
CptS 111, Spring 2023
Lect. #21, Apr. 10, 2023
Class Notes

Today's Agenda:

1. Some coding questions from the exam
2. Two more string methods
3. Use of in with string
4. String slicing

Ch. 8 (cont.)

Strings (cont.)

1. Some Coding Questions from the Exam

In [1]:

In [2]:

1A 1B 1C
2A 2B 2C

Problem 31 required you to open and close files
for reading and writing. The for-loop was
similar to Lab 9, Task 2:

file_in = open('poem.txt')
file_out = open('new_poem.txt', 'w')
for line in file_in:
 print(line, file=file_out, end='') # or end='', file='file_out'
 print('Ta-da!', file=file_out)
file_in.close()
file_out.close()

Problem 33 was almost identical to zCA 6.11.3
which I did in a lecture. It just added made
two rows.

for i in range(2):
 for j in range(3):
 print(f'{i+1}{chr(65+j)}', end=' ')
 print()

In [3]:

Problem 35 was just get_nums() from Lab 9, Task 3, but just the three lines of the for -loop,
not the function.

2. Two More String Methods

Next, we'll consider two methods that are surprisingly useful.

D. The .split() Method

.split() : creates a list from a string, splitting the string on whitespace by default, but
any character or characters can be used

In [4]:

We see that the string has been split on the whitespace between words. We can split on entire
words, on punctuation, or on individual letters.

Importantly, whatever is used for the split is removed from the string! For example,

In [5]:

As we can see, all the t's have disappeared, but all the whitespace is retained. Recall that I
gave you the following line to use in zyLab_PA2, our Running Time Calculator program.

mm, ss = int(pace.split(’:’)[0]), int(pace.split(’:’)[1])

You've now studied everything you need to understand this statement! Let's dissect it to
understand it thoroughly.

Out[4]: ['Spontaneity', 'has', 'its', 'time', 'and', 'place.']

Out[5]: ['Spon', 'anei', 'y has i', 's\t\t ', 'ime and \nplace.']

Problem 34 was similar to PA 5 and tasks in Lab 9

def get_goodies():
 goodies = []
 while True:
 goodie = input('Enter goodie [return to stop]: ')
 if goodie == '':
 break
 goodies.append([goodie, 0])
 return goodies

.split() creates a list from a string
If nothing is used inside the parentheses, .split() will split on
whitespace, i.e., spaces, tabs, and newlines.

s = 'Spontaneity has its\t\t time and \nplace.'
s.split()

When we split on a character (including whitespace), it's deleted

s.split('t') # Put what you want to split on inside parens!

In [6]:

In [7]:

In [8]:

In [9]:

In [10]:

Note that if we split on a character that begins or ends a string, we'll end up with an empty
string. We always get two items on either side of whatever we split on.

In [11]:

.split() can be useful for removing newlines from text (and recall that we can't use the string
method .strip()). Consider the following example. Suppose we want all the numbers to be
on a single line.

Enter pace [mm:ss]: 7:30

['7', '30']

Out[8]: 7

Out[9]: int

I never ever ran a mile in 7 minutes and 30 seconds. Oh well.

['', 'lower()', 'title()']

We start by asking a user for the pace:

pace = input('Enter pace [mm:ss]: ') # pace is a string

Next, let's split `pace` on the colon:

plist = pace.split(':')
print(plist)

We now have a list of two string elements.
Convert the first element to an integer:

int(plist[0])

And let's make sure we really do have an integer!

type(int(plist[0]))

Putting all this together and using simultaneous assignment, we have:

mm, ss = int(pace.split(':')[0]), int(pace.split(':')[1])
print(f'I never ever ran a mile in {mm} minutes and {ss} seconds. Oh wel

Splitting on a character that begins a string

chained = '.lower().title()'
unchained_list = chained.split('.')
print(unchained_list)

In [12]:

In [13]:

In [14]:

In the example above, we split the string s on the newlines ('\n'). This created a list of three
4-character strings ('0123', '4567', '8910'). We then joined these strings together using the
.join() method, which is a segue to our next method.

E. The .join() Method

.join() is another useful method which can be used very effectively with .split()

.join() takes a list as its attribute (argument) and joins the elements in the list by
whatever string is desired.

