideration to a 1D field that is z-polarized so that the electric field is
given by

E = âze
−γx = âzEz(x) (11.5)

where the propagation constant γ is yet to be determined. Given the electric field, the magnetic
field is given by

H = − 1

jωµ̃
∇× E = −ây

γ

jωµ̃
Ez(x). (11.6)

Thus the magnetic field only has a y component, i.e., H = âyHy(x).
The characteristic impedance of the medium η is the ratio of the electric field to the magnetic

field (actually, in this case, the negative of that ratio). Thus,

η = −Ez(x)

Hy(x)
=
jωµ̃

γ
. (11.7)

Since γ has not yet been determined, we have not actually specified the characteristic impedance
yet. To determine γ we use the other curl equation where we solve for the electric field in terms of
the magnetic field we just obtained:

E =
1

jωϵ̃
∇×H =

1

jωϵ̃

γ2

jωµ̃
e−γxâz. (11.8)

However, we already know the electric field since we started with that as a given, i.e., E =
exp(−γx)âz. Thus, in order for (11.8) to be true, we must have

γ2

(jω)2µ̃ϵ̃
= 1, (11.9)

or, solving for γ (and only keeping the positive root)

γ = jω
√
µ̃ϵ̃. (11.10)



11.2. LOSSY LAYER, 1D 309

Because µ̃ and ϵ̃ are complex, γ will be complex and we write γ = α+jβ where α is the attenuation
constant and β is the phase constant (or wavenumber).

Returning to the characteristic impedance as given in (11.7), we can now write

η =
jωµ̃

jω
√
µ̃ϵ̃

=

√
µ̃

ϵ̃
. (11.11)

Alternatively, we can write

η =

√√√√µ
(
1− j σm

ωµ

)
ϵ
(
1− j σ

ωϵ

) . (11.12)

Let us now consider a z-polarized plane wave normally incident from a lossless material to a
lossy material. There is a planar interface between the two media at x = 0. The (known) incident
field is given by

Ei
z = e−jβ1x H i

y = − 1

η1
e−jβ1x (11.13)

where β1 = ω
√
µ1ϵ1. The reflected field is given by

Er
z = Γejβ1x Hr

y =
Γ

η1
ejβ1x (11.14)

where the only unknown is the reflection coefficient Γ. The transmitted field is given by

Et
z = Te−γ2x H t

y = − T

η2
e−γ2x (11.15)

where the only unknown is the transmission coefficient T .
Both the electric field and the magnetic field are tangential to the interface at x = 0. Thus,

the boundary conditions dictate that the sum of the incident and reflected field must equal the
transmitted field at x = 0. Matching the electric fields at the interface yields

1 + Γ = T. (11.16)

Matching the magnetic fields yields

− 1

η1
+

Γ

η1
= − T

η2
(11.17)

or, rearranging slightly,
1− Γ =

η1
η2
T. (11.18)

Adding (11.16) and (11.18) and rearranging yields

T =
2η2

η2 + η1
. (11.19)

Plugging this back into (11.16) yields

Γ =
η2 − η1
η2 + η1

. (11.20)



310 CHAPTER 11. PERFECTLY MATCHED LAYER

Consider the case where the media are related by

µ2

ϵ2
=
µ1

ϵ1
and

σm
µ2

=
σ

ϵ2
. (11.21)

We will call these conditions the “matching conditions.” Under these conditions the impedances
equal:

η2 =

√√√√√µ2

(
1− j σm

ωµ2

)
ϵ2

(
1− j σ

ωϵ2

) =

√√√√√µ1

(
1− j σ

ωϵ2

)
ϵ1

(
1− j σ

ωϵ2

) =

√
µ1

ϵ1
= η1. (11.22)

When the impedances are equal, from (11.20) we see that the reflection coefficient must be zero
(and the transmission coefficient is unity). We further note that this is true independent of the
frequency.

As we have seen previously, this type of lossy layer can be implemented in an FDTD grid. To
minimize numeric artifacts it is best to gradually increase the conductivity within the lossy region.
Any field that makes it to the end of the grid will be reflected, but, because of the loss, this reflected
field can be greatly attenuated. Furthermore, as the field propagates back through the lossy region
toward the lossless region, it is further attenuated. Thus the reflected field from this lossy region
(and the termination of the grid) can be made relatively inconsequential.

11.3 Lossy Layer, 2D
Since a lossy layer works so well in 1D and is so easy to implement, it is natural to ask if it can be
used in 2D. The answer, we shall see, is that a simple lossy layer cannot be matched to the lossless
region for obliquely traveling waves.

Consider a TMz field where the incident electric field is given by

Ei = âze
−jk1·r, (11.23)

= âze
−jβ1 cos(θi)x−jβ1 sin(θi)y, (11.24)

= âze
−jβ1xx−jβ1yy. (11.25)

Knowing that the angle of incidence equals the angle of reflection (owing to the required phase
matching along the interface), the reflected field is given by

Er = âzΓe
jβ1xx−jβ1yy. (11.26)

Combining the incident and reflected field yields

E1 = âz
(
e−jβ1xx + Γejβ1xx

)
e−jβ1yy = âzE1z. (11.27)

The magnetic field in the first medium is given by

H1 = − 1

jωµ1

∇× E1, (11.28)

= âx
β1y
ωµ1

(
e−jβ1xx + Γeβ1xx

)
e−jβ1yy + ây

β1x
ωµ1

(
−e−jβ1xx + Γeβ1xx

)
e−jβ1yy. (11.29)



11.3. LOSSY LAYER, 2D 311

The transmitted electric field is

Et = âzTe
−γ2·r (11.30)

= âzTe
−γ2xx−γ2yy, (11.31)

= âzE
t
z. (11.32)

Plugging this expression into Maxwell’s equations (or, equivalently, the wave equation) ultimately
yields the constraint equation

γ22x + γ22y = −ω2µ̃2ϵ̃2. (11.33)

Owing to the boundary condition that the fields must match at the interface, the propagation in the
y direction (i.e., tangential to the boundary) must be the same in both media. Thus, γ2y = jβ1y.
Plugging this into (11.33) and solving for γ2x yields

γ2x =
√
β2
1y − ω2µ̃2ϵ̃2 = α2x + jβ2x. (11.34)

Note that when β1y = 0, i.e., there is no propagation in the y direction and the field is normally
incident on the interface, this reduces to γ2x = jω

√
µ̃2ϵ̃2 which is what we had for the 1D case.

On the other hand, when σ = σm = 0 we obtain γ2x = j
(
ω2µ2ϵ2 − β2

1y

)1/2 where the term
in parentheses is purely real (so that γ2x will either be purely real or purely imaginary). The
transmitted magnetic field is given by

Ht = − 1

jωµ̃2

∇× Et, (11.35)

= âx
β1y
ωµ̃2

Et
z − ây

γ2x
jωµ̃2

Et
z. (11.36)

Enforcing the boundary condition on the electric field and the y-component of the magnetic
field at x = 0 yields

1 + Γ = T, (11.37)
β1x
ωµ1

(−1 + Γ) = − γ2x
jωµ̃2

T, (11.38)

or, rearranging the second equation,

1− Γ =
µ1γ2x
jµ̃2β1x

T. (11.39)

Adding (11.37) and (11.39) and rearranging yields

T =
j 2µ̃2
γ2x

j µ̃2
γ2x

+ µ1
β1x

. (11.40)

Using this in (11.37) yields the reflection coefficient

Γ =
j µ̃2
γ2x

− µ1
β1x

j µ̃2
γ2x

+ µ1
β1x

. (11.41)



312 CHAPTER 11. PERFECTLY MATCHED LAYER

The reflection coefficient will be zero only if the terms in the numerator cancel. Let us consider
these terms individually. Additionally, let us enforce a more restrictive form of the matching
conditions where now µ2 = µ1, ϵ2 = ϵ1 and, as before, σ/ϵ2 = σm/µ2. The first term in the
numerator can be written

j
µ̃2

γ2x
=

µ̃2√
ω2µ̃2ϵ̃2 − β2

1y

, (11.42)

=
µ1

(
1− j σ

ωϵ1

)
√
ω2µ1ϵ1

(
1− j σ

ωϵ1

)2
− β2

1y

, (11.43)

=
µ1√

ω2µ1ϵ1 −
β2
1y(

1−j σ
ωϵ1

)2

. (11.44)

The second term in the numerator of the reflection coefficient is

µ1

β1x
=

µ1√
ω2µ1ϵ1 − β2

1y

. (11.45)

Clearly (11.44) and (11.45) are not equal (unless we further require that σ = 0, but then the lossy
layer is not lossy). Thus, for oblique incidence, the numerator of the reflection coefficient cannot
be zero and there will always be some reflection from this lossy medium.

11.4 Split-Field Perfectly Matched Layer
To obtain a perfect match between the lossless and lossy regions, Bérenger proposed a non-physical
anisotropic material known as a perfectly matched layer (PML). In a PML there is no loss in the
direction tangential to the interface but there is loss normal to the interface.

First, consider the governing equations for the components of the magnetic fields for TMz

polarization. We have

jωµ2Hy + σmxHy =
∂Ez
∂x

(11.46)

jωµ2Hx + σmyHx = −∂Ez
∂y

(11.47)

where σmx and σmy are the magnetic conductivities associated not with the x and y components of
the magnetic field, but rather with propagation in the x or y direction. (Note that for 1D propagation
in the x direction the non-zero fields are Hy and Ez while for 1D propagation in the y direction
they are Hx and Ez.)

For the electric field the governing equation is

jωϵ2Ez + σEz =
∂Hy

∂x
− ∂Hx

∂y
(11.48)



11.4. SPLIT-FIELD PERFECTLY MATCHED LAYER 313

Here there is a single conductivity and no possibility to have explicitly anisotropic behavior of the
electrical conductivity. Thus, it would still be impossible to match the lossy region to the lossless
one.

Bérenger’s fix was to split the electric field into two (non-physical) components. To get the
“actual” field, we merely sum these components. Thus we write

Ez = Ezx + Ezy (11.49)

These components are governed by

jωϵ2Ezx + σxEzx =
∂Hy

∂x
, (11.50)

jωϵ2Ezy + σyEzy = −∂Hx

∂y
. (11.51)

Note that there are now two electrical conductivities: σx and σy. If we set σx = σy = σ and
add these two equations together, we recover the original equation (11.48). Further note that if
σy = σmy = 0 but σx ̸= 0 and σmx ̸= 0, then a wave with components Hx and Ezy would not
attenuate while a wave with components Hy and Ezx would attenuate.

Let us define the terms Sw and Smw as

Sw = 1 +
σw
jωϵ2

(11.52)

Smw = 1 +
σmw
jωµ2

(11.53)

where w is either x or y. We can then write the governing equations as

jωϵ2SxEzx =
∂Hy

∂x
, (11.54)

jωϵ2SyEzy = −∂Hx

∂y
, (11.55)

jωµ2SmxHy =
∂

∂x
(Ezx + Ezy) , (11.56)

jωµ2SmyHx = − ∂

∂y
(Ezx + Ezy) . (11.57)

Taking the partial of (11.56) with respect to x and then substituting in the left-hand side of (11.54)
yields

−ω2µ2ϵ2SxSmxEzx =
∂2

∂x2
(Ezx + Ezy) . (11.58)

Taking the partial of (11.57) with respect to y and then substituting in the left-hand side of (11.55)
yields

−ω2µ2ϵ2SySmyEzy =
∂2

∂y2
(Ezx + Ezy) . (11.59)

Adding these two expressions together after dividing by the S terms yields

−ω2µ2ϵ2 (Ezx + Ezy) =

(
1

SmxSx

∂2

∂x2
+

1

SmySy

∂2

∂y2

)
(Ezx + Ezy) (11.60)



314 CHAPTER 11. PERFECTLY MATCHED LAYER

or, after rearranging and recalling that Ezx + Ezy = Ez,(
1

SmxSx

∂2

∂x2
+

1

SmySy

∂2

∂y2
+ ω2µ2ϵ2

)
Ez = 0. (11.61)

To satisfy this equation the transmitted field in the PML region would be given by

Et
z = Te−j

√
SmxSxβ2xx−j

√
SmySyβ2yy (11.62)

where we must also have
β2
2x + β2

2y = ω2µ2ϵ2. (11.63)

Using (11.56), the y component of the magnetic field in the PML is given by

H t
y =

1

jωµ2Smx

∂Et
z

∂x
(11.64)

= −
√
SmxSxβ2x
ωµ2Smx

Et
z, (11.65)

= − β2x
ωµ2

√
Sx
Smx

Et
z. (11.66)

As always, the tangential fields must match at the interface. Matching the electric fields again
yields (11.37). Matching the y component of the magnetic fields yields

1− Γ =
µ1β2x
µ2β1x

√
Sx
Smx

T. (11.67)

Using this and (11.37) to solve for the transmission and reflection coefficients yields

T =
2β1x
µ1

β1x
µ1

+ β2x
µ2

√
Sx

Smx

, (11.68)

Γ =

β1x
µ1

− β2x
µ2

√
Sx

Smx

β1x
µ1

+ β2x
µ2

√
Sx

Smx

. (11.69)

It is now possible to match the PML to the non-PML region so that Γ is zero. We begin by
setting µ2 = µ1 and ϵ2 = ϵ1. Thus we have ω2µ2ϵ2 = ω2µ1ϵ1 and

β2x =
(
ω2µ2ϵ2 − β2

2y

)1/2
, (11.70)

=
(
ω2µ1ϵ1 − β2

2y

)1/2
. (11.71)

Recall that within the PML the propagation in the y direction is not given by β2y but rather by√
SySmyβ2y. Phase matching along the interface requires that√

SySmyβ2y = β1y. (11.72)



11.5. UN-SPLIT PML 315

If we let Sy = Smy = 1, which can be realized by setting σy = σmy = 0, then the phase matching
condition reduces to

β2y = β1y. (11.73)

Then, from (11.71), we have

β2x =
(
ω2µ1ϵ1 − β2

1y

)1/2
, (11.74)

= β1x. (11.75)

Returning to (11.69), we now have

Γ =

β1x
µ1

− β1x
µ1

√
Sx

Smx

β1x
µ1

+ β1x
µ1

√
Sx

Smx

, (11.76)

=
1−

√
Sx

Smx

1 +
√

Sx

Smx

. (11.77)

The last remaining requirement to achieve a perfect match is to have Sx = Smx. This can be
realized by having σx/ϵ2 = σmx/µ2.

To summarize, the complete set of matching conditions for a constant-x interface are

ϵ2 = ϵ1 (11.78)
µ2 = µ1 (11.79)
σy = σmy = 0 (11.80)
σx
ϵ2

=
σmx
µ2

. (11.81)

Under these conditions propagation in the PML is governed by

e−jSxβ1xx−jβ1yy = exp

(
−j
(
1 +

σ

jωϵ1

)
β1xx− jβ1yy

)
, (11.82)

= exp

(
−β1xσ
ωϵ1

x

)
e−jβ1xx−jβ1yy. (11.83)

This shows that there is exponential decay in the x direction but otherwise the phase propagates in
exactly the same way as it does in the non-PML region.

11.5 Un-Split PML
In the previous section we had Sw and Smw where w ∈ {x, y}. However, once the matching
condition has been applied, i.e., σw/ϵ2 = σmw/µ2, then we have Sw = Smw. Hence we will drop
the m from the subscript. Additionally, with the understanding that we are talking about the PML
region, we will drop the subscript 2 from the material constants. We thus write

Sw = 1 +
σw
jωϵ

. (11.84)



316 CHAPTER 11. PERFECTLY MATCHED LAYER

The conductivity in the PML is not dictated by underlying parameters in the physical space being
modeled. Rather, this conductivity is set so as to minimize the reflections from the termination of
the grid. In that sense σw is somewhat arbitrary. Therefore let us normalize the conductivity by the
relative permittivity that pertains at that particular location, i.e.,

Sw = 1 +
σ′
w

jωϵ0
(11.85)

where σ′
w = σw/ϵr. However, since the conductivity has not yet been specified, we drop the prime

and merely write
Sw = 1 +

σw
jωϵ0

(11.86)

Note that there could potentially be a problem with Sw when the frequency goes to zero. In
practice, in the curl equations this term is also multiplied by ω and in that sense this is not a
major problem. However, if we want to move these Sw terms around, low frequencies may cause
problems. To fix this, we add an additional factor to ensure that Sw remains finite as the frequency
goes to zero.

We can further generalize Sw by allowing the leading term to take on values other than unity.
This is effectively equivalent to allowing the relative permittivity in the PML to change. The
general expression for Sw we will use is

Sw = κw +
σw

aw + jωϵ0
. (11.87)

For the sake of considering 3D problems we also assume w ∈ {x, y, z}.
Dividing by the S terms, the governing equations for TMz polarization are

jωϵEzx =
1

Sx

∂Hy

∂x
, (11.88)

jωϵEzy = − 1

Sy

∂Hx

∂y
, (11.89)

jωµHy =
1

Sx

∂Ez
∂x

, (11.90)

jωµHx = − 1

Sy

∂Ez
∂y

. (11.91)

Adding the first two equations together we obtain

jωϵEz =
1

Sx

∂Hy

∂x
− 1

Sy

∂Hx

∂y
. (11.92)

Note that in all these equations each Sw term is always paired with the derivative in the “w”
direction.

Let us define a new del operator ∇̃ that incorporates this pairing

∇̃ ≡ âx
1

Sx

∂

∂x
+ ây

1

Sy

∂

∂y
+ âz

1

Sz

∂

∂z
. (11.93)



11.5. UN-SPLIT PML 317

Using this operator Maxwell’s curl equations become

jωϵE = ∇̃ ×H, (11.94)
−jωµH = ∇̃ × E. (11.95)

Note that these equations pertain to the general 3D case. This is known as the stretch-coordinate
PML formulation since, as shown in (11.93), the complex S terms scale the various coordinate
directions. Additionally, note there is no explicit mention of split fields in these equations. If we
can find a way to implement these equations directly in the FDTD algorithm, we can avoid splitting
the fields.

From these curl equations we obtain scalar equations such as (using the x-component of (11.94)
and (11.95) as examples)

jωϵEx =
1

Sy

∂Hz

∂y
− 1

Sz

∂Hy

∂z
, (11.96)

jωµHx = − 1

Sy

∂Ez
∂y

+
1

Sz

∂Ey
∂z

. (11.97)

Converting these to the time-domain yields

ϵ
∂Ex
∂t

= S̄y ⋆
∂Hz

∂y
− S̄z ⋆

∂Hy

∂z
, (11.98)

µ
∂Hx

∂t
= −S̄y ⋆

∂Ez
∂y

+ S̄z ⋆
∂Ey
∂z

, (11.99)

where “⋆” indicates convolution and S̄w is the inverse Fourier transform of 1/Sw, i.e.,

S̄w = F−1

[
1

Sw

]
. (11.100)

The reciprocal of Sw is given by

1

Sw
=

1

κw + σw
aw+jωϵ0

=
aw + jωϵ0

awκw + σw + jωκwϵ0
. (11.101)

This is of the form (a + jωb)/(c + jωd) and we cannot do a partial fraction expansion since the
order of the numerator and denominator are the same. Instead, we can divide the denominator into
the numerator to obtain

a+ jωb

c+ jωd
=
b

d
+

a− c b
d

c+ jωd
=
b

d
+

a
c
− b

d

1 + jω d
c

. (11.102)

Recall the following Fourier transform pairs:

1 ⇔ δ(t), (11.103)
1

1 + jωτ
⇔ 1

τ
e−t/τu(t), (11.104)



318 CHAPTER 11. PERFECTLY MATCHED LAYER

where δ(t) is the Dirac delta function and u(t) is the unit step function. Thus, we have

F−1

[
b

d
+

a
c
− b

d

1 + jω d
c

]
=
b

d
δ(t) +

ad− bc

d2
e−ct/du(t). (11.105)

For the problem at hand, we have a = aw, b = ϵ0, c = awκw + σw, and d = κwϵ0. Using these
values in (11.105) yields

S̄w =
1

κw
δ(t)− σw

κ2wϵ0
exp

(
−t
[
aw
ϵ0

+
σw
κwϵ0

])
u(t). (11.106)

Let us define ζw(t) as

ζw(t) = − σw
κ2wϵ0

exp

(
−t
[
aw
ϵ0

+
σw
κwϵ0

])
u(t) (11.107)

so that
S̄w =

1

κw
δ(t) + ζw(t). (11.108)

Recall that the convolution of a Dirac delta function with another function yields the original
function, i.e.,

δ(t) ⋆ f(t) = f(t). (11.109)

Incorporating this fact into (11.98) yields

ϵ
∂Ex
∂t

=
1

κy

∂Hz

∂y
− 1

κz

∂Hy

∂z

+ ζy(t) ⋆
∂Hz

∂y
− ζz(t) ⋆

∂Hy

∂z
. (11.110)

Note that the first line of this equation is almost the usual governing equation. The only differ-
ences are the κ’s. However, these are merely real constants. In the FDTD algorithm it is trivial to
incorporate these terms in the update-equation coefficients. The second line again involves convo-
lutions. Fortunately, these convolution are rather “benign” and, as we shall see, can be calculated
efficiently using recursive convolution.

