
CptS 111, Spring 2023
Lect. #23, Apr. 17, 2023
Class Notes

Today's Agenda:

1. Checking for membership
2. Correcting a lie of omission
3. Some dictionary methods
4. Nested dictionaries

Ch. 9 (cont.)

Lists and Dictionaries (cont.)

1. Checking for Membership Using in in Lists

In Ch. 8, we discussed the use of in with strings, but it can be used with any container; in fact,
you used in in PA #5 for a dictionary.

Let's consider a different kind of application. Suppose you have a long list of number, and you
want to see whether it includes a particular number.

In [2]:

Or you might have a long list of names and want to determine whether a particular name is in the
list:

Enter year: 2001
Found 2001 in list.

Use of 'in' with list of integers (here, years)

years = [1066, 1812, 1776, 2019, 1492, 2001, 1993, 1991, 1960, 1923,
 1918, 1919, 1922, 2002, 1865, 1968, 2008, 1215, 1337, 1789,
 1848, 1815, 2011, 2004, 1994, 1957, 1969, 1945, 1929, 2008,
 1928, 1861, 1962, 1909, 1911, 1912, 1947, 1952, 1956, 1588,
 1665, 1666, 1348, 1337, 1859, 2002, 2003, 2004, 2005, 2022,
 2007, 2002, 2009, 2013, 1911, 1912, 1913, 1914, 1915, 1551,
 1509, 1661, 1671, 1672, 1673, 1771, 1779, 1917, 1941, 1944,
 1972, 1908, 1901, 1986, 2000, 1863, 1789, 1981, 1521, 1291,
 1413, 2023, 2020, 1963, 1950, 1989, 2050, 1865, 1517, 1792]
year = int(input('Enter year: '))
if year in years:
 print (f'Found {year} in list.')
else:
 print(f'{year} not in list.')

In [6]:

2. An Important Aside Regarding Tuples
(fixing a lie of omission)

Consider the following function which might look familiar to you.

In [7]:

In the function above, wt and ht are both returned to the calling function. However,
functions can really only return one object. In fact, Python interprets wt, ht as the tuple
(wt, ht) and returns this tuple to the calling function or program. Python also interprets the

lvalues weight and height as a single tuple, but it unpacks the tuple returned by the

Enter name: Sambisa
Found Sambisa in list.

Enter your weight in pounds: 135
Enter your height in inches: 60

Weight: 135 pounds
Height: 60 inches

Use of 'in' with list of strings

names = ['Smith', 'Wang', 'Delgado', 'Khaledian', 'Abnousi', 'Tao', 'Tran
 'Esna Ashari', 'Chowdhury', 'Clarke', 'Jones', 'Hawkes', 'Nguyen
 'Morris', 'Nand', 'Rowe', 'Booth', 'Warner', 'Davis-Early', 'Harr
 'Zhang', 'Turner', 'Watt', 'de la Cruz', 'Reynolds', 'Raymer',
 'Chen', 'Sambisa', 'Bork', 'Lindauer', 'Obama', 'Schulz', 'Oriard
 'Hernandez', 'Callero', 'Higgins', 'Lockwood', 'Brayton', 'Tomsov
 'Ramirez', 'Wen', 'Ma', 'De Goede', 'Ciot', 'Christian', 'Massey
 'Sharma', 'Weik', 'Waring', 'Al-Dalaan', 'Luquin', 'Kasper', 'Da
 'Eaton', 'Patel', 'Beck', 'Schneider', 'Peckham', 'Rodriguez',
 'Dutton', 'Griffin', 'Hinton', 'Foster', 'Larsen', 'Mock',
 'Jangthanasombat', 'Yoshimura', 'Birch', 'Stites', 'Ellovich', 'L
 'Pande', 'Azana', 'Tokuno', 'Chase', 'Sok', 'Casila', 'Newman']
name = input('Enter name: ')
if name in names:
 print('Found', name, 'in list.')
else:
 print(name, 'not in list.')

Returning multiple values from a function

def get_input():
 wt = float(input('Enter your weight in pounds: '))
 ht = float(input('Enter your height in inches: '))
 return wt, ht

def main():
 weight, height = get_input()
 print()
 print(f'Weight: {weight:g} pounds\nHeight: {height:g} inches')

main()

function so you don't have to worry about tuples at all. Actually, it's probably safer to ignore the
tupleness because it forces you to have the same number of lvalues on the left side as are in the
tuple returned by the function.

In [8]:

In [9]:

We haven't talked about the use of tuples a lot in this course, but we have used them a lot! It's
just that often Python unpacked them for us. In fact, most of the time we've used values
separated by commas, we've been using tuples. Let's look at two other instances of tuple use.