The .split() and .join() methods are like inverses of each other:

.split() creates a list from a string

.join() creates a string from a list

In [15]:

As we see, we can join the elements of a list by a newline. Next, consider the following string of
names.

0123
4567
8910

012345678910

012345678910

Out[15]: '0123\n4567\n8910'

Consider a string with newline characters in it

s = '0123\n4567\n8910'
print(s)

We can split on the newline character '\n'

print(''.join(s.split('\n')))

We can also use the default because newlines are whitespace

print(''.join(s.split()))

Example 1: Add newlines between elements of a list with .join(),
creating a string

num_list = ['0123', '4567', '8910']
num_string = '\n'.join(num_list)
num_string

In [16]:

Suppose we want to separate the names into a list.

In [17]:

However, note that when we split on the semicolon, we only removed it and not the space before
the three last elements in the list. Let's remove the space, too.

In [18]:

Ta da!

Finally, recall that we can use a for -loop to string together words, but let's see how more
easily this can be accomplished using join() .

In [22]:

.split() and .join() can also be used together to determine the number of visible
characters there are, for example, in a sentence.

Out[16]: 'Monroe, Marilyn; Ridley, Daisy; Berry, Halle; Chastain, Jessica'

Out[17]: ['Monroe, Marilyn', ' Ridley, Daisy', ' Berry, Halle', ' Chastain, Jess
ica']

Out[18]: ['Monroe, Marilyn', 'Ridley, Daisy', 'Berry, Halle', 'Chastain, Jessic
a']

Out[22]: 'fly-by-night'

Create a string of names

names = 'Monroe, Marilyn; Ridley, Daisy; Berry, Halle; Chastain, Jessica'
names

Example 2: Separate string of names into a list by splitting on ';'

name_list = names.split(';')
name_list

Revised Example 2: Remove the space after the semicolon by splitting on
both

name_list = names.split('; ')
name_list

Example 3: Use .join() to insert character between list elements

words = ['fly', 'by', 'night']
s = '-'.join(words)
s

In [23]:

3. Use of in in Strings

You'll recall that you've used the Python keyword in when coding for -loops, but as
mentioned in your textbook, in together with its counterpart not in can be used to
determine whether a string or substring is part of another string. This is analogous to our use of
in in PA #5 where we used in to determine whether a movie or video game title is in our

dictionary.

In [24]:

4. String Slicing

Sometimes we want to be able to "cut out" a piece of a string

Template for string slicing:

<string>[start : stop : increment]

where:

start: slice begins at start index
stop: slice ends one before stop index
increment: default is 1, but other values can be chosen

Notes:

1. [: stop] will start at 0
2. [start :] will start at start and end at the end of the string

String slicing can be very useful. For example, in bioinformatics we can create DNA sequences
from a genome. Let's say, for example, that a gene is identified by the sequence TATA 30
nucleotides (there are four different nucleotides: A, T, G, C) before the starting point of a gene.
Then to locate the actual gene, we can do the following:

1) First split the genome on spaces and join the nucleotides together into a continuous string:

Out[23]: 53

tata is in dna.

Use .split() and .join() to determine number of visible characters
in string; split on whitespace and use .join() with an empty string

s = 'This is a one line proof if we start sufficiently far to the left.'
len(''.join(s.split()))

Use in to determine whether a sequence of characters is in a string

dna = 'actggtcaaaccttggtatacgtc'
if 'tata' in dna:
 print('tata is in dna.')

In [25]:

2) Next find the index for the location of tata :

In [26]:

3) Finally, isolate the gene based on the location of the tata string. Assume the gene occurs
30 nucleotides after the tata box. Then to isolate the gene, we add 30 from the location of tata
box and use this as the start index for the slice.

