
CptS 111, Spring 2023
Lect. #15, Mar. 8, 2023
Class Notes

Today's Agenda:

1. Iterating for -loops
2. Iterating vs counting for -loops
3. while -loops
4. break and continue

Ch. 6 (cont.)

Loops (cont.)

On Monday we covered counting for -loops which are of the form:

 for i in range(n):

 <loop_body>

where i is the loop variable which takes on the values of the integer sequence created by the
range() function, and n is an integer indicating the number of times the loop body can be

repeated. Recall that n can represent a function that evaluates to an integer, and it's common
for len(<iterable>) to be used as the value for n . Today we'll cover iterating for -loops.

1. Iterating for -loops

Template for an iterating for -loop:

 for <item> in <iterable>:

 <loop body>

In the for -loop header, <item> is the loop variable. Each time the for -loop iterates
through the <iterable> , the loop variable is assigned the value of the next element in the
<iterable> . An iterable always appears in the header of a for -loop! Don't forget what

the iterables are in Python: strings, lists, tuples, sets, and dictionaries! Consider the
following examples:

In [1]:

Recall that we used a counting for -loop to generate identical results. Let's compare the two.

for i in range(len(goodies)):

 print(f'I love {goodies[i]}!')

Thus, sometimes we can use either type of for -loop. However, as we'll see below, sometimes
we can't.

In [2]:

In [3]:

In the examples above, we assigned values to lvalues and used the lvalue names as the
iterables. However, we can also use the values themselves as the iterables.

I love cookies!

I love croissants!

I love coffee ice cream!

I love scones!

I love brownies!

a l p h a b e t

5

4

3

2

1

0

Blast off!

Iterable is a list
Use a descriptive name for the loop variable, i.e., don't use i, j, ...

goodies = ['cookies', 'croissants', 'coffee ice cream', 'scones', 'brownie
for goodie in goodies:
 print(f'I love {goodie}!')

Iterable is a string

word = 'alphabet'
for ch in word:
 print(ch, end=' ')

Iterable is a tuple

nums = (5, 4, 3, 2, 1, 0)
for num in nums:
 print(num)

print('Blast off!')

In [4]:

It's actually better to define the list first, i.e.,

cars = ['Ford', 'Toyota', 'Tesla', 'Rivian']

for car in cars:

 print(f'I drive a {car}.')

This is because defining a list in a header makes the code harder to read.

In [5]:

In [6]:

Again, usually it's better to define a string or tuple first and not include it in the for -loop
header.

2. Iterating vs Counting for -loops

When should we use an iterating for -loop and when should we use a counting for -loop? If
we're working with an iterable, it's usually easier to use an iterating for -loop, but to some
degree it's a matter of personal preference.

Sometimes, however, we have to use a counting for -loop with an iterable, e.g., when we
want to change the values in the iterable itself. An iterating for -loop doesn't allow us to do
this. Consider the following example in which we want to change all the negative numbers in a
list to zero.

I drive a Ford.

I drive a Toyota.

I drive a Tesla.

I drive a Rivian.

H e l l o , W o r l d !

2 3 5 7 11 13 17 19 23 29

Another list example

for car in ['Ford', 'Toyota', 'Tesla', 'Rivian']:
 print(f'I drive a {car}.')

Another string example

for ch in 'Hello, World!':
 print(ch, end=' ')

Another tuple example

for prime in (2, 3, 5, 7, 11, 13, 17, 19, 23, 29):
 print(prime, end=' ')

In [7]:

This code didn't work because num isn't in the list nums . Rather it's the loop variable that's
assigned each value in the list as the for -loop iterates through the list. num is changed if its
value is less than zero, but the list itself isn't changed. Next, consider the following:

In [8]:

value of num outside conditional = -99

value of num in conditional body, i.e., when num < 0 = 0

value of num outside conditional = 25

value of num outside conditional = 18.2

value of num outside conditional = -5

value of num in conditional body, i.e., when num < 0 = 0

value of num outside conditional = 82

value of num outside conditional = 14

value of num outside conditional = 3.4

value of num outside conditional = -1.9

value of num in conditional body, i.e., when num < 0 = 0

nums = [-99, 25, 18.2, -5, 82, 14, 3.4, -1.9]

nums[0] = 0

nums[3] = 0

nums[7] = 0

nums = [0, 25, 18.2, 0, 82, 14, 3.4, 0]

