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Abstract—In a conventional bio-sensor, key signal features are
acquired using Nyquist-rate analog-to-digital conversion without
exploiting the typical bio-signal characteristic of sparsity in some
domain (e.g., time, frequency, etc.). Compressed sensing (CS) is
a signal processing paradigm that exploits this sparsity for com-
mensurate power savings by enabling alias-free sub-Nyquist ac-
quisition. In a severely energy constrained sensor, CS also elim-
inates the need for digital signal processing (DSP). A fully-inte-
grated low-power CS analog front-end (CS-AFE) is described for
an electrocardiogram (ECG) sensor. Switched-capacitor circuits
are used to achieve high accuracy and low power. Implemented
in 0.13 µm CMOS in 2×3 mm², the prototype comprises a 384-bit
Fibonacci-Galois hybrid linear feedback shift register and 64 dig-
itally-selectable CS channels with a 6-bit C-2C MDAC/integrator
and a 10-bit C-2C SAR ADC in each. Clocked at 2 kHz, the total
power dissipation is 28 nW and 1.8 µW for one and 64 active chan-
nels, respectively. CS-AFE enables compressive sampling of bio-
signals that are sparse in an arbitrary domain.

Index Terms—Analog-to-digital converters, analog-to-infor-
mation converters, biomedical sensors, body-area networks,
compressed sensing, compressive sampling, ECG, multiplying
DAC, SAR ADC, sub-Nyquist sampling, wavelets, wireless sen-
sors.

I. INTRODUCTION

W EARABLE sensors are increasingly employed in med-
ical monitoring where high energy efficiency, small

form factor, multi-signal sensing capabilities and wireless
telemetry are essential. A wireless body-area network com-
prises a heterogeneous set of bio-sensor nodes that communi-
cate with a personal data aggregator such as a smartphone [1].
Key bio-signals have bandwidths of a few kHz, dynamic

ranges of 40–70 dB, and structures that are sparse (i.e.,
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compressible) in some domain. A conventional bio-sensor
(Fig. 1(a)) comprises an analog front-end with signal condi-
tioning and a Nyquist or adaptive-Nyquist analog-to-digital
converter (ADC), a DSP block that implements data compres-
sion and a radio for short-haul telemetry [2]–[4]. Typically,
these functions consume 2%, 25%, and 73%, respectively, of
the total power [4].
An alternative architecture (Fig. 1(b)) uses compressed

sensing (CS) [5]–[9], an emerging signal processing paradigm,
wherein sparse input signals digitized by a Nyquist-rate ADC
are subsequently compressed using digital-domain CS. CS
exploits the low rate of significant events in sparse signals
whereas Nyquist sampling processes based on the highest rate
of change. Acquisition with CS is independent of the domain
of sparsity (time, frequency, etc.), which enables multi-signal
sensing capabilities (electrocardiogram (ECG), electroen-
cephalogram (EEG), electromyogram (EMG), etc.).
An analog-domain CS bio-signal acquisition system is shown

in Fig. 1(c). The encoder receives a conditioned bio-signal from
a low-noise amplifier, and compresses input samples, ,
into output samples, , that are digitized and transmitted.
The ADC and the RF transmitter operate at sub-Nyquist-rates
because the compression factor equals , which is
typically . The receiver (Fig. 1(d)) that resides in the data
aggregator down-converts the compressed signal, , and uses
optimization algorithms to reconstruct a representation, , of
the original signal, . In contrast to adaptive-Nyquist sam-
pling [4], CS allows multi-signal sensing capabilities because it
is independent of the timing of significant events or the domain
of compressibility.
A CS-AFE for bio-sensor applications implemented in

0.13 m CMOS in 2 3 mm is described in this paper. It
includes 64 channels that are digitally enabled based on the
desired CF. Clocked at 2 kHz, the power dissipation varies
from 28 nW for one to 1.8 µW for all 64 active channels.
Measurements demonstrate CF 10 for ECG bio-signals in
ambulatory applications.
Section II covers the theory of CS compression and recon-

struction, key system requirements and a design methodology.
Prior art as well as system design, architecture and circuits of
CS-AFE are described in Section III. Measured results are pre-
sented in Section IV and conclusions are given in Section V.

II. CS COMPRESSION AND RECONSTRUCTION

Conventional Nyquist sampling captures the details of a
signal whereas CS captures its underlying global structure. For
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Fig. 1. Bio-signal acquisition. (a) Nyquist ADC followed by digital compression; (b) Nyquist ADC followed by digital-domain compressed sensing, (c) an analog-
domain CS transmitter and (d) a CS receiver.

a sparse signal with tones, for example, conventional Nyquist
processing requires sampling faster than twice the highest
frequency regardless of , which results in large number of
samples. DSP-based transform coding (e.g., Discrete Fourier
Transform) is then used to extract the Fourier coefficients.
Even though it performs time-domain sampling, CS exploits
the frequency-domain sparsity so that only about samples
(acquired directly) are needed for exact recovery at the receiver.
Thus, CS compresses without the power and area needs of a
basis transformation (FFT, DCT, etc.) hardware. Knowledge
of the basis of sparsity is needed only in the receiver which is
usually less energy constrained than the sensor.

