
CptS 111, Spring 2023
Lect. #25, Apr. 24, 2023
Class Notes

Today's Agenda:

1. Plotting data from files
2. The numpy module
3. Figures with subplots

Ch. 10 (cont.)

Plotting (cont.)

1. Extracting Data for Plotting from Files

The toy examples we considered in our last lecture are useful for illustrating how to make plots,
but typically we want to extract data from a file or files and then plot these data. Quite often the
approach to doing this is first to look at the format of the data in a file, and when possible,
use the .split() method to create lists for plotting. This is very effective for .csv files
because fields are separated by commas.

In [1]:

years: [1970, 1971, 1972, 1973, 1974, 1975, 1976, 1977, 1978, 1979, 198
0, 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988, 1989, 1990, 1991, 19
92, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2
004, 2005, 2006, 2007, 2008, 2009, 2010, 2011]
total deaths: [52627, 52542, 54589, 54052, 45196, 44525, 45523, 47878,
50331, 51093, 51091, 49301, 43945, 42589, 44257, 43825, 46087, 46390, 4
7087, 45582, 44599, 41508, 39250, 40150, 40716, 41817, 42065, 42013, 41
501, 41717, 41945, 42196, 43005, 42643, 42518, 43443, 42532, 41059, 372
61, 33808, 32885, 32367]
alcohol-related deaths: [30150, 29552, 31500, 31022, 25500, 25004, 2655
0, 27500, 32339, 31980, 32100, 31005, 26173, 24635, 24762, 23167, 2501
7, 24094, 23833, 22424, 22587, 20159, 18290, 17908, 17308, 17732, 1774
9, 16711, 16673, 16572, 17380, 17400, 17524, 17013, 16919, 16885, 1582
9, 15387, 13846, 12744, 10228, 9878]

Import matplotlib.pyplot, initialize lists, use with to
open file, use .split() to create lists from the lines of
the file, and append list values as appropriate.

import matplotlib.pyplot as plt

yrs = []
deaths = []
alcohol_deaths = []
with (open('dd_stats.csv')) as file_in:
 for line in file_in:
 line_list = line.split(',') # split on ','
 yrs.append(int(line_list[0])) # int() first element in list
 deaths.append(int(line_list[1])) # int() second element in list
 alcohol_deaths.append(int(line_list[2])) # and so on
print(f'years: {yrs}\ntotal deaths: {deaths}\nalcohol-related deaths: {alc

Create plot with two lines, axes labels, title, and legend
plt.plot(yrs, deaths, 'r-', label='Total') # solid red line
plt.plot(yrs, alcohol_deaths, 'b--', label='Alcohol-Related') # dashed b
plt.axis([1970, 2011, 0, 60000]) # [x1, x2, y1, y2]
plt.xlabel('Year')
plt.ylabel('Number of Driving Fatalities')
plt.title('Total and Alcohol-Related Driving Fatalities\n1970-2011')
plt.legend(loc='upper right')
plt.show()

Next, we'll briefly discuss the use of the numpy module as well as how to create figures with
multiple plots using matplotlib .

2. The numpy Module

numpy is a library of math functions, many of which are used with matrixes. In computer
science, matrixes are often called n -dimensional arrays, where n can be as small as 1. One of
the benefits of using numpy is that operations with arrays can be performed very easily. We
won't actually be exploiting the power of numpy in this course. However, I want to give you
some sense of how useful it can be. Consider the following list of integers.

In [2]:

Suppose we want to square each value in this list (without using list comprehension, which is
another very useful Python concept beyond the scope of this course; an optional section on list
comprehension is available in Ch. 9 in your zyBook). To square the integer values, we can use a
for -loop.

Out[2]: [0, 1, 2, 3, 4, 5]

List of integers

ints = [0, 1, 2, 3, 4, 5]
ints

In [3]:

Let's see how this can be done using numpy . First we need to import numpy .

In [4]:

Note that np is commonly used as the alias for numpy by many Python programmers. We can
then use the array() function in numpy to convert the list ints to a 1-D array.

