
CptS 111, Fall 2023
Lect. #19, Mar. 29, 2023
Class Notes

Today's Agenda:

1. Using with
2. Modules

Ch. 7 (cont.)

1. Using the with Statement

We've learned how to open and close files and also how to read from them and write or print to
them. Next, we add a bit of sophistication using the with statement. The beauty of using
with is that it automatically closes a file so that you don't have to.

The template for a with statement is:

with open('<file>', 'r' or 'w' or 'a') as <file_name>:

 <with_body>

After the code inside the with body is completed, Python will close any open files.

Let's consider an example.

In [1]:

Note that we can nest input() within the open() function.

As mentioned, after the code within the with body has been executed, Python closes the file.
We can show this by running the same code again (which we couldn't do if the file hadn't been
closed).

Enter input file name: quote.txt

"Many people are desperately looking for some wise advice which will

recommend that they do what they want to do."

--Unknown

Using the with statement

with open(input('Enter input file name: '), 'r') as file_in:
 for line in file_in:
 print(line, end='')

In [2]:

Of course, you can also use with to print to a file. Let's add something to our quote.

In [3]:

2. Modules

We learned a little bit about modules in Ch. 3, and the tkinter module was used in PA #4.
Today we're going to cover modules a bit more in depth.

Recall that for specialized functions, we import modules. Also recall that a module is just code
that's stored in a .py file for use in another module or in a Python script, i.e., a program we've
written in, e.g., an IDLE Editor window. In fact, we can use scripts we've written ourselves as
modules. Each module contains functions designed for a specific purpose.

Python comes with a set of standard modules that is quite extensive, but in addition, there are
thousands and thousands of modules available that have been written by both professionals and
enthusiasts. Some of the standard modules included with Python are:

Enter input file name: quote.txt

"Many people are desperately looking for some wise advice which will

recommend that they do what they want to do."

--Unknown

"Many people are desperately looking for some wise advice which will

recommend that they do what they want to do."

--Unknown

 Philosopher

Using the with statement again to prove that the file was closed

with open(input('Enter input file name: '), 'r') as file_in:
 for line in file_in:
 print(line, end='')

Use the with statement to print to the quote.txt file and then reopen an

with open('quote.txt', 'a') as file_out:
 print(' Philosopher', file=file_out)

with open('quote.txt') as file_in:
 for line in file_in:
 print(line, end='')

math: math functions # Lab #2, Lab #10

cmath: complex math functions

statistics: statistics functions

random: random numbers # Lab #10

turtle: graphics

os: operating system

time: time access and conversions

mailbox: mailbox manipulation

calendar: calendar functions # Lab #10

tkinter: uses tk tools to create GUIs # PA #4

In addition, many open source modules available for use freely by anyone can be found at:

Python Package Index (PyPI) repository (https://pypi.org/)

We'll be using several of these, including numpy (Lab #12), matplotlib (Lab #12), and
pygame (PA #7).

Let's consider the ways we can import modules.

A. Basic Import Statement

Recall (from Ch. 3) that the simplest import statement requires the use of dot notation by which
we mean that when we use a function in the module, the name of the module must be given,
f ll d b i d d h b h f h f i

In [4]:

In [5]:

Out[4]: '/Users/shira/teaching/cs111/spr23/lectures'

Out[5]: '/Users/shira/teaching/cs111/spr23/labs'

Consider the os module; use dot notation to access getcwd()

import os
os.getcwd()

Use chdir() to change directories.

os.chdir('/users/shira/teaching/cs111/spr23/labs')

os.getcwd()

In [6]:

B. Import Statement with Alias

We might want to use dot notation so we know that a function has been imported (and so that
we don't have to worry about choosing names of functions that might be in a module), but we
want to shorten the module name if we're going to use a lot of its functions to lessen the amount
of typing required. Recall that we learned how to do this previously.

import <module> as <name>

Consider, for example, the random module and three of its functions:

randrange(): Generates a random number in a manner similar to the

 range() function; can have three arguments, and

 doesn't include the stop value

randint(): Generates a random integer including the start and sto

p

 values

random(): Generates a random number in the interval [0, 1) (')' m

eans doesn't include)

['lab1.pdf', 'lab3_t4.py', 'lab3.pdf', 'lab2.pdf', 'lab2_t1.txt', 'lab9

_t3.py', 'lab6.pdf', 'lab7.pdf', 'lab5_t4.py', 'lab6_t3a.py', 'lab7_t4.