A. Compressed Sensing

Compression with CS is defined by the simple matrix equa-
tion wherein an uncompressed input vector of
size multiplied by a measurement matrix of size
produces a measurement vector of size (Fig. 2(a))
[5]–[7]. Because is an array of random numbers (e.g.,
Bernoulli, Gaussian, uniform, etc.), is a vector of random
linear projections of on . CS can compress bio-signals
by , which reduces the data to be transmitted and,
thus, the total power dissipation in the sensor node by a similar
factor.
Sparsity is quantified herein as where is the

number of significant values among the input samples.
is derived from by zeroing the insignificant coefficients.
Sparsity means ; i.e., the -norm of the residue,

, is small. The minimum number of measurements
needed for accurate reconstruction is
where is a constant [8].

B. CS Reconstruction

Generally, reconstruction in the receiver is more time and
power consuming than compression in the transmitter. How-
ever, this is well-suited for applications where the data aggre-
gator (receiver) has much greater computational and energy re-
sources than the sensor. For a signal sparse in an arbitrary do-
main, , where is an sparsifying basis

Fig. 2. CS formulations for a generic CS (a) encoder and (b) decoder. The
shaded squares in and represent the different amplitudes of the random
coefficients; the white boxes in and represent insignificant or zero signal
values.

and is the corresponding sparse representation of in the
basis (Fig. 2(b)). For example, if is sparse in the time
(frequency) domain, is an Identity (Inverse Fourier Trans-
form) matrix. Two conditions ensure accurate reconstruction:

is sparse in , and and are incoherent [5], [8].
Ideally, , where is the reconstructed

vector. However, as has unknowns and has only
knowns, is non-square and non-invertible. Thus, optimiza-
tion algorithms are needed for reconstruction. The -norm
is an accurate measure of the sparsity of , which is re-
covered using optimization of the objective function [5], [6]:

subject to . The reconstructed
signal is . For time-domain sparse signals where

, can be recovered in one step: subject
to .
The process of finding the minimum -norm solution is

called basis pursuit (BP). Various BP algorithms trade off
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Fig. 3. (a) Three-level tree structure for decomposed wavelet coefficients and
(b) several example Daubechies mother wavelets [31].

computation time versus accuracy for various signal struc-
tures [9]–[12]. Accuracy is defined using an -norm-based
signal-to-error ratio (SER):

(1)

A comparison of reconstruction algorithms is presented in [13].

C. The Sparsifying Matrix

is an identity matrix for time-domain-sparse bio-
signals. For bio-signals sparse in frequency domain, reconstruc-
tion requires that be an inverse Fourier transform matrix, or
an inverse Gabor transform matrix, etc. The wavelet domain,
widely used for ECG signals with as an inverse wavelet
transform matrix, uses multi-scale decompositions. Wavelet co-
efficients are typically generated hierarchically using scale-de-
pendent low-pass ( ) and high-pass ( ) quadraturemirror
filters that correspond to the type of wavelet (i.e., the mother
wavelet) (Fig. 3(a)) [14]. The choice of mother wavelet plays
a key role in signal recovery. For example, ECG signals are
often reconstructed using Daubechies wavelets (Fig. 3(b)) be-
cause their scaling and time dilations approximate typical ECG
pulses (i.e., QRS complexes). The result is a sparse representa-
tion in the wavelet basis [11], [12].

D. Sparsity, Restricted Isometry and Incoherence

1) Sparsity: The domain of sparsity is apparent for signals
such as -tone sinusoids that are sparse in the Fourier domain.
Because many signals are sparse in multiple domains, the fea-
ture of interest determines the domain for reconstruction. For
example, for applications where only heart rate information is
desired, an ECG signal can be thresholded to increase its spar-
sity and processed in the time domain [13], [15], [16]. For appli-

cations where more signal features are required, un-thresholded
ECG waveforms are often reconstructed in the wavelet domain
[17], [18].
It is useful to calculate the sparsity of a conditioned ECG

signal. For 8-bits of resolution and 1.024 V, the digitized
signal is effectively thresholded at the 1 LSB level; i.e., values
4 mV are resolved as zero. Simulations on several frames

of PhysioBank® data [19] with 1024 show that on av-
erage 68 wavelet coefficients are significant with 16 con-
nected-tree components that introduce redundancy [12], [14].
Thus, with an effective , the signal is 95%
sparse and 6X compressible [13].
2) Restricted Isometry Property and Incoherence: Accurate

reconstruction is possible only when satisfies the Restricted
Isometry Property (RIP) [8]. has an RIP of order if