11.6 FDTD Implementation of Un-Split PML
We now wish to develop an FDTD implementation of the PML as formulated in the previous
section. We start by defining the function Ψq

Euw
as

Ψq
Euw

= ζw(t) ⋆
∂Hv

∂w

∣∣∣∣
t=q∆t

(11.111)

=

q∆t∫
τ=0

ζw(τ)
∂Hv(q∆t − τ)

∂w
dτ (11.112)



11.6. FDTD IMPLEMENTATION OF UN-SPLIT PML 319

where Euw in the subscript indicates this function will appear in the update of the Eu component
of the electric field and it is concerned with the spatial derivative in the w direction. In (11.112) the
derivative is of the Hv component of the magnetic field where w, u, and v are such that {w, u, v} ∈
{x, y, z} and w ̸= u ̸= v.

In (11.112) note that ζw(τ) is zero for τ < 0 hence the integrand would be zero for τ < 0.
This fixes the lower limit of integration to zero. On the other hand, we assume the fields are zero
prior to t = 0, i.e., Hv(t) is zero for t < 0. In the convolution the argument of the magnetic field
is q∆t − τ . This argument will be negative when τ > q∆t. Thus the integrand will be zero for
τ > q∆t and this fixes the upper limit of integration to q∆t.

Let us assume the integration variable τ in (11.112) varies continuously but, since we are
considering fields in the FDTD method, Hv varies discretely. We can still express Hv in terms of
a continuously varying argument t, but it takes on discrete values. Specifically ∂Hv(t)/∂w can be
represented by

∂Hv(t)

∂w
=

Imax∑
i=0

∂Hv(i∆t)

∂w
pi(t) (11.113)

where pi(t) is the unit pulse function given by

pi(t) =

{
1 if i∆t ≤ t < (i+ 1)∆t,
0 otherwise. (11.114)

To illustrate this further, for notational convenience let us write f(t) = ∂Hv(t)/∂w. The stepwise
representation of this function is shown in Fig. 11.1(a). Although not necessary, as is typical with
FDTD simulations, this function is assumed to be zero for the first time-step. At t = ∆t the
function is f1 and it remains constant until t = 2∆t when it changes to f2. At t = 3∆t the function
is f3, and so on.

The convolution contains the function f(q∆t−τ). At time-step zero (i.e., q = 0), this is merely
f(−τ) which is illustrated in Fig. 11.1(b). Here all the sample points fn are flipped symmetrically
about the origin. We assume that the function is constant to the right of these sample points so that
the function is f1 for −∆t ≤ τ < 0, it is f2 for −2∆t ≤ τ < −∆, f3 for −3∆t ≤ τ < −2∆t, and
so on.

Fig. 11.1(c) shows an example of f(q∆t − τ) when q ̸= 0, specifically for q = 4. Recall that
in (11.112) the limits of integration are from zero to q∆t—we do not need to concern ourselves
with τ less than zero nor greater than q∆t. As shown in Fig. 11.1(c), the first “pulse” extending to
the right of τ = 0 has a value of fq, the pulse extending to the right of τ = ∆t has a value of fq−1,
the one to the right of τ = 2∆t has a value of fq−2, and so on. Thus, this shifted function can be
written as

f(q∆t − τ) =

q−1∑
i=0

fq−ipi(τ). (11.115)

Returning to the derivative of the magnetic field, we write

∂Hv(q∆t − τ)

∂w
=

q−1∑
i=0

∂Hq−i
v

∂w
pi(τ) (11.116)

whereHq−i
v is the magnetic field at time-step q−i and, when implemented in the FDTD algorithm,

the spatial derivative will be realized as a spatial finite difference.



320 CHAPTER 11. PERFECTLY MATCHED LAYER

t, ∆t

f0

f5
f4

f3

f2

f1

f(t)

1 2 3 4 50−1−2−3−4−5

(a)

τ, ∆t1 2 3 4 50

f0

f5
f4

f3

f2

f1

f(−τ)

−1−2−3−4−5

(b)

τ, ∆t1 2 3 4 50

f0

f5
f4

f3

f2

f1

f(4∆t−τ)

−1−2−3−4−5

(c)

Figure 11.1: (a) Stepwise representation of a function f(t). The function is a constant f0 for
0 ≤ t < ∆t, f1 for ∆t ≤ t < 2∆t, f2 for 2∆t ≤ t < 3∆t, and so on. (b) Stepwise representation
of a function f(−τ). Here the constants fn are flipped about the origin but the pulses still extend
for one time-step to the right of the corresponding point. Hence the function is a constant f1
for −∆t ≤ τ < 0, f2 for −2∆t ≤ τ < −∆t, etc. (c) Stepwise representation of the function
f(q∆t − τ) when q = 4.



11.6. FDTD IMPLEMENTATION OF UN-SPLIT PML 321

At time-step q, ΨEuw is given by

Ψq
Euw

=

q∆t∫
τ=0

ζw(τ)

q−1∑
i=0

∂Hq−i
v

∂w
pi(τ)dτ (11.117)

Interchanging the order of summation and integration yields

Ψq
Euw

=

q−1∑
i=0

∂Hq−i
v

∂w

q∆t∫
τ=0

ζw(τ)pi(τ)dτ, (11.118)

=

q−1∑
i=0

∂Hq−i
v

∂w

(i+1)∆t∫
τ=i∆t

ζw(τ)dτ, (11.119)

where, in going from (11.118) to (11.119), the pulse function was used to establish the limits of
integration.

Consider the following integral

−
(i+1)∆∫
i∆

e−atdt =
1

a
e−at

∣∣∣∣(i+1)∆

i∆

(11.120)

=
1

a

(
e−a(i+1)∆ − e−ai∆

)
(11.121)

=
1

a

(
e−a∆ − 1

)
e−ai∆ (11.122)

=
1

a

(
e−a∆ − 1

) (
e−a∆

)i
(11.123)

Keeping this in mind, the integration in (11.119) can be written as

(i+1)∆t∫
τ=i∆t

ζw(τ)dτ = − σw
κ2wϵ0

(i+1)∆t∫
τ=i∆t

exp

(
−τ
[
aw
ϵ0

+
σw
κwϵ0

])
dτ (11.124)

= Cw(bw)
i (11.125)

where

bw = exp

(
−
[
aw
ϵ0

+
σw
κwϵ0

]
∆t

)
, (11.126)

Cw =
σw

σwκw + κ2waw
(bw − 1) . (11.127)

Note that in (11.125) bw is raised to the power i which is an integer index. It is now possible to
express Ψq

Euw
as

Ψq
Euw

=

q−1∑
i=0

∂Hq−i
v

∂w
Cw(bw)

i. (11.128)



322 CHAPTER 11. PERFECTLY MATCHED LAYER

Let us explicitly separate the i = 0 term from the rest of the summation:

Ψq
Euw

= Cw
∂Hq

v

∂w
+

q−1∑
i=1

∂Hq−i
v

∂w
Cw(bw)

i. (11.129)

Replacing the index i with i′ = i− 1 (so that i = i′ + 1), this becomes

Ψq
Euw

= Cw
∂Hq

v

∂w
+

q−2∑
i′=0

∂Hq−i′−1
v

∂w
Cw(bw)

i′+1. (11.130)

Dropping the prime from the index and rearranging slightly yields

Ψq
Euw

= Cw
∂Hq

v

∂w
+ bw

[q−1]−1∑
i=0

∂H
[q−1]−i
v

∂w
Cw(bw)

i. (11.131)

Comparing the summation in this expression to the one in (11.128) one sees that this expression
can be written as

Ψq
Euw

= Cw
∂Hq

v

∂w
+ bwΨ

q−1
Euw

. (11.132)

Note that ΨEuw at time-step q is a function of ΨEuw at time-step q− 1. Thus ΨEuw can be updated
recursively—there is no need to store the entire history of ΨEuw to obtain the next value. As is
typical with FDTD, one merely needs to know ΨEuw at the previous time step.

We now have all the pieces in place to implement a PML in the FDTD method. The algorithm
to update the electric fields is

1. Update the ΨEuw terms employing the recursive update equation given by (11.132). Recall
that these ΨEuw functions represent the convolutions given in the second line of (11.110).

2. Update the electric fields in the standard way. However, incorporate the κ’s where appropri-
ate. Essentially one employs the update equation implied by the top line of (11.110) (where
that equation applies to Ex and similar equations apply to Ey and Ez).

3. Apply, i.e., add or subtract, ΨEuw to the electric field as indicated by the second line of
(11.110).

This completes the update of the electric field.
The magnetic fields are updated in a completely analogous manner. First the Ψ functions that

pertain to the magnetic fields are updated (in this case there are ΨHuw functions that involve the
spatial derivatives of the electric fields), then the magnetic fields are updated in the usual way
(accounting for any κ’s), and finally the Ψ functions are applied to the magnetic fields (i.e., added
or subtracted).



Chapter 12

Acoustic FDTD Simulations

12.1 Introduction
The FDTD method employs finite-differences to approximate Ampere’s and Faraday’s laws. Am-
pere’s and Faraday’s laws are first-order differential equations that couple the electric and mag-
netics fields. As we have seen, with a judicious discretization of space and time, the resulting
equations can be solved for “future” fields in terms of known past fields.

Other physical phenomena are also described by coupled first-order differential equations
where the temporal derivative of one field is related to the spatial derivative of another field. Both
acoustics and elastic wave propagation are such phenomena. Here we will consider only acous-
tic propagation. Specifically we will consider small-signal acoustics which can be described in
terms of the scalar pressure field P (x, y, z, t) and the vector velocity v(x, y, z, t). The material
parameters are the speed of sound ca and the density ρ (both of which can vary as a function of
position).

The governing acoustic equations in three dimensions are

∂P

∂t
= −ρc2a∇ · v, (12.1)

∂v

∂t
= −1

ρ
∇P, (12.2)

or, expanded in terms of the components,

∂P

∂t
= −ρc2a

(
∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

)
, (12.3)

∂vx
∂t

= −1

ρ

∂P

∂x
, (12.4)

∂vy
∂t

= −1

ρ

∂P

∂y
, (12.5)

∂vz
∂t

= −1

ρ

∂P

∂z
. (12.6)

†Lecture notes by John Schneider. fdtd-acoustics.tex

323



324 CHAPTER 12. ACOUSTIC FDTD SIMULATIONS

Equation (12.2) is essentially a variation of Newton’s second law, F = ma, where instead of
acceleration a there is the derivative of the velocity, instead of mass m there is the mass density,
and instead of force F there is the derivative of pressure. Pressure is force per area and the negative
sign accounts for the fact that if pressure is building in a particular direction that tends to cause
acceleration in the opposite direction. Equation (12.1) comes from an equation of state for the
material (with various approximations assumed along the way).

Taking the divergence of (12.2) and interchanging the order of temporal and spatial differenti-
ation yields

∂

∂t
∇ · v = −1

ρ
∇2P. (12.7)

Taking the temporal derivative of (12.1) and using (12.7) yields

∂2P

∂t2
= −ρc2a

∂

∂t
∇ · v = c2a∇2P. (12.8)

Rearranging this yields the wave equation

∇2P − 1

c2a

∂2P

∂t2
= 0. (12.9)

Thus the usual techniques and solutions one is familiar with from electromagnetics carry over to
acoustics. For example, a harmonic plane wave given by

P (x, y, z, t) = P0e
−jβ·rejωt (12.10)

is a valid solution to the governing equations where P0 is a constant and the wave vector β can be
written

β = βxâx + βyây + βzâz = βâβ = (ω/ca)âβ. (12.11)

Substituting (12.10) into (12.4) and assuming exp(jωt) temporal dependence yields

jωvx =
1

ρ
(−jβx)P. (12.12)

Rearranging terms gives

vx =
βx
ρω
P. (12.13)

Following the same steps for the y and z components produces

vy =
βy
ρω
P, (12.14)

vz =
βz
ρω
P. (12.15)

Thus the harmonic velocity is given by

v = vxâx + vyây + vzâz =
1

ρω
(βxâx + βyây + βzâz)P =

β

ρω
P âβ. (12.16)



12.2. GOVERNING FDTD EQUATIONS 325

Since the wavenumber, i.e., the magnitude of the wave vector, is given by β = ω/ca, the ratio of
the magnitude of pressure to the velocity is given by∣∣∣∣Pv

∣∣∣∣ = ρca. (12.17)

The term on the right-hand side is known as the characteristic impedance of the medium which is
often written as Z.

12.2 Governing FDTD Equations
To obtain an FDTD algorithm for acoustic propagation, the pressure and components of velocity
are discretized in both time and space. In electromagnetics there were two vector fields and hence
six field-components that had to be arranged in space-time. In acoustics there is one scalar field
and one vector field. Thus there are only four field-components.

To implement a 3D acoustic FDTD algorithm, a suitable arrangement of nodes is as shown in
Fig. 12.1. A pressure node is surrounded by velocity components such that the components are
oriented along the line joining the component and the pressure node. This should be contrasted
to the arrangement of nodes in electromagnetic grids where the components of the magnetic field
swirled around the components of the electric field, and vice versa. In electromagnetics one is
modeling coupled curl equations where the partial derivatives are related to behavior orthogonal to
the direction of the derivative. In acoustics, where the governing equations involve the divergence
and gradient, the partial derivatives are associated with behavior in the direction of the derivative.

The arrangement of nodes in a 2D grid is illustrated in Fig. 12.2. This should be compared
to the 2D electromagnetic grids, i.e., Fig. 8.1 for the TMz case and Fig. 8.9 for the TEz case.
(Because pressure is inherently a scalar field, there are not two different polarization associated
with 2D acoustic simulations—nor is there a notion of polarization in three dimensions.)

In addition to the spatial offsets, the pressure nodes are assumed to be offset a half temporal
step from the velocity nodes (but all the velocity components exist at the same time-step). The
following notation will be used with an implicit understanding of spatial offsets

P (x, y, z, t) = P (m∆x, n∆y, p∆z, q∆t) = P q[m,n, p], (12.18)
vx(x, y, z, t) = vx ([m+ 1/2]∆x, n∆y, p∆z, [q + 1/2]∆t) = vq+1/2

x [m,n, p], (12.19)
vy(x, y, z, t) = vy (m∆x, [n+ 1/2]∆y, p∆z, [q + 1/2]∆t) = vq+1/2

y [m,n, p], (12.20)

vz(x, y, z, t) = vz (m∆x, n∆y, [p+ 1/2]∆z, [q + 1/2]∆t) = vq+1/2
z [m,n, p]. (12.21)

We will assume the spatial step sizes are the same, i.e., ∆x = ∆y = ∆z = δ.
Replacing the derivatives in (12.3) with finite differences and using the discretization of (12.18)–

(12.21) yields the following update equation:

P q[m,n, p] = P q−1[m,n, p]− ρc2a
∆t

δ

(
vq−1/2
x [m,n, p]− vq−1/2

x [m− 1, n, p] +

vq−1/2
y [m,n, p]− vq−1/2

y [m,n− 1, p] +

vq−1/2
z [m,n, p]− vq−1/2

z [m,n, p− 1]
)
. (12.22)



326 CHAPTER 12. ACOUSTIC FDTD SIMULATIONS

x

z

yP(m,n,p)

vx(m+1/2,n,p)

vz(m,n,p+1/2)

vy(m,n+1/2,p)

Figure 12.1: An acoustic unit cell in three dimensions showing the arrangement of velocity nodes
relative to the pressure node with the same spatial indices.

The sound speed and the density can be functions of space. Let us assume that the density and
sound speed are specified at the grid points corresponding to the location of pressure nodes. Addi-
tionally, assume that the sound speed can be defined in terms of a background sound speed c0 and
a relative sound speed cr:

ca = crc0. (12.23)

The background sound speed corresponds to the fastest speed of propagation at any location in the
grid so that cr ≤ 1. The coefficient of the spatial finite-difference in (12.22) can now be written

ρc2a
∆t

δ
= ρc2rc0

c0∆t

δ
= ρc2rc0Sc (12.24)

where, similar to electromagnetics, the Courant number is Sc = c0∆t/δ. The explicit spatial
dependence of the density and sound speed can be emphasized by writing the coefficient as

ρ[m,n, p]c2r[m,n, p]c0Sc (12.25)

where ρ[m,n, p] is the density that exists at the same point as the pressure node P [m,n, p] and
cr[m,n, p] is the relative sound speed at this same point. Note that the Courant number Sc and
the background sound speed c0 are independent of position. Furthermore, the entire coefficient is
independent of time.

The update equation for the x component of velocity is obtained from the discretized version
of (12.4) which yields

vq+1/2
x [m,n, p] = vq−1/2

x [m,n, p]− 1

ρ

∆t

δ
(P q[m+ 1, n, p]− P q[m,n, p]) (12.26)

The coefficient of this equation does not contain the Courant number but that can be obtained by
multiplying and dividing by the background sound speed

1

ρ

∆t

δ
=

1

ρc0

c0∆t

δ
=

1

ρc0
Sc. (12.27)



12.2. GOVERNING FDTD EQUATIONS 327

∆y

∆x

same
indices

same
indices

same
indices

same
indices

same
indices

Pr(m,n)

y

xz

Vx(m,n)

Vy(m,n)

P(m,n)

vx(m+1/2,n)

vy(m,n+1/2)
y

xz

Figure 12.2: The arrangement of nodes in a 2D acoustic simulation. In a computer FDTD imple-
mentation the nodes shown within the dashed enclosures will have the same spatial indices. This is
illustrated by the two depictions of a unit cell at the bottom of the figure. The one on the left shows
the nodes with the spatial offsets given explicitly. The one on the right shows the corresponding
node designations that would be used in a computer program. (Here Pr is used for the pressure
array.)



328 CHAPTER 12. ACOUSTIC FDTD SIMULATIONS

We wish to define the density only at the pressure nodes. Since the x-component of the velocity
is offset from the pressure a half spatial step in the x direction, what is the appropriate velocity
to use? The answer, much as it was in the case of an interface between two different materials
in electromagnetics, is the average of the densities to either side of the pressure node (where the
notion of “either side” is dictated by the orientation of the velocity node). Therefore the coefficient
can be written

1(
ρ[m+1,n,p]+ρ[m,n,p]

2

)
c0
Sc =

2Sc
(ρ[m+ 1, n, p] + ρ[m,n, p])c0

. (12.28)

The update equations for the velocity components can now be written as

vq+1/2
x [m,n, p] = vq−1/2

x [m,n, p]−
2Sc

(ρ[m,n, p] + ρ[m+ 1, n, p])c0
(P q[m+ 1, n, p]− P q[m,n, p]) ,(12.29)

vq+1/2
y [m,n, p] = vq−1/2

y [m,n, p]−
2Sc

(ρ[m,n, p] + ρ[m,n+ 1, p])c0
(P q[m,n+ 1, p]− P q[m,n, p]) ,(12.30)

vq+1/2
z [m,n, p] = vq−1/2

z [m,n, p]−
2Sc

(ρ[m,n, p] + ρ[m,n, p+ 1])c0
(P q[m,n, p+ 1]− P q[m,n, p]) .(12.31)

12.3 Two-Dimensional Implementation
Let us consider a 2D simulation in which the fields vary in the x and y directions. The grid would
be as shown in Fig. 12.2 and it is assumed that ∆x = ∆y = δ. Assume the arrays pr, vx, and vy
hold the pressure, x component of the velocity, and the y component of the velocity, respectively.
Similar to the electromagnetic implementation, assume the macros Pr, Vx, and Vy have been
created to facilitate accessing these arrays (ref. Sec. 8.2). The update equations can be written

Vx(m,n) = Vx(m,n) - Cvxp(m,n)*(Pr(m+1,n) - Pr(m,n));
Vy(m,n) = Vy(m,n) - Cvyp(m,n)*(Pr(m,n+1) - Pr(m,n));
Pr(m,n) = Pr(m,n) - Cprv(m,n)*((Vx(m,n) - Vx(m-1,n))

+ (Vy(m,n) - Vy(m,n-1)));

where the coefficient arrays are given by

Cvxp(m,n) =
1

ρc0
Sc

∣∣∣∣
(m+1/2)δ,nδ

=
2Sc

(ρ[m+ 1, n] + ρ[m,n])c0
, (12.32)

Cvyp(m,n) =
1

ρc0
Sc

∣∣∣∣
mδ,(n+1/2)δ

=
2Sc

(ρ[m,n] + ρ[m,n+ 1])c0
, (12.33)

Cprv(m,n) = ρ[m,n]c2r[m,n]c0Sc. (12.34)

These update equations are little different from those for the TMz case. Referring to Sec. 8.3
for lossless materials, the TMz update equations are



12.3. TWO-DIMENSIONAL IMPLEMENTATION 329

Hy(m,n) = Hy(m,n) + Chye(m,n)*(Ez(m+1,n) - Ez(m,n));
Hx(m,n) = Hx(m,n) - Chxe(m,n)*(Ez(m,n+1) - Ez(m,n));
Ez(m,n) = Ez(m,n) + Cezh(m,n)*((Hy(m,n) - Hy(m-1,n))

-(Hx(m,n) - Hx(m,n-1)));

There is a one-to-one mapping between these sets of equations. One can equate values as follows

vx ⇔ −Hy, (12.35)
vy ⇔ Hx, (12.36)
P ⇔ Ez, (12.37)

Cvxp ⇔ Chye , (12.38)
Cvyp ⇔ Chxe , (12.39)
Cprv ⇔ Cezh . (12.40)

Thus, converting 2D programs that were written to model electromagnetic field propagation to
ones that can model acoustic propagation is surprisingly straightforward. Essentially, all one has
to do is change some labels and a few signs.

