
CptS 111, Spring 2023
Lect. #24, Apr. 19, 2023
Class Notes

Today's Agenda:

1. Plotting basics
2. Styling plots
3. Adding text to plots

Ch. 10

Plotting

In PA #6 we used some rudimentary data visualization techniques to display the relative
strengths of some Pokemon characters. However, plotting sets of data generated by others or by
ourselves provides better data visualization and often leads to insights and discoveries. The
matplotlib module for Python can be used to plot data in numerous ways.

matplotlib is short for MATLAB Plotting Library
It's Python's way of implementing the plotting package used in MATLAB, a proprietary
software package popular in engineering because it's very useful for solving matrix
problems.
It isn't a standard Python library, i.e., you have to download it separately.
For our purposes, we only need the pyplot module, one of the modules within the very
powerful matplotlib module; the matplotlib module is very large and has a lot of
separate modules (see https://matplotlib.org/3.3.2/py-modindex.html
(https://matplotlib.org/3.3.2/py-modindex.html)).

1. Plotting Basics

After installing matplotlib , we have to import the pyplot module in order to create plots.

In [1]:

Note that plt is used as the default alias by many Python programmers. matplotlib
functions often use lists as arguments. Let's consider the simplest example for creating a plot.

Import matplotlib.pyplot; using the plt alias is standard practice

import matplotlib.pyplot as plt

In [2]:

plt.plot() is used to plot the data. Note that plt.show() is always required as the last
statement. If you forget to use it, the plot won't be drawn. The list arguments we used above
represent the x and y points. Thus, we could have also used the following.

Simplest plot example using lists as arguments
plt.show() is always required to draw a plot

plt.plot([0, 1, 2, 3, 4, 5], [0, 1, 4, 9, 16, 25]) # plots data
plt.show() # draws plot--statemen

In [3]:

We can also use a list to change the values of the axis limits.

Define lists and use them with plot()

x = [0, 1, 2, 3, 4, 5] # values of x
y = [0, 1, 4, 9, 16, 25] # values of y
plt.plot(x, y)
plt.show()

In [4]:

We can add more than one line to our plot simply by calling the plot() function again.

Change axis values using axis() with a list argument

plt.plot(x, y)
plt.axis([0, 5, 0, 25]) # [x1, x2, y1, y2] list of axis limits
plt.show()

In [5]:

2. Styling Plots

As explained in zyBooks, we can use both format strings and keywords to change the look of our
plots. For example,

'ro-' : solid red line with circle markers (color, marker, line style)
'g^' : green triangle markers
'm--' : dashed maroon line
'co-.' : dashed-dot cyan line with circle markers

linewidth: width of the line (keyword)
markersize: size of the markers (keyword)
label: label to use for a line in a legend (keyword)

and there are many more. Note that in the format strings, the color comes first, then marker-or-
line or marker-and-line. Let's look at a few examples.

We can draw as many lines as we want by calling plot() multiple times

plt.plot(x, y)
plt.plot(x, [0, 4, 8, 12, 16, 20])
plt.axis([0, 5, 0, 25]) # [x1, x2, y1, y2] list of axis limits
plt.show()

In [6]: # We can change line colors and add markers to plots very easily
This plot uses the default values for line widths and marker sizes

z = [0, 4, 8, 12, 16, 20]
plt.plot(x, y, 'c-.') # dashed-dot cyan line
plt.plot(x, z, 'mo-') # solid maroon line with circle markers
plt.axis([0, 5, 0, 25])
plt.show()

In [7]:

3. Adding Text to Plots

We can add text to plots including:

axis labels
plot title
line labels for a legend
annotations

We'll first add axis labels and a title to the previous figure.

We can also change the width of lines and the size of the markers

plt.plot(x, y, 'rd:', linewidth=3) # dotted red line w/ diamond marker
plt.plot(x, z, 'gs--', markersize=10) # dashed line w/ big, green square m
plt.axis([0, 5, 0, 25])
plt.show()

In [8]:

Now let's add a legend.

Add axis labels and title to our plot

plt.plot(x, y, 'gs-')
plt.plot(x, z, 'cd--')
plt.axis([0, 5, 0, 25])
plt.xlabel('x', fontsize=12) # $'s delimit math font and operation
plt.ylabel('y', fontsize=12) # fontsize controls font size
plt.title('Functions of x', fontsize=16)
plt.show()

In [9]: # Plot with axes labels, title, and legend

plt.plot(x, y, 'gs-', label='$y=x^2$')
plt.plot(x, z, 'cd--', label='$y=4x$')
plt.axis([0, 5, 0, 25])
plt.xlabel('x', fontsize=12) # $'s delimit math font and operation
plt.ylabel('y', fontsize=12) # fontsize controls font size
plt.title('Functions of x', fontsize=16)
plt.legend(loc='upper left') # left, center, right
plt.show()