(2)

where is the isometry constant. RIP does not hold for
. Satisfying RIP implies that no two values map to the same
value, which enables robust reconstruction. RIP is satisfied

by many random measurement matrices including Bernoulli,
Gaussian, etc.
Because RIP is useful but difficult to validate directly [8], it

is often replaced by an equivalent requirement that and
exhibit a small coherence,

(3)

where is the range of coherence values
between any row of and any column of . The greater the
coherence the greater the number of measurements needed for
accurate reconstruction and the lower the compression factor.
Independent and identically distributed (i.i.d.) random matrices
provide low coherence values ( ) with any fixed

for a variety of sparsifying bases [6], [8].

E. System Modeling

An approach for the design of a complete CS system is as
follows:
1) Identify a suitable basis in which the signal has a com-
pact representation in order to minimize the number of sig-
nificant coefficients ( ) in .

2) Choose an i.i.d. random number distribution for to min-
imize .

3) Apply CS using and transmit. At the receiver
minimize the -norm of , solve using
a greedy or global optimization algorithm and recover the
signal using .

4) Tune the objective function of the optimization algorithm
(e.g., relax the error bounds for signals corrupted by noise
and artifacts), and evaluate the accuracy using sample data
sets.

5) Implement the ability to dynamically trade off the com-
pression factor versus accuracy to maximize energy effi-
ciency.
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Fig. 4. Prior art compressed sensing architectures. (a) Random demodulator [20], (b) random modulation pre-integrator [21], and (c) a digital-domain CS based
data compressor [24], [25].

III. ARCHITECTURE AND CIRCUIT DESIGN

A. Prior Art

Kirolos et al. [20] developed an analog-to-information con-
verter—the random demodulator (RD)—for processing sparse
multi-tone signals (Fig. 4(a)). The compressed signal is gener-
ated by multiplying the analog input signal by a chipping se-
quence (e.g., at 4X the Nyquist-rate) using a Gilbert mixer and
integrating using an active RC integrator. Simulations show that
a three-tone AM signal is recovered accurately using an ADC
operated at 1/6 the Nyquist-rate. Ragheb et al. [21] implemented
RD using discrete components and a commercial DSP board for
reconstruction. Output SNR values (not SER as defined in (1))
of 45.5, 42.9, and 39.6 dB were obtained with the ADC oper-
ated at 1/2, 1/4, and 1/8 the Nyquist-rate, respectively. Mishali
et al. [22] described a modulated wideband converter (MWC)
wherein the input signal is processed using a parallel set of sub-
Nyquist chipping sequences; i.e., MWC is a variant of RD that
enables sub-Nyquist sampling of multi-band frequency-sparse
signals. Yoo et al. [23] presented a CS sub-Nyquist RF receiver
that uses the random modulator pre-integrator (RMPI) architec-
ture of Fig. 4(b) to compress radar pulse signals. The chip in-
tegrates an RF low-noise amplifier (RF-LNA) and eight RMPI
channels, compressed senses RF pulses which have 0.1–2 GHz
bandwidth and consumes 506.4mW, excluding the off-chip A/D
converters. Chen et al. [24], [25] introduced a digital-domain
implementation of CS (Fig. 4(c)) for bio-sensor applications.
Nyquist-rate A/D conversion is followed by digital multiply
and accumulate (MAC) operations. The 8-bit Nyquist-rate SAR
ADC occupies 90 150 m and the 50 16-bit MAC blocks
occupy 200 450 m in 90 nm CMOS. Clocked at 1 kHz, the

power dissipation of the chip is 1.9 W from 0.6 V and
20 W from 1 V (due to leakage currents).
In this paper a universal CS-AFE architecture (Fig. 5) for

compressing bio-signals that are sparse in any domain is
described, obviating DSP hardware. Here analog-domain CS
scheme is implemented using switched-capacitor (SC) tech-
niques which enable alias-free sub-Nyquist A/D conversion
and significant energy savings.