For TEz simulations, the updated equations for a lossless medium were

Hz(m,n) = Hz(m,n) +
Chze(m,n)*((Ex(m,n+1)-Ex(m,n))-(Ey(m+1,n)-Ey(m,n)));

Ex(m,n) = Ex(m,n) + Cexh(m,n)*(Hz(m,n)-Hz(m,n-1));
Ey(m,n) = Ey(m,n) - Ceyh(m,n)*(Hz(m,n)-Hz(m-1,n));

In this case the conversion from the electromagnetic equations to the acoustic equations can be
accomplished with the following mapping

vx ⇔ Ey, (12.41)
vy ⇔ −Ex, (12.42)
P ⇔ Hz, (12.43)

Cvxp ⇔ Ceyh , (12.44)
Cvyp ⇔ Cexh , (12.45)
Cprv ⇔ Chze . (12.46)

For three dimensions 3D acoustic code is arguably simpler than the electromagnetic case since
there are not two vector fields. However porting 3D electromagnetic algorithms to the acoustic
case is not as trivial as in two dimensions.



330 CHAPTER 12. ACOUSTIC FDTD SIMULATIONS



Chapter 13

Parallel Processing

The FDTD method is said to be “trivially parallelizable,” meaning that there are several simple
ways in which the algorithm can be divided into tasks that can be executed simultaneously. For
example, in a 3D simulation one might write an FDTD program that simultaneously updates the
Ex, Ey, and Ez components of the electric field. These updates depend on the magnetic field and
previous values of themselves—they are not a function of each other and hence can be updated in
parallel. Then, Hx, Hy, and Hz might be updated simultaneously. Alternatively, one might divide
the computational domain into distinct, non-overlapping regions and assign different processors
to update the fields in those regions. This way fields in each of the regions could be updated
simultaneously.

Here we will example two approaches to parallelizing a program. The threading approach
typically use one computer to run a program. A threaded program is designed in such a way as to
split the total computation between two or more “threads.” If the computer has multiple processors,
these threads can be executed simultaneously. Each of the threads can share the same memory
space, i.e., the same set of variables. An alternative approach to parallelization uses the Message
Passing Interface (MPI) protocol. This protocol allows different computers to run programs that
pass information back and forth. MPI is ideally suited to partitioning the computational domain
into multiple non-overlapping regions. Different computers are used to update the fields in the
different regions. To update the fields on the interfaces with different regions, the computers have
to pass information back and forth about the tangential fields along those interfaces.

In this chapter we provide some simple examples illustrating the use of threads and MPI.

13.1 Threads
There are different threading packages available. Perhaps the most common is the POSIX threads
(pthreads) package. To use pthreads, you must include the header file pthread.h in your pro-
gram. When linking, you must link to the pthread library (which is accomplished with the compiler
flag -lpthread).

There are many functions related to pthreads. On a UNIX-based system on which pthreads are
installed, a list of these functions can typically be obtained with the command man -k pthread
and then one can see the individual man-pages to obtain details about a specific function.

Lecture notes by John Schneider. parallel-processing.tex

331



332 CHAPTER 13. PARALLEL PROCESSING

Despite all these functions, it is possible to do a great deal of useful programming using only
two functions: pthread create() and pthread join(). As the name implies, a thread is
created by the function pthread create(). You can think of a thread as a separate process
that happens to share all the variables and memory with the rest of your program. One of the
arguments of pthread create() will specify what this thread should do, specifically what
function it should run.

The prototype of pthread create() is:

1 int pthread_create(
2 pthread_t *thread_id, // ID number for thread
3 const pthread_attr_t *attr, // controls thread attributes
4 void *(*function)(void *), // function to be executed
5 void *arg // argument of function
6 );

The first argument is a pointer to the thread identifier (which is simply a number but we do not
actually care about the details of how the ID is specified). This ID is set by pthread create(),
i.e., one would typically be interested in the returned value—it is not something that is set prior to
pthread create() being called.

The second argument is a pointer to a variable that controls the attributes of the thread. In this
case, the value of this variable is established prior to the call of the function. This pointer can be
set to NULL in which case the thread is created with the default attributes. Attributes control things
like the “joinability” of the thread and the scheduling of threads. Typically one can simply use the
default settings. The pthread t and pthread attr t data types are defined in pthread.h.

The third and fourth arguments specify what function the thread should call and what argu-
ment should be passed to the function. Notice that the prototype says the function takes a void
pointer as an argument and returns a void pointer. Keep in mind that “void” pointers are, in fact,
simply generic pointers to memory. We can typecast these pointers to what they actually are.
Thus, in practice, it would be perfectly acceptable for the function to take, for example, an ar-
gument of a pointer to a structure and return a pointer to a double. One would merely have to
do the appropriate typecasting. If the function does not take an argument, the fourth argument of
pthread create() is set to NULL.

Once a new thread is created using pthread create(), the program continues execution
at the next command—the program does not wait for the thread to complete whatever the thread
has been assigned to do. The function pthread join() is used to block further execution of
commands until the specified thread has completed. pthread join() can also be used to access
the return-value of the function that was run in a thread. The prototype of pthread join() is:

1 int pthread_join(
2 pthread_t thread_id, // ID of thread to "join"
3 void **value_pntr // address of function’s return value
4 );



13.2. THREAD EXAMPLES 333

13.2 Thread Examples
To demonstrate the use of pthreads, let us first consider a standard serial implementation of a
program where first one function is called and then another is called. The program is shown in
Program 13.1.

Program 13.1 serial-example.c: Standard serial implementation of a program where first
one function is called and then another. (These function are merely intended to perform a lengthy
calculation. They do not do anything particularly useful.)

1 /* serial (i.e., non-threaded) implementation */
2 #include <stdio.h>
3

4 void func1();
5 void func2();
6

7 double a, b; // global variables
8

9 int main() {
10

11 func1(); // call first function
12 func2(); // call second function
13

14 printf("a: %f\n", a);
15 printf("b: %f\n", b);
16

17 return 0;
18 }
19

20 /* do some lengthy calculation which sets the value of the the global
21 variable "a"*/
22 void func1() {
23 int i, j;
24

25 for (j=0;j<4000;j++)
26 for (i=0;i<1000000;i++)
27 a = 3.1456*j+i;
28

29 return;
30 }
31

32 /* do another lengthy calculation which happens to be the same as
33 done by func1() except here the value of global variable "b" is set
34 */
35 void func2() {
36 int i, j;



334 CHAPTER 13. PARALLEL PROCESSING

37

38 for (j=0;j<4000;j++)
39 for (i=0;i<1000000;i++)
40 b = 3.1456*j+i;
41

42 return;
43 }

In this program the functions func1() and func2() do not take any arguments nor do they
explicitly return any values. Instead, the global variables a and b are used to communicate values
back to the main function. Neither func1() nor func2() are intended to do anything useful.
There are merely used to perform some lengthy calculation. Assuming the executable version
of this program is named serial-example, the execution time can be obtained, on a typical
UNIX-based system, by issuing the command “time serial-example”.

Now, let us consider a threaded implementation of this same program. The appropriate code is
shown in Program 13.2.

Program 13.2 threads-example1.c: A threaded implementation of the program shown in
Program 13.1.

1 /* threaded implementation */
2 #include <stdio.h>
3 #include <pthread.h>
4

5 void *func1();
6 void *func2();
7

8 double a, b;
9

10 int main() {
11 pthread_t thread1, thread2; // ID’s for threads
12

13 /* create threads which run in parallel -- one for each function */
14 pthread_create(&thread1, NULL, func1, NULL);
15 pthread_create(&thread2, NULL, func2, NULL);
16

17 /* wait for first thread to complete */
18 pthread_join(thread1,NULL);
19 printf("a: %f\n", a);
20

21 /* wait for second thread to complete */
22 pthread_join(thread2,NULL);
23 printf("b: %f\n", b);
24

25 return 0;



13.2. THREAD EXAMPLES 335

26 }
27

28 void *func1() {
29 int i, j;
30

31 for (j=0;j<4000;j++)
32 for (i=0;i<1000000;i++)
33 a = 3.1456*j+i;
34

35 return NULL;
36 }
37

38 void *func2() {
39 int i, j;
40

41 for (j=0;j<4000;j++)
42 for (i=0;i<1000000;i++)
43 b = 3.1456*j+i;
44

45 return NULL;
46 }

In Program 13.2 func1() and func2() are slightly different from the functions of the same
name used in 13.1. In both these programs these functions perform the same calculations, but
in 13.1 these functions returned nothing. However pthread create() assumes the function
returns a void pointer (i.e., a generic pointer to memory). Since in this example these functions do
not need to return anything, they simply return NULL (which is effectively zero).

If Program 13.2 is run on a computer that has two (or more) processors, one should observe
that the execution time (as measured by a “wall clock”) is about half of what it was for Program
13.2. Again, assuming the executable version of Program 13.2 is named threads-example1,
the execution time can be obtained by issuing the command “time threads-example1”.
This timing command will typically return three values: the “wall-clock” time (the actual time that
elapsed from the start to the completion of the program), the CPU time (the sum of time spent by
all processors used to run the program), and system time (time used by the operating system to
run things necessary for your program to run, but not directly associated with your program). You
should observe that ultimately nearly the same amount of CPU time was used by both the threaded
and serial programs but the threaded program required about half the wall-clock time. In the case
of the second program two processors were working simultaneously and hence the wall-clock time
was half as much, or nearly so. In fact, there is slightly more computation involved in the threaded
program than the serial program since there is some computational overhead associated with the
threads.

Let us now modify the first function so that it returns a value, specifically a pointer to a double
where we simply store an arbitrary number (in this case 10.0). The appropriate code is shown in
Program 13.3.



336 CHAPTER 13. PARALLEL PROCESSING

Program 13.3 threads-example2.c: Modified version of Program 13.2 where now func1()
has a return value.

1 /* threaded implementation -- returning a value */
2 #include <stdio.h>
3 #include <stdlib.h> // needed for malloc()
4 #include <pthread.h>
5

6 double *func1(); // now returns a pointer to a double
7 void *func2();
8

9 double a, b;
10

11 int main() {
12 double *c; // used for return value from func1
13 pthread_t thread1, thread2; // ID’s for threads
14

15 // typecast the return value of func1 to a void pointer
16 pthread_create(&thread1, NULL, (void *)func1, NULL);
17 pthread_create(&thread2, NULL, func2, NULL);
18

19 // typecast the address of c to a void pointer to a pointer
20 pthread_join(thread1,(void **)&c);
21 printf("a,c: %f %f\n", a, *c);
22

23 pthread_join(thread2,NULL);
24 printf("b: %f\n", b);
25

26 return 0;
27 }
28

29 double *func1() {
30 int i, j;
31

32 double *c; // c is a pointer to a double
33

34 // allocate space to store a double
35 c=(double *)malloc(sizeof(double));
36 *c = 10.0;
37

38 for (j=0;j<4000;j++)
39 for (i=0;i<1000000;i++)
40 a = 3.1456*j+i;
41

42 return c;
43 }
44



13.2. THREAD EXAMPLES 337

45 void *func2() {
46 int i, j;
47

48 for (j=0;j<4000;j++)
49 for (i=0;i<1000000;i++)
50 b = 3.1456*j+i;
51

52 return NULL;
53 }

Note that in this new version of func1() we declare c to be a pointer to a double and then, in
line 35, allocate space where the double can be stored and then, finally, store 10.0 at this location.
This is rather complicated and it might seem that a simpler approach would be merely to declare
c to be a double and then return the address of c, i.e., end the function with return &c. Unfor-
tunately this would not work. The problem with that approach is that declaring c to be a double
would make it a local variable (one only known to func1()) whose memory would disappear
when the function returned.

The second argument of pthread join() in line 20 provides the pointer to the return value
of the function that was executed by the thread. Since c by itself is a pointer to a double, &c is
a pointer to a pointer to a double, i.e., of type (double **). However, pthread join()
assumes the second argument is a void pointer to a pointer and hence a typecast is used to keep the
compiler from complaining.

In the next example, shown in Program 13.4, func1() and func2() are modified so that
they each take an argument. These arguments are the double variables e and d that are set in
main().

Program 13.4 threads-example3.c: Functions func1() and func2() have been modi-
fied so that they now take arguments.

1 /* threaded implementation -- passing arguments and
2 returning a value */
3 #include <stdio.h>
4 #include <stdlib.h>
5 #include <pthread.h>
6

7 double *func1(double *);
8 void *func2(double *);
9

10 double a, b;
11

12 int main() {
13 double *c; // used for return value from func1
14 double d=3.0, e=2.0; // arguments passed to functions
15 pthread_t thread1, thread2; // ID’s for threads



338 CHAPTER 13. PARALLEL PROCESSING

16

17 pthread_create(&thread1, NULL, (void *)func1, (void *)&d);
18 pthread_create(&thread2, NULL, (void *)func2, (void *)&e);
19

20 pthread_join(thread1,(void **)&c);
21 printf("a,c: %f %f\n", a, *c);
22

23 pthread_join(thread2,NULL);
24 printf("b: %f\n", b);
25

26 return 0;
27 }
28

29 double *func1(double *arg) {
30 int i, j;
31

32 double *c;
33

34 c=(double *)malloc(sizeof(double));
35 *c = 10.0;
36

37 for (j=0;j<4000;j++)
38 for (i=0;i<1000000;i++)
39 a = (*arg)*j+i;
40

41 return c;
42 }
43

44 void *func2(double *arg) {
45 int i, j;
46

47 for (j=0;j<4000;j++)
48 for (i=0;i<1000000;i++)
49 b = (*arg)*j+i;
50

51 return NULL;
52 }

In all these examples func1() and func2() have performed essentially the same computa-
tion. The only reason there were two separate functions is that func1() set the global variable a
while func2() set the global variable b. However, knowing that we can both pass arguments and
obtain return values, it is possible to have a single function in our program. It can be called mul-
tiple times and simultaneously. Provided the function does not use global variables, the different
calls will not interfere with each other.

A program that uses a single function to accomplish what the previous programs used two
function for is shown in Program 13.5.



13.2. THREAD EXAMPLES 339

Program 13.5 threads-example4.c: The global variables have been removed and a single
function func() is called twice. The function func() and main() communicate by passing
arguments and checking returns values (instead of via global variables).

1 /* threaded implementation -- passing an argument and checking
2 return the value from a single function */
3 #include <stdio.h>
4 #include <stdlib.h>
5 #include <pthread.h>
6

7 double *func(double *);
8

9 int main() {
10 double *a, *b; // used for return values
11 double d=3.0, e=2.0;
12 pthread_t thread1, thread2; // ID’s for threads
13

14 pthread_create(&thread1, NULL, (void *)func, (void *)&d);
15 pthread_create(&thread2, NULL, (void *)func, (void *)&e);
16

17 pthread_join(thread1,(void **)&a);
18 printf("a: %f\n", *a);
19

20 pthread_join(thread2,(void **)&b);
21 printf("b: %f\n", *b);
22

23 return 0;
24 }
25

26 double *func(double *arg) {
27 int i, j;
28

29 double *a;
30

31 a=(double *)malloc(sizeof(double));
32

33 for (j=0;j<4000;j++)
34 for (i=0;i<1000000;i++)
35 *a = (*arg)*j+i;
36

37 return a;
38 }

Threads provide a simple way to obtain parallelization. However, one may find that in practice
they do not provide the benefits one might expect when applied to FDTD programs. FDTD is



340 CHAPTER 13. PARALLEL PROCESSING

both computational expensive and memory-bandwidth intensive. A great deal of data must be
passed between memory and the CPU. Often the bottleneck is not the CPU but rather the speed of
the “bus” that carries data between memory and the CPU. Multi-processor machines do not have
multiple memory busses. Thus, splitting an FDTD computation between multiple CPU’s on the
same computer will have those CPU’s all requesting memory from a bus that is already acting at
full capacity. These CPU’s will have to wait on the arrival of the requested memory. Therefore,
in practice when using threaded code with N threads on a computer with N processors, one is
unlikely to see a computation-time reduction that is anywhere close to the hypothetical maximum
reduction of 1/N .

13.3 Message Passing Interface
The message passing interface (MPI) is a standardized protocol, or set of protocols, which have
been implemented on a wide range of platforms. MPI facilitates the communication between
processes whether they are running on a single host or multiple hosts. As with pthreads, MPI
provides a large number of functions. These functions allow the user to control many aspects
of the communication or they greatly simplify what would otherwise be quite cumbersome tasks
(such as the efficient distribution of data to a large number of hosts). Despite the large number of
MPI functions, just six are needed to begin exploiting the benefits of parallelization.

Before considering those six functions, it needs to be said that one must have the supporting
MPI framework installed on each of the hosts to be used. Different implementations of the MPI
protocol (or the MPI 2 protocol) are available from the Web. For example, LAM MPI is available
from www.lam-mpi.org but it is no longer being actively developed. Instead, several MPI-
developers have joined together to work on OpenMPI which is available from www.open-mpi.
org. Alternatively, MPICH2 is available from www.mcs.anl.gov/research/projects/
mpich2. Installation of these packages is relatively trivial (at least that is the case when using
Linux or Mac OS X), but some of the details associated with getting jobs to run can be somewhat
complicated (for example, ensuring that access is available to remote machines without requiring
explicit typing of a password).

There is a great deal of MPI documentation available from the Web (there are also a few
books written on the subject). A good resource for getting started is computing.llnl.gov/
tutorials/mpi/. In fact, Lawrence Livermore has many useful pages related to threads, MPI,
and other aspects of high-performance and parallel processing. You can find the material by going
to computing.llnl.gov and following the link to “Training.”

Returning to the six functions needed to use MPI in a meaningful way, two of them concern
initializing and closing the MPI set-up, two deal with sending and receiving information, and two
deal with determining the number of processes and which particular process number is associated
with the given invocation. Programs which use MPI must include the header file mpi.h. Before
any other MPI functions are called, the function MPI Init() must be called. The last MPI
function called should be MPI Finalize(). Thus, a valid, but useless, MPI program is shown
in Program 13.6.

Program 13.6 useless-mpi.c: A trivial, but valid, MPI program.

www.lam-mpi.org
www.open-mpi.org
www.open-mpi.org
www.mcs.anl.gov/research/projects/mpich2
www.mcs.anl.gov/research/projects/mpich2
computing.llnl.gov/tutorials/mpi/
computing.llnl.gov/tutorials/mpi/
computing.llnl.gov


13.4. OPEN MPI BASICS 341

1 #include <mpi.h>
2 #include <stdio.h>
3

4 int main(int argc, char *argv[]) {
5

6 MPI_Init(&argc,&argv);
7

8 printf("I don’t do anything useful yet.\n");
9

10 MPI_Finalize();
11

12 return 0;
13 }

When an MPI program is run, each process runs the same program. In this case, there is nothing
to distinguish between the processes. They will all generate the same line of output. If there were
100 processes, you would see 100 lines of “I don’t do anything useful yet.”

13.4 Open MPI Basics
At this point we need to ask the question: What does it mean to run an MPI program? Ultimately
many copies of the same program are run. Each copy may reside on a different computer and, in
fact, multiple copies may run on the same computer. The details concerning how one gets these
copies to run are somewhat dependent on the MPI package one uses. Here we will briefly describe
the steps associated with the Open MPI package.

When Open MPI is installed, several executable files will be placed on your system(s), e.g.,
mpicc, mpiexe, mpirun, etc. On most systems by default these files will be installed in the
directory /usr/local/bin (but one can specify that the files should be installed elsewhere if
so desired). One must ensure that the directory where these executable reside is in the search path.

When using MPI it is usually necessary to compile the source code in a special way. Instead
of using the gcc compiler on UNIX/Linux machines, one would use mpicc (mpicc is merely a
wrapper that ultimately calls the underlying compiler that one would have used normally). So, for
example, to compile the MPI program given above, one would issue a command such as

mpicc -Wall -O useless-mpi.c -o useless-mpi

One can now run the executable file useless-mpi. The command to do this is either
mpirun or mpiexec (these commands are synonymous). There are numerous arguments that
can be specified with the most important being the number of processes. The following command
says to run four copies of useless-mpi:

mpiexec -np 4 useless-mpi



342 CHAPTER 13. PARALLEL PROCESSING

But where, precisely, is this run? In this case four copies of the program are run on the local host.
That is not precisely what we want—we are interested in distributing the job to different machines.
There are multiple ways in which one can exercise control of the running of MPI programs and we
will explore just a few.

First, let us assume a “multicomputer” consists of five nodes with names node01, node02,
node03, node04, and node05. To make things more interesting, let us further assume that
node01 is one particular brand of computer and the other nodes are a different brand (e.g., per-
haps node01 is an Intel-based machine while the other nodes are PowerPC-based machines).
Additionally assume that node01 has four processors while each of the other nodes has two pro-
cessors.

We can specify some of this information in a “hostfile.” For now, let us exclude node01 since
it is a different architecture. A hostfile that describes a multicomputer consisting of the remaining
four nodes might be

node05 slots=2
node04 slots=2
node03 slots=2
node02 slots=2

Let us assume this information is stored in the file my hostfile. The slots are the number of
processors on a particular machine. If one does not specify the number of slots, it is assumed to be
one.

