
CptS 111, Spring 2023
Lect. #20, Apr. 3, 2023
Class Notes

Today's Agenda:

1. eval() function redux
2. String formatting
3. String formattting using modulo-formatting
4. String formatting using the .format() method
5. String methods

Ch. 8

Strings

We were introduced to the use of strings many chapters ago, and we've used them now as both
literals and iterables. In Ch. 8, we learn more about the use of strings in Python.

1. eval() Function

In PA #5, you used the eval() function to convert a text form of a dictionary into a Python
dictionary construct. The eval() function can be used for so much more. It essentially
evaluates a string argument and does as the argument instructs or converts the argument based
on its form. Examples make this much more clear.

Recall that we can't convert a string float to an integer using the int() function. We can,
however, use the eval() function to do this.

In [1]:

In [2]:

num equals 1.618 and the type of num is <class 'float'>.

-231

Use eval() to convert a string float to a float.

num = eval('1.618')
print(f'num equals {num} and the type of num is {type(num)}.')

Use eval() to make a calculation

print(eval('25 - (2 ** 8)'))

In [3]:

2. String Formatting

In Python, there are a number of ways to format a string. In Ch. 3, we learned how to format
strings using f-string formatting together with replacement fields, i.e., the sets of curly braces,
and format specifiers, e.g., {:<24} . Today, we're going to learn two other ways of formatting
strings. The first is one that was used in Python 2.x referred to as modulo-formatting because of
its use of %. Even after introduction of the .format() method in Python 2.6, the second way
of formatting we'll cover today, coders continued to use modulo-formatting. Modulo-formatting
was popular because coders were used to it and because it was easier to use than the
.format() method. Because you're likely to run across all three approaches, it's a good idea

to be familiar with them all.

3. String Formatting Using Modulo-Formatting and Conversion Specifiers

One way to print variables to stdout is to use conversion specifiers. There are others, but we will
typically use the following conversion specifiers:

 %s: use to write variable as a string
 %d: use to write variable as an integer
 %f: use to write variable as a float

%s and %d are straightforward; however, we may want to impose some constraints on %f .

Template for using conversion factors for string formatting:

'<text> %s, <text> %d, and <text> %f.' % (var1, var2, var3)

If only one variable is used, the parentheses aren't needed, i.e., you don't need to use a tuple.

In [4]:

In [5]:

Enter height and weight separated by a comma: 72.5,160
height is 72.5 inches and weight is 160 pounds
type of height is <class 'float'>, and type of weight is <class 'int'>

I love my cat named dog!

The answer to life, the universe, and everything is 42.

Use eval to allow multiple input values

ht, wt = eval(input('Enter height and weight separated by a comma: '))
print(f'height is {ht} inches and weight is {wt} pounds')
print(f'type of height is {type(ht)}, and type of weight is {type(wt)}')

Modulo-formatting of a string variable

cat = 'dog'
print('I love my cat named %s!' % cat)

Modulo-formatting converting a float to an integer

answer = 42.0
print('The answer to life, the universe, and everything is %d.' % answer)

In [6]:

In the example above, we've used the conversion specifier %s which converts a float to a
string, but as it's a string float, it prints as a float.

In [7]:

In the example above, we see that we still can't convert a string float to an integer. The only way
to do so is by using eval() .

In [8]:

This doesn't look very good because we don't want all the trailing zeros. As with f-string
formatting, we can use %.2f to restrict the value printed to two decimal places.

In [9]:

Note that as with f-string formatting, we can use modulo-formatting in the input() function.

The answer to life, the universe, and everything is 42.0.

TypeError Traceback (most recent call l
ast)
Input In [7], in <cell line: 4>()
 1 # Attempt to convert string float to an integer using %d
 3 answer = '42.0'
----> 4 print('The answer to life, the universe, and everything is %d.'
% answer)

TypeError: %d format: a real number is required, not str

Interest earned in one year: $51.750000

Interest earned in one year: $51.75

Modulo-formatting converting a float to a string

print('The answer to life, the universe, and everything is %s.' % answer)

Attempt to convert string float to an integer using %d

answer = '42.0'
print('The answer to life, the universe, and everything is %d.' % answer)

Modulo-formatting of a float

savings = 2300
annual_interest = 0.0225 * savings
print('Interest earned in one year: $%f' % annual_interest)

Modulo-formatting with constraint on %f

savings = 2300
annual_interest = 0.0225 * savings
print('Interest earned in one year: $%.2f' % annual_interest)

In [10]:

In [11]:

4. String Formatting Using the .format() Method

The .format() method of string formatting is similar to that of f-string formatting. As with f-
strings, the .format() method uses replacement fields and format specifiers.

String Formatting Template

' '.format() = method to format a string

where

' ' = format string: combination of string literals and replacem
ent fields
 {} = replacement field

When a replacement field uses no numbers, then we simply use a 1-to-1 mapping based on
position. For example:

In [12]:

We can also use numeric indexes. For example:

In [13]:

Note the correspondence between index numbers and positions. We can also use named
replacement fields. For example:

Enter the cost of item #1: 42

Hello, Yin and Yang!

Hello, Yin and Yang!

Hello, Me, You, and Me!