B. CS-AFE Architecture

A column-by-column matrix multiplication is used to com-
pute in the CS-AFE as it enables pipelined
operation and a continuously-sampled input signal. For
example, the first input sample, , mul-
tiplied by the first column of produces partial
products, , the second input
sample, , multiplied by the second
column of generates another partial products,

, and so on. In each of the
channels, the corresponding partial sums are added over

a frame of cycles. Thus, at the end of the frame when
,

, and
. The

resulting compressed vector, , is identical to the random
linear projections generated by conventional row-column ma-
trix multiplications.
Each compressed value, , is computed using an SC multi-

plying digital-to-analog converter/integrator (MDAC/I), and a
sub-Nyquist SC SAR ADC. Each MDAC/I samples at
Nyquist-rate ( ) and each ADC operates at a sub-Nyquist
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Fig. 5. Architecture of CS-AFE.

rate ( ), , where is the number of
clock cycles needed to reset, sample and encode each sample.
The decoupling of the sampling rates saves power without intro-
ducing any aliasing. Key attributes of the CS-AFE architecture
include:
• Pipelined operation;
• Multiplication at the Nyquist-rate and digitization at a sub-
Nyquist-rate;

• Energy-efficient low-frequency SC circuits scalable to dif-
ferent sampling rates;

• Hardware complexity of ;
• A digitally-programmable number of MDAC/I integration
cycles, , per frame;

• Accurate multiplication, integration and digitization lim-
ited only by capacitor mismatch.

C. CS-AFE System Design Considerations and Specifications

The design specifications for CS-AFE are different from a tra-
ditional AFE because CS is inherently lossy; i.e., CS achieves
similar accuracy as Nyquist-rate A/D conversion followed by
lossy digital compression. Several non-idealities limit the accu-
racy of CS:
1) Reconstruction Accuracy, Signal Sparsity and Signal Fea-
tures
a) The reconstruction process in a Nyquist-rate acquisi-
tion system is ideally linear and does not limit SER.
By contrast, SER in a CS system is limited by the
finite error bounds of the reconstruction algorithm;
variants of greedy or global optimization algorithms
are typically used with -norm as the sparsity metric
[13].

b) Signal sparsity affects reconstruction accuracy—with
less sparsity the reconstruction error is greater even
for an algorithm with low error bounds. The error
bounds are usually determined for highly sparse
signals. For signals of moderate sparsity, how-
ever, the non-linear and probabilistic characteristics
of the recovery algorithms make exact SER and

resolution predictions problematic. Moreover, the
sparsity changes dramatically between frames for
some bio-signals; e.g., EEG, EMG, etc. As a con-
sequence, the SER of a reconstructed highly-sparse
tone signal is substantially higher than that of a mod-
erately-sparse bio-signal.

c) Time-domain thresholding (i.e., zeroing) of signal de-
tails below a pre-defined level can be used to control
sparsity [13]. Thus, the increased accuracy of the re-
construction process is traded off against the reduced
SER of the signal due to the initial thresholding.

2) Noise and Non-linearity
a) A signal can be treated as the sum of the ideal signal
and noise components because the signal and noise
are uncorrelated. When CS operates on the sum, the
signal vector is incoherent with the measurement ma-
trix and reconstructed as expected. Ideally, the noise
vector is coherent with the random measurement ma-
trix and not reconstructed. This benefit is also under-
stood from the accumulation action of the MDAC/I
circuit. It multiples the noise vector by a random ma-
trix and integrates, which is equivalent to noise av-
eraging over cycles. Thus, there is an effective
de-noising for AWGN noise. However, colored noise
can be incoherent with the measurement matrix and
decreases sparsity.

b) Non-linearities in the Bio-LNA increase the in-band
harmonics and spurious features in , which
reduces sparsity. These signal components are recon-
structed accurately because they are also incoherent
with the measurement matrix; hence, the maximum
SER and achievable compression factor are reduced.
The MDAC/I and ADC circuit non-linearities distort
the compressed signal, , which also reduces the
accuracy of reconstruction.

In many cases (e.g., some ECG ambulatory applications) ac-
curate time-domain reconstruction of the entire signal is not re-
quired. Instead, global features are found. In [24], for example,
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although the reconstructed EEG and ECG signals have SNR
values of only 1–10 dB, the EEG spike timing and the ECG
R-R intervals (i.e., heart rates) are accurately extracted. From
a system design point of view, the effects of MDAC/I thermal
noise, ADC quantization noise and non-linearity can be decou-
pled as they have different impacts on the non-linear CS recon-
struction algorithms.
3) Gain and Noise Specification
The gain and noise specifications for ambulatory bio-signal

sensors typically require up to 8 bits of resolution. At the sensor
electrode, the raw bio-signals have dynamic ranges 40 dB (ex-
cluding DC level variations, spurious tones, etc.), with different
signals having different peak amplitudes; e.g., ECG signal peaks
are 10 mV differential. Thus, for 8-bit resolution of ECG
signals, the input-referred noise should be less than 14.7 V .
State-of-the-art Bio-LNAs achieve an input-referred noise of
2 V over a 1 kHz bandwidth using chopper-stabilized cir-