Can't change list values using an iterating for-loop

nums = [-99, 25, 18.2, -5, 82, 14, 3.4, -1.9]
for num in nums:
 print()

 print('value of num outside conditional =', num)

 if num < 0:
 num = 0
 print('value of num in conditional body, i.e., when num < 0 =', nu

print()

print('nums =', nums)

Changing list values using a counting for-loop

nums = [-99, 25, 18.2, -5, 82, 14, 3.4, -1.9]
for i in range(len(nums)):
 if nums[i] < 0:
 nums[i] = 0
 print(f'nums[{i}] = {nums[i]}')

print('nums =', nums)

This code worked because we counted each iteration in the list (i=0, i=1, ...), and each
counter matched the index of the item in the list. Then we changed the actual item in the list
whenever it was negative.

Another type of loop construct in most programming languages is the while -loop.

3. while -loops

while -loop template:

while <test_statement>:

 <loop_body>

The <test_statement> is evaluated. If it's True , the <loop_body> is executed. The
process is repeated until the test is False .

Let's look at some examples:

In [9]:

Note that the final value of i is -1. Control is returned to the header, but when the test condition
i >= 0 fails, the next command (the print() statement) is run.

Next, let's look at a few examples that demonstrate how we can change the test expression.

In [10]:

5

4

3

2

1

0

Final value of i: -1

2 4 8 16 32 64 128 256 512 1024

Countdown from 5

i = 5
while i >= 0:
 print(i)

 i -= 1 # We often use augmented assignment with while-loops
print('Final value of i:', i)

Use of conditional to change test expression

bits = 2
switch = 'on'
while switch == 'on':
 print(bits, end=' ')
 if bits == 1024:
 switch = 'off' # Change 'switch' to leave loop when bits is 1
 bits *= 2

In []:

4. break and continue

break allows us to exit a loop; continue returns us to the loop header. Both can be used
with either for - or while -loops.

Use break and continue statements sparingly because they can cause difficulty when
trying to find logic errors in code.

In [11]:

Notice that continue took us back to the beginning of the loop and, thus, no negative
numbers were appended to the list. break exited us from the loop completely. Here's an
example for a common use of break :

Enter an integer [0 to stop]: -99

Enter an integer [0 to stop]: 42

Enter an integer [0 to stop]: 88

Enter an integer [0 to stop]: 101

Enter an integer [0 to stop]: 23

Enter an integer [0 to stop]: -18

Enter an integer [0 to stop]: 77

Enter an integer [0 to stop]: 0

positives = [42, 88, 101, 23, 77]

Use of input to change test expression

names = []
name = input('Enter a name [or return to stop]: ')
while name != '': # empty string ('') = nothing entered
 names.append(name)

 name = input('Enter a name [or return to stop]: ')
names

Use of break to exit while-loop ***(PA #5 USES break !!!)***

positives = []
while True:
 num = int(input('Enter an integer [0 to stop]: '))
 if num == 0:
 break
 elif num < 0:
 continue
 positives.append(num)

print()

print('positives =', positives)

In [12]:

In [13]:

Enter a name [return to stop]: SpongeBob

Enter a name [return to stop]: Freddie Mercury

Enter a name [return to stop]: Strong Bad

Enter a name [return to stop]: Trogdor

Enter a name [return to stop]: Harry Potter

Enter a name [return to stop]:

['SpongeBob', 'Freddie Mercury', 'Strong Bad', 'Trogdor', 'Harry Potte

r']

short names: ['Ben', 'Sam', 'Eli']

medium names: ['Angela', 'Kaleb', 'Latrra', 'Warren', 'Jessica', 'Haile

e', 'Juan', 'Maili']

long names: ['Jefferson', 'Roselynne', 'Rajendriya']

names = []
while True:
 name = input('Enter a name [return to stop]: ')
 if name == '':
 break
 names.append(name)

print()

print(names)

Non-void function with loop and conditional

def sort_names(names): # parameter names is a list
 short_names = []
 med_names = []
 long_names = []
 for name in names:
 if len(name) <= 3:
 short_names.append(name)

 elif len(name) >= 8:
 long_names.append(name)

 else:
 med_names.append(name)

 return short_names, med_names, long_names

names = ['Angela', 'Kaleb', 'Ben', 'Latrra', 'Warren', 'Jefferson', 'Jess
 'Sam', 'Hailee', 'Roselynne', 'Juan', 'Rajendriya', 'Maili', 'El

short, med, long = sort_names(names)
print('short names:', short)

print('medium names:', med)

print('long names:', long)

