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Abstract—Single-flux quantum (SFQ) logic based high-speed 

periodic-threshold flash converter circuits require multiple non-

linear and correlated parameters tuned precisely to function 
optimally. These parameters cannot be pre-determined from 
simulations and change with the clock frequency, thus requiring 

manual optimization every time the clock frequency is changed. In 
this work, we demonstrate automated bias optimization of an 8-bit 
superconducting SFQ flash ADC for the first time. A closed-loop 4X 

lower computational complexity hybrid particle-swarm-gradient-
descent-optimization is demonstrated that first uses particle swarm 
optimization (PSO) to coarse tune the ADC biases and then applies 

gradient descent (GD) optimization for fine tuning. This results in a 
12X reduction in the blind calibration time from several days 
manually, to a few hours using the proposed optimization scheme, 

with a resultant performance 2dB better than an optimization done 
by a highly skilled human.  
  

Index Terms— Optimization, particle swarm optimization 
(PSO), gradient descent (GD), single flux quantum (SFQ), 
superconducting electronics, analog-to-digital converters (ADC). 

I.  INTRODUCTION 

UPERCONDUCTING electronic circuits deliver high switching 

speeds, high accuracy, low power, high sensitivity, and low 

noise. This makes these circuits well-positioned as enablers of 

future wireless technologies utilizing higher frequencies. Direct 

digitization of RF signals without the need to down convert 

them to a lower IF or baseband frequency domain is desirable 

to retain signal power and fidelity, which is beyond the scope 

of conventional silicon based data converters [1][2]. 

Operation of these circuits at cryogenic temperatures 

severely restricts them from achieving the high-level of 

integration that the conventional silicon-based circuits and 

systems can achieve, thus, restricting them to a select group of 

people having access to high-end laboratories and equipment. 

Silicon-based circuits are much more developed as compared to 

superconducting circuits and deliver remarkable computing 

performance required for backend digital tasks including 

calibration. Therefore, a hybrid system partly operating at room 

temperature and partly at cryogenic temperature is highly 
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desirable. While extensive research is going on in the domain 

of superconducting circuits, there is still a need to perform 

system level enhancements to boost their performance and 

achieve their true potential.  

Josephson Junctions (JJs) being two terminal devices require 

external control for optimal current biasing typically done in 

groups for the number of non-independent biases to be not too 

numerous. The absence of inherent gain in the JJ device and the 

highly correlated nature of bias currents in the existing designs 

thus makes it extremely time consuming to develop model-

based bias optimization methodology. Bias optimization of 

mixed-signal superconducting circuits such as an analog-to-

digital converter (ADC) is highly desirable because unlike the 

digital circuits, extracting the last few dBs of performance 

depends on the precise adjustment of a combination of multiple 

biases, making this problem a multi-parameter optimization 

problem. In state-of-the-art SFQ logic data converter circuits, 

this optimization is done manually which can take several days 

by an expert human to optimize the biases for a substantially 

new design. This calls for the need of an automated bias current 

optimization approach which can reduce the optimization time 

many folds, while improving the overall system performance.  

This work will demonstrate a real-time closed-loop 

automated bias optimization of high-speed mixed-signal/digital 

JJ-based integrated circuits for the first time. The optimization 

methodology presented in this work treats the ADC as a black-

box and uses the input-output characteristics to perform the 

system level optimization. To overcome fundamental 

limitations due to highly correlated bias currents in SFQ 

circuits, a multi-parameter optimization strategy is required that 

extends beyond the existing methods in prior art [3]-[5].  

Neural network (NN) based optimization has been proven to 

optimize multiple parameters simultaneously at a fast rate [6]. 

While gradient descent (GD) optimization has been widely used 

to train NNs, it has a fundamental limitation of getting stuck in 

the local minima in the absence of a perfectly convex/concave 

transfer function [7]. Another stochastic optimization 

algorithm, particle swarm optimization (PSO), proposed by 
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Eberhart [8] does not have this limitation of getting stuck in 

local minima as it works by spreading multiple particles in the 

search space and is thus a perfect choice for training the NN to 

optimize the SFQ logic based circuits [9]. PSO, however has a 

high computational hardware requirement [10].  

Leveraging our recent modeling work on multi-parameter 

optimization techniques using artificial neural networks in [10], 

this work demonstrates a room temperature based closed-loop 

bias optimization methodology using neural networks for SFQ 

logic-based gigahertz data converters operating at 4K. In this 

work, a hybrid PSO-GD optimization algorithm first proposed 

in [10] by the authors is modified and experimentally validated. 