cuits [4]. The remaining noise power is budgeted for input-re-
ferred noise contributions from the MDAC/I circuits for the
worst-case condition when all rows are active. A nominal
Bio-LNA gain of 80 V/V is needed to amplify the 10 mV
ECG signals to the 800 mV differential full-scale range of the
MDAC/I circuits. Gain programmability over a 20–40 dB range
and a sub-Hz high-pass filter are also needed to accommodate
sensor electrode impedance variations and dc offset voltages,
respectively.
The total noise power from the Bio-LNA and

active MDAC/I circuits referred to sensor electrode is
, where is

the Boltzmann constant. This sets for the MDAC/I circuit at
200 fF, for . In cases where 64 rows are active

(i.e., higher CF), the input-referred noise is lower. Note that
for different bio-signals (e.g., ECG, PPG, etc.), the peak signal
levels are different; hence, the gain should be programmable to
utilize the full-scale range of the MDAC/I circuits to maintain
a similar SNR.
4) Non-linearity and ADC Specification
Non-linearities in the Bio-LNA decrease the sparsity of the

signal in and thus reduce the accuracy of reconstruction.
For simplicity we assume a third order non-linear model for
MDAC/I and ADC. For HD3 to degrade the SNDR of the
Bio-LNA by 0.5 dB, it should be 9 dB less than maximum
SNR for 8-bit resolution, i.e., 58 dBc. When the
measurement matrix is composed of Bernoulli random num-
bers, each MDAC/I operates as a 1-bit coefficient multiplier
and integrator. As a consequence, MDAC/I gain non-linearity
depends on the matching accuracy between the integration and
sampling capacitors (e.g., 10.5 bits for 200 fF capacitors).
The non-linearity (HD3) and finite settling errors of the ADC
cause non-linearities in the compressed signal but not on the
input signal directly. The effect of these non-linearities along
with ADC quantization noise were studied empirically for
Fourier-domain sparse signals. Fig. 6 shows the reconstructed
SER versus ADC resolution for different HD3 for a one-tone
signal with 256 samples and 2, 4, and 8 averaged
over 300 trials. Here the non-linear reconstruction process is
seen to limit the maximum reconstruction SER to about 32 dB
even for highly-sparse signals conditioned by a highly-linear

Fig. 6. Reconstruction SER vs. ADC resolution and HD3 for a single-tone
signal. and Inverse Fourier Basis.

front end. This limitation is due to the error bounds of the recon-
struction algorithm, the short time window of the tone signal
which decreases the Fourier-domain sparsity, and the non-ideal
incoherence of the measurement and sparsifying matrices. On
average, the reconstruction SER does not improve by more
than 4 dB as the ADC resolution is increased from 6 to 12 bits.
Also, improving HD3 below 50 dBc does not increase recon-
struction SER consistently by more than 3 dB for .
ADC resolutions of 6–10 bits show similar reconstruction
SER. Thus, an 8-bit ENOB performance was targeted with

50 dBc. Because ADC ENOB is typically 1–2 bits
less than the resolution when calibration is not used, a 10-bit
C-2C capacitor DAC is used. For , both requirements
can be relaxed to reduce die area and power consumption.
To the first order, the input DC offset voltage of the MDAC

does not affect the integration. However, switch charge-injec-
tion errors can accumulate depending on the random switching
sequence and the number of integration cycles, . The accumu-
lated offset voltage is sampled by the ADC and calibrated out.

and are chosen based on area constraints and system
simulations. The layout height of each row is determined by
MDAC/I and ADC capacitance dimensions noting that square
capacitor layouts exhibit the best matching. With each row
36 m tall, a maximum of 65 rows (including test structures)

can be integrated in 2.5 mm. Thus, 64 was used for this
design. To enable a minimum 2, a minimum 128
was chosen. Both and are programmable ( [1–64],

[128, 256, 512, 1024]) to achieve 2–1024.
The specifications for CS-AFE are summarized in Table I.

D. Timing and Synchronization

The overall timing for CS-AFE is shown in Fig. 7. For each of
the channels input samples are processed at the Nyquist-
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TABLE I
SYSTEM SPECIFICATIONS FOR THE CS-AFE

Fig. 7. Pipelined operation of the CS-AFE. The MDAC/I circuit is reset at the beginning of a frame (e.g., ) of samples (e.g., ). Its output is sampled
at the end of and the SAR ADC converts during . The results are multiplexed out in a bit-parallel fashion and post-processed in MATLAB®.

rate over the frame time, . The corresponding SAR A/D con-
version is pipelined during the next frame, . The DC offset
voltage of each MDAC/I is cancelled at the beginning of each
frame. The ADC conversion rate is of the Nyquist-rate;
i.e., the SAR ADC clock runs at of the Nyquist-rate.