Let us further assume the executable useless-mpi exists in a director called ˜/Ompi
(where the tilde is recognized as a shorthand for the user’s home directory on a UNIX/Linux
machine). If all the computers mount the same file structure, this may actually be the exact
same directory that all the machines are sharing. In that case there would only be one copy of
useless-mpi. Alternatively, each of the computers may have their own local copy of a di-
rectory named ˜/Ompi. In that case there would have to be a local copy of the executable file
useless-mpi present on each of the individual computers.

One could now run eight copies of the program by issuing the following command:

mpirun -np 8 -hostfile my_hostfile ˜/Ompi/useless-mpi

This command could be issued from any of the nodes. Note that the number of processes does not
have to match the number of slots. The following command will launch 12 copies of the program

mpirun -np 12 -hostfile my_hostfile ˜/Ompi/useless-mpi

However, it will generally be best if one can match the job to the physical configuration of the
multicomputer, i.e., one job per “slot.”

In order to incorporate node01 into the multicomputer, things become slightly more compli-
cated because executables compiled for node01 will not run on the other nodes and vice versa.
Thus one must compile separate versions of the program on the different machines. Let’s assume
that was done and on each of the nodes a copy of useless-mpi was place in the local directory
/tmp (i.e., there is a copy of this directory and this executable on each of the nodes). The hostfile
my hostfile could then be changed to



13.5. RANK AND SIZE 343

node05 slots=2
node04 slots=2
node03 slots=2
node02 slots=2
node01 slots=4

Note that there are four slots specified for node01 instead of two. The command to run 12 copies
of the program would now be

mpirun -np 12 -hostfile my_hostfile /tmp/useless-mpi

By introducing more arguments to the command line, one can exercise more fine-grained con-
trol of the execution of the program. Let us again assume that there is one common directory
˜/Ompi that all the machines share. Let us further assume two version of useless-mpi have
been compiled: one for PowerPC-based machines called useless-mpi-ppc and one for Intel-
based machines called useless-mpi-intel. We can use a command that does away with the
hostfile and instead provide all the details explicitly:

mpirun -host node05,node04,node03,node02 \
-np 8 ˜/Ompi/useless-mpi-ppc \
-host node01 -np 4 ˜/Ompi/useless-mpi-intel

Note that the backslashes here are quoting the end of the line. This command can be given on a
single line or can be given on multiple lines, as shown here, if one “quotes” the carriage return.

13.5 Rank and Size
To do more meaningful tasks, it is typically necessary for each processor to know how many to-
tal processes there are and which process number is assigned to a particular invocation. In this
way, each processor can do something different based on its process number. In MPI the pro-
cess number is known as the rank. The number of processes can be determined with the function
MPI Comm size() and the rank can be determined with MPI Comm rank(). The code shown
in Program 13.7 is a slight modification of the previous program that now incorporates these func-
tions.

Program 13.7 find-rank.c: An MPI program where each process can determine the total
number of processes and its individual rank (i.e., process number).

1 #include <mpi.h>
2 #include <stdio.h>
3

4 int main(int argc, char *argv[]) {
5 int rank, size;
6

7 MPI_Init(&argc,&argv);



344 CHAPTER 13. PARALLEL PROCESSING

8

9 MPI_Comm_size(MPI_COMM_WORLD, &size);
10 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
11 printf("I have rank %d out of %d total.\n",rank,size);
12

13 MPI_Finalize();
14

15 return 0;
16 }

Assume this is run with four total processes. The output will be similar to this:

I have rank 1 out of 4 total.
I have rank 0 out of 4 total.
I have rank 2 out of 4 total.
I have rank 3 out of 4 total.

Note that the size is 4, but rank ranges between 0 and 3 (i.e., size− 1). Also note that there is
no guarantee that the processes will report in rank order.

The argument MPI COMM WORLD is known as an MPI communicator. A communicator essen-
tially specifies the processes which are grouped together. One can create different communicators,
i.e., group different sets of processes together, and this can simplify handling certain tasks for
a particular problem. However, we will simply use MPI COMM WORLD which specifies all the
processes.

13.6 Communicating Between Processes
To communicate between processes we can use the commands MPI Send() and MPI Recv().
MPI Send() has arguments of the form:

MPI_Send(&buffer, // address where data stored
count, // number of items to send
type, // type of data to send
dest, // rank of destination process
tag, // programmer-specified ID
comm); // MPI communicator

where buffer is an address where the data to be sent is stored (for example, the address of the
start of an array), count is the number of elements or items to be sent, type is the type of
data to be sent, dest is the rank of the process to which this information is being sent, tag is
a programmer-specified number to identify this data, and comm is an MPI communicator (which
we will leave as MPI COMM WORLD). The type is similar to the standard C data types, but it is
specified using MPI designations. Some of those are: MPI INT, MPI FLOAT, and MPI DOUBLE,
corresponding to the C data types of int, float, and double (other types, some of which are specific
to MPI, such as MPI BYTE and MPI PACKED, exist too).

MPI Recv() has arguments of the form:



13.6. COMMUNICATING BETWEEN PROCESSES 345

MPI_Recv(&buffer, count, type, source, tag, comm, &status);

In this case buffer is the address where the received data is to be stored. The meaning of count,
type, tag, and comm are unchanged from before. source is the rank of the process sending
the data. The status is a pointer to a structure, specifically an MPI status structure which is
specified in mpi.h. This structure contains the rank of the source and the tag number.

Program 13.8 demonstrates the use of MPI Send() and MPI Recv(). Here the process
with rank 0 serves as the master process. It collects input from the user which will subsequently
be sent to the other processes. Specifically, the parent process prompts the user for as many values
(doubles) as there are number of processes minus one. The master process then sends one number
to each of the other processes. These processes do a calculation based on the number they receive
and then send the result back to the master. The master prints this received data and then the
program terminates.

Program 13.8 sendrecv.c: An MPI program that sends information back and forth between a
master process and slave processes.

1 #include <mpi.h>
2 #include <stdlib.h>
3 #include <stdio.h>
4

5 int main(int argc, char *argv[]) {
6 int i, rank, size, tag_out=10, tag_in=11;
7 MPI_Status status;
8

9 MPI_Init(&argc,&argv);
10

11 MPI_Comm_size(MPI_COMM_WORLD, &size);
12 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
13

14 if (rank==0) {
15 /* "master" process collects and distributes input */
16 double *a, *b;
17

18 /* allocate space for input and result */
19 a=malloc((size-1)*sizeof(double));
20 b=malloc((size-1)*sizeof(double));
21

22 /* prompt user for input */
23 printf("Enter %d numbers: ",size-1);
24 for (i=0; i<size-1; i++)
25 scanf("%lf",a+i);
26

27 /* send values to other processes */
28 for (i=0; i<size-1; i++)
29 MPI_Send(a+i,1,MPI_DOUBLE,i+1,tag_out,MPI_COMM_WORLD);



346 CHAPTER 13. PARALLEL PROCESSING

30

31 /* receive results calculated by other process */
32 for (i=0; i<size-1; i++)
33 MPI_Recv(b+i,1,MPI_DOUBLE,i+1,tag_in,MPI_COMM_WORLD,&status);
34

35 for (i=0; i<size-1; i++)
36 printf("%f\n",b[i]);
37

38 } else {
39 /* "slave" process */
40 int j;
41 double c, d;
42

43 /* receive input from the master process */
44 MPI_Recv(&c,1,MPI_DOUBLE,0,tag_out,MPI_COMM_WORLD,&status);
45

46 /* do some silly number crunching */
47 for (j=0;j<4000;j++)
48 for (i=0;i<100000;i++)
49 d = c*j+i;
50

51 /* send the result back to master */
52 MPI_Send(&d,1,MPI_DOUBLE,0,tag_in,MPI_COMM_WORLD);
53 }
54

55 MPI_Finalize();
56

57 return 0;
58 }

The six commands covered so far are sufficient to parallelize any number of problems. How-
ever, there is some computational overhead associated with parallelizing the code. Additionally,
there is often a significant cost associated with communication between processes, especially if
those processes are running on different hosts and the network linking those hosts is slow.

The functions MPI Send() and MPI Recv() are blocking commands. They do not return
until they have accomplished the requested send or receive. In some cases, especially if there is a
large amount of data to transmit, this can be costly. There are also nonblocking or “immediate”
versions of these functions. For these functions control is returned to the calling function without a
guarantee of the send or receive having been accomplished. In this way the program can continue
some other useful task while the communication is taking place. When one must ensure that
the communication is finished, the function MPI Wait() provides a blocking mechanism that
suspends execution until the specified communication is completed. The immediate send and
receive functions are of the form:

MPI_Isend(&buffer, count, type, dest, tag, comm, &request);
MPI_Irecv(&buffer, count, type, source, tag, comm, &request);



13.6. COMMUNICATING BETWEEN PROCESSES 347

The arguments to these functions are the same as the blocking version except the final argument is
now a pointer to an MPI Request structure instead of an MPI Status. The wait command has
the following form:

MPI_Wait(&request, &status);

Note that the communication for which the waiting is being done is specified by the “request,”
not the “status.” So, if there are multiple transmissions which are being done asynchronously,
one may have to create an array of MPI Request’s. If one is not concerned with the status of the
transmissions, one does not have to define a separate status for each transmission.

The code shown in Program 13.9 illustrates the use of non-blocking send and receive. In this
case the master process sends the numbers to the other processes via MPI Isend(). However, the
master does not bother to ensure that the send was performed. Instead, the master will ultimately
wait for the other process to communicate the result back. The fact that the other processes are
sending information back serves as confirmation that the data was sent from the master. After
sending the data, the master process then calls MPI Irecv(). There is one call for each of the
“slave” processes. After calling these functions, MPI Wait() is used to ensure the data has been
received before printing the results. The code associated with the slave processes is unchanged
from before.

Program 13.9 nonblocking.c: An MPI program that uses non-blocking sends and receives.

1 #include <mpi.h>
2 #include <stdlib.h>
3 #include <stdio.h>
4

5 int main(int argc, char *argv[]) {
6 int i, rank, size, tag_out=10, tag_in=11;
7 MPI_Status status;
8 MPI_Request *request_snd, *request_rcv;
9

10 MPI_Init(&argc,&argv);
11

12 MPI_Comm_size(MPI_COMM_WORLD, &size);
13 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
14

15 if (rank==0) {
16 /* "master" process collects and distributes input */
17 double *a, *b;
18

19 /* allocate space for input and result */
20 a=malloc((size-1)*sizeof(double));
21 b=malloc((size-1)*sizeof(double));
22

23 /* allocate space for the send and receive requests */
24 request_snd=malloc((size-1)*sizeof(MPI_Request));
25 request_rcv=malloc((size-1)*sizeof(MPI_Request));



348 CHAPTER 13. PARALLEL PROCESSING

26

27 /* prompt user for input */
28 printf("Enter %d numbers: ",size-1);
29 for (i=0; i<size-1; i++)
30 scanf("%lf",a+i);
31

32 /* non-blocking send of values to other processes */
33 for (i=0; i<size-1; i++)
34 MPI_Isend(a+i,1,MPI_DOUBLE,i+1,tag_out,MPI_COMM_WORLD,request_snd+i);
35

36 /* non-blocking reception of results calculated by other process */
37 for (i=0; i<size-1; i++)
38 MPI_Irecv(b+i,1,MPI_DOUBLE,i+1,tag_in,MPI_COMM_WORLD,request_rcv+i);
39

40 /* wait until we have received all the results */
41 for (i=0; i<size-1; i++)
42 MPI_Wait(request_rcv+i,&status);
43

44 for (i=0; i<size-1; i++)
45 printf("%f\n",b[i]);
46

47 } else {
48 /* "slave" process */
49 int j;
50 double c, d;
51

52 /* receive input from the master process */
53 MPI_Recv(&c,1,MPI_DOUBLE,0,tag_out,MPI_COMM_WORLD,&status);
54

55 /* do some silly number crunching */
56 for (j=0;j<4000;j++)
57 for (i=0;i<100000;i++)
58 d = c*j+i;
59

60 /* send the result back to master */
61 MPI_Send(&d,1,MPI_DOUBLE,0,tag_in,MPI_COMM_WORLD);
62 }
63

64 MPI_Finalize();
65

66 return 0;
67 }

Compared to the previous version of this program, this version runs over 30 percent faster
on a dual-processor G5 when using five processes. (By “over 30 percent faster” is meant that if
the execution time for the previous code is normalized to 1.0, the execution time using the non-
blocking calls is approximately 0.68.)



Chapter 14

Near-to-Far-Field Transformation

14.1 Introduction
As we have seen, the FDTD method provides the fields throughout some finite region of space, i.e.,
the fields throughout the computational domain. However, in practice, we are often interested in
the fields far away from the region we have modeled. For example, an FDTD implementation may
have modeled an antenna or some scatterer. But, the fields in the immediate vicinity of that antenna
or scatterer may not be the primary concern. Rather, the distant or “far” fields may be the primary
concern. In this chapter we show how the near fields, which are essentially the fields within the
FDTD grid, can be used to obtain the far fields. We start with a brief review of the underlying
theory that pertains in the continuous world and then discuss the implementation details for the
FDTD method.

14.2 The Equivalence Principle
Recall the boundary conditions that pertain to the electric and magnetic fields tangential to an
interface:

n̂′ × (E1 − E2) = −Ms, (14.1)
n̂′ × (H1 −H2) = Js, (14.2)

where n̂′ is normal to the interface, pointing toward region 1. The subscript 1 indicates the fields
immediately adjacent to one side of the interface and the subscript 2 indicates the fields just on the
other side of the interface. The “interface” can either be a physical boundary between two media
or a fictitious boundary with the same medium to either side. The current Ms is a magnetic surface
current, i.e., a current that only flows tangential to the interface. In practice there is no magnetic
charge and thus no magnetic current. Therefore (14.1) states that the tangential components of E
must be continuous across the boundary. However, in theory, we can imagine a scenario where the
tangential fields are discontinuous. If this were the case, the magnetic current Ms must be non-
zero to account for this discontinuity. In a little while we will see why it is convenient to envision
such a scenario. The current Js in (14.2) is the usual electric surface current.

Lecture notes by John Schneider. fdtd-near-to-far.tex

349



350 CHAPTER 14. NEAR-TO-FAR-FIELD TRANSFORMATION

As depicted in Fig. 14.1(a), consider a space in which there is a source or scatterer that radiates
(or scatters) some fields. We can define a fictitious boundary that surrounds this source or scatterer.
Let us then imagine that the fields exterior to this boundary are unchanged but the fields interior
to the boundary are set to zero as depicted in Fig. 14.1(b). By setting the fields interior to the
boundary to zero, we will create discontinuities in the tangential components on either side of
the fictitious boundary. These discontinuities are perfectly fine provided we account for them by
having the appropriate surface currents flow over the boundary. These currents are given by (14.1)
and (14.2) where the fields in region 2 are now zero. Thus,

Ms = −n̂′ × E1, (14.3)
Js = n̂′ ×H1. (14.4)

As you may recall and as will be discussed in further detail below, it is fairly simple to find
the fields radiated by a current (whether electric or magnetic) when that current is radiating in
a homogeneous medium. Unfortunately, as shown in Fig. 14.1(b), the surface currents are not
radiating in a homogeneous medium. But, in fact, since the fields within the fictitious boundary
are zero, we can place anything, or nothing, within the boundary and that will have no effect on
the fields exterior to the boundary. So, let us maintain the same surface currents but discard any
inhomogeneity that were within the boundary. That leaves a homogeneous region as depicted in
Fig. 14.1(c) and it is fairly straightforward to find these radiated fields.

14.3 Vector Potentials
Before proceeding further, let us briefly review vector potentials. First, consider the case (which
corresponds to the physical world) where there is no magnetic charge—electric currents can flow
but magnetic currents cannot. Thus,

∇ ·BA = ∇ · µHA = 0 (14.5)

where the subscript A indicates we are considering the case of no magnetic charge. There is a
vector identity that the divergence of the curl of any vector field is identically zero. Therefore
(14.5) will automatically be satisfied if we write

HA =
1

µ
∇×A (14.6)

where A is a yet-to-be-determined field known as the magnetic vector potential. Now, using
Faraday’s law we obtain

∇× EA = −jωµHA = −jω∇×A. (14.7)

Using the terms on the left and the right and regrouping yields

∇× (EA + jωA) = 0. (14.8)

The curl of the gradient of any function is identically zero. Thus we can set the term in parentheses
equal to the (negative of the) gradient of some unknown scalar electric potential function Φe and
in this way (14.8) will automatically be satisfied. Therefore we have

EA + jωA = −∇Φe (14.9)



14.3. VECTOR POTENTIALS 351

scatterer

or

source

ra
di

at
ed

 f
ie

ld
s

radiated fields

fictitious
boundary

E1,H1 E2,H2

(a)

scatterer

or

source

fictitious
boundary

E1,H1

n’^

0,0

J
s
 = n’×H1

^

M
s
 = −n’×E1

^

(b)

fictitious
boundary

E1,H1

n’^

0,0

J
s
 = n’×H1

^

M
s
 = −n’×E1

^

ε0,µ0

ε0,µ0

(c)

Figure 14.1: (a) A space containing a source or scatterer that is surrounded by a fictitious boundary
which is indicated by the dashed line. The fields are continuous across this boundary. (b) The fields
are set to zero within the boundary. Surface currents must be used to account for the discontinuity
across the boundary. (c) Since the fields are zero within the boundary, any inhomogeneities within
the boundary can be discarded.



352 CHAPTER 14. NEAR-TO-FAR-FIELD TRANSFORMATION

or, after rearranging,
EA = −jωA−∇Φe. (14.10)

Using the remaining curl equation, Ampere’s law, we can write

∇×HA = J+ jωϵEA (14.11)

∇× 1

µ
∇×A = J+ jωϵ(−jωA−∇Φe) (14.12)

Multiplying through by µ and expanding the curl operations yields

∇(∇ ·A)−∇2A = µJ+ ω2µϵA− jωµϵ∇Φe. (14.13)

Regrouping terms yields

∇2A+ ω2µϵA = −µJ+∇(∇ ·A+ jωµϵΦe). (14.14)

So far we have said what the curl of A must be, but that does not fully describe the field. To fully
describe a vector field one must specify the curl, the divergence, and the value at a point (which
we will ultimately assume is zero at a infinite distance from the origin). We are free to make the
divergence of A any convenient value. Let us use the “Lorentz gauge” of

∇ ·A = −jωµϵΦe. (14.15)

By doing this, (14.14) reduces to
∇2A+ k2A = −µJ. (14.16)

where k = ω
√
µϵ.

Distinct from the scenario described above, let us imagine a situation where there is no free
electric charge. Magnetic currents can flow, but electric currents cannot. Thus the divergence of
the electric flux density is

∇ ·DF = ∇ · ϵEF = 0 (14.17)

where here the subscript F is used to indicate the case of no electric charge. Again, this equation
will be satisfied automatically if we represent the electric field as the curl of some potential function
F. To this end we write

EF = −1

ϵ
∇× F (14.18)

where F is known as the electric vector potential.
Following steps similar to the ones we used to obtain (14.16), one can obtain the differential

equation that governs F, namely,
∇2F+ k2F = −ϵM. (14.19)

Thus both A and F are governed by the wave equation. We see that the source of A, i.e., the
forcing function that creates A is the electric current J. Similarly, the source of F is the magnetic
current M. (We have not yet restricted these currents to be surface currents. At this point they
can be any current distribution, whether distributed throughout a volume, over a surface, or along
a line.)

Note that both the Laplacian (∇2) and the constant k2 that appear in (14.16) and (14.19) are
scalar operators. They do not change the orientation of a vector. Thus, the x component of J gives



14.3. VECTOR POTENTIALS 353

rise to the x component of A, the y component of M gives rise to the y component of F, and so
on. In this way, (14.16) and (14.19) could each be broken into their three Cartesian components
and we would be left with six scalar equations.

These equations have relatively straightforward solutions. Let us consider a slightly simpli-
fied problem, the solution of which can easily be extended to the full general problem. Consider
the case of an incremental current of length dℓ that is located at the origin and oriented in the z
direction. In this case (14.16) reduces to

∇2Az(r) + k2Az(r) = −µIdℓδ(r) (14.20)

where I is the amount of current and δ(r) is the 3D Dirac delta function. The Dirac delta function
is zero expect when its argument is zero. For an argument of zero, δ(r) is singular, i.e., infinite.
However, this singularity is integrable. A volume integral of any region of space that includes the
Dirac delta function at the origin (i.e., r = 0) will yield unit volume. For any observation point
other than the origin, (14.20) can be written

∇2Az(r) + k2Az(r) = 0 r ̸= 0. (14.21)

It is rather easy to show that a general solution to this is

Az(r) = C1
e−jkr

r
+ C2

ejkr

r
. (14.22)

We discard the second term on the right-hand side since that represents a spherical wave propagat-
ing in toward the origin. Thus we are left with

Az(r) = C1
e−jkr

r
(14.23)

where we must now determine the constant C1 based on the “driving function” on the right side of
(14.20).