First the PSO coarse tunes the bias current values and locates 

the region of global minima, and then the batch GD algorithm 

is invoked to fine tune the bias currents and locate the region of 

global minima. The batch GD replaces the stochastic GD used 

in [10] for better convergence. 

The neural-network based optimization system architecture 

is shown in Fig. 1. It works in a closed-loop with the 8-bit SFQ 

logic based flash ADC. Inputs to the neural network are the 

ADC biases which are internally fed back and the difference 

between the expected ADC output (y
i
[k]) and the practical 

ADC output (y[k]) as the error function (ei).  

The following key additions and modifications are presented 

in this work over the initial work on algorithm modeling and 

development in [10]: 

1) Review of the 8-bit SFQ ADC and recent state-of-the-

art optimization techniques for SFQ circuits (Section II) 

2) Analysis of the proposed hybrid PSO-GD optimization 

algorithm highlighting key differences from [10] 

(Section III) 

3) Detailed description of the closed-loop ADC system 

including design, optimization, and measurement setup 

with the ICE-T and the external NN controlled bias 

optimizer at room temperature (Section IV), and  

4) Measurement results with detailed discussions on the 

improvements achieved using the proposed 

optimization methodology. (Section V)  

We conclude this work in section VI including scope of 

possible future research. 

II. SFQ ADC AND STATE-OF-THE-ART OPTIMIZATION 

TECHNIQUES 

Superconducting flash ADC was chosen as an exemplar 

superconducting mixed-signal circuit due to the complexity and 

difficulty of its optimization. It uses comparators that exploit 

the periodic nature of the superconducting quantum 

interference devices (SQUIDS), and therefore exhibit multiple 

comparison thresholds leading to a significant reduction in 

hardware per ADC as compared to their silicon counterparts 

[11]. These comparators digitize the periodic current flowing 

through the quasi one-junction SQUID (QOS) junction. All 

such comparators exhibit dynamic distortions, which are 

manifested as a non-sinusoidal asymmetric transfer function. 

These dynamic distortions are a result of the phase-dependent 

QOS junction inductance.   

The flash ADC used as a testbed for black-box optimization 

in this work is derived from [2] and uses a DQOS logic-based 

comparator to significantly reduce the non-linearities and has 

Gray coded output bits. It is designed such that each higher 

significant bit is precisely positioned at the center of its 

preceding bit. As observed in our experiments, these bits do not 

inherently switch at the exact center point of their preceding bit, 

thus leading to errors in the reconstructed signal waveform. 

This behavior of the bits is controlled by three bias controls for 

each comparator, making a total of twenty-four biases for the 8-

bit ADC. These biases are: the differential phase bias, the duty 

cycle bias, and the threshold phase bias. Differential phase 

biases and duty cycle biases control the respective differential 

phases and duty cycles of the gray coded output and do not 

significantly contribute to the alignment of the output bits. 

Threshold phase bias on the other hand controls the trip point 

of each bit and hence directly contributes to the alignment of 

these output bits, hence making it most crucial to obtain the 

accurate reconstruction of the input signal. As shown in Fig. 2, 

due to this high sensitivity of threshold phase biases, even a +/-

10% variation in these biases from the manually optimized 

point reduces the SFDR performance by more than 20dB. These 

biases are dependent on the biases of the previous bit, with the 

MSB bit bias having the maximum effect and LSB bit bias the 

least effect. This interdependence of the biases makes the 

optimization by manual tuning a difficult task. For the scope of 

this work, we manually optimize the two lesser sensitive biases 

which have minimal effect on the output waveform and use the 

devised algorithm to optimize the most sensitive threshold 

phase biases.  

Several digital calibration techniques exist for optimization 

of silicon-based circuits and systems, which enable a hardware-

software co-design to improve their performance. Prior works 

on the optimization of SFQ circuits have been limited to the 

optimization of circuit parameters during the design phase of 
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Fig. 1. Proposed closed-loop optimization system architecture.  
 

 
Fig. 2. Measured ADC spectrum with a ±10% offset in biases. 
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the circuits. For improving the yield, the method of inscribed 

hyperspheres [12] and the center of gravity method [13] have 

been widely used for optimization. These methods are however 

computationally expensive. The critical margin method [14] is 

widely used for improving the current margin and is 

computationally less expensive. However, like GD, the critical 

margin method also gets trapped in local minima easily. Monte-

Carlo based optimization of circuit parameters that analyze the 

effect of process variation has been extensively used by circuit 

designers across the silicon and superconducting domains [15].   