E. On-Chip Generation of the Random Measurement Matrix

At least 6-bit coefficients are needed for accurate recon-
struction using Gaussian or uniform random matrices
[15] whereas 1-bit coefficients are adequate for Bernoulli,
Toeplitz, etc., implementations [13], [26]. CS-AFE generates
both Bernoulli and uniform random measurement matrices for
operation with different input bio-signals and sparsifying bases.

For a 6-bit uniform distribution, total bits are needed
in . If stored on-chip, and for example,
would require 98,304 SRAM bits, which consumes significant
area and power when operated at the Nyquist frequency; these
drawbacks worsen with increased .
CS-AFE employs an on-chip hybrid linear feedback shift reg-

ister (HLFSR) (Fig. 8) to synthesize : First, a 6-bit Fibonacci
LFSR cell is constructed for use with each 6-bit coefficient of
. Next, the seed for each 6-bit LFSR is further randomized

by dithering its LSB input in aGalois fashion. Eight such stages
are cascaded to form the 48-bit Fibonacci-GaloisHLFSR block
shown. Finally, eight of these 48-bit blocks are cascaded to gen-
erate 64 rows of 6-bit random coefficients. The 1-bit Bernoulli

matrix is formed using only the MSBs of the 6-bit LFSRs;
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Fig. 8. (a) A 6-bit linear feedback shift register (LFSR), (b) a 48-bit Fibonacci-Galois hybrid-LFSR, and (c) a 384-bit (i.e., 64 6-bit words) HLFSR. A scan chain
is used to load the seed code into the HLFSR.

TABLE II
COHERENCE BETWEEN MEASUREMENT AND SPARSIFYING MATRICES

the other bits are set to 1. An on-chip scan chain loads the 384-bit
seed at the beginning of each frame.
A major objective of the Fibonacci-Galois approach is for the

rows of to be highly uncorrelated with one another to mini-
mize coherence; i.e., the coherence of with different sparsity
domains should satisfy the RIP constraint. Table II com-
pares the coherence values for ideal Bernoulli (I_B), HLFSR
Bernoulli (H_B), and HLFSR 6-bit uniform (H_U) coefficients
with different sparsifying bases for 256 and 16, 32,
64, 128, and 256 (i.e., 16, 8, 4, 2, and 1, respectively).
The HLFSR is initialized using aworst-case seed of all ones. For
time-domain signals, (H_B) performs similarly to (I_B) and al-

most ideally with . Hence, the 1-bit Bernoulli HLFSR is
well-suited for many practical applications of CS.

F. SC C-2C MDAC/Integrator

In the CS-AFE, an MDAC/I block multiplies Nyquist-rate
analog input samples by digital random coefficients and inte-
grates. The MDAC (integration) function is performed during
the clock phase ( ), where and are non-
overlapping. The total input sampling capacitance as derived
in Section III-C for the MDAC/I is . If imple-
mented with a binary DAC, it would require a unit capacitor
( ) of 200/64 fF 3.125 fF. This size is difficult to match
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Fig. 9. A six-bit switched-capacitor C-2C MDAC/I were is the bit of a
6-bit random coefficient generated by the HLFSR. Bits – are set to 1 for
one-bit random (e.g., Bernoulli) coefficients.

Fig. 10. The fully-differential sub-threshold folded-cascode operational ampli-
fier.

reliably without calibration techniques. Thus, the CS-AFE uses
a C-2C DAC array (Fig. 9) where the total input capacitance
is only ( 200 fF), i.e., a unit capacitance 100 fF,
whichmeets thematching requirements without any calibration.
For a Bernoulli measurement matrix only the MSB (sign bit) of
HLFSR is used; the other bits are set to one. Thus, the input
capacitance is identical for the +1/ 1 coefficients, which elim-
inates MDAC/I gain errors.
For low-noise, low-power and moderate closed-loop BW, a

sub-threshold biased op amp is an optimal choice because it
provides high current efficiency at kHz bandwidths. The sub-
threshold folded-cascode op amp of Fig. 10 realizes an open-
loop gain of 36 dB and a unity-gain bandwidth of 5 kHz,
which provides adequate closed-loop gain and small-signal set-
tling accuracies for the C-2C SAR ADC. A typical
20 V is achieved using a bias current of 10 nA. The MDAC/I
circuit is designed for a nominal closed-loop gain of 1/3 to
prevent saturation at the output during integration.

