
CptS 111, Spring 2023
Lect. #13, Mar. 1, 2023
Class Notes

Today's Agenda:

1. Namespaces, scope, and scope resolution
2. Global variables

Ch. 5 (cont.)

I mentioned previously that we can use the same names inside a function as we do outside the
function, and Python will be able to tell the difference. This has to do with the following concepts:

1. Namespaces, Scope, and Scope Resolution

These concepts can be a little confusing, so let's first look at some examples.

In [1]:

As you can see from the example above, x didn't change outside the function even though we
called the function and added 1 to x before printing x outside the function. This is because
x inside the function is local to the function, i.e., it's a local variable.

In [2]:

This is the value of x inside the function: 43

This is the value of x outside the function: 42

This is the value of pi inside the function: 3.141592653

This is the value of pi outside the function: 3.141

Variable local to the function

def increment_x(x):
 x = x + 1
 print('This is the value of x inside the function:', x)

 return
x = 42
increment_x(x)

print('This is the value of x outside the function:', x)

Another example

def print_pi():
 pi = 3.141592653
 print('This is the value of pi inside the function:', pi)

 return
pi = 3.141
print_pi()

print('This is the value of pi outside the function:', pi)

In the example above, the value of pi is different inside and outside the function. Again, this is
because pi inside the function is local to the function.

In [3]:

In the example above, the function circ_circum() found the value of pi even though pi
is outside the function. We'll discuss this very soon!

Next, let's turn to something that seems irrelevant at this point. We'll use a function as a name
for an lvalue.

In [4]:

In the example above, we've assigned 42 to the function int() , and we see int 's type is
now int . What happens when we try to use int() now to convert the string value result of
the input() function?

Circle circumference inside the function: 12.5664

Circle circumference outside the function: 12.5664

42

Out[4]: int

An example when a name inside the function isn't local to it

def circ_circum(r):
 circum = 2 * pi * r
 print(f'Circle circumference inside the function: {circum:g}')

 return circum
pi = 3.141592653
rad = 2
print(f'Circle circumference outside the function: {circ_circum(rad):g}')

Using a function as a name for an lvalue

int = 42
print(int)

type(int)

In [5]:

We end up with an error because the Python interpreter finds the int we've defined and, thus,
doesn't look into the built-in namespace. Next consider the following. Hang on because we'll
discuss all this very soon!

In [6]:

The Python interpreter doesn't find int() locally so it looks globally and finds our definition of
int .

Enter an integer: 42

TypeError Traceback (most recent call l

ast)

Input In [5], in <cell line: 3>()

 1 # Using int() after we've used int as an lvalue
----> 3 integer = int(input('Enter an integer: '))

 4 print(integer)

TypeError: 'int' object is not callable

Enter an integer: 42

TypeError Traceback (most recent call l

ast)

Input In [6], in <cell line: 8>()

 5 integer = int(integer)
 6 return integer
----> 8 int_num = get_input()

Input In [6], in get_input()

 3 def get_input():
 4 integer = input('Enter an integer: ')
----> 5 integer = int(integer)

 6 return integer

TypeError: 'int' object is not callable

Using int() after we've used int as an lvalue

integer = int(input('Enter an integer: '))
print(integer)

Using int() inside a function after we've used int as an lvalue

def get_input():
 integer = input('Enter an integer: ')
 integer = int(integer)
 return integer

int_num = get_input()

So how does this all work? Before we get to the answer, we need to define some terms:

scope: area(s) of code where name is visible
namespace: mapping of all defined names to their objects (values, functions, and so on)
scope resolution: process of searching possible namespaces for names

There are three namespaces: local, global, and built-in. Python always searches them in the
same order:

local -> global -> built-in

What are these three different namespaces? Well, we can think of them in terms of their scope,
i.e., where their names are visible in a program

local scope: visible within a function
global scope: visible everywhere when defined
built-in scope: visible everywhere and always present (e.g., print() , input())

You can picture namespace scope and scope resolution as nested areas. Python first looks in
the local namespace, then in the global namespace, then in the built-in namespace, and this is
exactly why we obtained the results in the examples above.