However, to the best of our knowledge, prior art does not 

address system level optimization of SFQ logic based circuits 

such as data converters (ADCs). These ADCs are currently 

manually optimized by a skilled professional which is not only 

time exhaustive but also inefficient and costly. It is thus 

important to investigate optimization methodologies working at 

room temperature (for ease of control) that can efficiently 

optimize the bias currents feeding the superconducting circuits 

at cryogenic temperatures with a lower closed-loop 

computational and integration complexity.  

III. HYBRID PSO-GD OPTIMIZATION ALGORITHM 

The interdependence of the bias values of the SFQ ADC that 

this work utilizes significantly complicates the optimization 

task. Even though the broad range of these bias values is 

available from the simulations, their exact values are not.  In the 

absence of these exact bias values, ADC output is completely 

distorted, and thus requires a) start-up of the ADC, and b) 

calibration of the biases to get the optimum performance.  

The hybrid PSO-GD algorithm first presented in [10] is a 

computationally efficient and low latency algorithm which has 

shown merit in performing multi-parameter optimization of 

silicon-based ADCs. The PSO-GD algorithm in [10] utilizes 

PSO to coarse tune the ADC parameters and then uses 

stochastic gradient descent (SGD) to fine tune the ADC 

parameters, achieving global minima with lesser number of 

computations. In this work, we modify the originally presented 

PSO-GD algorithm by replacing SGD with batch gradient 

descent (BGD). For optimizing k parameters, PSO works by 

spreading n-particles in a k-dimensional search space, with each 

particle working in collaboration and competition with the other 

particles to achieve the global optimum solution. The update 

equations for PSO are shown in (1) and (2), where (1) defines 

the particle velocity and (2) defines the particle position. 

vi
t+1  = w ∙ vt + c1 ∙  rand(0,1) ∙ {xt

pbest
 - xt} 

                     + c2∙ rand(0,1)∙ {xt
gbest

 - xt} 
(1) 

xi
t+1 = xi

t + vi
t+1 (2) 

The first term in (1) represents the inertia factor which directs 

the particle to move in the direction of inertia from the previous 

iterations. The second term in (1) represents the competition 

factor, which directs the particle to compete with its own 

personal best. The third term represents the cooperation factor, 

which dictates the particles in the swarm to assist each other to 

locate the global best position corresponding to the global 

minima. Vector addition of the updated velocity vi
t+1 from (1) is 

then performed with the particle’s previous position xi
t  to arrive 

at the next location xi
t+1. These n-particles are randomly 

initialized using a random number generator in the expected 

optimization space provided by the circuit designer from the 

simulations. This optimization space is the range in which a 

particular parameter can be optimally located and is shared by 

one dimension (corresponding to that parameter) of each 

particle. Thus, for a n-particle k-dimensional system, we have k 

individual optimization spaces in which the global optimum 

solution can be found, making it a k-dimensional optimization 

problem. After a series of iterations, when the error function is 

reduced to 5% of the desired value, the best position from the 

set of n-particles is used to as the starting position of GD. This 

5% handoff criterion strikes a balance between the optimization 

time and computational complexity [10]. Further, SGD updates 

the positions of these k-parameters to arrive at the global 

optimum solution using the update rule in (3) as follows: 

xt+1=xt - 2.μ.
1

m
∑ (em)

m

i=1

 

(3) 

where xt+1 represents the updated position, xt  represents the 

previous position, μ represents the weight factor, and the error 

function e is summed for all the m samples in the dataset.  

SGD uses a single training data sample at a time to perform 

optimization while traversing through the entire dataset, 

making it computationally fast. However, the frequent weight 

updates happening at each subsequent data sample, cause the 

update function to be noisy and may cause oscillations in the 

error function as a result. It also consumes more power to 

perform the optimization since the entire computing hardware 
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Fig. 3. Phase mismatch results in misaligned gray codes causing multiple 

glitches during signal reconstruction as shown for the 6 MSB output bits.  
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Fig. 4. Closed-loop optimization system architecture for heterogeneous 

temperature optimization.  
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is used to perform updates for every sample. Another issue with 

SGD is that in case of a transfer function where one sample does 

not linearly depend on the previous sample, that is, when there 

are multiple random spikes in the dataset as in the case of SFQ 

ADCs (shown in Fig. 3), the updates for the samples with large 

deviation from the general trend may prevent the system from 

converging, which is highly undesirable [16]. A solution to this 

problem is using BGD, which although slower than SGD, takes 

the entire dataset into consideration while computing the error 

function. This results in a more stable gradient of convergence 

as compared to SGD. Moreover, it performs vector operations 

and can utilize parallel processing of the microprocessor, thus 

reducing the optimization time significantly. Thus, the bias 

currents are first optimized by using PSO to find the region in 

the vicinity of global minima, and BGD is subsequently used to 

fine tune the biases to converge to the global minima faster and 

with greater accuracy.   