G. SC C-2C SAR ADC

The thermal noise limit for the SAR ADC dictates
. For a full-scale voltage of

800 and an 8-bit ENOB,
1.7 fF, a tiny input capacitance. However, capacitor

matching dominates the choice of unit capacitance ( ) and,
hence, the input capacitance. A conventional SAR ADC uses
a binary-weighted capacitor array [27], which consumes large

Fig. 11. The C-2C SAR ADC. Dual-gate switches and logic gates are used to
minimize leakage currents.

area and requires a total array capacitance of . Since this
approach also requires a separate sampling buffer, a C-2C SAR
ADC (Fig. 11) [28] is used instead wherein the input sampling
capacitance is reduced from to and the total capac-
itance is only . Thus, the C-2C architecture minimizes
dynamic power dissipation and eliminates the input sampling
buffer. Careful layout is needed to ensure that routing and
switch parasitic capacitances do not adversely affect capacitor
matching. Based on simulations, a unit capacitance of 200 fF
was chosen to meet the matching requirements and to imple-
ment the MDAC/I closed-loop gain of 1/3. The performance of
the C-2C ADC is limited by capacitor parasitics and sampling
switch non-linearities. To achieve an 8-bit ENOB, a 10-bit
C-2C capacitor DAC is implemented to reduce quantization
noise and budget for static gain non-linearity.

H. Sub-Threshold Pre-Amplifier and Latch

The comparator comprises two pre-amplifier stages and a
differential latch (Fig. 12). The signal from MDAC/I is sam-
pled onto the capacitor array with the pre-amps in unity-gain
to also store the input-referred DC offset voltage. The gain of
the two-stage pre-amp is high (e.g., 40 dB) to limit the preamp
input-referred DC offset voltage to within ½ LSB or 0.4 mV
for an estimated worst-case latch input offset voltage of 40 mV.
A fully-differential pre-amp topology is used to reduce kick-
back voltage errors from the latch to the comparator input. The
pre-amp uses positive-feedback for increased gain [29]. The
overall pre-amplifier circuit comprises two identical stages. Rel-
atively large input devices (120 m/1 m) are used to reduce
1/f noise. The total gain of 38 dB and overall unity gain band-
width of 120 kHz is achieved from the two-stage pre-amp with
a bias current of 15 nA. With a 20% PVT variation, the gain
of the pre-amp varies from 36–39 dB. In the worst case, the
input offset voltage is 40 mV 10 0.64 mV which is
1 LSB.
The key aspects of the latch design are:
(i) Leakage current during reset: The latch operates in
the sub-threshold region. In combination with the SAR
ADC, it is reset during the first phase of each bit-cycle. At
sub-kHz frequencies, leakage power dissipation during
the reset time can be significant. The design of Fig. 12
limits the leakage current to pA levels using transistor
stacking to increase the effective channel length. Because
gate leakage currents in a 130 nm CMOS process can
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Fig. 12. The pre-amplifier and latch circuits of the comparator.

Fig. 13. Die photo of the 0.13 m CMOS 2 3 mm CS-AFE.

also be problematic, all sampling switches and digital
logic gates use thick-oxide dual-gate devices.

(ii) Common-mode level: In sub-threshold operation, the
output common-mode voltage of the NMOS pre-amplifer
stage is typically for an input common-mode
voltage of . DC level shifters are avoided using a
PMOS input stage for the latch.

IV. EXPERIMENTAL RESULTS

CS-AFE was fabricated in 2 3 mm in a 0.13 m IBM RF
CMOS process (Fig. 13). It allows parallel loading an initial
seed sequence into the HLFSR for testing with various bio-sig-
nals using 1-bit Bernoulli or 6-bit uniform random coefficients.
The frame time is programmable over 128, 256, 512, and
1024 Nyquist sampling cycles and the number of CS channels,

, is selectable from 1–64; hence, CF is programmable from 2
to 1024. Extra cells are included to test the MDAC/I and SAR
ADC circuits separately. All timing and sampling clocks are
derived from an external clock. The clock and input signal are
generated by arbitrary waveform generators. The digital words
output from the 64 ADC stages are multiplexed to output pad
drivers connected to a logic analyzer. The results are post-pro-
cessed using MATLAB®.
Shown in Fig. 13, each channel of CS-AFE has a height

of 36 m. The 6-bit HLFSR, 6-bit MDAC/I and the 10-b
SAR ADC are laid out with careful consideration to capacitor
matching in the C-2C sections. CS-AFE is packaged in a
low-cost-80-lead LQFP80A plastic package with package par-
asitics being negligible at kHz bio-signal frequencies. Separate
power and ground planes are used in the PCB with analog
and digital supply/gnd pairs separated into different grids to
minimize noise coupling.
The output spectrum of the SAR ADC for a normalized full-

scale input is plotted in Fig. 14(a); the measured SNR is 44 dB
and SNDR is 40.6 dB (6.5-bit ENOB) for a 200 Hz BW which
is suitable for ambulatory bio-signals. The measured DNL and
INL values are shown in Fig. 14(b). The measured accuracy is
less than the target 8-bit ENOB because of unavoidable para-
sitics in the C-2C array leading to static non-linearities and re-
duced full-scale range. On-chip calibration was not used.
The bandwidths of about 200 Hz and 1 kHz are adequate

for most ambulatory and diagnostic bio-signals, respectively
(Table I). At 2 kHz, CS-AFE dissipates 1.8 µW with