Variables assigned in a function are in local namespace and, thus, only have local scope, i.e.,
Python won't find these outside the function.
Variables assigned outside a function are in global namespace and, thus, if they're used
inside a function, Python will first search for the variable in local namespace (inside the
function) and then it will look in global namespace.
If Python can't find a variable inside the function (in local namespace) or outside the function
(in global namespace), it will look for a built-in function with the name in built-in namespace.

Let's consider one more example:

In [7]:

In this example, both pi and r are global variables. Note, however, that the lvalue named
area assigned inside the function is a local variable. It has to be returned to the calling function

because it has no scope outside the function. OTOH, the lvalues area both inside and outside
the function don't confuse Python. We could have used different names for each, but it's fine to
use the same name.

Note that it's usually better to pass arguments as parameters to a function.

There's one last point we should consider when it comes to using names with functions.
Consider the following example.

In [8]:

How did this happen? We called the void function add_float() with the list argument
float_list , which was then assigned to the list parameter floats . Then we added a float

to floats , but we didn't return floats . How then did float_list change? When
float_list is passed to the function add_float() , the parameter floats points to

the same location in memory as float_list and, as such, it has the same "value."
Because float_list is a list, and lists are mutable, when a change is made to floats ,
the "value" is changed in memory. float_list still points to this location in memory, so
it now has a new "value."

Let's look at zPA 5.8.2

2. Global variables

If you follow the rules below, the global command should be straightforward to understand.

Enter radius: 3

Circle area: 28.2743

Enter a decimal number: 4.4

float_list is: [1.1, 2.2, 3.3, 4.4].

Use of the same name inside and outside a function

def circ_area():
 area = pi * r ** 2
 return area
pi = 3.141592
r = float(input('Enter radius: '))
area = circ_area()
print(f'Circle area: {area:g}')

Use of list as argument in a function call

def add_float(floats):
 num = float(input('Enter a decimal number: '))
 floats.append(num)

 return # Void function; nothing returned

float_list = [1.1, 2.2, 3.3]
add_float(float_list)

print(f'float_list is: {float_list}.')

1. Use global variables sparingly. If you need to use something in a function, then pass it as
an argument.

2. If you need to use global variables in a function, try to put them all in one location and
identify them as global variables.

3. Use the global command when you need to modify a value inside the function.

Let's look at an example when you need to use global . Suppose you want to increment an
accumulator in a function that you call more than once. Then you'll need to initialize it outside the
function.

In [9]:

The accumulator i is reset to 0 each time the function is called, so i never increases
regardless of how many times the function is called!

This function has been called 1 time(s).

This function has been called 1 time(s).

Silly function to show when you need to initialize an accumulator
outside the function and use the global command inside the function.

def inc_accumulator():
 i = 0
 i += 1
 print(f'This function has been called {i} time(s).')

 return

inc_accumulator() # Call function once
inc_accumulator() # Call function twice

In [10]:

Now we get an error because i wasn't defined, i.e., i += 1 tries to add 1 to i , but i
wasn't defined!

In [11]:

This function works correctly because we initialized i outside the function, but then we
declared it to be global inside the function, so when the function couldn't find it locally, it looked
for it globally.

UnboundLocalError Traceback (most recent call l

ast)

Input In [10], in <cell line: 9>()

 6 print(f'This function has been called {i} time(s).')
 7 return
----> 9 inc_accumulator_v2()

 10 inc_accumulator_v2()

Input In [10], in inc_accumulator_v2()

 4 def inc_accumulator_v2():
----> 5 i = i + 1

 6 print(f'This function has been called {i} time(s).')
 7 return

UnboundLocalError: local variable 'i' referenced before assignment

This function has been called 1 time(s).

This function has been called 2 time(s).

This function has been called 3 time(s).

Still not correct silly function.

i = 0
def inc_accumulator_v2():
 i = i + 1
 print(f'This function has been called {i} time(s).')

 return

inc_accumulator_v2()

inc_accumulator_v2()

Correct version of silly function.

i = 0 # global variable
def inc_accumulator_v3():
 global i # Use global command the way we did in PA #4
 i = i + 1
 print(f'This function has been called {i} time(s).')

 return

inc_accumulator_v3()

inc_accumulator_v3()

inc_accumulator_v3()