py', 'lab5.pdf', 'lab4.pdf', 'lab4_t1.txt', 'lab4.tex', 'lab8_t1.txt',

'lab5.tex', 'lab4_t2.txt', 'lab7.tex', 'lab8_t2.txt', 'lab2_t4.py', 'la

b6.tex', 'lab2.tex', 'poem.txt', 'lab6_t4.py', 'lab3.tex', 'lab1.tex',

'lab8_t3.py', 'lab6_t1.txt', 'lab4_t4.py', 'lab3_t1.txt', 'lab1_t4.tx

t', 'lab4_t3.py', 'lab3_t2.txt', 'lab2_t2.py', 'lab6_t2.py', 'lab1_t3.t

xt', 'lab2_t3.py', 'slice3.eps', 'lab8.tex', 'lab9.tex', 'lab7_t3.py',

'lab9.pdf', 'lab8.pdf', 'lab5_t2.txt', 'lab9_t2.txt', 'lab6_t3b.py', 'l

ab5_t1.txt', 'lab9_t1.txt', 'genome.fna', 'lab5_t3.py', 'lab7_t1.txt',

'lab7_t2.py', 'lab3_t3.py']

Note that some os functions are non-void

cwd = os.listdir()
print(cwd)

In [7]:

In [8]:

In [9]:

['BPF', 'LOG4', 'NV_MAGICCONST', 'RECIP_BPF', 'Random', 'SG_MAGICCONS

T', 'SystemRandom', 'TWOPI', '_ONE', '_Sequence', '_Set', '__all__', '_

_builtins__', '__cached__', '__doc__', '__file__', '__loader__', '__nam

e__', '__package__', '__spec__', '_accumulate', '_acos', '_bisect', '_c

eil', '_cos', '_e', '_exp', '_floor', '_index', '_inst', '_isfinite',

'_log', '_os', '_pi', '_random', '_repeat', '_sha512', '_sin', '_sqrt',

'_test', '_test_generator', '_urandom', '_warn', 'betavariate', 'choic

e', 'choices', 'expovariate', 'gammavariate', 'gauss', 'getrandbits',

'getstate', 'lognormvariate', 'normalvariate', 'paretovariate', 'randby

tes', 'randint', 'random', 'randrange', 'sample', 'seed', 'setstate',

'shuffle', 'triangular', 'uniform', 'vonmisesvariate', 'weibullvariat

e']

8 9 0 5 8 2 5 7 5 4 5 6 4 6 6 0 3 0 9 0 5 4 7 8 3 6 0 0 9 6 3 9 7 8 7 3

4 6 4 6

6 3 4 4 2 2 4 4 1 3 1 3 3 6 1 3 6 3 1 4 3 3 4 1 4 5 5 3 2 2 2 4 2 2 2 1

2 5 5 6

5 3 3 4 3 5 1 4 5 5 3 6 3 3 3 4 6 4 4 5 5 3 5 3 5 3 6 2 6 4 5 2 5 5 5 6

2 1 5 4

Use an alias for a module; must use dot notation with alias

import random as r
print(dir(r)) # dir() gives contents of the random module

randrange() is similar in concept to the range() function; it never
includes the stop value

for i in range(40):
 print(r.randrange(0, 10), end=' ')

randint() includes the stop value; it can be used, e.g., to simulate
rolling a single die

for i in range(40):
 print(r.randint(1, 6), end=' ')
print()

for i in range(40):
 print(r.randint(1, 6), end=' ')

In [10]:

C. Import Statements Avoiding Dot Notation

Sometimes it's convenient to completely avoid the use of dot notation. We then just use the
name of the function in the module.

from <module> import <func1>, <func2>

Special case:

from <module> import *

* = wildcard - use of this means import all functions

Let's consider, for example, the math module. We'll import several functions and the constant
pi .

0.32637068188596796 0.2533502710777319 0.054596312269493574 0.313167945

4563272 0.7142346113567271 0.04117931954844245 0.15807761536430476 0.85

2318014542321 0.7823545900093751 0.2451402289182647 0.5430090512509743

0.2580244335689569 0.2424685171562686 0.6380893017574043 0.215044048114

63917 0.9923206781007338 0.8251547756169457 0.08946277741558095 0.46688

78017650516 0.9903373616216117 0.9368469680965679 0.9520455586897936 0.

