
CptS 111, Spring 2023
Lect. #3, Jan. 18, 2023
Class Notes

Today's Agenda:

1. Augmented assignment, math operators, and math precedence
2. A little more on print()
3. Division vs floor division, modulo function, and divmod()
4. Modules

Ch. 2 (cont.)

1. Augmented Assignment (Compound Operators), Math Operators, and Math Precedence

A. Augmented Assignment and Math Operators
When programming, we can use shorthand to perform some operations. Consider the following:

 i = 0
 i = i + 1

It's often convenient to use augmented assignment:

 i = 0
 i += 1

I know this looks odd, but the end result is the same (and you get used to it). The second statement is shorthand for i = i + 1 . We can use other
operations as well. In fact, we can use any of the basic math operators:

 +: addition
 -: substraction
 *: multiplication
 /: division
 **: exponentiation

Let's consider some examples.

In [1]:

In [2]:

In [3]:

In [4]:

B. Math Precedence
When writing arithmetic expressions, we have to keep in mind the rules of math precedence (see Table 2.4.2), i.e., which operations are performed first in an
expression. Consider the following:

x = 3 + 4 * 8 / 3 - 5 + 3 ** 2

If we don't use parentheses to indicate exactly how to evaluate the expression on the right, Python will first do the exponentiation (i.e., 3 ** 2 , which is 3
squared) because exponentiation has the highest precedence in the expression. Then it will perform multiplication and division from left to right. Multiplication
* and division / have equal precedence. Finally, Python will perform addition and subtraction from left to right. Addition + and subtraction - have equal

2

1

15

5.0

Augmented assignment using +

x = 0
x += 2
print(x)

Augmented assignment using -

x -= 1
print(x)

Augmented assignment using * (multiplication)

x *= 15
print(x)

Augmented assignment using /; notice that / gives a float!

x /= 3
print(x)

precedence. Using parentheses to demonstrate this, we have:

x = ((3 + ((4 * 8) / 3)) - 5)) + (3 ** 2)

We can see that this is true:

In [5]:

In [6]:

If we want to perform operations in a different order, we can always use parentheses. For example:

In [7]:

2. A Little More on print()

We enclose text we want to print in either single or double quotes.

In [8]:

The choice of single quotes or double quotes is a matter of preference, but if there's a single quote in the text to be printed, we need to use double quotes or
we'll get an error message (throw an exception). Alternatively, we can use the escape character \ .

In [9]:

In [10]:

In [11]:

When we print a variable or literal, a float, or an integer, we don't have to use quotes.

In [12]:

What if we just want to print the first two decimal places of 3.141592653? We can use string formatting in our print command. We'll discuss this more in Ch. 3,
but for now just remember that {:.2f} means a float with 2 decimal places. Similarly, {:.4f} means a float with 4 decimal places.

Out[5]: 17.666666666666664

Out[6]: 17.666666666666664

Out[7]: 4.666666666666668

Hello, World!

 Input In [9]
 print('didn't')
 ^
SyntaxError: unterminated string literal (detected at line 3)

didn't

didn't

dog 3.141592653 42

Default precedence for math operators

3 + 4 * 8 / 3 - 5 + 3 ** 2

"Proof" of default precedence

((3 + ((4 * 8) / 3) - 5)) + (3 ** 2)

Changing the default order of precedence

(3 + 4) * 8 / 3 - (5 + 3 ** 2)

Use of single quotes

print('Hello, World!')

But we can't use three single quotes!

print('didn't')

Instead, use double quotes to delimit the string

print("didn't")

Alternatively, use the escape character which tells Python to

print the character following it.

print('didn\'t')

cat is variable, pi is float, 42 is integer

cat = 'dog'
print(cat, 3.141592653, 42)

In [13]:

In [14]:

3. Division, Floor Division, the Modulo Function, and the divmod() Function

Note the following:

1. Division (/) ALWAYS results in a float regardless of operand types.
2. Both floor division (//) and modulo (%) result in an integer if the operands are integers and in a float if one (or both) of the operands is a float.

Floor division and the modulo function are surprisingly useful.

floor division //: cuts off the remainder, i.e., it rounds down to a whole number
modulo function %: gives the remainder

Consider the following:

In [15]:

In [16]:

In [17]:

In []:

In [18]:

In [19]:

In [20]:

Notice two things about the last operations:

1. We can use two lvalues on the left if we have two operations or values to the right of the assignment operator. Lvalues and operations or values are both
separated by commas. This overall operation is called simultaneous assignment.

2. x gives us the whole number (rounding down) and y gives us the remainder.

There's actually a function that performs both operations and gives two results. It's called the divmod() function. You need to learn this function!
Consider:

pi to 2 decimal places is 3.14.

pi to 4 decimal places is 3.1416.