To obtain C1, we integrate both side of (14.20) over a small spherical volume of radius r0 and
take the limit as r0 approaches zero:

lim
r0→0

∫
V

[
∇2Az + k2Az

]
dv = lim

r0→0

∫
V

−µIdℓδ(r)dv. (14.24)

Using the sifting property of the delta function, the right-hand side of (14.24) is simply −µIdℓ.
For the left-hand side, we first expand the integral associated with the second term in the square
brackets

lim
r0→0

r0∫
r=0

π∫
θ=0

2π∫
ϕ=0

k2C1
e−jkr

r
r2 sin θ dϕ dθ dr. (14.25)

Including the term r2 sin θ, which is contributed by the volume element dv, the entire integrand is
proportional to r. Therefore as r0 (the upper limit of integration in r) goes to zero, this integral
goes to zero.



354 CHAPTER 14. NEAR-TO-FAR-FIELD TRANSFORMATION

The remaining integral on the left side of (14.24) is

lim
r0→0

∫
V

∇ · ∇Azdv = lim
r0→0

∮
S

∇Az · ds (14.26)

where we have used the divergence theorem to convert the volume integral to a surface integral
(and used the fact that ∇2 = ∇ · ∇). The integrand of the surface integral is given by

∇Az|r=r0 = r̂
∂Az
∂r

∣∣∣∣
r=r0

= r̂

(
−e

−jkr0

r20
− jk

e−jkr0

r0

)
C1. (14.27)

The surface element ds is given by r̂ r20 sin θdϕ dθ so that the entire surface integral is given by

lim
r0→0

π∫
θ=0

2π∫
ϕ=0

C1e
−jkr0(−1− jkr0) sin θdϕ dθ = lim

r0→0
−C1e

−jkr0(1 + jkr0)4π = −C14π. (14.28)

Equating this with the right-hand side of (14.20), we can solve for C1. The final result is

C1 =
µIdℓ

4π
. (14.29)

It should be noted that there is actually nothing special about having r0 approach zero. The
same coefficient is obtained for any value of r0. Letting r0 approach zero merely simplifies the
problem a bit.

We now have that a filamentary current I of length dℓ located at the origin and oriented in the
z direction produces the vector potential

Az(r) =
µIdℓ

4π

e−jkr

r
. (14.30)

This is simply a spherical wave radiating symmetrically away from the origin. If the source is
located at the point r′ instead of the origin, one merely needs to account for this displacement. The
vector potential in that case is

Az(r) =
µIdℓ

4π

e−jk|r−r′|

|r− r′|
. (14.31)

If the current was oriented in the x or y direction, that would produce a vector potential that only
had a x or y component, respectively.

For a current source, the “strength” of the source is, in one way of thinking, determined by the
amount of current that is flowing times the length over which that current flows. For a filament
we have that the “source strength” is given by Idℓ. For a surface current the equivalent concept
is Jsds where Js is the surface current density in Amperes/meter and ds is an incremental surface
area. Similarly, for a volumetric current, the equivalent term is Jdv where J is the current density
in Amperes/meter2 and dv is an incremental volume.

Instead of having just a point source, currents can be distributed throughout space. To get the
corresponding vector potentials, we merely have to sum the contributions of the current wherever it



14.3. VECTOR POTENTIALS 355

exists, accounting for the location (displacement from the origin), the orientation, and the amount
of current.

For surface currents, the vector potentials are given by

A(r) = µ

∮
S

Js(r
′)
e−jk|r−r′|

4π|r− r′|
ds′, (14.32)

F(r) = ϵ

∮
S

Ms(r
′)
e−jk|r−r′|

4π|r− r′|
ds′, (14.33)

where, as before, r is the observation point, r′ is the location of the source point (i.e., the location
of the currents), and S is the surface over which the current flows.

Equations (14.32) and (14.33) give the vector potentials at an arbitrary observation point r in
three dimensions. The surface S is a surface that exists in the 3D space (such as the surface of
sphere or a cube).

Let us consider the two-dimensional case. We can consider the 2D case as a special case in 3D
in which there is no variation in the z direction. The observation point is a point in the xy plane
specified by the vector ρ. Thus, the magnetic vector potential could be written as

A(ρ) = µ

∮
L

∞∫
z′=−∞

Js(ρ
′)

e−jk
√

|ρ−ρ′|2+z′2

4π
√

|ρ− ρ′|2 + z′2
dz′dℓ′, (14.34)

= µ

∮
L

Js(ρ
′)

 ∞∫
z′=−∞

e−jk
√

|ρ−ρ′|2+z′2

4π
√
|ρ− ρ′|2 + z′2

dz′

 dℓ′. (14.35)

The term in parentheses can be integrated to obtain
∞∫

z′=−∞

e−jk
√

|ρ−ρ′|2+z′2

4π
√

|ρ− ρ′|2 + z′2
dz′ = −j

4
H

(2)
0 (k|ρ− ρ′|) (14.36)

where H(2)
0 is the zeroth-order Hankel function of the second kind. This represents a cylindrical

wave radiating from the point ρ′. Similar steps can be done for F and in this way z is eliminated
from the expressions for the vector potentials. We are left with a 2D representation of the fields,
namely,

A(ρ) = −j µ
4

∮
L

J(ρ′)H
(2)
0 (k|ρ− ρ′|)dℓ′, (14.37)

F(ρ) = −j ϵ
4

∮
L

M(ρ′)H
(2)
0 (k|ρ− ρ′|)dℓ′. (14.38)

where the explicit s subscript has been dropped from the currents.
The approximation of the zeroth-order Hankel function of the second kind as the argument ξ

gets large is

H
(2)
0 (kξ) ≈

√
j2

πkξ
e−jkξ. (14.39)



356 CHAPTER 14. NEAR-TO-FAR-FIELD TRANSFORMATION

Now let ξ = |ρ− ρ′| where ρ is large enough that the following approximations are valid:

ξ ≈
{
ρ− ρ′ cosψ for the phase,
ρ for the magnitude. (14.40)

where, referring to Fig. 14.2, ψ is the angle between the observation angle and the angle to the
source point. (Because we are taking the cosine of ψ, and cosine is an even function, it doesn’t
matter if we define ψ as ϕ−ϕ′ or ϕ′−ϕ but we will take ψ to be ϕ−ϕ′.) Thus the Hankel function
can be written

H
(2)
0 (k|ρ− ρ′|) ≈

√
j2

πkρ
e−jkρejkρ

′ cosψ. (14.41)

The A vector potential for a 2D problem can thus be written

A(ρ) = −j µ
4

∮
L

J(ρ′)H
(2)
0 (k|ρ− ρ′|)dℓ′, (14.42)

≈ −j µ
4

√
j2

πkρ
e−jkρ

∮
L

J(ρ′)ejkρ
′ cosψdℓ′, (14.43)

= −j µ
4

√
j2

πkρ
e−jkρN2D, (14.44)

where
N2D =

∮
L

J(ρ′)ejkρ
′ cosψdℓ′. (14.45)

Correspondingly, the F vector potential can be written

F(ρ) = −j ϵ
4

∮
L

M(ρ′)H
(2)
0 (k|ρ− ρ′|)dℓ′, (14.46)

≈ −j ϵ
4

√
j2

πkρ
e−jkρ

∮
L

M(ρ′)ejkρ
′ cosψdℓ′, (14.47)

= −j ϵ
4

√
j2

πkρ
e−jkρL2D, (14.48)

where
L2D =

∮
L

M(ρ′)ejkρ
′ cosψdℓ′. (14.49)

Nominally N2D and L2D are functions of ρ. However, within these functions the only thing that
depends on ρ is ψ. The angle ψ only changes for large changes in ρ—incremental changes of ρ
will not affect ψ. Thus, derivatives of N2D or L2D with respect to ρ, ϕ, or z (i.e., derivatives with
respect to the unprimed coordinates) are zero. The geometry is depicted in Fig. 14.2.



14.4. ELECTRIC FIELD IN THE FAR-FIELD 357

φ
φ'

y

x

ρρ'

to observation
point

source
point

ρ−ρ'− −

integration
boundary L

ψ

Figure 14.2: Geometry associated with the near-to-far-field transformation in 2D.

It is convenient to think of the currents, and subsequently N2D and L2D (and ultimately the
potentials), in terms of cylindrical coordinates, i.e.,

J(ρ) = Jρâρ + Jϕâϕ + Jzâz, (14.50)
M(ρ) = Mρâρ +Mϕâϕ +Mzâz. (14.51)

Combining the contributions from both A and F, the electric and magnetic fields are given by

E(ρ) = −jω
[
A+

1

k2
∇(∇ ·A)

]
− 1

ϵ
∇× F, (14.52)

H(ρ) = −jω
[
F+

1

k2
∇(∇ · F)

]
+

1

µ
∇×A. (14.53)

By plugging (14.44) and (14.48) into (14.52) and (14.53) and performing the various operations
in cylindrical coordinates and discarding any terms that fall off faster than 1/

√
ρ, one can obtain

expressions for the electric and magnetic fields in the far field. (Note that the ∇ operator acts on
the unprimed coordinates and, as mentioned above, N2D and L2D are not considered functions of
the unprimed coordinates.)

14.4 Electric Field in the Far-Field
Following the steps outlined in the previous section, the scattered electric field Es at the far-field
point ρ can be obtained from the scattered “near” fields using

Es(ρ) =

√
j

8πk

e−jkρ
√
ρ

{âϕ (ωµ0N2D · âϕ + kL2D · âz)− âz (ωµ0N2D · âz − kL2D · âϕ)} ,

(14.54)



358 CHAPTER 14. NEAR-TO-FAR-FIELD TRANSFORMATION

where, as stated previously,

N2D =

∮
L

J(ρ′)ejkρ
′ cosψdℓ′, (14.55)

L2D =

∮
L

M(ρ′)ejkρ
′ cosψdℓ′, (14.56)

L is the closed path of integration, ψ, given by ϕ − ϕ′, is the angle between the source point and
observation point, M = −n̂′ × E, J = n̂′ × H, and n̂′ is a unit vector normal to the integra-
tion contour on the same side of the contour as the observation point (i.e., the outward normal).
Unprimed coordinates correspond to the observation point while primed coordinates indicate the
“source” location (i.e., points along the contour).

Let us now restrict consideration to TMz polarization where the non-zero field are Hx, Hy, and
Ez. Since the outward normal is restricted to exist in the xy plane, n̂′ × H only has a non-zero
component in the z direction while −n̂′ ×E only has non-zero components in the xy plane. Thus,
for this polarization only the z component of the electric field is non-zero—the ϕ component of
(14.54) is zero. The electric field can be written

Es
z(ρ) = −

√
j

8πk

e−jkρ
√
ρ

∮
L

(ωµ0J(ρ
′) · âz − kM(ρ′) · âϕ) ejkρ

′ cosψdℓ′. (14.57)

Usually the scattering width is of more interest than the field itself. For TMz polarization the
two-dimensional scattering width is defined to be

σ2D(ϕ) = lim
|ρ−ρ′|→∞

2πρ
|Es

z(ρ)|2

|Ei
z|2

(14.58)

Noting that ωµ0 = kη0 and plugging (14.57) into (14.58) and normalizing by the wavelength yields

σ2D(ϕ)

λ
=

1

8π|Ei
z|2

∣∣∣∣∣∣
∮
L

{η0J(ρ′) · âz −M(ρ′) · âϕ} ejkr
′ cos(ϕ−ϕ′)kdℓ′

∣∣∣∣∣∣
2

. (14.59)

The term r′ cos(ϕ−ϕ′) which appears in the exponent can be written as âρ ·ρ = âρ ·(x′âx+y′ây) =
x′ cosϕ + y′ sinϕ. This last form is especially useful since ϕ is fixed by the observation direction
and therefore the sine and cosine functions can be determined outside of any loop (rather than over
and over again as we move along the integration contour).

For TMz polarization the unit vector normal to the integration path is restricted to lie in the xy
plane, i.e., n̂′ = n′

xâx + n′
yây where (n′2

x + n′2
y)

1/2 = 1. Thus, the electric current J is given by

J = n̂′ ×H =

∣∣∣∣∣∣
âx ây âz
n′
x n′

y 0
Hx Hy 0

∣∣∣∣∣∣ = âz(n
′
xHy − n′

yHx). (14.60)

The dot product of âz and J yields

J · âz = n′
xHy − n′

yHx. (14.61)



14.4. ELECTRIC FIELD IN THE FAR-FIELD 359

-
x = m′∆x

6
y = n′∆y

(0, 0) (Lx∆x, 0)

(Lx∆x, Ly∆y)(0, Ly∆y)

Side L4

?
n̂′ = −ây

Side L3
-̂n
′ = âx

Side L2

6̂n
′ = ây

Side L1
�n̂′ = −âx

Figure 14.3: Depiction of integration boundary for near-to-far-field transformation in the FDTD
grid.

The magnetic current is given by

M = −n̂′ × E =

∣∣∣∣∣∣
âx ây âz
n′
x n′

y 0
0 0 Ez

∣∣∣∣∣∣ = −(âxn
′
yEz − âyn

′
xEz) (14.62)

The dot product of âϕ and M yields

M · âϕ = −âx · âϕn′
yEz + ây · âϕn′

xEz = (n′
y sinϕ+ n′

x cosϕ)Ez (14.63)

Incorporating (14.61) and (14.63) into (14.59) yields a general expression for the scattering
width:

σ2D(ϕ)

λ
=

1

8π|Ei
z|2

∣∣∣∣∣∣
∮
L

{
η0(n

′
xHy − n′

yHx)− (n′
y sinϕ+ n′

x cosϕ)Ez
}
ejkr

′ cos(ϕ−ϕ′)kdℓ′

∣∣∣∣∣∣
2

.

(14.64)
We now want to specialize this equation to a rectangular box which is typical of the integration
boundary which would be employed in an FDTD simulation.

Assume the integration boundary corresponds to the dashed box shown in Fig. 14.3. The width
of this rectangle is Lx∆x and the height is Ly∆y. In an FDTD grid there are Lx + 1 samples of
the fields along the top and bottom (i.e., spanning the width) and Ly + 1 total samples along the
left and right (i.e., spanning the height). The integration over the closed path L consists of the
integration over the four sides of this box, i.e., L = L1 + L2 + L3 + L4. Using this geometry, the
quantities needed to perform each integral are presented in the following two tables.



360 CHAPTER 14. NEAR-TO-FAR-FIELD TRANSFORMATION

n̂′ J · âz M · âϕ
Side L1 n′

x = −1 n′
y = 0 −Hy − cosϕEz

Side L2 n′
x = 0 n′

y = 1 −Hx sinϕEz

Side L3 n′
x = 1 n′

y = 0 Hy cosϕEz

Side L4 n′
x = 0 n′

y = −1 Hx − sinϕEz

ϕ′ ρ′ âρ · ρ′

Side L1 π/2 n′∆y n′∆y sinϕ

Side L2 tan−1(Ly/m
′)

√
(m′∆x)2 + (Ly∆y)2 m′∆x cosϕ+ Ly∆y sinϕ

Side L3 tan−1(n′/Lx)
√

(Lx∆x)2 + (n′∆y)2 Lx∆x cosϕ+ n′∆y sinϕ

Side L4 0 m′∆x cosϕ m′∆y

Note that in the second table the value n′ represents the vertical displacement along Side L1 or
L3. It varies between 0 and Ly and should not be confused with the outward normal n̂′ and its
components n′

x and n′
y.

Assume that the spatial step sizes are equal so that ∆x = ∆y = δ. Further assume that the
problem has be discretized using Nλ points per wavelength so that the wavenumber can be written
k = 2π/λ = 2π/(Nλδ). Combining all together, the scattering width is given by

σ2D(ϕ)

λ
=

1

8π|Ei
z|2

∣∣∣∣∣∣
Lx∫

m′=0

{
[η0Hx(m

′, 0) + sinϕEz(m
′, 0)] e

j 2π
Nλ

m′ cosϕ

− [η0Hx(m
′, Ly) + sinϕEz(m

′, Ly)] e
j 2π
Nλ

(m′ cosϕ+Ly sinϕ)
} 2π

Nλ

dm′

+

Ly∫
n′=0

{
− [η0Hy(0, n

′)− cosϕEz(0, n
′)] e

j 2π
Nλ

n′ sinϕ

+ [η0Hy(Lx, n
′)− cosϕEz(Lx, n

′)] e
j 2π
Nλ

(Lx cosϕ+n′ sinϕ)
} 2π

Nλ

dn′
∣∣∣∣2(14.65)

Again we note that the integration variable for the second integral is n′ which corresponds to
displacement along the vertical sides. The fields in this expression are phasor (frequency-domain)
quantities and hence are complex. Although this equation may look rather messy, as described
in the next two sections, the phasors can be obtained rather simply with a running DFT and the
integration can be calculated with a sum.

Because of the staggered nature of the FDTD grid, the electric and magnetic fields will not
be collocated on the integration boundary—they will be offset in both space and time. A spatial
average of either the electric or magnetic field will have to be performed to obtain the fields at
the proper location. In the past, a simple arithmetic average was typically used to account for the
spatial offsets. However, as will discussed, one can do better by using a harmonic average in space.
For the temporal offset, a simple phase correction can be used to collocate the fields in time.



14.5. SIMPSON’S COMPOSITE INTEGRATION 361

integration boundary

in
te

g
ra

ti
o

n
 b

o
u

n
d

ar
y

Ez(m,n)
q

Ez(m,n)
q

Hy

q+1/2
(m−1,n) Hy

q+1/2
(m,n)

Hx

q+1/2
(m,n−1)

Hx

q+1/2
(m,n)

xz

y

Figure 14.4: Depiction of a TMz grid showing the integration boundary. The boundary is assumed
to be aligned with electric-field nodes. The expanded views show the offset of the magnetic-field
nodes from the boundary.

14.5 Simpson’s Composite Integration
Assume we wish to integrate the function f(x) over the interval 0 ≤ x ≤ L where L is an even
integer. The integral can be obtained using Simpson’s composite integration as follows

L∫
0

f(x)dx ≈ 1

3

f(0) + 2

L/2−1∑
m=1

f(2m) + 4

L/2∑
m=1

f(2m− 1) + f(L)

 (14.66)

Note that this approximation requires a total of L + 1 samples of the function (so we need an
odd number of samples). Using Simpson’s approximation yields quite a bit of additional accuracy
over what would be obtained using a straight Riemann sum and it costs essentially nothing (it just
requires slightly more bookkeeping).

14.6 Collocating the Electric and Magnetic Fields: The Geo-
metric Mean

Figure 14.4 depicts an integration boundary in a TMz grid. The boundary is assumed to be aligned
with the electric-field nodes, i.e., theEz nodes. The expanded views show a portion of the boundary
along the right side and the bottom. The field notation employs superscripts to indicate time
steps while spatial indices are given as arguments within parentheses. Half-step spatial offsets



362 CHAPTER 14. NEAR-TO-FAR-FIELD TRANSFORMATION

are implicitly understood. Thus, the nodes in space-time and the corresponding notation are

H(q−1/2)∆t
x (m∆x, [n+ 1/2]∆y) = Hq−1/2

x (m,n), (14.67)
H(q−1/2)∆t
y ([m+ 1/2]∆x, n∆y) = Hq−1/2

y (m,n), (14.68)

Eq∆t
z (m∆x, n∆y) = Eq

z(m,n), (14.69)

where ∆x and ∆y are the spatial steps in the x and y directions, respectively, and ∆t is the temporal
step. The index q indicates the temporal step and we assume it varies between 1 and NT which is
the total number of time-steps.

Near-to-far-field (NTFF) transforms require that the fields be defined over a single surface
and use the same phase reference. For harmonic fields, the temporal offset can be easily ac-
counted for with a phase factor. Assume the magnetic fields have been recorded at times of
q = 1/2, 3/2, 5/2, . . . while the electric field has been recorded at times of q = 1, 2, 3, . . . For
the harmonic transforms of interest here, the time-domain near-fields are Fourier transformed to
the frequency domain. For example, the harmonic electric field on the boundary is given by

Êk
z (m,n) = F [Eq

z(m,n)] , (14.70)

=
1

NT

∑
q=⟨NT ⟩

Eq
z(m,n)e

−jk 2π
NT

q
. (14.71)

where F is the discrete Fourier transform. For situations where the entire spectrum is not of inter-
est, typically a running discrete Fourier transform will be used only at the particular frequencies
of interest. A frequency is specified by the index k which varies between zero (dc) and NT − 1.
Regardless of the implementation used, the resulting spectral terms Êk

z will be the same.
The time-domain series Eq

z(m,n) can be obtained from Êk
z (m,n) via

Eq
z(m,n) =

∑
k=⟨NT ⟩

Êk
z (m,n)e

jk 2π
NT

q
. (14.72)

Because of the temporal offset between the electric and magnetic fields, the desired field is actually
E
q−1/2
z (m,n), thus, plugging q − 1/2 into (14.72) yields

Eq−1/2
z (m,n) =

∑
k=⟨NT ⟩

(
Êk
z (m,n)e

−jk π
NT

)
e
jk 2π

NT
q
. (14.73)

In practice one calculates Êk
z (m,n) and the spectral representation of the magnetic fields in the

same way, i.e., as in (14.71). Then one multiplies Êk
z (m,n) by exp(−jkπ/NT ) to account for the

temporal offset.
The spatial offset is slightly more problematic than the temporal offset. As shown in Fig. 14.4,

the integration boundary can be aligned with only one of the fields. The magnetic field tangential
to the integration boundary is found from the nodes that are a spatial half-step to either side of the
boundary.