33228395639387565 0.12390763912704161 0.24666398711328374 0.96086822073

51931 0.6285783131781428 0.11785044993990268 0.12356705060091555 0.5109

38117090516 0.8443654255567075 0.16190911956061738 0.11625790341424003

0.518612856757441 0.7398343166951384 0.5908466875139393 0.4031745022206

772 0.32472242248640626 0.3403044241352542 0.8372261952957882

random() has no argument; generates a random fraction between 0 and 1, n

for i in range(40):
 print(r.random(), end=' ')

In [11]:

Notice that we didn't get zero for sin(pi) when we should have. There are a number of
factors involved in this (including the finite precision of floats), but what's important to note is that
we have to think a little about answers we get when they're very small. The same is true when we
use our calculators.

Next, let's use the wildcard * to import all the functions in the statistics module.

In [12]:

D. Import Module Functions with Aliases

Previously we mentioned that we can assign aliases to modules. We can also assign aliases to
module functions.

from <module> import <func1> as <name1>, <func2> as <name2>, ...

For example:

sin of pi = 1.2246467991473532e-16

factorial of 99 = 93326215443944152681699238856266700490715968264381621

46859296389521759999322991560894146397615651828625369792082722375825118

52109168640000000000000000000000

sqrt of factorial of 99 = 9.660549437994929e+77

cosine of sqrt of factorial of 99 = -0.5824628384306424

mean = 7.14, median = 4

Avoid dot notation by importing functions by name

from math import factorial, sqrt, cos, sin, pi

zero = sin(pi)
print('sin of pi =', zero)

print()

x = factorial(99)
print('factorial of 99 =', x)

print()

y = sqrt(x)
print('sqrt of factorial of 99 =', y) # Recall sqrt() always returns a f
print()

z = cos(y)
print('cosine of sqrt of factorial of 99 =', z)

Avoid dot notation by importing everything using the wildcard *

from statistics import *

avg = mean([1, 2, 3, 4, 5, 15, 20])
med = median([1, 2, 3, 4, 5, 15, 20])
print(f'mean = {avg:.2f}, median = {med}')

In [13]:

Care must be taken when using modules without dot notation because we can easily wipe out or
change functions or variables without realizing it.

In [14]:

What import statement should we use? It depends on several factors:

How many of the functions are we going to use?
How big is the module?
How long is our program?

If a module is small or we're going to use a lot of its functions, then we probably want to import
the entire module.

When should we use dot notation? This is really a matter of style. I prefer import <module>
as <name> because then I don't have to worry about wiping out a function or variable or
changing a value, but it also lets me know immediately that I'm using a function I imported.

Note that it's good programming practice to put all import statements at the beginning of a
program.

E. Importing Modules We've Written

mean: 7.142857142857143

median: 4

pi from math module: 3.141592653589793

pi after reassigning pi: 3.141

m.pi from math module: 3.141592653589793

pi after assigning pi: 3.141

m.pi from math module: 3.141592653589793

Avoid dot notation by importing functions and using aliases for them

from statistics import mean as avg, median as med
print('mean:', avg([1, 2, 3, 4, 5, 15, 20]))

print('median:', med([1, 2, 3, 4, 5, 15, 20]))

Note that avoiding dot notation can cause problems

from math import pi
print('pi from math module:', pi)

pi = 3.141
print('pi after reassigning pi:', pi)

print()

import math as m
print('m.pi from math module:', m.pi)

pi = 3.141
print('pi after assigning pi:', pi)

print('m.pi from math module:', m.pi)

W i t i t ' itt t ki t k th ' i
In [15]:

In []:

Enter number of rolls: 450

Dice roll histogram:

2s: ***********

3s: *************************

4s: ********************************

5s: ***

6s: ***

7s: **

*

8s: **

9s: **

10s: **************************************

11s: ********************************

12s: **************

Enter number of rolls: 475

Dice roll histogram:

2s: ************

3s: *************************

4s: ***

5s: ***

6s: **

*

7s: **

8s: ***

9s: ***

10s: *********************************

11s: ****************************

12s: ***************

Enter number of moves: 75

Enter number of moves:

We can import modules we've written
This module simulates the results of rolling a pair of dices and showin
the resulst in the form of a histogram.

import dice_rolls as dr
dr.main()

This program uses the turtle graphics module

import random_walk as rw
rw.main() # Call main() to use the turtle module