Out[15]: 2.0

Out[16]: 2.0

Out[17]: 2

Out[18]: 3

Out[19]: 3.0

2 3

Use f-string string formatting for 2 decimal places

pi = 3.141592653
print(f'pi to 2 decimal places is {pi:.2f}.')

Or 4 decimal places; note how rounding occurs!

print(f'pi to 4 decimal places is {pi:.4f}.')

Division with integers

4 / 2

Division with a float

4 / 2.0

Floor division with integers

13 // 5

Floor division with a float

13 // 5.0

Modulo with an integer

13 % 5

Modulo with a float

13 % 5.0

Using simultaneous assignment, i.e., n values on left and n on right

x, y = 13 // 5, 13 % 5
print(x, y)

In [21]:

We get the same result! But how is the divmod() function useful? Consider zCA 2.6.2 (Compute change).

In [22]:

In [23]:

Using the divmod() function in Python saves us some typing, and we'll use this function quite a bit in CptS 111! Let's consider another zCA--2.5.2.

In [24]:

4. Modules

We've learned some basic functions in Python, e.g., print() , input() , type() , int() , float() , and divmod() . These functions are known as
built-in functions because they come "preloaded" in Python. However, there are a relatively small number of these basic built-in functions. In fact, there are
only 72:

'abs','all','any','ascii','bin','bool','breakpoint','bytearray',
'bytes','callable','chr','classmethod','compile','complex',
'copyright','credits','delattr','dict','dir','display','divmod',
'enumerate','eval','exec','filter','float','format','frozenset',
'get_ipython','getattr','globals','hasattr','hash','help','hex',
'id','input','int','isinstance','issubclass','iter','len',
'license','list','locals','map','max','memoryview','min','next',
'object','oct','open','ord','pow','print','property','range',
'repr','reversed','round','set','setattr','slice','sorted',
'staticmethod','str','sum','super','tuple','type','vars','zip'

Rather than having a huge number of functions in Python, we import modules when we want to use specialized functions. A module is just code that's stored
in a .py file for use in another module or in a Python script, i.e., a program we've written in, e.g., an IDLE Editor window. Each module contains functions
designed for a specific purpose.

Python comes with a set of standard modules that is quite extensive, but in addition, there are thousands and thousands of modules available that have been
written by both professionals and enthusiasts. Some of the standard modules included with Python are:

math - math functions
cmath - complex math functions
statistics - statistics functions
random - random numbers
turtle - graphics
os - operating system
time - time access and conversions
mailbox - mailbox manipulation
calendar - calendar functions

2 3

19
Change for $19:
3 five-dollar bill(s) and 4 one-dollar bill(s)

19
Change for $19:
3 five-dollar bill(s) and 4 one-dollar bill(s)

1
Sphere volume: 4.19

divmod(13, 5) does the same thing as 13 // 5, 13 % 5

x, y = divmod(13, 5) # Same as 13 // 5, 13 % 5
print(x, y)

zyBook challenge activity (zCA) 2.6.2 using // and % (19)

amt_to_change = int(input())
num_fives = amt_to_change // 5
num_ones = amt_to_change % 5
print('Change for $', amt_to_change, ':', sep='')
print(num_fives, 'five-dollar bill(s) and', num_ones, 'one-dollar bill(s)')

Another solution using divmod()

amt_to_change = int(input())
num_fives, num_ones = divmod(amt_to_change, 5)
print('Change for $', amt_to_change, ':', sep='')
print(num_fives, 'five-dollar bill(s) and', num_ones, 'one-dollar bill(s)')

Calculate the volume of a sphere for some radius. Recall, sphere_volume

is (4/3)*pi*r^3.

pi = 3.14159
sphere_radius = float(input())

sphere_volume = (4 / 3) * pi * (sphere_radius ** 3)
print(f'Sphere volume: {sphere_volume:.2f}') # Using f-string string formatting

We'll work with a number of these in future chapters, but for now we'll just consider the math module.

In order to use a module, we have to import it. We'll learn two different ways of importing modules now and will learn several more in Ch. 7.

A. Basic Import Statement
The simplest import statement requires the use of dot notation by which we mean that when we use a function in the module, the name of the module must
be given, followed by a period, and then by the name of the function.

import <module>

Let's give this a try.

In [25]:

B. Import Statement with Alias
Sometimes we want to use dot notation so we know that a function has been imported, but we want to shorten the module name if we're going to use a lot of
its functions to decrease the amount of typing required. This can be done very simply.

import <module> as <name>

In [26]:

pi = 3.141592653589793
5! = 120
sqrt(25) = 5.0

pi = 3.141592653589793
5! = 120
sqrt(25) = 5.0

Basic import statement

import math
print('pi =', math.pi)
print('5! =', math.factorial(5))
print('sqrt(25) =', math.sqrt(25)) # sqrt() always returns a float

Import statement with an alias

import math as m
print('pi =', m.pi)
print('5! =', m.factorial(5))
print('sqrt(25) =', m.sqrt(25))