Use of modulo-formatting in the input() function

i = 1
cost = float(input('Enter the cost of item #%d: ' % i))

Modulo-formatting with more than one argument

print('Hello, %s and %s!' % ('Yin', 'Yang'))

inferred positional

print('Hello, {} and {}!'.format('Yin', 'Yang'))

numeric positional and use of lvalues as arguments

me ='Me'
you = 'You'
print('Hello, {0}, {1}, and {0}!'.format(me, you))

In [14]:

As mentioned above, format specifiers can be used with the .format() method. They're the
same ones we learned for f-strings. For example,

In [15]:

5. String Methods

Use dir('') or dir(str) to see what string methods are available.

In [16]:

And use help() for information on a particular method.

In [17]:

Recall that in general, methods can be nested just like functions. This is known as chaining.

functions: outer(inner()) -- inner performed first, then outer

Hello, Me, You, and Me!

crimson and gray

['__add__', '__class__', '__contains__', '__delattr__', '__dir__', '__d
oc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getitem
__', '__getnewargs__', '__gt__', '__hash__', '__init__', '__init_subcla
ss__', '__iter__', '__le__', '__len__', '__lt__', '__mod__', '__mul__',
'__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__rmod
__', '__rmul__', '__setattr__', '__sizeof__', '__str__', '__subclasshoo
k__', 'capitalize', 'casefold', 'center', 'count', 'encode', 'endswit
h', 'expandtabs', 'find', 'format', 'format_map', 'index', 'isalnum',
'isalpha', 'isascii', 'isdecimal', 'isdigit', 'isidentifier', 'islowe
r', 'isnumeric', 'isprintable', 'isspace', 'istitle', 'isupper', 'joi
n', 'ljust', 'lower', 'lstrip', 'maketrans', 'partition', 'removeprefi
x', 'removesuffix', 'replace', 'rfind', 'rindex', 'rjust', 'rpartitio
n', 'rsplit', 'rstrip', 'split', 'splitlines', 'startswith', 'strip',
'swapcase', 'title', 'translate', 'upper', 'zfill']

Help on method_descriptor:

upper(self, /)
 Return a copy of the string converted to uppercase.

named (keyword)

print('Hello, {n1}, {n2}, and {n1}!'.format(n1 = 'Me', n2 = 'You'))

len('gray') > specified width so ignored.

print('{:10} and {color:3}'.format('crimson', color='gray'))

See what string methods are available in Python

print(dir(''))

Use help() to get information about particular string method

help(str.upper)

methods: identifier.left().right() -- left performed first, then right

A. Case methods: .capitalize() , .title() , .swapcase() , .lower() , .upper()

In [18]:

In [19]:

In [20]:

In [21]:

In [22]:

In [23]:

In [24]:

Out[18]: 'The cat in the hat'

Out[19]: 'The Cat In The Hat'

Out[20]: 'THE CAT IN THE HAT'

Out[21]: 'the cat in the hat'

Out[22]: 'THE CAT IN THE HAT'

Out[23]: 'the cat in the hat'

THE CAT IN THE HAT
the cat in the hat

Capitalize first letter of string using .capitalize()

s = 'the cat in the hat'
s.capitalize()

Capitalize first letter of each word in string using .title()
We used this in PA #5

s.title()

Use .swapcase() to swap cases in string

s.swapcase()

Use .lower() to change all string characters to lowercase
We also used this in PA #5

s.lower()

Use .upper() to change all string characters to uppercase

s.upper()

Note, however, that none of these methods changed s; why?

s

But string methods can be non-void

t = s.upper()
print(t)
print(s)

In [25]:

In [26]:

B. .count() , .find() , and .replace() Methods

In [27]:

In [28]:

In [31]:

In [32]:

In [33]:

In [34]:

Out[25]: 'Joseph gordon-levitt'

Out[26]: 'joseph gordon-levitt'

Out[27]: 7

Out[28]: 8

Out[31]: 4

Out[32]: '$he ell eahell$ down by the eahore.'

Out[33]: 'She ell $eashells down by the seashore.'

Out[34]: 'She sells seashells down by the seashore.'

We can always reassign an lvalue; use chained methods

s = 'JOSEPH GORDON-LEVITT'
s.lower().capitalize()

Order matters: left to right

s.capitalize().lower()

Use of .count() to count occurrences of character (case matters!)

phrase = 'She sells seashells down by the seashore.'
phrase.count('s')

Count all occurrences of s, regardless of case

phrase.lower().count('s')

Use .find() to find index of first occurrence of character(s)
If no occurrence, -1 returned

phrase.find('s')

Use .replace() to replace chr or substring; use .lower() first
so uppercase S also replaced

phrase.lower().replace('s', '$')

We can restrict number of times chr is replaced

phrase.replace('s', '$', 3)

Methods didn't change phrase; why?

phrase

In [35]:

C. .1strip() , .rstrip() , and .strip() Methods: Important for removing
whitespace!

In [36]:

In [37]:

In [38]:

In [39]:

Note that .strip() methods don't remove whitespace between text but only leading and
trailing whitespace.

Out[35]: 'He sells seashells down by the seashore.'

Go, Cougs!

Here I am.

Go, Cougs!

Here I am.

Go, Cougs!
Here I am.

Go, Cougs!
Here I am.

However, we can change by reassigning lvalue

phrase = phrase.replace('She', 'He')
phrase

Two tabs on the left; two newlines on the right

cheer = '\t\tGo, Cougs!\n\n'
print(cheer)
print('Here I am.')

Remove whitespace on the left, i.e., tabs

print(cheer.lstrip())
print('Here I am.')

Remove whitespace on the right, i.e., newlines

print(cheer.rstrip())
print('Here I am.')

Remove whitespace from both sides

print(cheer.strip())
print('Here I am.')