64 active channels and 28 nW with . Because
of the use of dual-gate devices and transistor stacking tech-
niques the leakage power is limited to 5% of the total power
dissipation.
Measured results of CS-AFE for a two-tone sinusoid are

shown in Fig. 15 where CF ranges from 4 to 20. The signal is
reconstructed using a Fourier basis for and CVX -norm
convex optimization [30].
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Fig. 14. SAR ADC performance. (a) Output spectrum normalized to full-scale;
(b) DNL and INL.

Fig. 15. Measured reconstructions for a two-tone signal (28 Hz and 50 Hz si-
nusoids). From the top: raw signal; stem plot of CS-AFE outputs for ;
reconstructed waveforms for , 8 and 20 with and ,
32 and 13, respectively, and reconstruction error signals [black ( ), blue
( ) and red ( )] in LSBs where .

Fig. 16. Measured reconstructions of a synthesized ECG signal sparse in the
Daubechies-4 wavelet domain using eight frames with each.
From the top: raw ECG; stem plot of CS-AFE outputs; reconstructed waveforms
with , 4, and 6, respectively, and reconstruction error signals [black
( ), blue ( ) and red ( )] in LSBs where

.

Fig. 17. Measured reconstructions of an ECG signal from the PhysioBank®
database [19]: From top: raw ECG; stem plot of the CS-AFE outputs for
; reconstructed ECG waveforms with 2 (non-thresholded), 4, 8 and 16
(thresholded) using 128 and 64, 32, 16, and 8, respectively.

Fig. 16 shows an un-thresholded ECG signal compressed by
CS-AFE and reconstructed using a wavelet basis for de-
rived from the Daubechies db4 mother-wavelet [31] using the
Tree Matching Pursuit algorithm [12]. As expected, details of
the ECG signal are reconstructed with 4, but losses are
observed at 6 and beyond because the sparsity of the
ambulatory ECG signal is only about 95%.
Fig. 17 shows an example of CS compression and recovery

where the ECG signal is first thresholded in the time-domain.
Thresholding increases sparsity and enables an aggressive
tradeoff between the compression factor and the level of
detail. The raw ECG signal is compressed with 2
(not thresholded) and 4, 8, and 16 (thresholded) and
recovered in the time domain. Although many details are lost
as CF increases, the locations and amplitudes of the QRS
complexes are reasonably well preserved. Thus, for certain
ambulatory applications, the R-R interval (i.e., the heart rate)
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Fig. 18. Theoretical and measured CF vs. sparsity for time-domain-sparse
ECG signals. Measured performance is reduced due to the non-ideal coherence
and implementation losses.

TABLE III
PERFORMANCE SUMMARY OF THE CS-AFE

is accurately recovered using CS-AFE in a high-compression
ultra-low-power mode. Fig. 18 shows good agreement between
the theoretical and measured CF vs. sparsity for time-do-
main-sparse ECG signals. The overall performance of CS-AFE
is summarized in Table III.

V. CONCLUSIONS

Wearable and wireless bio-sensors demand ultra-low power
signal acquisition and transmission. Consequently, the data
should be compressed at the sensor to enable efficient trans-
mission to the data aggregator. The first fully-integrated
compressed sensing analog-domain front-end, CS-AFE, for
universal bio-signal sensing is demonstrated. It uses a pipelined
column-wise multiplication scheme to achieve hardware
complexity. An on-chip low-power area-efficient hybrid linear
feedback shift register, HLFSR, generates a pseudo-random
1-bit measurement matrix with similar performance to ideal
Bernoulli matrices. Switched-capacitor C-2CMDAC/integrator
and C-2C SAR ADC modules are designed using sub-threshold
analog circuits and low-leakage switches. Theory, system
design, circuit implementations and measurement results are
presented. For ambulatory bio-sensor applications, CS-AFE
enables a trade-off between feature accuracy and power con-

sumption using both wavelet- and time-domain reconstruction
techniques. In normal usage where critical health events are
rare, the need to operate in the low compression/high power
mode occurs infrequently. Thus, CS-AFE achieves a universal
bio-signal front-end with energy savings through sub-Nyquist
operation of the data converters, elimination of theDSP circuitry
and a significant reduction in the amount data to be transmitted.
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