Out[25]: 'gaaaaggcaaccgtagggggtgatagtcccgtacaggtaagaaggttgcagatccttgagtagggcgggg
cacgtggaaccctgtctgaatttagggggaccatcctctaaacctaagtactccttagcgaccgatagtga
acaagtaccgtgagggaaaggtgaaaagaaccccggtgaggggagtgaaatagaacctgaaatcgggtgct
tacaatcagttggagcttgtgtaggttttgcagcttgctgtaattcctgcatgggtgacagcgtacctttt
gcataatgggtcagcgagttaatctgttgagcaagcttaagccgttaggtgtaggcgtagcgaaagcgagt
ctgaatagggcgttttagttcaatggattagacccgaaaccaagtgatctagccatggccaggttgaaggt
gtagtaaagtacattggaggaccgaacctgttactgttgcaatagtattggatgagctgtggctaggggtg
aaaggccaatcaaacttggaaatagctggttctccgcgaaatctatttaggtagagcgttgtactataagt
tgccgggggtagagcactgaatggactagggagactcatcctcttaccaaatccaatcaaactccgaatac
cggtcaactgttctacagcagacacactgcgggtgctaagtccgtggtggaaagggaaagagcccagatcg
ccgtctaaggtcccaaagttatggctaagtgtggaaggaggtgagaagaccaatacagctagtaggttggc
ttagaagcagccatcctttaaagaaagcgtaacagctcacttgtctagatttaagtcttcttgcgccgaag
atgtaacggggctaaagccatacgccgaagacgcgagtgcccggcttgccgggtgcggtagcggagcgttt
cgtaagcctgtgaaggtggcccgtgagggttgctggaggtatcgaaagtgagaatgctgacatgagtagcg
taaaggagtgtgaaaaccactcccgccgaaaacctaa'

Out[26]: 560

Split genome on spaces and join together using '' to create continuous
string

genome = 'gaaaaggcaaccgtaggggg tgatagtccc gtacaggtaa gaaggttgca gatccttgag
tagggcggggcacgtggaac cctgtctgaa tttaggggga ccatcctcta aacctaagta\
ctccttagcgaccgatagtg aacaagtacc gtgagggaaa ggtgaaaaga accccggtga\
ggggagtgaaatagaacctg aaatcgggtg cttacaatca gttggagctt gtgtaggttt\
tgcagcttgctgtaattcct gcatgggtga cagcgtacct tttgcataat gggtcagcga\
gttaatctgttgagcaagct taagccgtta ggtgtaggcg tagcgaaagc gagtctgaat\
agggcgttttagttcaatgg attagacccg aaaccaagtg atctagccat ggccaggttg\
aaggtgtagtaaagtacatt ggaggaccga acctgttact gttgcaatag tattggatga\
gctgtggctaggggtgaaag gccaatcaaa cttggaaata gctggttctc cgcgaaatct\
atttaggtagagcgttgtac tataagttgc cgggggtaga gcactgaatg gactagggag\
actcatcctcttaccaaatc caatcaaact ccgaataccg gtcaactgtt ctacagcaga\
cacactgcgggtgctaagtc cgtggtggaa agggaaagag cccagatcgc cgtctaaggt\
cccaaagttatggctaagtg tggaaggagg tgagaagacc aatacagcta gtaggttggc\
ttagaagcagccatccttta aagaaagcgt aacagctcac ttgtctagat ttaagtcttc\
ttgcgccgaagatgtaacgg ggctaaagcc atacgccgaa gacgcgagtg cccggcttgc\
cgggtgcggtagcggagcgt ttcgtaagcc tgtgaaggtg gcccgtgagg gttgctggag\
gtatcgaaagtgagaatgct gacatgagta gcgtaaagga gtgtgaaaac cactcccgcc\
gaaaacctaa'
genome = ''.join(genome.split())
genome

Use .find() method to find index for first occurrence of 'tata'

genome.find('tata')

In [27]:

This gene example is simplified, but it gives you an idea of something real that can be done using
the .split() , .join() , and .find() methods together with string slicing!

Out[27]: 'gactagggagactcatcctcttaccaaatccaatcaaactccgaataccggtcaactgttctacagcaga
cacactgcgggtgctaagtccgtggtggaaagggaaagagcccagatcgccgtctaaggtcccaaagttat
ggctaagtgtggaaggaggtgagaagaccaatacagctagtaggttggcttagaagcagccatcctttaaa
gaaagcgtaacagctcacttgtctagatttaagtcttcttgcgccgaagatgtaacggggctaaagccata
cgccgaagacgcgagtgcccggcttgccgggtgcggtagcggagcgtttcgtaagcctgtgaaggtggccc
gtgagggttgctggaggtatcgaaagtgagaatgctgacatgagtagcgtaaaggagtgtgaaaaccactc
ccgccgaaaacctaa'

Use string slicing to isolate gene which occurs 30 nucleotides after
start of tata

gene = genome[560 + 30 :] # We can use an arithmetic operation as a
gene # start, stop, or increment value

