
CptS 111, Spring 2023
Lect. #14, Mar. 6, 2023
Class Notes

Today's agenda:

1. The idea of repeating commands
2. for -loops
3. The range() function
4. Counting for -loops
5. Counting for -loop: special case

Ch. 6

Loops

1. The Idea of Repeating Commands
Suppose we want to create a list of 5 integers that are entered by the user. We could use the
following code:

integers = []

int1 = int(input('Enter integer #1: '))

int2 = int(input('Enter integer #2: '))

int3 = int(input('Enter integer #3: '))

int4 = int(input('Enter integer #4: '))

int5 = int(input('Enter integer #5: '))

integers.append(int1)

integers.append(int2)

integers.append(int3)

integers.append(int4)

integers.append(int5)

print(integers)

Notice that there's a lot of repetition in this code. It seems as though there should be a more
efficient way of writing this code. In fact, often when we're programming, we want to repeat a
series of commands, and we do this using loops. We'll study two different kinds of loops, for -
loops and while -loops, and when we should use each kind.

2. for -loops

We'll consider two variations of for -loops, what I term counting for -loops and iterating for -
loops. They both actually iterate, but it's helpful to think of two different constructs.

In this lecture, we'll cover counting for -loops, and on Wednesday we'll cover iterating for -
loops, but before we begin our discussion of counting for -loops, we need to cover the
range() function.

3. The range() function

The range() function is a special type of function which can be used to create a sequence of
integers, e.g., for a list or tuple, but it's commonly used in a header of a counting for -loop to
create a sequence of integers that can be used for counting.

The range() function can have 1, 2, or 3 arguments. If it has only one argument, it's the stop
value. If it has two arguments, they're the start and stop values. If it has three arguments, they're
the start, stop, and increment values.

range(stop): Starts at 0, ends 1 before stop

range(start, stop): Starts at start, ends 1 before stop

range(start, stop, inc): Starts at start, increments by inc, and

 ends 1 before stop

You can't use the range function alone because it won't return anything.

In [1]:

Instead, to see the sequence of integers the range() function creates we can nest the list()
or tuple() functions with it. The easiest way to understand the range() function is probably
to see a bunch of examples.

In [2]:

Notice that while the list of integers ends with 6 , there are seven integers. Thus, range(7)
creates 7 integers. In fact, sometimes it's convenient to generate a list of integers using range() .

In [3]:

This is much faster than typing: integers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] . Python
aims to please! But let's continue with the examples.

Out[1]: range(0, 7)

Out[2]: [0, 1, 2, 3, 4, 5, 6]

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

When used alone, range() doesn't show us the sequence of integers it
produces; it shows the arguments

range(7)

Use list() function to see sequence of integers produced by range()

list(range(7)) # range() produces a sequence; list() shows them as a list

Use start and stop values to create a list of integers

integers = list(range(1, 11))
print(integers)

In [4]:

Notice in this example that the first integer is 1, the second integer is 1 + 3 = 4, but because 1 + 3 +
3 = 7 and the stop value of 7 can't be one of the integers in the sequence, the sequence stops at
4 . If we want to include 7 , we have to use a stop value of 8 .

In [5]:

We can also use negative values for start, stop, and inc. The same rules apply.

In [6]:

We can combine positive and negative values.

In [7]:

The default increment value is always 1.

In [8]:

In addition, because the range() function only requires integer values, anything evaluating to an
integer works as an argument.

Out[4]: [1, 4]

Out[5]: [1, 4, 7]

Out[6]: [-1, -2, -3, -4, -5, -6, -7, -8, -9, -10]

Out[7]: [5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5]

Out[8]: [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5]

Use of start, stop, and increment values
Sequence of integers starts at 1, increments by 3, and ends before 7

list(range(1, 7, 3)) # start+inc, start+inc+inc, start+inc+inc+inc, ...

Sequence of integers starts at 1, increments by 3, and ends with 7
We must use 8 as our stop value for 7 to be in the list of integers

list(range(1, 8, 3))

Using negative values for start, stop, and increment
Sequence of integers starts at -1, decrements by -1, and ends before -11

list(range(-1, -11, -1))

Combining positive and negative arguments
Sequence starts at 5, decrements by -1, and ends before -6

list(range(5, -6, -1))

Sequence starts at -5, increments by 1, and stops before 6

list(range(-5, 6))

In [9]:

We won't use such complex arguments for our counting for -loops. We'll usually be limited to
simple arguments such as range(5) . However, we will use the following type of argument often
as well.

In [12]:

In the example above, len(nums)=7 . Thus, Python uses 7 as the argument of the range()
function. Notice that the actual elements of nums is totally unrelated to the range() function.
We only care about the length of nums .

Now we're ready to learn about counting for -loops!