In [5]:

What's the difference?

Next, we see how useful numpy can be. If we want to find the square of the values of the 1-D
array a_ints , we don't have to use a for -loop. We simply do the following.

In [6]:

Let's consider two more math operations with arrays.

In [8]:

Out[3]: [0, 1, 4, 9, 16, 25]

Notice that our list of integers is printed as [0, 1, 2, 3, 4, 5]
while our array of integers is printed as [0 1 2 3 4 5].

[0 1 4 9 16 25] has extra spaces based on the largest value in it.

A sum [0 2 6 12 20 30] and product [0 1 8 27 64 125] of two
arrays.

Square elements in list of integers using an iterating for-loop:

ints_squared = []
for num in ints:
 ints_squared.append(num ** 2)
ints_squared

Import numpy as np which is the standard alias for numpy

import numpy as np

Use numpy to convert list of integers to array of integers
Note that array elements aren't separated by commas

a_ints = np.array(ints)
print(f'Notice that our list of integers is printed as {ints}')
print(f'while our array of integers is printed as {a_ints}.')

Squaring integers without use of a for-loop; note that Python
knows how to perform math operations with arrays

a_ints_sq = a_ints ** 2
print(f'{a_ints_sq} has extra spaces based on the largest value in it.')

As mentioned above, Python can perform math operations on arrays.

array_sum = a_ints + a_ints_sq
array_product = a_ints * a_ints_sq
print(f'A sum {array_sum} and product {array_product} of two arrays.')

OTOH, some math operations for arrays require the use of numpy .

In [11]:

Notice how Python identifies the array.

We've used lists as arguments in the plot() function. We can also use 1-D arrays, which are
similar to lists, as arguments.

In [12]:

numpy also has a function similar to the range() function. The function in numpy creates a
sequence of values (integers or floats) in an array which can then be used as an argument in the
plot() function.

[1. 0.36787944 0.13533528 0.04978707 0.01831564 0.00673795]

We need to use np.exp() to find the exponential values of the integers

a_ints_exp = np.exp(-a_ints)
print(a_ints_exp)

Use 1-D arrays as arguments of plot()

plt.plot(a_ints, a_ints_sq, 'go--') # lists or arrays can be used
plt.axis([0, 5, 0, 25])
plt.xlabel('x', fontsize=12) # $$ delimit math mode
plt.ylabel('x^2', fontsize=12)
plt.show()

In [15]:

In [16]:

You'll use the arange() function in this week's lab.

3. Figures with Subplots

It's easy to create figures with subplots using matplotlib as you'll do in Lab #12. Let's
consider an example.

[0. 0.5 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5.]

[0 1 2 3 4 5]

The arange() function creates an array of values, floats or integers

x = np.arange(0, 5.5, 0.5) # (start, stop, increment); as with the range(
print(x) # function, the stop value isn't included

The default values for start and stop are 0 and 1, respectively

y = np.arange(6)
print(y)

In [17]:

In the code above:

fig : identifies elements of the overall figure
subfig : 2x1 array of subplots, where 2 is the number of rows and 1 is the number of

columns; in Lab #12, you'll use a 2x2 array of subplots
constrained_layout=True : prevents subplots from overlapping
x , y limits of subplots require different functions and argument types

titles of subplots require different functions

Use of subfig to create subplots using matplotlib

fig, subfig = plt.subplots(2, 1, constrained_layout=True)
fig.suptitle('Functions of x') # overall title

subfig[0].plot(a_ints, a_ints_sq, 'go-') # single index for subfig
subfig[0].set_xlim(0, 5) # x-axis limits
subfig[0].set_ylim(0, 25) # y-axis limits
subfig[0].set_title('x^2') # subplot title

subfig[1].plot(a_ints, a_ints_exp, 'md-')
subfig[1].set_xlim(0, 5)
subfig[1].set_ylim(0, 1)
subfig[1].set_title('e^{-x}')

plt.show()

