
CptS 111, Spring 2023
Lect. #16, Mar. 20, 2023
Class Notes

Today's Agenda:

1. Three approaches for itemization using for -loops
2. Quick review of data structures in Python
3. Using dictionaries as iterables in iterating for -loops
4. Using the zip() function to create a dictionary

Ch. 6 (cont.)

Loops (cont.)

1. Numbering Using Counting and Iterating for -loops and enumerate()

Suppose we have the list goodies = ['croissants', 'cookies', 'coffee ice
cream', 'scones'] and we want to create an itemized list (not a Python data structure), i.e.,

1. croissants

2. cookies

3. coffee ice cream

4. scones

from this list. We can use a for -loop to accomplish this three different ways.

In [1]:

1. croissants

2. cookies

3. coffee ice cream

4. scones

Method 1: Counting for-loop
Note that we need to use i+1 so the list starts with 1.

goodies = ['croissants', 'cookies', 'coffee ice cream', 'scones']
for i in range(len(goodies)):
 print(f'{i+1}. {goodies[i]}')

In [2]:

For the iterating for -loop, we had to add an extra variable i in order to create an itemized
list. To avoid this, we can use the enumerate() function with the iterable as its argument. The
enumerate() function provides both the index and the element at each iteration.

Template for iterating for -loop with enumerate() :

for <index>, <item> in enumerate(<iterable>):

 <loop_body>

In [3]:

For both the counting for -loop and the iterating for -loop with the enumerate() function,
we need to use i+1 . If we don't, our lists will begin with a 0.

In [4]:

2. Brief Review of Data Structures in Python

Recall that Python has five built-in data structures (ways of structuring data so that access to
data and modification of data are easy):

1. croissants

2. cookies

3. coffee ice cream

4. scones

1. croissants

2. cookies

3. coffee ice cream

4. scones

0. croissants

1. cookies

2. coffee ice cream

3. scones

Method 2: Iterating for-loop
Note that we need to add an extra variable i

i = 1
for goodie in goodies:
 print(f'{i}. {goodie}')

 i += 1

Method 3: Using enumerate()
Note that we have to use i+1 so the list starts with 1.

for i, goodie in enumerate(goodies): # i is the list index
 print(f'{i+1}. {goodie}')

Using enumerate() without adding 1 to i
Itemization will start at 0

for i, goodie in enumerate(goodies):
 print(f'{i}. {goodie}')

strings, lists, tuples, sets, dictionaries

1. All five are containers and iterables
2. Lists, sets, and dictionaries are mutable
3. Strings and tuples are immutable
4. Lists, strings, and tuples are sequences; sets and dictionaries aren't

Data Structure Iterable Sequence Mutable Creation Example

list yes yes yes list() [1, 1.618, ['a', 'b']]

set yes no yes set() {1, 1.618, 'a', 'b'}

tuple yes yes no tuple() (1, 1.618, ['a', 'b'])

string yes yes no str() 'The Cat In The Hat'

dictionary yes no yes dict() {1:'one', 'two':2, (1, 2):'tuple'}

Dictionaries are made up of key-value pairs. Keys must be immutable, but values can be
anything, including other dictionaries.

We can use strings, lists, tuples, and sets as iterables in an iterating for -loop all in the
same way

In [5]:

In [6]:

In [7]:

g * o * o * d * i * e * s *

croissants

cookies

coffee ice cream

scones

croissants

cookies

coffee ice cream

scones

String as iterable

for ch in 'goodies':
 print(ch, end=' * ')

List as iterable

for goodie in goodies:
 print(goodie)

Tuple as iterable

goodies_tuple = ('croissants', 'cookies', 'coffee ice cream', 'scones')
for goodie in goodies_tuple:
 print(goodie)

In [10]:

We cannot, however, use dictionaries as iterables in the same way.

In [11]:

This wasn't exactly what we wanted! Instead we have to do the following.

In [12]:

where goodie is actually the key and goodies_dict[goodie] is its value.

3. Using Dictionaries as Iterables in iterating for -loops

croissants

cookies

coffee ice cream

scones

flaky

chewy

creamy

rich

goodies_dict key: flaky

goodies_dict value: croissants

goodies_dict key: chewy

goodies_dict value: cookies

goodies_dict key: creamy

goodies_dict value: coffee ice cream

goodies_dict key: rich

goodies_dict value: scones

Set as iterable
Note that because sets aren't sequences, they aren't necessarily
accessed sequentially

goodies_set = {'croissants', 'cookies', 'coffee ice cream', 'scones'}
for goodie in goodies_set:
 print(goodie)

Dictionary as iterable
End up with keys, not values

goodies_dict = {'flaky': 'croissants', 'chewy': 'cookies',
 'creamy': 'coffee ice cream', 'rich': 'scones'}

for goodie in goodies_dict:
 print(goodie)

Dictionary as iterable -- correct usage
goodie is key; goodies_dict[goodie] is value for given key

for goodie in goodies_dict: # goodie is the key
 print()

 print('goodies_dict key: ', goodie)

 print('goodies_dict value:', goodies_dict[goodie]) # prints value o

As we just saw, we can use the key as the loop variable, but we can also use what are termed
dictionary view objects as iterables.

for key in dict1: # Keys used to get values as ab

ove

for key, value in dict1.items(): # Both keys and values

for key in dict1.keys(): # Just keys

for value in dict1.values(): # Just values

where the bottom three are view objects. Let's see how this works.

In [13]:

In [14]:

In [15]:

4. Using zip() to Create a Dictionary

We can create a dictionary from two lists using the zip() function as follows. Don't confuse
this function with compressing external files to create a .zip file!

flaky: croissants

chewy: cookies

creamy: coffee ice cream

rich: scones

croissants

cookies

coffee ice cream

scones

flaky

chewy

creamy

rich

Both keys and values

for key, value in goodies_dict.items():
 print(f'{key}: {value}')

Just values

for value in goodies_dict.values():
 print(value)

Just keys

for key in goodies_dict.keys():
 print(key)

In [16]:

In [17]:

Pretty cool, eh?

Out[16]: {'red': 'roses',

 'orange': 'lilies',

 'pink': 'tulips',

 'white': 'alyssum',

 'yellow': 'daffodils'}

[1, 2, 3, 4, 5, 6]

Out[17]: {1: 'roses',

 2: 'lilies',

 3: 'tulips',

 4: 'alyssum',

 5: 'daffodils',

 6: 'dahlias'}

Using zip() to create a dictionary from two lists

colors = ['red', 'orange', 'pink', 'white', 'yellow'] # list 1
flowers = ['roses', 'lilies', 'tulips', 'alyssum', 'daffodils'] # list 2
catalog = dict(zip(colors, flowers)) # zip lists together then create dic
catalog

Let's try something a little fancier
Use list(range()) to create a list of integers; make it start at 1
Assume we don't know how long the flowers list is, so use its length
Add 1 to len(flowers) because we started at 1, not 0

flowers = ['roses', 'lilies', 'tulips', 'alyssum', 'daffodils', 'dahlias'
item_no = list(range(1, len(flowers)+1))
print(item_no)

catalog = dict(zip(item_no, flowers)) # zip lists together then create di
catalog