To obtain the magnetic field on the boundary, the traditional approach has been to use a spatial
average of the nodes to either side of the boundary. For example, along the right side of the
boundary, the harmonic magnetic field would be given by

Ĥk
y (m,n) =

1

2
F
[
Hq−1/2
y (m− 1, n) +Hq−1/2

y (m,n)
]
. (14.74)



14.6. COLLOCATING THE ELECTRIC AND MAGNETIC FIELDS: THE GEOMETRIC MEAN363

Because of this spatial average, Ĥy(m,n) and Êz(m,n) are assumed to be collocated and, with the
temporal phase correction, can be used to determine the equivalent currents over the integration
boundary (which are then used in the NTFF transform itself).

Unfortunately the arithmetic mean used in (14.74) introduces errors. To illustrate this, assume
a harmonic plane wave is propagating in the grid. The temporal frequency ω is 2πk′/NT where k′

is an integer constant and, as before, NT is the total number of time-steps in a simulation. The y
component of the magnetic field is given by

Hq−1/2
y (m,n) = cos

(
ω

[
q − 1

2

]
∆t − ξ

)
, (14.75)

=
e
j
(
k′ 2π

NT
[q− 1

2
]∆t+ξ

)
+ e

−j
(
k′ 2π

NT
[q− 1

2
]∆t+ξ

)
2

, (14.76)

where ξ = βx(m + 1/2)∆x + βyn∆y, and βx and βy are the x and y components of the wave
vector, respectively. Taking the discrete Fourier transform of (14.76), i.e.,

Ĥk
y (m,n) =

1

NT

∑
q=⟨NT ⟩

Hq−1/2
y (m,n)e

−jk 2π
NT

(q− 1
2), (14.77)

one notes that the sum yields zero when k is anything other than k′ or NT − k′. The values of k
that yield non-zero correspond to the positive and negative frequency of the continuous world and,
like the continuous world, the corresponding spectral values are complex conjugates. Without loss
of generality, we will continue the discussion in terms of the spectral component corresponding to
the positive frequency, i.e.,

Ĥk′

y (m,n) =
1

2
exp(−j[βx(m+ 1/2)∆x + βyn∆y]). (14.78)

(Note that since the time-domain functions are real-valued, in practice one does not need to calcu-
late the transform at any of the negative frequencies. They are merely the complex conjugates of
the values at the positive frequencies.)

Because the Fourier transform is a linear operator, using (14.76) in (14.74) yields

Ĥk′

y (m,n)= e−jβyn∆y
e−jβx(m− 1

2)∆x + e−jβx(m+ 1
2)∆x

4
, (14.79)

=
1

2
e−j(βxm∆x+βyn∆y) cos

(
βx∆x

2

)
. (14.80)

The exact expression for the magnetic field on the integration boundary is exp(−j[βxm∆x +
βyn∆y])/2. Thus, the cosine term represents an error—one which vanishes only in the limit as
the spatial-step size goes to zero.

Instead of taking the Fourier transform of the average of the time-domain fields, let us take the
Fourier transform of the fields to either side of the boundary. We define the transforms as

Ĥ+
y (m,n) = F

[
Hq−1/2
y (m,n)

]
, (14.81)

Ĥ−
y (m,n) = F

[
Hq−1/2
y (m− 1, n)

]
. (14.82)



364 CHAPTER 14. NEAR-TO-FAR-FIELD TRANSFORMATION

Still assuming a single harmonic plane wave, for the “positive frequency” corresponding to k = k′,
Ĥ+
y (m,n) and Ĥ−

y (m,n) are given by

Ĥ+
y (m,n) =

1

2
e−j(βx(m+1/2)∆x+βyn∆y), (14.83)

Ĥ−
y (m,n) =

1

2
e−j(βx(m−1/2)∆x+βyn∆y). (14.84)

Were one to calculate the arithmetic mean of Ĥ+
y (m,n) and Ĥ−

y (m,n), the result would be the
same as given in (14.80). However, consider the geometric mean (where the geometric mean of a
and b is

√
ab) of Ĥ+

y (m,n) and Ĥ−
y (m,n):

Ĥk′

y (m,n) =
(
Ĥ+
y (m,n)Ĥ

−
y (m,n)

)1/2
, (14.85)

=
1

2
e−j(βxm∆x+βyn∆y). (14.86)

This is precisely the correct answer. There is no error introduced by the geometric mean. A note
of caution: when calculating the square root of these complex quantities, one must ensure that
the proper branch cut is selected. Thus, when Ĥ+

y (m,n) and Ĥ−
y (m,n) have phases near ±π the

geometric mean should also have a phase near ±π rather than near zero.
In practice, at any given frequency there will be an angular spectrum of wave vectors present

and hence any averaging, whether geometric or arithmetic, will introduce some errors. However,
for a single wave vector the geometric mean is exact and it has been our experience that the ge-
ometric mean provides superior results for nearly all discretizations and scattering angles. The
following section demonstration the use of the geometric mean in several scenarios.

14.7 NTFF Transformations Using the Geometric Mean

14.7.1 Double-Slit Radiation
To demonstrate the difference between the arithmetic and geometric mean, we begin by consider-
ing the radiation from a double-slit aperture in a perfect electrical-conductor (PEC) screen which is
illuminated by a normally incident pulsed plane wave. TMz polarization is assumed. As shown in
Fig. 14.5(a), in this case the boundary over which the fields are measured is three-sided and exists
on only one side of the screen.

Given the fields over the three-sided boundary, one then assumes the fields “interior” to this
boundary (i.e., the region which includes the slits) are zero while the fields exterior to the boundary
are unchanged. To account for the discontinuity in the fields across the integration boundary,
surface currents must be present. Since the fields are zero within the boundary, one can replace the
actual interior with anything without affecting the exterior fields. One thus assumes that the slits are
not present—that the PEC plane is unbroken. The surface currents over the three-sided boundary
are now radiating in the presence of an infinite plane. The far-field radiation can be calculated with
a three-sided integral where one uses the Green’s function for a source above an infinite plane.
This, equivalently, from image theory, is simply the radiation from the original (measured) current
and the image of the current. Both the measured current and the image current are radiating in free



14.7. NTFF TRANSFORMATIONS USING THE GEOMETRIC MEAN 365

space. In this way the three-sided boundary can be replaced with a closed four-sided boundary as
shown in Fig. 14.5(b). The corresponding currents over this surface, i.e., the measured currents
over half the boundary and the image currents over the other half, are transformed to the far field.

The incident field is introduced over a total-field/scattered-field (TFSF) boundary which only
exists to the left side of the screen. The grid is terminated with an eight-cell perfectly matched
layer (PML).

The right side of the integration surface is D cells away from the PEC screen. The length of
the right side of the integration boundary is held fixed at 75 cells. In principle, the location of
the integration boundary should make no difference to the far-fields. However, when using the
arithmetic mean, the far-fields are sensitive to the boundary location, i.e., sensitive to the value of
D. Note that were a single component of the field integrated over the aperture, as advocated by
[3], averaging is not an issue. However, that approach is restricted to screens which are planar
and there are no inhomogeneities present other than the screen. The approach we advocate can
accommodate any screen or scatterer geometry provided it can be contained within the integration
boundary. Nevertheless, we will employ the aperture-based approach as a reference solution.

The simulation uses “slits” which are 15 cells wide. The PEC between the slits is 30 cells
wide. The excitation is a Ricker wavelet discretized such that there are 30 cells per wavelength at
the most energetic frequency. The simulation is run at the 2D Courant limit (1/

√
2) for 1024 time

steps.
Figure 14.6(a) shows the far-field radiation pattern which is obtained using the arithmetic mean.

The pattern is symmetric about zero degrees which corresponds to the direction normal to the
screen. The radiation pattern is calculated using

1

λ
lim
ρ→∞

[
2πρ

|Êz(ϕ)|2

|Êi
z|2

]
(14.87)

where ϕ is the scattering angle, ρ is the distance from the slits, Êz(ϕ) is the field radiated in the ϕ
direction, and Êi

z is the complex amplitude of the incident plane wave at the frequency of interest.
Results are shown for a frequency corresponding to 10.0566 cells per wavelength. Figure 14.6(a)
shows the pattern when D is either 5, 6, or 7 cells.

Note that there are significant differences in the central peak depending on the displacement D
between the right-side integration boundary and the PEC screen. Figure 14.6(b) shows an expanded
view of the pattern in the neighborhood of the peak. As can be seen, displacing the integration
boundary by two cells causes a change in the peak of approximately 9 percent. The results as a
function of displacement are nearly periodic, e.g., displacements of 5 and 15 cells (not shown)
yield nearly the same results as do displacements of 6 and 16 cells, and so on. (The period of
10 cells is a consequence of examining a frequency corresponding to approximately 10 cells per
wavelength.) Also shown as plus signs in Fig. 14.6(b) are the results obtained when the transform
uses the electric field (i.e., the equivalent magnetic current) over the aperture. No averaging is
involved in this case. The aperture-based results are seen to agree well with the arithmetic-mean
results when the displacement D is 5 cells. Unfortunately one does not know a priori that this
agreement will exist nor does this displacement provide similar agreement for other frequencies.

On the other hand, when using the geometric mean, there is almost no variation in the radiation
pattern as the integration boundary is displaced. Figure 14.6(c) shows the same results as presented
in Fig. 14.6(b) except now the geometric mean of the harmonic fields is used to obtain the magnetic



366 CHAPTER 14. NEAR-TO-FAR-FIELD TRANSFORMATION

xz

y

T
F

S
F

 b
o

u
n

d
ar

y

in
teg

ratio
n

 b
o

u
n

d
ary

D∆x

φ

P
E

C
P

E
C

P
E

C

(a)

xz

y

in
teg

ratio
n

 b
o

u
n

d
ary

Ez

Hy

Hx

image
Ez=−Ez

Hy
image

=Hy

Hx
image

=−Hx

image
fields

measured
fields

D∆xD∆x

(b)

Figure 14.5: (a) Geometry of the double-slit experiment. A pulsed plane wave is introduced via a
TFSF boundary on the left side of the screen. The field are recorded over the three-sided integration
boundary to the left of the screen. (b) Image theory is used to create a four-sided closed surface
over which the currents are transformed to the far-field. The dashed line corresponds to the location
where the PEC plane had been.



14.7. NTFF TRANSFORMATIONS USING THE GEOMETRIC MEAN 367

0 15 30 45 60 75 90

Scattering Angle φ [degrees]

0

10

20

30

40

50

60

70

R
ad

ia
ti

o
n
 P

at
te

rn

D = 5 cells
D = 6 cells
D = 7 cells

expanded view

(a)

-2 -1 0 1 2

Scattering Angle φ [degrees]

45

50

55

60

65

R
ad

ia
ti

o
n

 P
at

te
rn

D = 5 cells
D = 6 cells
D = 7 cells
Aperture-Based

(b)

-2 -1 0 1 2

Scattering Angle φ [degrees]

45

50

55

60

65

R
ad

ia
ti

o
n

 P
at

te
rn

D = 5 cells
D = 6 cells
D = 7 cells
Aperture-Based

(c)

Figure 14.6: (a) Radiation from the double slit for angles between −5 and 90 degrees (the pattern
is symmetric about zero degrees). Results are shown for boundary displacements D of 5, 6, and
7 cells. The arithmetic mean is used. (b) Expanded view of the central peak using the arithmetic
mean. Also shown are the fields obtained when a single field component is recorded over the
aperture and transformed to the far field. (c) Same as (b) except the geometric mean is used. The
variation of the fields caused by the displacement of the boundary is now essentially negligible.



368 CHAPTER 14. NEAR-TO-FAR-FIELD TRANSFORMATION

x

y

z

   incident

plane wave

circular scatterer

radius = 8

TFSF
boundary

integration
boundary

Figure 14.7: Geometry of the circular PEC cylinder.

fields on the integration boundary. The variation between these peaks is less than 0.022, i.e., a
reduction in variation by a factor of approximately 270. This demonstrates that, unlike with the
arithmetic mean, the location of the integration boundary is effectively irrelevant when using the
GM-NTFF transform.

Naturally, at finer discretizations, the difference between the geometric mean and the arithmetic
mean are less dramatic, but the geometric mean consistently performs better than the arithmetic
mean.

(Simpson’s rule was used for all integrations except for the integration of the aperture fields
where a Riemann sum was used.)

14.7.2 Scattering from a Circular Cylinder
Consider scattering from a PEC circular cylinder under TMz polarization as shown in Fig. 14.7.
The Dey-Mittra scheme is employed to help reduce the effects of staircasing [4]. The cylinder has
eight cells along its radius. A pulsed plane wave which travels in the x direction is introduced via
a TFSF boundary. The simulation is run 512 time steps. Because the Dey-Mittra scheme is used,
the Courant number was reduced to approximately 35 percent of the 2D limit in order to ensure
stability [5].

Figure 14.8 shows the wavelength-normalized scattering width of the cylinder as a function of
scattering angle obtained using the series solution for a circular cylinder [6], the arithmetic-mean
NTFF transform, and the GM-NTFF transform. (The normalized scattering width is the same as
the radiation pattern given in (14.87) where ρ is now taken to be the distance from the center of the
cylinder.) The discretization is such that there are 9.92526 cells per wavelength at the frequency
being considered here. One should keep in mind that the discretization of the cylinder introduces
some errors and hence the “exact” solution for a circular cylinder is not truly exact for the scatterer



14.7. NTFF TRANSFORMATIONS USING THE GEOMETRIC MEAN 369

0 15 30 45 60 75 90 105 120 135 150 165 180

Scattering Angle φ [degrees]

1

10

S
ca

tt
er

in
g

 W
id

th
 σ

2
D

/λ

Exact
Arithmetic Mean
Geometric Mean

Figure 14.8: Scattering width of a circular cylinder. The radius is eight cells and the frequency
corresponds to 9.92526 cells per wavelength.

present in the simulation. Therefore, the reference solution does not provide a perfect way with
which to judge the solutions. Nevertheless, one hopes that the FDTD scatterer, when employing
the Dey-Mittra scheme, is a close approximation to a true circular scatterer and thus the exact
solution from the continuous world provides a reasonable basis for comparison.

The difference between the solutions in Fig. 14.8 are seen to be relatively small. Figure 14.9
shows a plot of the magnitude of the difference between the exact solution and the FDTD-based
solutions. Although there are angles where the arithmetic mean performs better than the geometric
mean, in general the geometric mean is better. The integrated error for angles between 0 and π is
0.6936 for the arithmetic mean and 0.3221, i.e., the error is reduced by more than a factor of two
by using the geometric mean.

14.7.3 Scattering from a Strongly Forward-Scattering Sphere
Finally, consider scattering from a dielectric sphere, depicted in Fig. 14.10, which has a relative
permittivity ϵr of 1.21. Such a sphere was considered in [7] and can also be found in Sec. 8.7 of
[8]. In this case the transformation traditionally entails finding the tangential fields over the six
sides of a cuboid which bounds the sphere. The sphere is discretized such that there are 60 cells
along the radius. A staircase representation is used (where a node is simply either inside or outside
the sphere). The simulation is run at 95 percent of the 3D Courant limit (0.95/

√
3) for 2048 time

steps. The grid is terminated with an eight-cell perfectly-matched layer.
Figure 14.11 shows the normalized scattering cross section as a function of the equatorial angle

ϕ. The frequency corresponds to 20.06 cells per wavelength. The exact solution was obtained via
the Mie series (see, e.g., [9]). As was the case in 2D, both the arithmetic and geometric mean
perform reasonably well, but the geometric mean is generally more accurate than the arithmetic
mean. In Fig. 14.11 visible errors are only present near the back-scattering direction of ϕ = 180



370 CHAPTER 14. NEAR-TO-FAR-FIELD TRANSFORMATION

0 15 30 45 60 75 90 105 120 135 150 165 180

Scattering Angle φ [degrees]

0

0.2

0.4

0.6

0.8

1

E
rr

o
r 

M
ag

n
it

u
d

e
Arithmetic Mean
Geometric Mean

Figure 14.9: Magnitude of the difference between the FDTD-based solutions and the nominally
exact solution.

y

x

z

H
i=Hy ay

^

E
i=Ez az

^

k
i=kx ax

^

φ

i

i

i

Figure 14.10: Geometry of the dielectric sphere. The relative permittivity ϵr is 1.21. This incident
field is polarized in the z direction and travels in the x direction. The equatorial angle ϕ is in the
xy-plane with ϕ = 0 corresponding to the +x direction.



14.7. NTFF TRANSFORMATIONS USING THE GEOMETRIC MEAN 371

0 15 30 45 60 75 90 105 120 135 150 165 180

Equatorial angle φ [degrees]

0.0001

0.001

0.01

0.1

1

10

100

1000

N
o
rm

al
iz

ed
 c

ro
ss

 s
ec

ti
o
n
 σ

/λ
2

Exact
Arithmetic mean
Geometric mean

Figure 14.11: Scattering cross section of a dielectric sphere versus the equatorial angle ϕ. The
sphere is discretized with 60 cells along the radius and the frequency used here corresponds to
20.06 cells per wavelength.

degrees. Note that there is a large difference, approximately five orders of magnitude, between the
scattering in the forward and backward directions.

In order to improve the results in the back-scattering direction Li et al. [7] advocated calculating
the transformation using the five faces other than the forward-scattering face. Figure 14.12 shows
the normalized backscattering cross section versus wavelength (expressed in terms of number of
cells per wavelength) calculated using the arithmetic mean. The normalized cross section is given
by

1

λ2
lim
r→∞

[
4πr2

|Êz(θ, ϕ)|2

|Êi
z|2

]
(14.88)

where r is the distance from the center of the sphere, θ is the azimuthal angle and ϕ is the equatorial
angle. For backscatter, θ is π/2 and ϕ is π.

The NTFF transform results shown in Fig. 14.12 were calculated using either the fields over
all six faces of the integration boundary or the fields over the five faces advocated by Li et al. The
results in this figure correspond to those shown in Fig. 1(b) of [7] for the sphere with a radius
of 3 µm. (However, for the sake of generality, here the results are plotted in terms of unitless
quantities.) Note that the six-sided arithmetic-mean results presented here are better than those
presented in [7]. We were able to duplicate the results presented in [7] by not applying a temporal
phase-correction factor (or, similarly, by applying a correction factor which is twice the factor
given here). Nevertheless, the recommendation of Li et al. is true that the five-sided computation



372 CHAPTER 14. NEAR-TO-FAR-FIELD TRANSFORMATION

20 25 30 35 40

Cells per wavelength

0.01

0.1

1

N
o
rm

al
iz

ed
 b

ac
k
sc

at
te

ri
n
g
 c

ro
ss

 s
ec

ti
o
n
 σ

b
/λ

2
Exact
Arithmetic, 6-sided transform

Arithmetic, 5-sided transform

Figure 14.12: Backscatter from a sphere with ϵr = 1.21 versus the wavelength (expressed in terms
of number of cells). The FDTD transformations are calculated using the arithmetic mean and either
a five- or six-sided transformation boundary.

is better than the six-sided one for calculating the backscattering when using the arithmetic mean.
However, for directions other than backscatter or for other sizes, one does not know a priori if a
face should or should not be discarded.

Figure 14.13 is the same as Fig. 14.12 except the transformation is done using the GM-NTFF
transform. In this case discarding data from the forward-scattering face actually slightly degrades
the quality of the transform. Thus, when using the geometric mean there is no need to discard data.
One can use it confidently for all scattering angles and all sizes.

To summarize, unlike the traditional arithmetic mean, for a single harmonic plane wave the
geometric mean accounts for the spatial offset of the fields in a way that is exact. In practice,
where a spectrum of wave vectors are present, the geometric mean typically performs significantly
better than the arithmetic mean. The geometric mean is much less sensitive to the integration-
boundary location than is the arithmetic mean. For strongly forward-scattering objects, the use
of the geometric mean obviates the need to discard the fields over the forward face (as has been
advocated previously) when calculating the backscatter. The geometric mean does entail a slight
increase in computational cost because for each node along the integration boundary a DFT must
be calculated for three fields instead of two. However, this cost is typically minor compared to the
overall simulation cost.



14.7. NTFF TRANSFORMATIONS USING THE GEOMETRIC MEAN 373

20 25 30 35 40

Cells per wavelength

0.001

0.01

0.1

1

N
o
rm

al
iz

ed
 b

ac
k
sc

at
te

ri
n
g
 c

ro
ss

 s
ec

ti
o
n
 σ

b
/λ

2

Exact
Geometric, 6-sided

Geometric, 5-sided transform

Figure 14.13: Backscatter from a sphere with ϵr = 1.21 versus the wavelength (expressed in terms
of number of cells). The transformations use the geometric mean and the fields over either five or
six faces of the integration boundary.



.374 CHAPTER 14. NEAR-TO-FAR-FIELD TRANSFORMATION



Appendix A

Construction of Fourth-Order Central
Differences

Assuming a uniform spacing of δ between sample points, we seek an approximation of the deriva-
tive of a function at x0 which falls midway between two sample point. Taking the Taylor series
expansion of the function at the four sample points nearest to x0 yields

f

(
x0 +

3δ

2

)
= f(x0) +

3δ

2
f ′(x0) +

1

2!