In [10]:

In [11]:

3. Common Dictionary Methods

In Ch. 3, we discussed the use of del and .clear() with dictionaries. del is used to
delete one key-value pair, and .clear() is used to delete all key-value pairs. Today we'll cover
a few more dictionary methods.

.get(): nonvoid method that returns value for a key or default
if key doesn't exist
.update(): void method that combines two dictionaries
.pop(): nonvoid method that returns & removes value for a key
or default if no key

3 2

3 2

<class 'tuple'>
(1, 2, 3, 4)

Out[11]: int

Python unpacks the tuple returned by the divmod() function

whole, remainder = divmod(11, 3)
print(whole, remainder)

divmod() returns a tuple

result = divmod(11, 3)
print(result[0], result[1])

No need for parentheses!

tuple_am_i = 1, 2, 3, 4
print(type(tuple_am_i))
print(tuple_am_i)

But use of parentheses doesn't guarantee tupleness

tuple_i_am_not = (42)
type(tuple_i_am_not)

In [12]:

In [13]:

In [14]:

Compare the last three examples. Notice that dict2 wasn't changed, but two entries were
added to dict1 , and one value was modified.

In [15]:

In [16]:

dict1: {'bananas': 0.69, 'satsumas': 1.49, 'pomelos': 1.29}
dict2: {'cherries': 2.69, 'nectarines': 1.69, 'satsumas': 1.29}

TypeError Traceback (most recent call l
ast)
Input In [13], in <cell line: 3>()
 1 # Note that operator overloading doesn't work with dictionarie
s!
----> 3 dict3 = dict1 + dict2

TypeError: unsupported operand type(s) for +: 'dict' and 'dict'

dict1: {'bananas': 0.69, 'satsumas': 1.29, 'pomelos': 1.29, 'cherries':
2.69, 'nectarines': 1.69}
dict2: {'cherries': 2.69, 'nectarines': 1.69, 'satsumas': 1.29}

Out[15]: 2.69

pineapple: No such key

First set up two dictionaries

dict1 = dict(bananas=.69, satsumas=1.49, pomelos=1.29)
dict2 = dict(cherries=2.69, nectarines=1.69, satsumas=1.29)
print('dict1:', dict1)
print('dict2:', dict2)

Note that operator overloading doesn't work with dictionaries!

dict3 = dict1 + dict2

Update dict1 using dict2; if key-value pair doesn't exist, it will be
added; if it does, then value will be replaced from dict2

dict1.update(dict2)
print('dict1:', dict1)
print('dict2:', dict2)

Find value for key; return default if key doesn't exist

dict2.get('cherries', 'No such key')

Find value for key; return default if key doesn't exist

price = dict2.get('pineapple', 'No such key')
print('pineapple:', price)

In [17]:

In [18]:

In [19]:

In [20]:

KeyError Traceback (most recent call l
ast)
Input In [17], in <cell line: 3>()
 1 # Compare the previous example with the following for obtaining
a value:
----> 3 price = dict2['pineapple']

KeyError: 'pineapple'

dict1: {'bananas': 0.69, 'satsumas': 1.29, 'pomelos': 1.29, 'cherries':
2.69, 'nectarines': 1.69}
pineapple: No such key

KeyError Traceback (most recent call l
ast)
Input In [19], in <cell line: 3>()
 1 # Compare this with delete
----> 3 del dict1['pineapple']

KeyError: 'pineapple'

dict1: {'bananas': 0.69, 'satsumas': 1.29, 'pomelos': 1.29, 'cherries':
2.69, 'nectarines': 1.69}
pomelos: 1.29

Compare the previous example with the following for obtaining a value:

price = dict2['pineapple'] # Former way of obtaining a value using a key

Find value for key; return default if key doesn't exist; then delete
key-value pair

print('dict1:', dict1)
price = dict1.pop('pineapple', 'No such key')
print('pineapple:', price)

Compare this with delete

del dict1['pineapple'] # Former way of deleting a key-value pair

Find value for key; return default if key doesn't exist; then delete
key-value pair

print('dict1:', dict1)
price = dict1.pop('pomelos', 'No such key')
print('pomelos:', price)

In [21]:

So finally, we can use the .clear() method to remove all the key-value pairs in a dictionary.