IV. SYSTEM DESIGN AND MEASUREMENT SETUP 

Fig. 4 shows the optimization system architecture with a 

10.3MHz sinusoidal input, IN, which is fed to the ADC to 

perform the conversion. The digital output, OUT, is first 

synchronized with the digitally sampled input signal, y[k], and 

then compared with this digital output to obtain an error signal, 

ei. Initially, the NN with the input layer weights wi and output 

layer weights wo, is trained using PSO algorithm and when ei 

reaches below the specified 5% threshold (eref), BGD takes over 

the optimization task. In this work, since the eight threshold 

phase biases are optimized, each PSO particle produces a set of 

eight outputs ranging between 0-3mA that feed the eight 

threshold phase biases (Bias0 - Bias7). The global best particle 

position from PSO is then used by the BGD to further optimize 

the system.  

The measurement setup for the optimization of the 8-bit flash 

ADC is shown in Fig. 5. The ADC is mounted on a universal 

80-coax insert for superconductor chips and is housed in a 

Hypres Integrated cryogenic electronics test-bed (ICE-T) which 

precisely sets the ambient temperature of the chip at 4K. 

Connections to the ADC are made via these inserts having SMA 

connectors which directly connect with the peripheral devices 

at room temperature. Clock and signal inputs to the ADC are 

provided via a 20GHz arbitrary waveform generator. A 48-

channel Hypres CS-48-100 precision current source feeds the 

eight sets of three biases (one set for each comparator) and 

another set of biases which control the GPIOs and the enable 

circuitry of the flash ADC chip. Output of the ADC is fed to a 

Hypres 17-channel amplifier which enables the reading of the 

output by the Tektronix TLA7012 logic analyzer by amplifying 

the output waveforms to a full-scale voltage level. The logic 

analyzer output is then processed in MATLAB and Python 

where the optimization algorithm analyzes this data and 

modifies the bias current values to perform the optimization. 

This in turn closes the feedback loop as in Fig. 5.  
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Fig. 5. Integrated cryogenic electronics testbed with room-temperature 

based optimization. 
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Fig. 6. Convergence of the 8 threshold bias values over 20 iterations and the error function against number of iterations for 250 particles (bottom). 
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The optimization algorithm requires precise alignment of the 

input signal with the reconstructed ADC data to perform 

optimization. However, due to the inherent delay of the various 

systems involved, it is impossible to get the input signals 

aligned with the reconstructed output data, rendering the 

optimization algorithm in need of a synchronizer. To implement 

this synchronizer module, the algorithm is modified in a way to 

detect the peaks of the output data and the input signal. A fixed 

number of data points are then captured from both the 

waveforms starting from these peaks. This solves the 

synchronization issue and enables the algorithm to optimize the 

biases in real-time by comparing each sample of the output data 

with the quantized input signal.   

V. MEASUREMENT RESULTS 

The flash ADC was designed and fabricated in the MIT-LL 

10kA/cm2 process. Due to the hardware constraints in the data 

acquisition, measurement results have only been verified at an 

input signal frequency (fin) of 10.3MHz with the sampling clock 

frequency set at 1GHz. Using FPGA to acquire the ADC output 

is an alternate method that can support clock frequencies 

upwards of 10GHz, but for the scope of this work, it has been 

excluded.  

After the eight differential phase biases and eight duty cycle 

biases are manually optimized, the eight threshold phase biases 

are randomly initialized for optimization using the proposed 

algorithm. Starting with these randomly initialized values, PSO 

works to locate the region of global minima. When the error 

between the quantized input and the ADC output data is 

reduced to 5%, the PSO hands over the control to the BGD for 

fine tuning of the biases. PSO utilizes a particle which is a 1x8 

vector. Each dimension of this vector represents the value of 

one threshold phase bias between 0 to 3mA. Using a group of 

250 such particles, PSO converges to the vicinity of the global 

minima in 20 iterations as shown in Fig. 6. Next, the particle 

position providing the best convergence amongst all the 

particles obtained after these 20 iterations of PSO is chosen as 

the starting point of the BGD which then takes over the 

optimization task to converge to the global minima with a 

greater accuracy. The convergence of the BGD is as shown in 

Fig. 7. Lower significant biases (Bias 0, Bias 1 and so on in Fig. 