(
3δ

2

)2

f ′′(x0) +
1

3!

(
3δ

2

)3

f ′′′(x0) + . . . , (A.1)

f

(
x0 +

δ

2

)
= f(x0) +

δ

2
f ′(x0) +

1

2!

(
δ

2

)2

f ′′(x0) +
1

3!

(
δ

2

)3

f ′′′(x0) + . . . , (A.2)

f

(
x0 −

δ

2

)
= f(x0)−

δ

2
f ′(x0) +

1

2!

(
δ

2

)2

f ′′(x0)−
1

3!

(
δ

2

)3

f ′′′(x0) + . . . , (A.3)

f

(
x0 −

3δ

2

)
= f(x0)−

3δ

2
f ′(x0) +

1

2!

(
3δ

2

)2

f ′′(x0)−
1

3!

(
3δ

2

)3

f ′′′(x0) + . . . (A.4)

Subtracting (A.3) from (A.2) and (A.4) from (A.1) yields

f

(
x0 +

δ

2

)
− f

(
x0 −

δ

2

)
= δf ′(x0) +

2

3!

(
δ

2

)3

f ′′′(x0) + . . . (A.5)

f

(
x0 +

3δ

2

)
− f

(
x0 −

3δ

2

)
= 3δf ′(x0) +

2

3!

(
3δ

2

)3

f ′′′(x0) + . . . (A.6)

The goal now is to eliminate the term containing f ′′′(x0). This can be accomplished by multiplying
(A.5) by 27 and then subtracting (A.6). The result is

27f

(
x0 +

δ

2

)
− 27f

(
x0 −

δ

2

)
− f

(
x0 +

3δ

2

)
+ f

(
x0 −

3δ

2

)
= 24δf ′(x0) +O(δ5). (A.7)

Solving for f ′(x0) yields

df(x)

dx

∣∣∣∣
x=x0

=
9

8

f
(
x0 +

δ
2

)
− f

(
x0 − δ

2

)
δ

− 1

24

f
(
x0 +

3δ
2

)
− f

(
x0 − 3δ

2

)
δ

+O(δ4). (A.8)

A.375



A.376 APPENDIX A. CONSTRUCTION OF FOURTH-ORDER CENTRAL DIFFERENCES

The first term on the right-hand side is the contribution from the sample points nearest x0 and the
second term is the contribution from the next nearest points. The highest-order term not shown is
fourth-order in terms of δ.



Appendix B

Generating a Waterfall Plot and Animation

Assume we are interested in plotting multiple snapshots of one-dimensional data. Further assume
these snapshots are in separate and sequentially numbered data files with a common base name.
A waterfall plot displays all the snapshots in a single image where each snapshot is offset slightly
from the next. On the other hand, animations display one image at a time, but cycle through
the images quickly enough so that one can clearly visualize the temporal behavior of the field.
Animations are a wonderful way to ascertain what is happening in an FDTD simulation but, since
there is no way to put an animation on a piece of paper, waterfall plots also have a great deal of
utility.

We begin by discussing waterfall plots. First, the data from the individual frames must be
loaded into MATLAB. The m-file for a function to accomplish this is shown in Program B.1. This
function, readOneD(), reads each frame and stores the data into a matrix—each row of which
corresponds to one frame. readOneD() takes a single argument corresponding to the base name
of the frames. For example, issuing the command z = readOneD(’sim’); would create a
matrix z where the first row corresponded to the data in file sim.0, the second row to the data in
file sim.1, and so on.

Note that there is a waterfall() function built into MATLAB. One could use that to display
the data by issuing the command waterfall(z). However, the built-in command is arguably
overkill. Its hidden-line removal and colorization slow the rendering and do not necessarily aide in
the visualization of the data.

The plot shown in Fig. 3.9 did not use MATLAB’s waterfall() function. Instead, it was
generated using a function called simpleWaterfall() whose m-file is shown in Program
B.2. This command takes three arguments. The first is the matrix which would be created by
readOneD(), the second is the vertical offset between successive plots, and the third is a vertical
scale factor.

Given these two m-files, Fig. 3.9 was generated using the following commands:

1 z = readOneD(’sim’);
2 simpleWaterfall(z, 1, 1.9) % vertical offset = 1, scale factor = 1.9
3 xlabel(’Space [spatial index]’, ’Interpreter’, ’latex’)
4 ylabel(’Time [frame number]’, ’Interpreter’, ’latex’)
5 axis([0 200 0 45])
6 set(gca, ’FontSize’, 14)

B.377



B.378 APPENDIX B. GENERATING A WATERFALL PLOT AND ANIMATION

Program B.1 readOneD.mMATLAB code to read one-dimensional data from a series of frames.

1 function z = readOneD(basename)
2 %readOneD(BASENAME) Read 1D data from a series of frames.
3 % [Z,dataLength,nFrames] = readOneD(BASENAME) Data
4 % is read from a series of data files all which have
5 % the common base name given by the string BASENAME,
6 % then a dot, then a frame index (generally starting
7 % with zero). Each frame corresponds to one row of Z.
8

9 % read the first frame and establish length of data
10 nFrames = 0;
11 filename = sprintf(’%s.%d’, basename, nFrames);
12 nFrames = nFrames + 1;
13 if exist(filename, ’file’)
14 z = readmatrix(filename, ’FileType’, ’text’);
15 dataLength = length(z);
16 else
17 return;
18 end
19

20 % loop through other frames and break out of loop
21 % when next frame does not exist
22 while 1
23 filename = sprintf(’%s.%d’,basename,nFrames);
24 nFrames = nFrames + 1;
25 if exist(filename, ’file’)
26 zTmp = readmatrix(filename, ’FileType’, ’text’);
27 if length(zTmp) ˜= dataLength % check length matches
28 error(’Frames have different sizes.’)
29 break;
30 end
31 z = [z zTmp]; % append new data to z
32 else
33 break;
34 end
35 end
36

37 % Reshape z to appropriate dimensions. Want each row to correspond to
38 % a snapshot.
39 z = reshape(z, dataLength, nFrames - 1);
40 z=z’;
41

42 end



B.379

Program B.2 simpleWaterfall.m MATLAB function to generate a simple waterfall plot.

1 function simpleWaterfall(z, offset, scale)
2 %simpleWaterfall Waterfall plot from offset x-y plots.
3 % simpleWaterfall(Z, OFFSET, SCALE) Plots each row of z
4 % where successive plots are offset from each other by
5 % OFFSET and each plot is scaled vertically by SCALE.
6 % All plots are plotted as black lines.
7

8 hold off % release any previous plot
9 plot(scale*z(1,:), ’k’) % plot the first row

10 hold on % hold the plot
11

12 for i=2:size(z,1) % plot the remaining rows
13 plot(scale*z(i,:) + offset*(i-1), ’k’)
14 end
15

16 hold off % release the plot
17

18 end

A function to generate an animation of one-dimensional data sets is shown in Program B.3.
There are multiple ways to accomplish this goal and thus one should keep in mind that Program B.3
is not necessarily the best approach for a particular situation. The function in Program B.3 is called
oneDmovie() and it takes three arguments: the base name of the snapshots, and the minimum
and maximum values of the vertical axis. The function uses a loop, starting in line 25, to read each
of the snapshots. Each snapshot is plotted and the plot recorded as a frame of a MATLAB “movie”
(see the MATLAB command movie() for further details). The oneDmovie() function returns
an array of movie frames. As an example, assume the base name is “sim” and the user wants the
plots to range from −1.0 to 1.0. The following commands would display the animation 10 times
(the second argument to the movie() command controls how often the movie is repeated):

reel = oneDmovie(’sim’, -1, 1);
movie(reel, 10)

An alternative implementation might read all the data first, as was done with the waterfall plot, and
then determine the “global” minimum and maximum values from the data itself. This would free
the user from specify those value as oneDmovie() currently requires. Such an implementation
is left to the interested reader.

Program B.3 oneDmovie.m MATLAB function which can be used to generate an animation
for multiple one-dimensional data sets. For further information on MATLAB movies, see the
MATLAB command movie.



B.380 APPENDIX B. GENERATING A WATERFALL PLOT AND ANIMATION

1 function reel = oneDmovie(basename, y_min, y_max)
2 % oneDmovie Create a movie from data file with a common base
3 % name which contain 1D data.
4 %
5 % basename = common base name of all files
6 % y_min = minimum value used for all frames
7 % y_max = maximum value used for all frames
8 %
9 % reel = movie which can be played with a command such as:

10 % movie(reel, 10)
11 % This would play the movie 10 times. To control the frame
12 % rate, add a third argument specifying the desired rate.
13

14 % open the first frame (i.e., first data file).
15 frame = 1;
16 filename = sprintf(’%s.%d’, basename, frame);
17 fid = fopen(filename, ’rt’);
18

19 % to work around rendering bug under Mac OS X see:
20 % <www.mathworks.com/support/solutions/
21 % data/1-VW0GM.html?solution=1-VW0GM>
22 figure; set(gcf, ’Renderer’, ’zbuffer’);
23

24 % provided fid is not -1, there is another file to process
25 while fid ˜= -1
26 data=fscanf(fid, ’%f’); % read the data
27 plot(data) % plot the data
28 axis([0 length(data) y_min y_max]) % scale axes appropriately
29 reel(frame) = getframe; % capture the frame for the movie
30

31 % construct the next file name and try to open it
32 frame = frame + 1;
33 filename = sprintf(’%s.%d’, basename, frame);
34 fid = fopen(filename, ’rb’);
35 end
36

37 end



Appendix C

Generating an Animation of 1D Snapshots
Contained in a Single File

Here we assume that there is a single data file that contains multiple snapshots of a 1D computa-
tional domain. Perhaps this file was created by the code in Program 3.5 and we will assume the
file is called sim.dat. The following MATLAB commands provide a simple way of animating
these snapshots.

Program C.1 MATLAB commands that can be used to generate an animation to the screen where
the snapshot data are contained in a single file.

1 z = readmatrix("sim.dat");
2

3 for i=1:length(z)
4 plot(z(i,:), ’LineWidth’, 2)
5 grid on
6 axis([0 size(z,2) -1 1]) % Axes scales should be set appropriately
7 % as it is applied to all frames.
8 drawnow % Forces the plot to be drawn "now."
9 pause(0.1) % Time, in seconds, to pause before drawing the next frame.

10 end

C.381



C.382APPENDIX C. GENERATING AN ANIMATION OF 1D SNAPSHOTS CONTAINED IN A SINGLE FILE



Appendix D

Rendering and Animating Two-Dimensional
Data

The function shown below is MATLAB code that can be used to generate a movie from a sequence
of binary (raw) files. The files (or frames) are assumed to be named such that they share a com-
mon base name then have a dot followed by a frame number. Here the frame number is assumed
to start at zero. The function can have one, two, or three arguments. This first argument is the
base name, the second is the value which is used to normalize all the data, and the third argument
specifies the number of decades of data to display. Here the absolute value of the data is plotted
in a color-mapped imaged. Logarithmic (base 10) scaling is used so that the value which is nor-
malized to unity will correspond to zero on the color scale and the smallest normalized value will
correspond, on the color scale, to the negative of the number of decades (e.g., if the number of
decades were three, the smallest value would correspond to −3). This smallest normalized value
actually corresponds to a normalized value of 10−d where d is the number of decades. Thus the
(normalized) values shown in the output varying from 10−d to 1. The default normalization and
number of decades are 1 and 3, respectively.

Program D.1 raw2movie.m MATLAB function to generate a movie given a sequence of raw
files.

1 function reel = raw2movie(basename, z_norm, decades)
2 % raw2movie Creates a movie from "raw" files with a common base
3 % name.
4 %
5 % The absolute value of the data is used together with
6 % logarithmic scaling. The user may specify one, two, or
7 % three arguments.
8 % raw2movie(basename, z_norm, decades) or
9 % raw2movie(basename, z_norm) or

10 % raw2movie(basename):
11 % basename = common base name for all files
12 % z_norm = value used to normalize all frames, typically this
13 % would be the maximum value for all the frames.

D.383



D.384 APPENDIX D. RENDERING AND ANIMATING TWO-DIMENSIONAL DATA

14 % Default value is 1.
15 % decades = decades to be used in the display. The normalized
16 % data is assumed to vary between 1.0 and 10ˆ(-decades)
17 % so that after taking the log (base 10), the values
18 % vary between 0 and -decades. Default value is 3.
19 %
20 % return value:
21 % reel = movie which can be played with a command such as:
22 % movie(reel, 10)
23 % pcolor() is used to generate the frames.
24 %
25 % raw file format:
26 % The raw files are assumed to consist of all floats (in
27 % binary format). The first two elements specify the horizontal
28 % and vertical dimensions. Then the data itself is given in
29 % English book-reading order, i.e., from the upper left corner
30 % of the image and then scanned left to right. The frame number
31 % is assumed to start at zero.
32

33 % set defaults if we have less than three arguments
34 if nargin < 3, decades = 3; end
35 if nargin < 2, z_norm = 1.0; end
36

37 % open the first frame
38 frame = 0;
39 filename = sprintf(’%s.%d’, basename, frame);
40 fid = fopen(filename, ’rb’);
41

42 if fid == -1
43 error([’raw2movie: initial frame not found: ’, filename])
44 end
45

46 % to work around rendering bug under Mac OS X implementation.
47 figure; set(gcf, ’Renderer’, ’zbuffer’);
48

49 % provided fid is not -1, there is another file to process
50 while fid ˜= -1
51 size_x = fread(fid, 1, ’single’);
52 size_y = fread(fid, 1, ’single’);
53

54 data = flipud(transpose(...
55 reshape(...
56 fread(fid, size_x * size_y, ’single’), size_x, size_y)...
57 ));
58

59 % plot the data
60 if decades ˜= 0



D.385

61 pcolor(log10(abs((data + realmin) / z_norm)))
62 shading flat
63 axis equal
64 axis([1 size_x 1 size_y])
65 caxis([-decades 0])
66 colorbar
67 else
68 pcolor(abs((data + realmin) / z_norm))
69 shading flat
70 axis equal
71 axis([1 size_x 1 size_y])
72 caxis([0 1])
73 colorbar
74 end
75

76 % capture the frame for the movie (MATLAB wants index to start
77 % at 1, not zero, hence the addition of one to the frame)
78 reel(frame + 1) = getframe;
79

80 % construct the next file name and try to open it
81 frame = frame + 1;
82 filename = sprintf(’%s.%d’, basename, frame);
83 fid = fopen(filename,’ rb’);
84

85 end



D.386 APPENDIX D. RENDERING AND ANIMATING TWO-DIMENSIONAL DATA



Appendix E

Notation

c speed of light in free space = 1/
√
µ0ϵ0 ≈ 3× 108 m/s

Nfreq index of spectral component corresponding to a frequency with discretization Nλ

ϵ permittivity ϵrϵ0, F/m
ϵr relative permittivity (unitless)
ϵ0 permittivity of free space = 8.854× 10−12, F/m
µ permeability µrµ0, H/m
µr relative permeability (unitless)
µ0 permeability of free space = 4π × 10−7, H/m
Nλ number of points per wavelength for a given frequency

(the wavelength is the one pertaining to propagation in free space)
NL number of points per skin depth (L for loss)
NP number of points per wavelength at peak frequency of a Ricker wavelet
NT number of time steps in a simulation
Sc Courant number (c∆t/∆x in one dimension)
st temporal shift operator
sx spatial shift operator (in the x direction)

E.387



E.388 APPENDIX E. NOTATION



Appendix F

PostScript Primer

F.1 Introduction
PostScript was developed by Adobe Systems Incorporated and is both a page-description language
and a programming language. Unlike a JPEG or GIF file which says what each pixel in an image
should be, PostScript is “vector based” and thus a PostScript file specifies graphic primitives, such
as lines and arcs. There primitives are described by various PostScript commands. The quality of
the image described by a PostScript file will depend on the output device. For example, a laser
printer with 1200 dots per inch will draw a better curved line than would a laser printer with 300
dots per inch (although both will typically produce very good output).

The goal here is to show how one can easily generate PostScript files which convey informa-
tion about an FDTD simulation. Thus we are more interested in the page-description aspects of
PostScript rather than its programming capabilities. (There is a wonderful book and Web site by
Bill Casselman that describe PostScript extremely well while illustrating a host of mathematical
concepts. The book is entitled Mathematical Illustrations: A Manual of Geometry and PostScript
which you can find at www.math.ubc.ca/˜cass/graphics/manual/. It is well worth
checking out.)

PostScript is a Forth-like language in that it uses what is known as postfix notation. If you have
used an RPN (reverse Polish notation) calculator, you are familiar with postfix notation. You put
arguments onto a “stack” and then select an operation which “pops” the arguments from the stack
and operates on them. For example, to add 3 and 12 you would enter the following:

3
<ENTER>
12
+

When 3 is typed on the keypad, it is placed at the top of the stack. It is pushed onto the next stack
location by hitting the ENTER key. When 12 is typed, it is put at the top of the stack. Hitting the
plus sign tells the calculator you want to add the top two numbers on the stack, i.e., the 3 and 12.
These numbers are popped (i.e., taken) from the stack, and the result of the addition (15) is placed
at the top of the stack.

Lecture notes by John Schneider. postscript-primer.tex

F.389

www.math.ubc.ca/~cass/graphics/manual/


F.390 APPENDIX F. POSTSCRIPT PRIMER

The PostScript language is much like this. Arguments are given before the operations. Giv-
ing arguments before operations facilitates the construction of simple interpreters. PostScript in-
terpreters typically have the task of translating the commands in a PostScript file to some form
of viewable graphics. For example, there are PostScript printers which translate (interpret) a
PostScript file into a printed page. Most computers have PostScript interpreters which permit
the graphics described in a PostScript file to be displayed on the screen. There are free PostScript
interpreters available via the Web (you should do a search for GhostScript if you are in need of an
interpreter).

F.2 The PostScript File
A file which contains PostScript commands, which we will call a PostScript file, is a plain ASCII
file which must start with “%!PS”. These characters are often referred to as a “magic word.”
Magic words appear at the start of many computer files and identify the contents of the file. This
%!PS magic word identifies the contents of the file as PostScript to the interpreter. (The names of
PostScript file often end with the suffix .ps, but the interpreter does not care what the file name
is.) The last command in a PostScript file is typically showpage. This command essentially tells
the interpreter that all the commands have been given and the page (or screen image or whatever)
should be rendered.

What comes between %!PS and showpage are the commands which specify how the page
should appear. Before exploring some of these commands it is important to know that a PostScript
interpreter, by default, thinks in terms of units of “points” which are not points in the geometric
sense, but rather 1/72 of an inch. Points are a traditional unit used in the printing industry (thus a
“12-point font” is one for which a typical capital letter is 12/72 of an inch high). A default “page”
is 8.5 by 11 inches and thus 612 by 792 points. The origin is the lower left corner of the page.

F.3 PostScript Basic Commands
The PostScript command moveto takes two arguments: the x and y coordinates to which the
current point should be moved. You can think of the current point as akin to the point where the tip
of a pen is moved. To define a line we can give the command lineto. lineto also takes two
arguments: the x and y coordinates of the point to which the line should be drawn. In PostScript,
after issuing the lineto command we have merely defined the path of the line—we have not
actually drawn anything yet. You can think of this as the pen having drawn the line in invisible ink.
We have to issue one more command to make the line visible, the stroke command.

A complete PostScript file (which we will identify as a “Program”) which draws a line from
the point (100, 200) to the point (300, 600) is shown in Program F.1.

Program F.1 PostScript commands to draw a single tilted line.

%!PS
100 200 moveto



F.3. POSTSCRIPT BASIC COMMANDS F.391

(0,0)

(0,796)

(612,0)

(612,796)

Figure F.1: Simple line rendered by the PostScript commands giving in Program F.1 and F.2. The
surrounding box and corner labels have been added for the sake of clarity.

300 600 lineto
stroke
showpage

The image drawn by these commands is shown in Fig. F.1. The surrounding border and coordinate
labels have been added for clarity. The only thing which would actually be rendered is the tilted
line shown within the border.

Instead of using the command lineto to specify the point to which we want the line to
be drawn, the command rlineto can be used where now the arguments specify the relative
movement from the current point (hence the “r” for relative). The arguments of rlineto specify
the relative displacement from the current point. In the commands in Program F.1, the line which
was drawn went 200 points in the x direction and 400 points in the y direction from the starting
point. Thus instead of writing 300 600 lineto, one could obtain the same result using 200
400 rlineto. PostScript does not care about whitespace and the percent sign is used to indicate
the start of a comment (the interpreter ignores everything from the percent sign to the end of the
line). Thus, another file which would also yield the output shown in Fig. F.1 is shown in Program
F.2. (The magic word must appear by itself on the first line of the file.)

Program F.2 PostScript commands to draw a single tilted line. Here the rlineto command is
used. The resulting image is identical to the one produced by Program F.1 and is shown in Fig.
F.1.



