
CptS 111, Spring 2023
Lect. #17, Mar. 22, 2023
Class Notes

Today's Agenda:

1. Demo of Lab 8, Task 3
2. for -loops vs while -loops
3. Nested for -loops
4. Lists of lists (nested lists)

1. Demo of CptS 111 Fitness App

Ch. 6 (cont.)

Loops (cont.)

2. for -loops vs while -loops

Thus far in Ch. 6, we've studied counting for -loops, iterating for -loops, and while -loops,
but you might be asking: When should we use a for -loop and when should we use a while -
loop?

In general, it's always safer to use a for -loop because the number of iterations is fixed using
either the range() function (counting for -loop) or by the finite length of an iterable (iterating
for -loop). Thus, when the number of iterations is "known," we use a for -loop, and we don't

have to worry about a loop iterating an infinite number of times as is possible with a while -
loop.

Consider, for example, the following:

In [1]:

If we forget to include the i += 1 statement, the loop will continue on forever:

0 1 2 3 4 5

while-loop with counter

i = 0
while i <= 5: # A while-loop always uses a test expression;
 print(i, end=' ') # a test expression can be very simple, e.g., Tr
 i += 1

In [2]:

This can, literally, be very dangerous if, e.g., the loop is controlling some important system in an
airplane or is used in a safety critical system!

However, there are times when a while -loop is useful, e.g., when you don't know in advance
how many times a loop will execute as in PA #5.

In [3]:

In PA #5, we use the following (or something similar) for our while -loop header:

while True:

> 5 print(i, end)

File /Library/Frameworks/Python.framework/Versions/3.10/lib/python3.1

0/site-packages/ipykernel/iostream.py:518, in OutStream.write(self, s

tring)

 509 content = {"name": self.name, "text": data}
 510 self.session.send(
 511 self.pub_thread,
 512 "stream",
 (...)

 515 ident=self.topic,
 516)
--> 518 def write(self, string: str) -> Optional[int]: # type:ignore
[override]

 519 """Write to current stream after encoding if necessary
 520
 521 Returns
 (...)

 525
 526 """

528 if not isinstance(string str):

Enter a fave [or return to stop]: chocolate croissant

Enter a fave [or return to stop]: scones

Enter a fave [or return to stop]: cookies

Enter a fave [or return to stop]: vanilla sweet cream cold brews

Enter a fave [or return to stop]:

['chocolate croissant', 'scones', 'cookies', 'vanilla sweet cream cold

brews']

while-loop that is an infinite loop

i = 0
while i <= 5:
 print(i, end=' ')

while-loop with graceful exit

prompt = 'Enter a fave [or return to stop]: '
faves = []
fave = input(prompt)
while fave != '': # '' is an empty string
 faves.append(fave)

 fave = input(prompt)
print(faves)

Because True is always true, we have to insert a break statement at some point so we can
break out of the loop. Recall that we can actually use almost anything in place of True because

In [4]:

In [5]:

In [6]:

In [7]:

3. Nested for -loops

We can nest loops as many times as necessary to accomplish what we want to do. However, for
this class, we'll consider only two nested loops consisting of a single outer loop and a single
inner loop. For example,

for i in range(4): # outer loop

 for j in range(3): # inner loop

For nested loops, we start with the outer loop, and then we loop through the inner loop until
we've finished every iteration (here there are three of them). Only then do we return to the outer
loop to begin the next iteration of the outer loop. We continue this until we've completed all
iterations of the outer loop (here there are four of them).

This is a true statement.

This is a true statement.

if 42:
 print('This is a true statement.')

if 'false':
 print('This is a true statement.')

if False:
 print('This is a false statement.')

if []:
 print('This is a false statement.')

i is assigned to 0 # in outer loop (i is 0)

 j is assigned to 0 # in inner loop (i is still 0)

 j is assigned to 1 # " " " (i is still 0)

 j is assigned to 2 # " " " (i is still 0)

In [8]:

How many times is print() executed?

In []:

4. Lists of Lists (Nested Lists)

A. Indexing
Recall that a simple list is indexed by a single pair of brackets. For example,

listA = [1, 2, 3, 4, 5, 6]

is indexed by list1[i] where i varies between 0 and 5.

For nested lists, we use as many pairs of brackets as the depths of the embedded lists. For
example,

listB = [[1, 2], [3, 4], [5, 6]]

listB has three elements, i.e., its length is 3. However, each element is itself a list. We
can think of these elements as inner lists. listB is indexed by listB[i][j] where i
varies between 0 and 2 (because the length of listB is 3) and j varies between 0 and 1
(because the length of each nested (inner) list is 2).