7) are observed to have a greater deviation from the mean 

position, which is because the effect of the biases on the overall 

error function decreases as the bit significance goes from high 

to low.  

Using only the conventional PSO to optimize the ADC, a 

spurious free dynamic range (SFDR) value of 53.81dB is 

achieved in 20 iterations with 1000 particles. On the other hand, 

using the presented hybrid optimization algorithm, we reduce 

the number of particles required to perform coarse optimization 

by PSO to 250 particles, and it is observed that in 20 iterations 

DNL: +0.8/-1.0 LSB

INL: +1.6/-1.7 LSB

 
Fig. 8.  Measured INL/DNL (left), Measured ADC spectrum after PSO-only (with 1000 particles) (middle) and after proposed PSO-BGD optimization (right). 

 

 
Fig. 7. Measured error functions (in mA) showing the cost function for the 8 ADC biases converge using BGD to fine-tune the ADC output. 
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a 51.20dB SFDR performance is achieved which after fine 

optimization by BGD further improves to 53.81dB (Fig. 8), 

making it identical to the performance achieved using only PSO 

based optimization, but with reduced computational 

complexity. This SFDR value is 2dB better than the best SFDR 

performance achieved by manual optimization of the biases. 

Similar improvements are also seen for SNDR. The relative 

SNDR performance improvement is observed to be 1.8dB 

better than the best achieved with manual optimization which 

further improves to 2.41dB using the hybrid algorithm. A 

1.6LSB/0.8LSB INL/DNL performance is achieved post 

optimization using the hybrid algorithm.  

Table I shows the performance comparison between the 

presented hybrid optimization algorithm and the PSO-only 

optimization method. The hybrid PSO-GD optimization 

algorithm using 250 PSO particles reduces the number of ADC 

calls required to optimize by 50%, multiplications by 60% and 

addition operations by 75% as compared to the PSO only 

optimization method that requires 1000 particles to achieve 

identical performance. This leads to an overall 12X reduction 

in optimization time, with a lower computational complexity 

over the conventional PSO optimization.  

VI. CONCLUSION AND FUTURE WORK 

In this work, a room temperature based bias optimization 

technique for superconducting circuits is demonstrated and 

validated on an 8-bit SFQ flash ADC. The hybrid PSO-BGD 

optimization algorithm reduces the optimization time by 12X 

while reducing the total number of computations by 4X. A 2dB 

relative SFDR improvement with a 2.41dB relative SNDR 

improvement versus the best human performance obtained by 

manual tuning is observed. To our knowledge, this is the first 

work that uses classical optimization techniques operating at 

room temperature to optimize superconducting circuits 

operating at cryogenic temperature. While the SFQ flash ADC 

was chosen as a testbed for demonstrating the effectiveness of 

the devised optimization methodology, it can be used to 

optimize any other superconducting system since it treats the 

system as a black-box. This work thus opens a new horizon for 

superconducting circuits by enabling the high level of 

integration seen in conventional silicon circuits while realizing 

their full potential, thus significantly contributing to improving 

the testing and characterization of superconducting circuits.  
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TABLE I 
COMPARISON OF HARDWARE COMPLEXITY AND PERFORMANCE OF THE DEVISED PSO-BGD ALGORITHM WITH PSO-ONLY 

Conditions 

SFDR 

improvement† 

(dB) 

SNDR 

improvement$† 

(dB) 

Additions Multiplications ADC Calls 

With a +/-10% bias variation from 

manually tuned values 
-20.42 -12.21 - - - 

Optimization using PSO only 

(n1 = 20, n2 = 1000) 
2 1.80 200M 100K 20K 

Proposed (PSO-GD) 

Optimization 
(n1 = 20, n2 = 250, lgd 

= 5000) 

PSO (Coarse) -0.61 -1.63 
50.12M 40K 10K 

GD (Fine) 2 2.41 

n1: Number of PSO iterations; n2: Number of swarm particles; ls: Number of samples (5000); lgd: Number of iterations for GD using proposed 
algorithm, n: Number of ADC output bits (8) 
 

For PSO only, #Additions: n1 ∗ n2 ∗ 2ls, #Multiplications: 5 ∗ n1 ∗ n2, #ADC Calls: n1 ∗ n2 

For the PSO-GD, #Additions: n1 ∗ n2 ∗ 2ls+2n*ls+8*lgd, #Multiplications: 5 ∗ n1 ∗ n2 + 3 ∗ lgd, #ADC Calls: n1 ∗ n2 + lgd 
 

$Integrated over 500MHz, for fclk = 1GHz and fsig = 10.3MHz 
†Reference is the best values obtained with manual calibration 
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