F.392 APPENDIX F. POSTSCRIPT PRIMER

%!PS
% tilted line using the rlineto command
100 200 moveto 300 600 lineto stroke showpage

When creating graphics it is often convenient to redefine the origin of the coordinate system to a
point which is more natural to the object being drawn. PostScript allows us to translate the origin to
any point on the page using the translate command. This command also takes two arguments
corresponding to the point in the current coordinate system where the new origin should be located.
For example, let us assume we want to think in terms of both positive and negative coordinates.
Therefore we wish to place the origin in the middle of the page. This can be accomplished with the
command 306 396 translate. The PostScript commands shown in Program F.3 demonstrate
the use of the translate command.

Program F.3 PostScript commands which first translate the origin to the center of the page and
then draw four lines which “radiate away” from the origin. The corner labels show the corner
coordinates after the translation of the origin to the center of the page.

%!PS
306 398 translate % translate origin to center of page
100 100 moveto 50 50 rlineto stroke
-100 100 moveto -50 50 rlineto stroke
-100 -100 moveto -50 -50 rlineto stroke
100 -100 moveto 50 -50 rlineto stroke
showpage

Program F.3 yields the results shown in Fig. F.2.
As you might imagine, thinking in terms of units of points (1/72 of an inch) is not always

convenient. PostScript allows us to scale the dimensions by any desired value using the scale
command. In fact, one can use a different scale factor in both the x and the y directions and thus
scale takes two arguments. However, we will stick to using equal scaling in both directions.

In the previous example, all the locations were specified in terms of multiples of 50. Therefore
it might make sense to scale the dimensions by a factor of 50 (in both the x and y direction). This
scaling should be done after the translation of the origin. We might anticipate that the commands
shown in Program F.4 would render the same output as shown in Fig. F.2.

Program F.4 PostScript file where the units are scaled by a factor of 50 in both the x and y
dimensions.



F.3. POSTSCRIPT BASIC COMMANDS F.393

(-306,-398)

(-306,398)

(306,-398)

(306,398)

Figure F.2: Output rendered by Program F.3 which translates the origin to the center of the page.
This output is also produced by Program F.5 and Program F.6.

%!PS
306 398 translate
50 50 scale % scale units in x and y direction by 50
2 2 moveto 1 1 rlineto stroke
-2 2 moveto -1 1 rlineto stroke
-2 -2 moveto -1 -1 rlineto stroke
2 -2 moveto 1 -1 rlineto stroke
showpage

However this file yields the output shown in Fig. F.3. Note that the lines which radiate from origin
are now much thicker. In fact, they are 50 times thicker than they were in the previous image. By
default, a line in PostScript has a thickness of unity i.e., one point. The scale command scaled
the line thickness along with all the other dimensions so that now the line thickness is 50 points.

Although we have only given integer dimensions so far, as far as PostScript is concerned all
values are actually real numbers (i.e., floating-point numbers). We can control the line thickness
with the setlinewidth command which takes a single argument. If we want the line thickness
still to be one point, the line thickness should be set to the inverse of the scale factor, i.e., 1/50 =
0.02. Also, it is worth noting that the stroke command does not have to be given after each drawing
command. We just have to ensure that it is given before the end of the file (or before the line style
changes to something else). Thus, a PostScript file which scales the dimensions by 50 and produces
the same output as shown in Fig. F.2 is shown in Program F.4



F.394 APPENDIX F. POSTSCRIPT PRIMER

(-306,-398)

(-306,398)

(306,-398)

(306,398)

Figure F.3: Output rendered by Program F.4 which scales the units by 50.

Program F.5 PostScript file where the units are scaled by a factor of 50 and the line thickness is
corrected to account for this scaling. Note that a single stroke command is given.

%!PS
306 398 translate
50 50 scale
0.02 setlinewidth % correct line thickness to account for scaling
2 2 moveto 1 1 rlineto
-2 2 moveto -1 1 rlineto
-2 -2 moveto -1 -1 rlineto
2 -2 moveto 1 -1 rlineto stroke
showpage

PostScript permits the use of named variables and, as we shall see, named procedures. This
is accomplished using the def command which takes, essentially, two arguments: the first being
the literal string which is the variable or procedure name and the second being the value or proce-
dure (where the procedure would be enclosed in braces). A literal string is a backslash character
followed by the string. For example, the following sets the variable scalefactor to 50:

/scalefactor 50 def

After issuing this command, we can use scalefactor in place of 50 everywhere in the file.
The PostScript language includes a number of mathematical functions. One can add using

add, subtract using sub, multiply using mul, and divide using div. Each of these functions



F.3. POSTSCRIPT BASIC COMMANDS F.395

takes two arguments consistent with an RPN calculator. To calculate the inverse of 50, one could
issue the following command:

1 50 div

This places 1 on the stack, then 50, and then divides the two. The result, 0.02, remains at the top
of the stack.

The program shown in Program F.6 uses the def and div commands and is arguably a bit
cleaner and better self-documenting than the one shown in Program F.5. Program F.6 also produces
the output shown in Fig. F.2.

Program F.6 PostScript file which uses the def command to define a scale-factor which is set
to 50. The inverse of the scale-factor is obtained by using the div command to divide 1 by the
scale-factor.

%!PS
306 398 translate
% define "scalefactor" to be 50
/scalefactor 50 def
% scale x and y directions by the scale factor
scalefactor scalefactor scale
% set line width to inverse of the scale factor
1 scalefactor div setlinewidth
2 2 moveto 1 1 rlineto
-2 2 moveto -1 1 rlineto
-2 -2 moveto -1 -1 rlineto
2 -2 moveto 1 -1 rlineto stroke
showpage

The arc command takes five arguments: the x and y location of the center of the arc, the
radius of the arc, and the angles (in degrees) at which the arc starts and stops. For example, the
following command would draw a complete circle of radius 0.5 about the point (2, 2):

2 2 0.5 0 360 arc stroke

Let us assume we wish to draw several circles, each of radius 0.5. We only wish to change the
center of the circle. Rather than specifying the arc command each time with all its five arguments,
we can use the def command to make the program more compact. Consider the program shown
in Program F.7. Here the def command is used to say that the literal circle is equivalent to
0.5 0 360 arc stroke, i.e., three of the arguments are given to the arc command—one
just has to provide the two missing arguments which are the x and y location of the center of the
circle. The output produced by this program is shown in Fig. F.4.



F.396 APPENDIX F. POSTSCRIPT PRIMER

(-306,-398)

(-306,398)

(306,-398)

(306,398)

Figure F.4: Output rendered by Program F.7.

Program F.7 PostScript file which renders the output shown in Fig. F.4.

%!PS
306 398 translate
/scalefactor 50 def
scalefactor scalefactor scale
1 scalefactor div setlinewidth
/circle {0.5 0 360 arc stroke} def
2 2 circle
-2 2 circle
-2 -2 circle
2 -2 circle
showpage

In addition to stroke-ing a path, PostScript allows paths to be fill-ed using the fill com-
mand. So, instead of drawing a line around the perimeter of the circles shown in Fig. F.4, one can
obtain filled circles by issuing the fill command instead of the stroke command. Program F.8
and the corresponding output shown in Fig. F.5 illustrate this.

Program F.8 PostScript file which defines a stroke-ed and fill-ed circle. The corresponding
output is shown in Fig. F.5.



F.3. POSTSCRIPT BASIC COMMANDS F.397

(-306,-398)

(-306,398)

(306,-398)

(306,398)

Figure F.5: Output rendered by Program F.8.

%!PS
306 398 translate
/scalefactor 50 def
scalefactor scalefactor scale
1 scalefactor div setlinewidth
/circle {0.5 0 360 arc stroke} def
/circlef {0.5 0 360 arc fill} def
2 2 circlef
-2 2 circle
-2 -2 circlef
2 -2 circle
showpage

The PostScript commands we have considered are shown in Table F.1.
Instead of using an editor to write a PostScript file directly, we can use another program to

generate the PostScript file for us. Specifically, let us consider a C program which generates a
PostScript file. This program is supposed to demonstrate how one could use PostScript to display
a particular aspect of an FDTD grid. For example, let us assume we are using a TMz grid which
is 21 cells by 21 cells. There is a PEC cylinder with a radius of 5 which is centered in the grid.
We know that the Ez nodes which fall within the cylinder should be set to zero and this zeroing
operation would be done with a for-loop. However, precisely which nodes are being set to zero?
The code shown in Program F.9 could be incorporated into an FDTD program. This code produces
the PostScript output file grid.ps which renders the image shown in Fig. F.6. The first several
lines of the file grid.ps are shown in Fragment F.10.



F.398 APPENDIX F. POSTSCRIPT PRIMER

Command Description
x y moveto move current point to (x, y)
x y lineto draw a line from current point to (x, y)
δx δy rlineto from current point draw a line over δx and up δy
x y translate translate the origin to the point (x, y)
sx sy scale scale x and y coordinates by sx and sy
stroke “apply ink” to a previously defined path
fill fill the interior of a previously defined path
w setlinewidth set the line width to w
d1 d2 div calculate d1/d2; result is placed at top of stack
xc yc r a1 a2 arc draw an arc of radius r centered at (xc, yc)

starting at angle a1 and ending at angle a2 (degrees)
/literal {definition} def define the literal string to have the given definition;

braces are needed if the definition contains any whitespace

Table F.1: An assortment of PostScript commands and their arguments.

Program F.9 C program which generates a PostScript file. The file draws either a cross or a filled
circle depending on whether a node is outside or inside a circular boundary, respectively. The
rendered image is shown in Fig. F.6.

1 /* C program to generate a PostScript file which draws a cross
2 * if a point is outside of a circular boundary and draws a
3 * filled circle if the point is inside the boundary.
4 */
5

6 #include <stdio.h>
7 #include <math.h>
8

9 int is_inside_pec(double x, double y);
10

11 int main() {
12 int m, n;
13

14 FILE *out;
15

16 out = fopen("grid.ps","w"); // output file is "grid.ps"
17

18 /* header material for PostScript file */
19 fprintf(out,"%%!PS\n"
20 "306 396 translate\n"
21 "/scalefactor 20 def\n"
22 "scalefactor scalefactor scale\n"
23 "1 scalefactor div setlinewidth\n"



F.3. POSTSCRIPT BASIC COMMANDS F.399

24 "/cross {moveto\n"
25 " -.2 0 rmoveto .4 0 rlineto\n"
26 " -.2 -.2 rmoveto 0 .4 rlineto stroke} def\n"
27 "/circle {.2 0 360 arc fill} def\n"
28 );
29

30 for (m=-10; m<=10; m++)
31 for (n=-10; n<=10; n++)
32 if (is_inside_pec(m,n)) {
33 fprintf(out,"%d %d circle\n",m,n);
34 } else {
35 fprintf(out,"%d %d cross\n",m,n);
36 }
37

38 fprintf(out,"showpage\n");
39

40 return 0;
41 }
42

43 /* Function returns 1 if point (x,y) is inside a circle (or on
44 * the perimeter of circle) and returns 0 otherwise.
45 */
46 int is_inside_pec(double x, double y) {
47 double radius = 5.0;
48

49 return x*x + y*y <= radius*radius;
50 }

Fragment F.10 First several lines of the file grid.ps which is produced by Program F.9.

%!PS
306 396 translate
/scalefactor 20 def
scalefactor scalefactor scale
1 scalefactor div setlinewidth
/cross {moveto

-.2 0 rmoveto .4 0 rlineto
-.2 -.2 rmoveto 0 .4 rlineto stroke} def

/circle {.2 0 360 arc fill} def
-10 -10 cross
-10 -9 cross
-10 -8 cross
-10 -7 cross



F.400 APPENDIX F. POSTSCRIPT PRIMER

(-306,-398)

(-306,398)

(306,-398)

(306,398)

Figure F.6: Grid depiction rendered by the file grid.ps which is produced by Program F.9.
Crosses corresponds to nodes which are outside a circular boundary of radius 5. Filled circles
correspond to nodes inside the boundary (or identically on the perimeter of the boundary).



F.3. POSTSCRIPT BASIC COMMANDS F.401

-10 -6 cross
.
.
.



402 APPENDIX F. POSTSCRIPT PRIMER



Index

1Dadditive.c, 46
1DadditiveOneFile.c, 47
1DbareBones.c, 38
1Ddielectric.c, 60
1Dlossy.c, 67
1Dmatched.c, 70
1Dtfsf.c, 57
3d-tfsf-demo.c, 277
3ddemo.c, 254

abc.c, 107
abc3dfirst.c, 261
abctez.c, 234
abctmz.c, 217
absorbing boundary condition (ABC), 37, 50–

58
advection equation, 145–146
Ampere’s law, 25
animation, 50, B.377–C.381
auxiliary differential equation method, 294–296

calloc(), 74
central difference, 30
conduction current, 25
Courant number

definition, 35
local variation, 64

Debye material, 294
#define, 75–77
discrete Fourier transform (DFT), 121–127
dispersion, 64
displacement current, 25
Drude material, 291–292

electric field, 8
electric flux density, 10
electromotive force, 25
ezInc2.c, 98

ezInc2.h, 99
ezIncHarm.c, 132

Faraday’s law, 26
fdtd-alloc1.h, 191
fdtd-grid1.h, 189
fdtd-macro-tez.h, 231
fdtd-macro-tmz.h, 192
fdtd-macro.h, 255
fdtd-proto1.h, 194
fdtd-proto2.h, 212
fdtd1.h, 85
fdtd2.h, 96
fdtd3.h, 103
field, 8
free charge, 10

Gauss’s law, 10
Gauss’s theorem, 19
gcc

linking, 100
object code, 100
preprocessor output, 75

grid1dez.c, 216
grid1dhz.c, 238
grid3dhomo.c, 264
grid3dsphere.c, 281
gridInit2.c, 98
gridInit3.c, 105
gridInitLossy.c, 131
gridtezpec.c, 229
gridtmz.c, 195

harmonicDemo1.c, 90
harmonicDemo2.c, 92

improved1.c, 86
improved2.c, 93
improved3.c, 101

403



404 INDEX

Kramers-Kronig relations, 289

leap-frog method, 31
Liénard-Wiechert potentials, 9
Lorentz material, 292
Lorentzmaterial, 293
lossy material, 64–72

macros, 75–78
magnetic flux density, 23
make, 101
makedepend, 101
memory allocation, 73–74

oneEleventh.c, 2
operator notation, 153–155

paramDemo1.c, 89
paramDemo2.c, 91
permittivity

free space, 7
relative, 13

phase speed, 162
piecewise linear recursive convolution, 301
pointers, 73

Ricker wavelet, 118–135
ricker.c, 198
rootTest.c, 5

second-order accuracy, 30
sizeof(), 74
snapshot.c, 109
snapshot2d.c, 199
snapshot3d.c, 266
spatial step index, 32
struct, see structures
structDemo1.c, 79
structDemo2.c, 82
structures, 78

temporal step index, 32
tezdemo.c, 228
tfsf-3d-ez.c, 278
tfsf.c, 108
tfsftez.c, 237
tfsftmz.c, 214

tmzdemo1.c, 195
tmzdemo2.c, 210
total-field/scattered-field boundary, 52–59

update equations
one-dimensional, 31–35

update2.c, 97
update3.c, 106
update3d.c, 258
updatetez.c, 232
updatetmz.c, 197

waterfall plot, 50, B.377
wavenumber, 115

Yee algorithm, 30–31



Bibliography

[1] D. J. Griffiths. Introduction to Electrodynamics. Cambridge Press, Cambridge, UK, 4th edi-
tion, 2017.

[2] J. D. Jackson. Classical Electrodynamics. John Wiley & Sons, New York, 1962.

[3] D. Sullivan and J. L. Young. Far-field time-domain calculation from aperture radiators using
the FDTD method. IEEE Transactions on Antennas and Propagation, 49(3):464–469, March
2001.

[4] S. Dey and R. Mittra. A locally conformal finite-difference time-domain (FDTD) algorithm
for modeling three-dimensional perfectly conducting objects. IEEE Microwave Guided Wave
Letters, 7(9):273–275, September 1997.

[5] S. Benkler, N. Chavannes, and N. Kuster. A new 3-D conformal PEC FDTD scheme with user-
defined geometric precision and derived stability criterion. IEEE Transactions on Antennas
and Propagation, 54(6):1843–1849, June 2006.

[6] C. A. Balanis. Advanced Engineering Electromagnetics. John Wiley & Sons, New York, 1989.

[7] X. Li, A. Taflove, and V. Backman. Modified FDTD near-to-far-field transformation for im-
proved backscattering calculation of strongly forward-scattering objects. IEEE Antennas and
Wireless Propagation Letters, 4:35–38, 2005.

[8] A. Taflove and S. Hagness. Computational Electrodynamics: The Finite-Difference Time-
Domain Method, 3 ed. Artech House, Boston, MA, 2005.

[9] A. Ishimaru. Electromagnetic Wave Propagation, Radiation, and Scattering. Prentice Hall,
Englewood Cliffs, New Jersey, 1991.

405


	Preface
	Numeric Artifacts
	Introduction
	Finite Precision
	Symbolic Manipulation

	Brief Review of Electromagnetics
	Introduction
	Coulomb's Law and Electric Field
	Electric Flux Density
	Static Electric Fields
	Gradient, Divergence, and Curl
	Laplacian
	Gauss's and Stokes' Theorems
	Electric Field Boundary Conditions
	Conductivity and Perfect Electric Conductors
	Magnetic Fields
	Magnetic Field Boundary Conditions
	Summary of Static Fields
	Time Varying Fields
	Summary of Time-Varying Fields
	Wave Equation in a Source-Free Region
	One-Dimensional Solutions to the Wave Equation 

	Introduction to the FDTD Method
	Introduction
	The Yee Algorithm 
	Update Equations in One (Spatial) Dimension 
	Computer Implementation of a One-Dimensional FDTD Simulation
	Bare-Bones Simulation 
	PMC Boundary in One Dimension 
	Snapshots of the Field
	Additive Source 
	Terminating the Grid 
	Total-Field/Scattered-Field Boundary 
	Inhomogeneities 
	Lossy Material 

	Improving the FDTD Code 
	Introduction
	Arrays and Dynamic Memory Allocation 
	Macros 
	Structures
	Improvement Number One 
	Modular Design and Initialization Functions
	Improvement Number Two
	Compiling Modular Code 
	Improvement Number Three 

	Scaling FDTD Simulations to Any Frequency 
	Introduction
	Sources
	Gaussian Pulse
	Harmonic Sources 
	The Ricker Wavelet 

	Mapping Frequencies to Discrete Fourier Transforms 
	Running Discrete Fourier Transform (DFT) 
	Real Signals and DFT's 
	Amplitude and Phase from Two Time-Domain Samples 
	Conductivity 
	Transmission Coefficient for a Planar Interface
	Transmission through Planar Interface
	Measuring the Transmission Coefficient Using FDTD 


	Differential-Equation Based ABC's
	Introduction
	The Advection Equation 
	Terminating the Grid
	Implementation of a First-Order ABC
	ABC Expressed Using Operator Notation 
	Second-Order ABC 
	Implementation of a Second-Order ABC 

	Dispersion, Impedance, Reflection, and Transmission 
	Introduction
	Dispersion in the Continuous World
	Harmonic Representation of the FDTD Method
	Dispersion in the FDTD Grid 
	Numeric Impedance
	Analytic FDTD Reflection and Transmission Coefficients
	Reflection from a PEC
	Interface Aligned with an Electric-Field Node

	Two-Dimensional FDTD Simulations
	Introduction
	Multidimensional Arrays 
	Two Dimensions: TMz Polarization 
	TMz Example
	The TFSF Boundary for TMz Polarization
	TMz TFSF Boundary Example 
	TEz Polarization
	PEC's in TEz and TMz Simulations 
	TEz Example

	Three-Dimensional FDTD 
	Introduction
	3D Arrays in C 
	Governing Equations and the 3D Grid
	3D Example
	TFSF Boundary
	TFSF Demonstration
	Unequal Spatial Steps

	Dispersive Material 
	Introduction
	Constitutive Relations and Dispersive Media
	Drude Materials
	Lorentz Material
	Debye Material

	Debye Materials Using the ADE Method
	Drude Materials Using the ADE Method
	Magnetically Dispersive Material
	Piecewise Linear Recursive Convolution
	PLRC for Debye Material

	Perfectly Matched Layer 
	Introduction
	Lossy Layer, 1D
	Lossy Layer, 2D
	Split-Field Perfectly Matched Layer
	Un-Split PML
	FDTD Implementation of Un-Split PML

	Acoustic FDTD Simulations 
	Introduction
	Governing FDTD Equations
	Two-Dimensional Implementation

	Parallel Processing
	Threads
	Thread Examples
	Message Passing Interface
	Open MPI Basics
	Rank and Size
	Communicating Between Processes

	Near-to-Far-Field Transformation 
	Introduction
	The Equivalence Principle
	Vector Potentials
	Electric Field in the Far-Field
	Simpson's Composite Integration
	Collocating the Electric and Magnetic Fields: The Geometric Mean
	NTFF Transformations Using the Geometric Mean 
	Double-Slit Radiation
	Scattering from a Circular Cylinder
	Scattering from a Strongly Forward-Scattering Sphere


	Construction of Fourth-Order Central Differences 
	Generating a Waterfall Plot and Animation 
	Generating an Animation of 1D Snapshots Contained in a Single File 
	Rendering and Animating Two-Dimensional Data 
	Notation
	PostScript Primer
	Introduction
	The PostScript File
	PostScript Basic Commands

	Index

