
CptS 111, Spring 2023
Lect. #22, Apr. 12, 2023
Class Notes

Today's Agenda:

1. Demo of PA 7
2. A few more list methods (plus a function)
3. More on simultaneous assignment
4. List slicing
5. Loops modifying lists

Ch. 9

Lists and Dictionaries

2. (More) List Methods (and Another List Function)

Earlier we learned the most useful list functions and some of the more useful list methods. Today
we'll cover the following:

.insert()

.extend()

.reverse()

.sort() with more functionality
sorted()

In [1]:

If we want to add an element to a list, we use the .append() method, but suppose we want to
add a collection of items to a list. We can do so if the collection is an iterable, e.g., a string, a
tuple, a set, or another list using the .extend() method.

Out[1]: [0.2, 2, 22, 222]

.insert(): for (index, a), insert a before index

twos = [2, 22, 222]
twos.insert(0,0.2) # .insert(index, value)
twos

In [2]:

In [3]:

We've discussed the .sort() method previously, but I wanted to add that this method and
others modify lists in place; this is known as in-place modification.

In [4]:

In [5]:

We can actually combine these two examples using a kwag!

In [6]:

In addition to the void method .sort() , Python has the built-in non-void function
sorted() for lists. Both the void .sort() method and the non-void sorted() function

perform the same operation. Python has both because sorting is so useful. The difference
between the two is that .sort() sorts a list in place, i.e., the original list is permanently
changed; with sorted() , the original list is retained, and the sorted list is assigned to an
lvalue.

Out[2]: [0.2, 2, 22, 222, 2222, 22222]

Out[3]: [0.2, 2, 22, 222, 2222, 22222, 't', 'w', 'o', 's']

Out[4]: [5, 7, 11, 13, 17, 19, 23]

Out[5]: [23, 19, 17, 13, 11, 7, 5]

Out[6]: [23, 19, 17, 13, 11, 7, 5]

Use .extend() to add values of a tuple to a list

tuple_of_twos = (2222, 22222)
twos.extend(tuple_of_twos) # Add elements of an iterable
twos

Use .extend() to add string characters to a list
I wonder if there's some practical application for this!

twos.extend('twos') # add elements of iterable to list
twos

.sort(): sort list from smallest to largest

primes = [19, 7, 23, 11, 13, 5, 17]
primes.sort()

primes

.reverse(): reverses element order

primes.reverse()

primes

Sort list and reverse the elements by changing the value of the kwarg
'reverse' to True

primes = [19, 7, 23, 11, 13, 5, 17]
primes.sort(reverse=True)
primes

You can use the keyword key with either of these if you want to sort the list in a particular
Y l th k f b th L t' id f l

In [7]:

In [8]:

In [9]:

In [10]:

3. Simultaneous Assignment Redux

We've used simultaneous assignment many times before, but now that we've learned loops, I
want to show you a few other ways to use it.

['Ostrich', 'Zebra', 'alligator', 'cow', 'monkey']

['alligator', 'cow', 'monkey', 'Ostrich', 'Zebra']

Sorted list: ['alligator', 'cow', 'monkey', 'Ostrich', 'Zebra']

Original list: ['monkey', 'Ostrich', 'Zebra', 'alligator', 'cow']

Reversed sorted list: [23, 19, 17, 13, 11, 7, 5]

Original list: [19, 7, 23, 11, 13, 5, 17]

Void method .sort() sorts list in place

animals = ['monkey', 'Ostrich', 'Zebra', 'alligator', 'cow']
animals.sort()

print(animals)

We can use key=str.lower so case doesn't matter

animals.sort(key=str.lower)
print(animals)

Non-void function sorted() returns sorted list; can use key=str.lower
here as well

animals = ['monkey', 'Ostrich', 'Zebra', 'alligator', 'cow']
sorted_animals = sorted(animals, key=str.lower)
print('Sorted list:', sorted_animals)

print('Original list:', animals)

reverse=True works for sorted() function as well

primes = [19, 7, 23, 11, 13, 5, 17]
rev_primes = sorted(primes, reverse=True)
print('Reversed sorted list:', rev_primes)

print('Original list:', primes)

In [11]:

The basic rule for simultaneous assignment is that the number of lvalues to the left of the
assignment operator must equal the number of elements to the right.

We can use simultaneous assignment with lists of lists and nested loops:

J. Austen

 - Pride and Prejudice

 - Persuasion

 - Sense and Sensibility

 - Emma

 - Northanger Abbey

 - Mansfield Park

Use simultaneous assignment with nested lists
author is first element in list, novels is second element in list

author, novels = ['J. Austen', ['Pride and Prejudice', 'Persuasion',
 'Sense and Sensibility','Emma', 'Northanger Abbey',

 'Mansfield Park']]

print(f'{author}')

for novel in novels:
 print(f' - {novel}')

In [14]:

Length of cars: 3

Length of cars[0] 2

Toyota:

 - RAV4

 - Prius

 - Camry

Ford:

 - Explorer

 - F-150

 - Mustang

Tesla:

 - Model S

 - Model X

 - Model Y

Use simultaneous assignment with lists of lists and nested loops
cars is nested list of length 3; each element in cars is a list
which has a string element and a list element

cars = [
 ['Toyota', ['RAV4', 'Prius', 'Camry']],

 ['Ford', ['Explorer', 'F-150', 'Mustang']],

 ['Tesla', ['Model S', 'Model X', 'Model Y']]

]

Length of cars:
print('Length of cars:', len(cars))

print('Length of cars[0]', len(cars[0]))

car is list of length 2; make is first element and models is second
models is also a list

for car in cars: # car is a list of length 2
 make, models = car # models is a list as well
 print(f'{make}:')

 for model in models:
 print(f' - {model}')

In [15]:

4. List Slicing

List slicing is analogous to string slicing. We can create a list from another list using list slicing.