4. Counting for -loops

Template for a counting for -loop:

 for <counter> in range(<integer>): # for-loop header

 <loop_body>

In the for -loop header, <counter> is the loop variable. It takes on the values of the sequence
of integers created by the range() function. The arguments of the range() function can be
like the ones shown in the examples above.

Importantly, counting for -loops ALWAYS use the range() function in their headers! Let's
first consider a very simple example of a counting for -loop.

In [10]:

Out[9]: [2, 3]

7

Out[12]: [0, 1, 2, 3, 4, 5, 6]

1 2 3 4 5 6 7 8 9 10

We can use math operations as long as they result in integers
Sequence starts with 1+1=2, increments by 3-2=1, and stops before 2+2=4

list(range(1+1, 2+2, 3-2)) # == list(range(2, 4, 1))

This is very useful and important
Use of list length as an argument for the range() function

nums = [11, 17, 5, 23, 13, 7, 19]
print(len(nums))

list(range(len(nums))) # == list(range(7))

Simple for-loop example that prints the integers 1 through 10

for i in range(10):
 print(i+1, end=' ')

Why did we use i+1 in the print() argument? Why did we use end=' ' ?

Next, let's look at an example using a list.

In [11]:

Next, look at the example we considered at the beginning of this lecture. We prompted a user for
an integer 5 times and appended each entry to a list.

In [13]:

Not only is this more efficient and easier to read than if we were to write five different integer
prompts and five different append statements, but we're also less likely to make a typing
mistake because we reduced our code from 12 lines to 5 lines!

Next, consider the following example.

I love cookies!

I love croissants!

I love coffee ice cream!

I love scones!

I love brownies!

Enter the number of integers you want to create: 5

Enter integer #1: 2

Enter integer #2: 3

Enter integer #3: 5

Enter integer #4: 7

Enter integer #5: 11

[2, 3, 5, 7, 11]

Use of list length (len(goodies)) to generate sequence of integers

goodies = ['cookies', 'croissants', 'coffee ice cream', 'scones', 'brownies
for i in range(len(goodies)):
 print(f'I love {goodies[i]}!')

Much more efficient way of prompting for integers!

integers = []
number_ints = int(input('Enter the number of integers you want to create: '
for i in range(number_ints):
 integer = int(input(f'Enter integer #{i+1}: '))
 integers.append(integer)

print(integers)

In [14]:

Let's use our knowledge about lists and loops now to write code that's more general and also more
efficient.

In [15]:

Note that we could have used sum(books) in our print statement, but it's a little more efficient to
calculate it separately because total is used twice in our print statements.

Enter cost of first book: 73

Enter cost of second book: 195

Enter cost of third book: 7

Enter cost of fourth book: 101

The total cost for 4 books is $376.00.

The average textbook cost is $94.00.

Enter the number of textbooks you bought: 4

Enter the cost of book #1: 73

Enter the cost of book #2: 195

Enter the cost of book #3: 7

Enter the cost of book #4: 101

The total cost for 4 books is $376.00.

The average textbook cost is $94.00.

Code to calculate total and average costs of textbooks this semester
Prompt user for cost of books

book1 = float(input('Enter cost of first book: '))
book2 = float(input('Enter cost of second book: '))
book3 = float(input('Enter cost of third book: '))
book4 = float(input('Enter cost of fourth book: '))

Calculate total and average costs
total_cost = book1 + book2 + book3 + book4
avg_cost = total_cost / 4

Print costs
print()

print(f'The total cost for 4 books is ${total_cost:.2f}.')

print(f'The average textbook cost is ${avg_cost:.2f}.')

Code to calculate total and average costs of textbooks this semester
Prompt user for number of books purchased

num = int(input('Enter the number of textbooks you bought: '))
books = []
for i in range(num):
 book = float(input(f'Enter the cost of book #{i+1}: '))
 books.append(book)

Calculate and print costs
print()

total = sum(books)
print(f'The total cost for {num} books is ${total:.2f}.')

print(f'The average textbook cost is ${total/num:.2f}.')

Don't panic if you find counting for -loops to be confusing! Just look at the template and study
the examples above.

5. Special Case of a Counting for -loop

Suppose we want to print items from a list and include a marker between the items, but we don't
want the marker after the final item, e.g., we want our output to look like the following:

cookies | croissants | coffee ice cream | scones | brownies

Let's first try this using the entire list.

In [16]:

This is almost what we wanted, but we don't want the last | . Here's what we need to do.

In [17]:

Remember this because it will often be useful!

cookies | croissants | coffee ice cream | scones | brownies |

cookies | croissants | coffee ice cream | scones | brownies

for i in range(len(goodies)):
 print(goodies[i], '|', end=' ')

Use len(goodies) - 1 and then print the last item outside the loop

for i in range(len(goodies) - 1): # subtract 1 from len(goodies)
 print(goodies[i], '|', end=' ')
print(goodies[-1]) # This is an example of why negative indexing is usefu