In [22]:

To summarize, we now have learned the following about dictionaries:

1. We know how to initialize an empty dictionary.
2. We know how to add key-value pairs to an empty dictionary.
3. We know several different ways (3!) to create a dictionary.
4. We know how to change the value of a key-value pair in a dictionary.
5. We know how to check for membership in a dictionary.
6. We know how to use a dictionary in an iterating for -loop using dict_name.keys() ,

dict_name.values() , or dict_name.items() .
7. We know how to use the void method .update() to update one dictionary with key-value

pairs from another.
8. We know how to use the non-void method .get() to find the value (or a default value if a

key-value pair doesn't exist) for a given key.
9. We know how to use the del command to delete a key-value pair, but we know a better

way is to use the non-void .pop() method because it will return a default value if a key-
value pair doesn't exist rather than an error.

10. Finally, we know how to use the void method .clear() to remove all key-value pairs from
a dictionary.

4. Nested dictionaries

Next, let's turn to our last topic for dictionaries. Nested dictionaries can be very useful. Consider
a dictionary called grades with three keys: 'Juan Dough' , 'Jin Money' , and 'Jae
Moolah' . The values of these keys are themselves dictionaries, each with the three keys:
'PAs' , 'Midterms' , and 'Final' . The values of 'PAs' and 'Midterms' are lists;

the value of 'Final' is an integer.

dict1: {'bananas': 0.69, 'satsumas': 1.29, 'cherries': 2.69, 'nectarine
s': 1.69}

dict1: {}

We can see that the key-value pair deleted

print('dict1:', dict1)

Use .clear() to remove all key-value pairs:

dict1.clear()
print('dict1:', dict1)

In [23]:

So how do we use this nested dictionary? Well, let's enter one of the outer keys as a name:

In [24]:

If this name exists in the grades dictionary, we can find its value. In fact, because its value is a
dictionary, we can use successive keys as additional values the way we use indexes for lists of
lists. grades[name]['PAs'] is the same as grades['Juan Dough']['PAs'] which is
the key to the list of PAs [100, 88, 100] . Let's see how this works:

Enter student name: Jin Money

Create a nested dictionary with student names as keys and dictionaries
values
grades = {
 'Juan Dough': {
 'PAs': [100, 88, 100],
 'Midterms': [85, 78],
 'Final': 90
 },
 'Jin Money': {
 'PAs': [92, 100, 100],
 'Midterms': [88, 94],
 'Final': 95
 },
 'Jae Moolah': {
 'PAs': [95, 97, 94],
 'Midterms': [91, 90],
 'Final': 89
 }
}

name = input('Enter student name: ')

In [25]:

We can put this code into a loop and prompt for as many names as we want. Note the use of the
in command in the conditional test.

Scores for Jin Money:
PA 1: 92
PA 2: 100
PA 3: 100
Midterm 1: 88
Midterm 2: 94
Final: 95

First we check to see whether 'name' is in the dictionary 'grades'

if name in grades:
 print(f'Scores for {name}:') # Print header

 # grades[name]['PAs'] is the key which returns a list value
 PAs = grades[name]['PAs'] # PAs is a list of grades

 # grades[name]['Midterms'] is the key which returns a list value
 midterms = grades[name]['Midterms'] # midterms is a list of grades

 # grades[name]['Final'] is the key which returns an integer value
 final = grades[name]['Final'] # final is an integer

 # Loops to print grades
 for pa, score in enumerate(PAs): # Print PA scores
 print(f'PA {pa+1}:{score:>9}')

 for midterm, score in enumerate(midterms): # Print mideterm scores
 print(f'Midterm {midterm+1}:{score:>4}')

 print(f'Final:{final:>8}') # Print final score

In [26]:

Enter student name [return to exit]: Jin Money

Scores for Jin Money:
PA 1: 92
PA 2: 100
PA 3: 100
Midterm 1: 88
Midterm 2: 94
Final: 95

Enter student name [return to exit]: Jae Moolah

Scores for Jae Moolah:
PA 1: 95
PA 2: 97
PA 3: 94
Midterm 1: 91
Midterm 2: 90
Final: 89

Enter student name [return to exit]: Jae Money

Enter student name [return to exit]: Juan Dough

Scores for Juan Dough:
PA 1: 100
PA 2: 88
PA 3: 100
Midterm 1: 85
Midterm 2: 78
Final: 90

Enter student name [return to exit]:

Use while-loop to print grades for as many students as desired

while True:
 name = input('Enter student name [return to exit]: ')
 print()
 if name == '':
 break
 if name in grades:
 print(f'Scores for {name}:')
 PAs = grades[name]['PAs']
 midterms = grades[name]['Midterms']
 final = grades[name]['Final']
 for pa, score in enumerate(PAs):
 print(f'PA {pa+1}:{score:>9}')
 for midterm, score in enumerate(midterms):
 print(f'Midterm {midterm+1}:{score:>4}')
 print(f'Final:{final:>8}')
 print()