Another way of looking at indexing is to first consider the index for each element in listB . For
example, if we use the index for the first element, we get:

listB[0] == [1, 2]

(i,j) = (0,0) (0,1) (0,2)

(i,j) = (1,0) (1,1) (1,2)

(i,j) = (2,0) (2,1) (2,2)

(i,j) = (3,0) (3,1) (3,2)

Inner loop executes 3 times for each execution of outer loop

for i in range(4): # outer loop gives rows
 print('(i,j) =', end=' ')
 for j in range(3): # inner loop gives columns
 print(f'({i},{j})', end=' ')
 print() # Outside inner loop, but inside outer loop

zCA 6.11.3: Want, e.g., 1A 1B 1C 2A 2B 2C for num_rows = 2, num_cols =

num_rows = int(input())
num_cols = int(input())

num = 65
for i in range(num_rows): # outer loop gives rows
 for j in range(num_cols): # inner loop gives columns
 print(f'{i+1}{chr(num+j)}', end=' ')
print()

But suppose now we want to specify the 2 . How do we do this? We need to add an index for it.
We do this by adding a second set of brackets, and because the index for 2 in this "inner" list is
1, we end up with:

listB[0][1] == 2

In [9]:

B. Code Readability
In coding, it's important for our code to be readable by others. To improve readability, we do the
following:

Write blocks of code. Each block of code must use proper indentation.
Default indentation is 4 spaces, but if there's lots of nesting, decrease to 2. Be consistent or
the code won't run.
Add whitespace and line breaks (\).
Write long lists, etc., using multiple lines, i.e., can start on one line and continue on others.

This is especially helpful for lists of lists (nested lists) and can be helpful for dictionaries as well.
Consider the following list of lists.

In [10]:

Suppose we want to print the list of lists above so that it results in the following (zCA6.12.1):

 1 | 2 | 3

 2 | 4 | 6

 3 | 6 | 9

listB is [[1, 2], [3, 4], [5, 6]]

listB[0][1] is 2.

listB[1][0] is 3.

The length of listB is 3.

The length of listB[-1] is 2.

listB[-1] is [5, 6]

[[1, 2, 3], [2, 4, 6], [3, 6, 9]]

Let's prove this indexing works!

listB = [[1, 2], [3, 4], [5, 6]]
print('listB is', listB)

print(f'listB[0][1] is {listB[0][1]}.')

print(f'listB[1][0] is {listB[1][0]}.')

print(f'The length of listB is {len(listB)}.')

print(f'The length of listB[-1] is {len(listB[-1])}.')
print(f'listB[-1] is', listB[-1])

3x3 matrix written as list of lists (nested lists)

table = [
 [1, 2, 3],

 [2, 4, 6],

 [3, 6, 9]

]

print(table)

We can again use the range(len() - 1) approach we used for a simple list. We just have to
be careful about it and think a little!

In [11]:

Note that we had to use table[i] in the inner for -loop because we need the length of each
inner list.

There are a number of other ways to perform the same task:

In [12]:

In [13]:

If we want to print the table without the separators, we can simply use nested iterating for -
loops:

1 | 2 | 3

2 | 4 | 6

3 | 6 | 9

1 | 2 | 3

2 | 4 | 6

3 | 6 | 9

1 | 2 | 3

2 | 4 | 6

3 | 6 | 9

zCA 6.12.1: Nested counting for-loops

for i in range(len(table)): # len() gives number of rows
 for j in range(len(table[i]) - 1): # len() gives number of columns
 print(table[i][j], '|', end=' ') # print row[i] except for last v
 print(table[i][-1]) # print last value in row[i]

Using combo of iterating and counting for-loops:

for row in table:
 for i in range(len(row) - 1):
 print(row[i], '|', end=' ')
 print(row[-1], end='')
 print()

Using iterating for-loop, enumerate(), and if-else:

for row in table:
 for i, col in enumerate(row):
 if i != len(row) - 1:
 print(col, '|', end=' ')
 else:
 print(col)

In [14]:

In [15]:

C. A Bit More on Nested Lists
As we've shown above, nested lists can be used to create 2-D tables. I want to emphasize that
the number of rows is equal to the length of the outer list, and the number of columns is equal to
the length of the inner lists. Thus, for example,

nums = [# 2 rows by 3 columns

 [1, 2, 3],

 [4, 5, 6]

]

can be used to create a 2x3 table, i.e., one with two rows and three columns, and

table = [

 [1, 2], # row 1 = table[0]

 [3, 4], # row 2 = table[1]

 [5, 6], # row 3 = table[2]

 [7, 8] # row 4 = table[3]

]

can be used to create a 4x2 table, i.e., one with four rows and two columns.

D. A Bit More on Nested Loops
As we also showed above, the way to create a table from a list of lists is to use nested loops.
Importantly, the outer loop is used to work with the rows, and the inner loop is used to work with
the columns. For each iteration of the outer loop, the inner loop iterates as many times as there
are values in each row.

Let's look at one more example of how to work with a list of lists and nested for -loops:

1 2 3

2 4 6

3 6 9

1 2 3 2 4 6 3 6 9

Table without separators

for row in table:
 for col in row:
 print(col, end=' ')
 print() # Use so don't end up with a single row.

What happens if we don't include print() in the outer for-loop?

for row in table:
 for col in row:
 print(col, end=' ')

In [18]:

i=1

j=1: a j=2: b j=3: c

i=2

j=1: d j=2: e j=3: f

i=3

j=1: g j=2: h j=3: i

i=4

j=1: j j=2: k j=3: l

Another example in an attempt to provide insight, 4x3 matrix

4 rows

3 columns

letters = [
 ['a', 'b', 'c'],

 ['d', 'e', 'f'],

 ['g', 'h', 'i'],

 ['j', 'k', 'l']

]

for i, row in enumerate(letters): # i is index for row
 print(f'i={i+1}')
 for j, col in enumerate(row): # j is index for letter
 print(f'j={j+1}: {col} ', end=' ')
 print()