Template for list slicing:

<list>[start : end : stride]

where:

start: slice begins at start index

end: slice ends one before end index (stop)

stride: default of 1, but other values can be used (increment)

Notes:

1. [: end] will start at 0 and end one before end
2. [start :] will start at start and include rest of list
3. [: : stride] will start at 0, add stride to 0 and each successive index value, and end

at end
4. [:] will create a deep copy of list

In [16]:

Christian Louboutin: $5,995

Jimmy Choo: $950

Stuart Weitzman: $598

Miu Miu: $1,200

Manolo Blahnik: $1,795

Gucci: $950

Alexander McQueen: $690

Out[16]: ['a', 'b', 'c', 'd', 'e', 'f']

Use simultaneous assignment in iterating for-loop header!
shoes is nested list (list of lists)

shoes = [
 ['Christian Louboutin', 5995],

 ['Jimmy Choo', 950],

 ['Stuart Weitzman', 598],

 ['Miu Miu', 1200],

 ['Manolo Blahnik', 1795],

 ['Gucci', 950],

 ['Alexander McQueen', 690]

]

for designer, price in shoes:
 print(f'{designer}: ${price:,}') # Note use of comma

Example 1:

letters = ['a', 'b', 'c', 'd', 'e', 'f', 'g']
letters[: 6]

In [17]:

In [18]:

Next, recall the following.

In [19]:

We didn't want nums1 to change which is why we made a copy of it, nums2 , which we
passed to the function. However, we didn't really create a copy; instead, we created an alias
pointing to the same memory location. Thus, when nums2 was changed, so was nums1 .

We can use list slicing to create a deep copy of a list. Let's see what happens when we do.

In [20]:

5. Modifying Lists in a Loop

Out[17]: ['c', 'd', 'e', 'f', 'g']

Out[18]: ['a', 'c', 'e', 'g']

Original list: [-1, -2, -3]

Negated list returned by function: [-1, -2, -3]

Original list: [1, 2, 3]

Negated list returned by function: [-1, -2, -3]

Example 2:

letters[2 :]

Example 3:

letters[: : 2]

We used this example in an earlier lecture

def negate(num_list):
 for i in range(len(num_list)):
 num_list[i] = -num_list[i]
 return num_list

nums1 = [1, 2, 3]
nums2 = nums1
neg_nums = negate(nums2)
print('Original list:', nums1)

print('Negated list returned by function:', neg_nums)

Example 4: Use a deep copy of nums to use as the argument

def negate(num_list):
 for i in range(len(num_list)):
 num_list[i] = -num_list[i]
 return num_list

nums1 = [1, 2, 3]
nums2 = nums1[:] # This is only difference in code
neg_nums = negate(nums2)
print('Original list:', nums1)

print('Negated list returned by function:', neg_nums)

Previously we learned that if you want to modify the values in a list within a loop, you must use a
counting for -loop (see Jupyter lecture for 3.8.23), i.e., you can't use an iterating for -loop.
Let's now consider a more complex example.

In [21]:

Ann was removed from names1 , so why wasn't Ali ? To see why, consider the following:

In [22]:

We see that iteration of the list stopped before the name Ali was reached. Because lists are
mutable, names1 is changed as the iterable in the for -loop! The Python interpreter sees that
it has already looked at the first three values in names1 so when the length of names1 has
been reduced to three values, it ends the loop. To circumvent this problem, we create a deep
copy of names1 .

names1: ['Emi', 'Sun', 'Ali']

names2: ['Ann', 'Ali', 'Sam', 'Tom']

name in names1: Emi

name in names1: Sun

name in names1: Ann

names1: ['Emi', 'Sun', 'Ali']

names2: ['Ann', 'Ali', 'Sam', 'Tom']

Try to remove names from names1 that are in names2

names1 = ['Emi', 'Sun', 'Ann', 'Ali']
names2 = ['Ann', 'Ali', 'Sam', 'Tom']
for name in names1:
 if name in names2:
 names1.remove(name)

print('names1:', names1)

print('names2:', names2)

Same as previous example, but print loop variable

names1 = ['Emi', 'Sun', 'Ann', 'Ali']
names2 = ['Ann', 'Ali', 'Sam', 'Tom']
for name in names1:
 print('name in names1:', name)

 if name in names2:
 names1.remove(name)

print('names1:', names1)

print('names2:', names2)

In [23]:

name in names1: Emi

name in names1: Sun

name in names1: Ann

name in names1: Ali

names1: ['Emi', 'Sun']

names2: ['Ann', 'Ali', 'Sam', 'Tom']

Remove names from name1 that are in names2 by using deep copy of names1
as the iterable in the for-loop.

names1 = ['Emi', 'Sun', 'Ann', 'Ali']
names2 = ['Ann', 'Ali', 'Sam', 'Tom']
for name in names1[:]: # Use deep copy of names1; only di
 print('name in names1:', name)

 if name in names2:
 names1.remove(name)

print('names1:', names1)

print('names2:', names2)

